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COMPLETE CLASSIFICATION OF
COMPACT FOUR-MANIFOLDS WITH
POSITIVE ISOTROPIC CURVATURE

Bing-Long Chen, Siu-Hung Tang & Xi-Ping Zhu

Abstract

In this paper, we completely classify all compact 4-manifolds
with positive isotropic curvature. We show that they are diffeo-
morphic to S4 or RP4 or quotients of S3 ×R by a cocompact fixed
point free subgroup of the isometry group of the standard metric
of S3 × R, or a connected sum of them.

1. Introduction

Let M be an n-dimensional Riemannian manifold. Recall that its
curvature operator at p ∈ M is the self adjoint linear endomorphism
R : ∧2TpM → ∧2TpM defined by

< R(X∧Y ), U∧V >=< Rm(X,Y )V,U >, for X,Y,U, V ∈ TpM.

Here < , > is the Riemannian metric and Rm is the Riemann curvature
tensor on M . The Riemannian metric < , > can be extended either to
a complex bilinear form ( , ) or a Hermitian inner product << , >> on
TpM⊗C. We extend the curvature operator to a complex linear map on
∧2TpM⊗C, also denoted by R. Then, to every two-plane σ ⊂ TpM⊗C,
we can define the complex sectional curvature KC(σ) by

KC(σ) =<< R(Z ∧W ), Z ∧W >>

where {Z,W} is a unitary basis of σ with respect to << , >>. We say
that M has positive isotropic curvature (PIC for short) if KC(σ) > 0
whenever σ ⊂ TpM ⊗ C is a totally isotropic two-plane for any p ∈ M .
Here σ is totally isotropic if (Z,Z) = 0 for any Z ∈ σ. To clarify
the meaning of positive isotropic curvature, we have the following di-
agram for the relative strength of the positivity for various notions of
curvatures:

R > 0 ⇒ KC > 0 ⇒ K > 0 ⇒ Ric > 0 ⇒ R > 0
⇑ ⇓

pointwise 1/4-pinching PIC ⇒ R > 0
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Here, K is the sectional curvature, i.e., the restriction of KC on real
2-planes in TpM ⊗ C; Ric is the Ricci curvature, and R is the scalar
curvature on M . The pointwise 1/4-pinching condition means that, for
any p ∈M , K is positive and we have

1 ≤ max{K(σ) : 2-plane σ ⊂ TpM}
min{K(σ) : 2-plane σ ⊂ TpM} < 4.

The notion of positive isotropic curvature was introduced in the paper
of Micallef and Moore [19] in 1988 where they discovered that it can
be used to control the stability of minimal surfaces just as the notion
of positive sectional curvature can be used to control the stability of
geodesics. Then, by using minimal surface theory, they proved

Theorem (Micallef-Moore). Let M be a compact simply con-
nected n-dimensional manifold with positive isotropic curvature where
n ≥ 4. Then M is homeomorphic to a sphere.

In view of the above diagram, for n ≥ 4, if M is a compact simply
connected n-dimensional manifold with positive curvature operator or
pointwise 1/4-pinching, then M is homeomorphic to a sphere. The lat-
ter generalizes the famous sphere theorem of Berger and Klingenberg.
It is spectacular that, by using the Ricci flow, Böhm-Wilking [5] and
Brendle-Schoen [2] have recently proved, respectively, that a compact
n-dimensional simply connected manifold with positive curvature op-
erator or pointwise 1/4-pinching is indeed diffeomorphic to the round
sphere Sn. More recently, Brendle [1] has further generalized the works
of Böhm-Wilking [5] and Brendle-Schoen [2] and proved the following
beautiful result: if M is a compact manifold with the property that
M × R has positive isotropic curvature, then M is diffeomorphic to a
spherical space form.

In 1997, in a seminal paper [14], Hamilton initiated the study of pos-
itive isotropic curvature by Ricci flow. In dimension 4, he first proved
that the condition of positive isotropic curvature is preserved under
Ricci flow. Then, under the assumption that there are no essential
incompressible space forms in the manifold, he developed a theory of
Ricci flow with surgery to exploit the development of singularities in
the Ricci flow to recover the topology of the manifold. Here an incom-
pressible space form N in a four-manifold M is a smooth submanifold
diffeomorphic to a spherical space form S3/Γ such that the inclusion
induces an injection from π1(N) to π1(M). It is essential unless Γ = 1
or Γ = Z2 and the normal bundle is unorientable. Hamilton’s paper
contained some unjustified statements which were later supplemented
by the paper of Chen and Zhu [8]. Their main result is
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Theorem (Hamilton). Let M be a compact four manifold with no
essential incompressible space form. Then M admits a metric with posi-
tive isotropic curvature if and only if it is diffeomorphic to S4,RP4,S3×
S1,S3×̃S1(this is the quotient of S3×S1 by Z2 which acts by a reflection
and the antipodal map on the first and second factor respectively), or a
connected sum of them.

Clearly, each of the manifolds S4,RP4,S3 × S1,S3×̃S1 listed in the
above theorem admits a metric with positive isotropic curvature. A
theorem of Micallef and Wang [20] guarantees that the connected sum
of compact manifolds with positive isotropic curvature also admits such
a metric. Another useful observation is that the condition of no essential
incompressible space form is automatically satisfied if π1(M) is torsion
free, i.e., contains no nontrivial element of finite order. Indeed, Γ in the
above definition of essential incompressible space form must be trivial.
So, if the fundamental group of a compact Riemannian four-manifoldM
with positive isotropic curvature contains a normal torsion free subgroup
of finite index, then a finite cover ofM is diffeomorphic to S4,S3×S1, or a
connected sum of them. This shows the intimate connection between the
topology and the fundamental group of a compact Riemannian manifold
with positive isotropic curvature, at least in dimension 4.

For dimension greater than 4, it has been proved recently by Brendle
and Schoen [2] (see also [21]) that the condition of positive isotropic cur-
vature is preserved under Ricci flow, although there is yet no generaliza-
tion of the curvature pinching estimates which are crucial in Hamilton’s
analysis of [14]. Another interesting result for a higher dimensional
Riemannian manifold with positive isotropic curvature is the result of
Fraser [10], who proved that Z ⊕ Z cannot occur as a subgroup of the
fundamental group of such manifold when its dimension is greater than
4. We remark that Brendle and Schoen [3] recently extended Fraser’s
theorem to the case n = 4.

The following conjecture on the fundamental group of a compact
Riemannian manifold with positive isotropic curvature was proposed by
Gromov [11]; see also [10] and [4].

Conjecture (Gromov). For n ≥ 4, let M be an n-dimensional
compact Riemannian manifold with positive isotropic curvature. Then
the fundamental group of M contains a free subgroup of finite index.

Recently, Schoen [26] (see also [3]) proposed a stronger conjecture:

Conjecture (Schoen). For n ≥ 4, let M be an n-dimensional com-
pact Riemannian manifold with positive isotropic curvature. Then a
finite cover of M is diffeomorphic to Sn,Sn−1 × S1, or a connected sum
of them.

Clearly, the latter conjecture implies the former. The purpose of this
paper is to prove the conjecture of Schoen when n = 4. Indeed, we
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obtain a more precise result. In particular, we know exactly what are
the fundamental groups of such manifolds. Our main result is

Main Theorem. LetM be a compact 4-dimensional manifold. Then
it admits a metric with positive isotropic curvature if and only if it is
diffeomorphic to S4, RP4, S3 × R/G or a connected sum of them. Here
G is a cocompact fixed point free discrete subgroup of the isometry group
of the standard metric on S3 ×R.

We give two immediate corollaries of our Main Theorem.

Corollary 1. The conjecture of Schoen is true for n = 4.

Proof. There is nothing to prove if M is diffeomorphic to S4 or RP4.
So we may assume thatM is diffeomorphic tomRP4#S3×R/G1# · · ·#S3×
R/Gk for some nonnegative integer m and positive integer k. The fun-
damental group of M is given by

Z2 ∗ · · · ∗ Z2︸ ︷︷ ︸
m times

∗G1 ∗ · · · ∗Gk.

Now a cocompact fixed point free discrete subgroup G of the isometry
group of S3 × R is always virtually infinite cyclic. This is because, by
the cocompactness of the action of G on S3 × R, G always contains
an element g which acts as translation on the second factor, and the
infinite cyclic subgroup generated by g must have finite index as it
also acts cocompactly on S3 × R. Thus π1(M) is the free products of
finite and virtually infinite cyclic groups. It is known that such a group
always contains a normal free subgroup of finite index. In particular,
π1(M) contains a torsion free normal subgroup of finite index. By the
remark after the statement of Hamilton’s Theorem, the conclusion in
the conjecture of Schoen holds. q.e.d.

The second corollary concerns the classification of compact confor-
mally flat Riemannian four-manifolds with positive scalar curvature.
We start with a digression of the geometry of Riemannian four-manifold
M . In this case, the bundle ∧2TM has a decomposition into the direct
sum of its self-dual and anti-self-dual parts:

∧2TM = ∧2
+TM ⊕ ∧2

−TM.

The curvature operator can then be decomposed as

R =

(
A B
Bt C

)

where A =W++ R
12 , B =

◦
Ric, C =W− + R

12 . Here W± are the self-dual

and anti-self-dual Weyl curvature tensors respectively, while
◦
Ric is the

trace free part of the Ricci curvature tensor. Denote the eigenvalues of
the matrices A, C by a1 ≤ a2 ≤ a3, c1 ≤ c2 ≤ c3 respectively. It is
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known that the condition of positive isotropic curvature is equivalent to
the conditions a1 + a2 > 0 and c1 + c2 > 0. From this, it is clear that a
compact conformally flat Riemannian four-manifold with positive scalar
curvature always has positive isotropic curvature.

Now it had been observed by Izeki [16] that a compact conformally
flat Riemannian four-manifold M with positive scalar curvature always
has a finite cover which is diffeomorphic to S4,S3 × S1, or a connected
sum of them. The reason is this. Let M be such a manifold; then by a
result of Schoen and Yau [25], π1(M) is a Kleinian group. In particular,
it is a finitely generated subgroup of a linear group, namely SO(5, 1).
By Selberg’s Lemma, π1(M) contains a torsion free normal subgroup
of finite index. Since such a manifold always has positive isotropic
curvature, we can again apply the above remark after the statement
of Hamilton’s Theorem to conclude that M has a finite cover which is
diffeomorphic to S4,S3 × S1, or a connected sum of them.

Our Main Theorem gives a more precise classification of such mani-
folds.

Corollary 2. A compact four-manifold admits a metric of positive
isotropic curvature if and only if it admits a conformally flat metric of
positive scalar curvature.

Proof. The manifolds S4, RP4, S3×R/G listed in the Main Theorem
clearly admit conformally flat metrics of positive scalar curvature, and
we only have to invoke the fact that connected sum of conformally flat
Riemannian manifolds with positive scalar curvature also admits such
a metric. q.e.d.

We remark that Corollary 2 does not hold for dimension n > 4. The
following example is taken from [20]. For any Riemann surface Σg of
genus g ≥ 2 and even n > 4, the manifold M = Σg × Sn−2 admits a
conformally flat metric of positive scalar curvature; however, M cannot
admit a metric with positive isotropic curvature.

The proof of our Main Theorem naturally divides into two parts. The
first part is analytical and the second part topological.

Our argument in the first part is based on the celebrated Hamilton-
Perelman theory [14] [23] on the Ricci flow with surgery. To understand
the topology of a compact four-manifold with positive isotropic curva-
ture, we take it as initial data and evolve it by the Ricci flow. It is
easy to see that the solution will blow up in finite time. By applying
Hamilton’s curvature pinching estimates obtained in [14], we can get
a complete understanding on the part around the singularities of the
solution. Then we can perform Hamilton’s surgery procedure to cut off
the part around the singularities. After the surgery, due to the possible
existence of essential incompressible space forms, we will get a closed
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(possibly disconnected) orbifold with positive isotropic curvature. Af-
ter studying Ricci flow on orbifold and obtaining a detailed singularity
analysis for orbifold Ricci flow, we can use the orbifold as initial data
to run the Ricci flow and to do surgeries again. By repeating this pro-
cedure and extending the arguments in the previous paper [8] of the
first and the third authors to the orbifold case, we will be able to show
that, after a finite number of surgeries and discarding a finite number
of pieces which are diffeomorphic to spherical orbifolds S4/∆ (here ∆
denotes a finite subgroup of the orthogonal group O(5)) with at most
isolated orbifold singularities, the solution becomes extinct. As a result,
we prove that the initial manifold is diffeomorphic to an orbifold con-
nected sum (see below or the precise definition given in Section 2) of
spherical orbifolds.

The second part concerns the recovery of the topology of the manifold
from the orbifold connected sum. First of all, by an algebraic lemma,
we know that a spherical orbifold S4/∆ has either zero, one, or two
orbifold singularities. A spherical orbifold with no orbifold singularity
is simply S4 or RP4, while a spherical orbifold with one or two orbifold
singularities is, after removing an open neighborhood from each of its
orbifold singularities, diffeomorphic to a smooth cap or a cylinder re-
spectively. Here a cylinder C(Γ) is given by S3/Γ × [−1, 1] for some
finite fixed point free subgroup Γ of SO(4), while a smooth cap Cσ

Γ is
given as the quotient of S3/Γ × [−1, 1] by a group of order two gener-
ated by σ̂ : (x, s) 7→ (σ(x),−s) where σ is a fixed point free isometric
involution on S3/Γ. Now, the orbifold connected sum of spherical orb-
ifolds is formed in two steps. In the first step, to undo the surgeries
in the Ricci flow which create orbifold singularities, we glue copies of
the C(Γ)’s and Cσ

Γ ’s along their diffeomorphic boundaries with suitable
identifying maps to form a number of closed (compact) manifolds. It
is not hard to see that, up to diffeomorphisms, they are essentially of
two types: the self-gluing of the two ends of a cylinder C(Γ) and the

gluing of two smooth caps, Cσ
Γ and Cσ′

Γ , with diffeomorphic boundaries
by suitable diffeomorphisms on S3/Γ. Since we know that any diffeo-
morphism on a three-dimensional spherical space form is isotopic to an
isometry (see [18]), the resulting closed manifolds can be equipped with
metrics which are locally isometric to S3 × R. Now, the second step in
the formation of the orbifold connected sum is to undo the surgeries in
the Ricci flow which do not create singularities. It consists of two types
of operations. The first is taking the usual connected sums of the above
closed manifolds with S4’s or RP4’s and the second is adding handles
to the resulting manifold. Since the latter operations are equivalent
to taking the usual connected sums with S3 × S1 or S3×̃S1, our Main
Theorem is proved.
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A natural question is whether our Main Theorem and its proof can
be extended to dimensions greater than 4. We believe that the analytic
part of our proof will go through once Hamilton’s curvature pinching
estimates in [14] can be extended to higher dimensions. Assuming that
this has been done, most of the argument in the topological part of our
proof will also go through. This will allow us to show that a compact
Riemannian n-dimensional manifold M with positive isotropic curva-
ture is homeomorphic to Sn, RPn, Sn−1 × R/G, or a connected sum of
them. Here we only know that G acts differentiably on Sn−1 × R. The
differences are due to the possible existence of (exotic) diffeomorphisms
on a spherical space form Sn−1/Γ which are not isotopic to isometries.
By the same argument as in our proof of Corollary 1, this result still
implies a weaker form of the conjecture of Schoen; namely, M has a
finite cover which is homeomorphic to Sn, Sn−1 × S1, or a connected
sum of them. In particular, the fundamental group of M is virtually
free.

Our paper is organized as follows. In Section 2, after defining the
notion of orbifold connected sum; we state a main result of this pa-
per, Theorem 2.1, which says that any compact 4-orbifold with positive
isotropic curvature and with at most isolated singularities is diffeomor-
phic to an orbifold connected sum of spherical orbifolds S4/Γ. At the end
of the section, we give some natural examples of compact 4-manifolds
with positive isotropic curvature with emphasis on their constructions
as orbifold connected sums of spherical orbifolds. The proof of Theo-
rem 2.1, by Ricci flow with surgery, is given in Sections 3 and 4. In
section 3, we first set up our Ricci flow with initial data given by a
compact 4-orbifold with positive isotropic curvature and with at most
isolated singularities. After introducing some notations and terminolo-
gies that will be used throughout this paper, we give a complete study
of the canonical neighborhood structure of any ancient κ-orbifold solu-
tion. The final result is summarized in Theorem 3.10. This study is
crucial for our understanding of the structure near the singularities of
our Ricci flow. In Section 4, we make a detailed study of the necessary
modification needed to justify the continuation of our Ricci flow on orb-
ifold via surgeries. This section depends crucially on the work of the
first and the third authors in the manifold case [8]. At the end, this
allows us to construct a solution to the Ricci flow with surgery which
becomes extinct, and it is then a simple matter to express our initial
4-orbifold as an orbifold connected sum of spherical orbifolds. In Sec-
tion 5, we prove the algebraic lemma alluded to above and then use it
to recover the topology of the orbifold connected sum in Theorem 2.1.
This proves the Main Theorem. Finally, Section 6 is an appendix that
gives the proof of a technical geometric lemma which is needed in this
paper.
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2. Orbifold connected sums

We give a generalization of the construction of connected sum of
manifolds to orbifolds with at most isolated singularities as follows. For
an orbifold X and x ∈ X, we use Γx to denote the local uniformization
group at x, i.e., there is an open neighborhood Bx ∋ x with smooth
boundary which is a quotient B̃/Γx, where B̃ is diffeomorphic to Rn

and Γx is a finite subgroup of linear transformations fixing the origin.
Now, let X1, . . . ,Xp be p n−dimensional orbifolds with at most isolated
orbifold singularities and x1, x

′
1, x2, x

′
2, . . . , x

′
q be 2q distinct points (not

necessarily singular) on X1, . . . ,Xp such that for each pair (xj , x
′
j), Γxj

is conjugate to Γx′

j
as linear subgroups. Assume that for each j =

1, 2, . . . , q, we are given a diffeomorphism fj between ∂Bxj
and ∂B

x
′

j

,

then for each j, we can remove Bxj
and Bx′

j
from the orbifolds and

identify their boundaries by using the diffeomorphism fj to obtain a new
manifold #f (X1, . . . ,Xp) where f = (f1, . . . , fq). We call it the orbifold
connected sum of X1, . . . ,Xp (by the identifying or gluing map f). Here
we emphasize that the diffeomorphism type of the resulting orbifold
depends only on the isotopic class of f. We will apply the preceding
construction only to orbifolds of dimension 4 in this paper.

The following is the main result of this paper.

Theorem 2.1. Let (M4, g) be a compact 4-dimensional manifold or
orbifold with at most isolated singularities with positive isotropic curva-
ture. Then M4 is diffeomorphic to an orbifold connected sum of a fi-
nite number of spherical 4-orbifolds X1 = S4/Γ1, . . . ,Xl = S4/Γl, where
each Γi is a finite subgroup of the isometry group, O(5), of the stan-
dard metric on S4 so that the quotient orbifold Xi has at most isolated
singularities.

Theorem 2.1 will be proved by Ricci flow with surgery given in Sec-
tions 3 and 4. Here, we will give some natural examples of compact
four-manifolds of positive isotropic curvature with emphasis on their
constructions as orbifold connected sums of spherical orbifolds.

In dimension 4, except for S4 and RP4, the best known examples of
manifolds with positive isotropic curvature are S3/Γ × S1, where Γ is
a fixed point free finite subgroup of SO(4). Note that Γ can also act
isometrically on S4 by fixing the extra direction. The quotient space
S4/Γ is then an orbifold with exactly two singularities, say P and P ′;
those local uniformization groups are just Γ itself. Now if we perform
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an orbifold connected sum on S4/Γ with itself by using the identity map
as the identifying map, it gives S3/Γ×S1. If we take an identifying map
f (in Diff(S3/Γ)) in a nontrivial isotopic class, then the connected sum
may give some twisted product of S3/Γ and S1. We denote the mani-
fold by S3/Γ×fS1. Note that the manifold S3/Γ×fS1 admits a metric
of positive isotropic curvature. This is because, by [18], every diffeo-
morphism of a three-dimensional spherical space form S3/Γ is isotopic
to an isometry of its standard metric; thus S3/Γ×fS1 can be equipped
with a metric locally isometric to S3/Γ × R, and hence a metric with
positive isotropic curvature. Another immediate consequence is that,
for fixed Γ, there are only a finite number of diffeomorphism classes of
S3/Γ×fS1. As a simple example, if we take Γ = {1} and f as an orien-
tation reversing diffeomorphism on S3, the resulting manifold is S3×̃S1,
which is the only unoriented S3 bundle over S1.

If S3/Γ admits a fixed point free isometry σ satisfying σ2 = 1, then
we can define a reflection σ̂ on the 4-manifold S3/Γ × R by σ̂(x, s) =
(σ(x),−s), where x ∈ S3/Γ, s ∈ R. The quotient (S3/Γ × R)/{1, σ̂} is
a smooth four-manifold with a neck-like end S3/Γ× R. We denote this
manifold by Cσ

Γ . If we think of the sphere S4 as the compactification
of S3/Γ × R by adding two points (north and south poles) at infinities
of S3/Γ × R, we can regard Γ and σ̂ as isometries of the standard S4

in a natural manner. So Cσ
Γ is diffeomorphic to the smooth manifold

obtained by removing a neighborhood of the unique singularity from
S4/{Γ, σ̂}. We call Cσ

Γ a smooth cap.

Given two smooth caps Cσ
Γ and Cσ′

Γ′ , if Γ is conjugate to Γ′ (i.e. there is
an isometry γ of S3 such that Γ = γΓ′γ−1 and this is equivalent to saying
that S3/Γ is diffeomorphic to S3/Γ′), we can glue Cσ

Γ and Cσ′

Γ′ along their

boundaries by a diffeomorphism f : ∂Cσ
Γ → ∂Cσ′

Γ′ . Then we get a smooth

manifold and we denote it by Cσ
Γ ∪f C

σ′

Γ′ . By the same argument as
above, it also admits a metric with positive isotropic curvature. Clearly,

Cσ
Γ ∪f C

σ′

Γ′ is an orbifold connected sum of S4/{Γ, σ̂} and S4/{Γ′, σ̂′}.
Note that, in contrast to the previous case, the diffeomorphism type of
the manifold Cσ

Γ ∪f C
σ′

Γ′ is independent of the choice of f and we may
assume, without loss of generality, that Γ = Γ′. As a simple example,
we can take Γ = Γ′ = {1} and σ = σ′ = the antipodal map on the

sphere S3; then Cσ
Γ ∪f C

σ′

Γ′ is RP4#RP4; which can also be identified as
the quotient of S3 × S1 by Z2, which acts by the antipodal map and a
reflection on the first and second factor respectively.

Our Main Theorem says that compact four-manifolds with positive
isotropic curvature are given by the connected sums of the examples
listed above (see the proof of the Main Theorem in Section 5). The
fundamental group of S3/Γ×fS1 is the semidirect product Γ⋊αZ. Here
α : Z → Aut(Γ) is given by α(1) = f∗ where f∗ : Γ → Γ is the induced

automorphism of f on π1(S3/Γ) ∼= Γ. For the manifold Cσ
Γ ∪f C

σ′

Γ , we
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first lift the isometric involutions σ and σ′ on S3/Γ to isometries on S3

(denoted by the same notations) and let Γ1 and Γ2 be the finite groups
of O(4) generated by < Γ, σ > and < Γ, σ′ > respectively. Then the

fundamental group of Cσ
Γ ∪f C

σ′

Γ is the amalgamated product Γ1 ∗Γ Γ2.

3. Ancient κ-solutions on orbifolds

In this section, we will start our proof of Theorem 2.1. The method is
to use Ricci flow with surgery to deform the initial metric (M,g). Note
that even if (M,g) is a manifold, our surgeries will in general introduce
isolated orbifold singularities. Thus, it is important to develop our
theory on such orbifolds.

Let (M4, g0) be a compact 4-dimensional orbifold with at most iso-
lated singularities with positive isotropic curvature. We consider the
following Ricci flow equation:

(3.1)
∂g

∂t
= −2Ric, g |t=0= g0.

Since the implicit function theorem or the De Turck trick can still be
applied on orbifolds, we have the short time solution g(·, t) of (3.1) (see
[15], [12], [9]). Recall that as in the introduction, in dimension 4, the
curvature operator has the following decomposition:

R =

(
A B
Bt C

)
,

and we denote the eigenvalues of matrices A, C, and
√
BBt by a1 ≤

a2 ≤ a3, c1 ≤ c2 ≤ c3, b1 ≤ b2 ≤ b3 respectively. Since the maximum
principle can still be applied on orbifolds, the positivity of the isotropic
curvature and the improved pinching estimates of Hamilton are still
preserved under the Ricci flow. So we have

Lemma 3.1. (theorem B1.1 and theorem B2.3 of [14])
There exist positive constants ρ, Λ, P < +∞ depending only on the

initial metric, such that the solution to the Ricci flow (3.1) satisfies

a1 + ρ > 0 and c1 + ρ > 0,

max{a3, b3, c3} ≤ Λ(a1 + ρ)max{a3, b3, c3} ≤ Λ(c1 + ρ),

b3√
(a1 + ρ)(c1 + ρ)

≤ 1 +
ΛePt

max{log
√

(a1 + ρ)(c1 + ρ), 2}

(3.2)

As a result, any blowing up limit will satisfy the following restricted
isotropic curvature pinching condition:

(3.3) a3 ≤ Λa1, c3 ≤ Λc1, b23 ≤ a1c1.

We can also define the same notion of κ-noncollapsed for a scale r0
for solutions to the Ricci flow on orbifolds; namely, for any space time
point (x0, t0), the condition that |Rm|(x, t) ≤ r−2

0 , for all t ∈ [t0−r20, t0]
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and x ∈ Bt(x0, r0), implies V olt0(Bt0(x0, r0)) ≥ κr40. Since integration
by parts and log-Sobolev inequality still hold on closed orbifolds, we can
apply the same argument as in [22] (theorem 4.1 of [22] or see lemma
2.6.1 and theorem 3.3.3 of [6] for the details) to show

Lemma 3.2. For any T > 0, there is a κ depending on T and the
initial orbifold metric, such that the smooth solution to the Ricci flow
which exists for [0, T ) is κ-noncollapsed for scales less than

√
T .

Since the scalar curvature is strictly positive, it follows from the stan-
dard maximum principle and the evolution equation of the scalar curva-
ture that the solution must blow up at finite time. As in the smooth case
[8], we will show in Section 4 that the geometric structure at any point
with suitably large curvature is close to an ancient κ−orbifold solution
(defined below). So it is important to investigate the structures of any
ancient κ−orbifold solutions. This is the main goal in this section.

For the convenience of discussion, we fix some terminologies and no-
tations here.

In this paper, a (topological) neck is defined to be a manifold diffeo-
morphic to S3/Γ × R where Γ is a finite fixed point free subgroup of
isometries of S3. A smooth cap is either Cσ

Γ (defined in Section 2) or the
4-ball B4. We would also like to define two types of orbifold caps. The
orbifold cap of Type I is obtained by collapsing the boundary S3/Γ×{0}
of S3/Γ × [0, 1) to a point. We denote it by CΓ. By extending the ac-
tion of Γ to an isometric action on S4 by fixing the extra direction, it
is clear that CΓ can also be obtained by removing a neighborhood of
one singularity from the spherical orbifold S4/Γ. To define the orbifold
cap of Type II, we first consider the quotient of S4 by the group gener-
ated by the isometry (x1, x2, . . . , x5) → (x1,−x2, . . . ,−x5) on S4 which
has exactly two fixed points at (1, 0, 0, 0, 0) and (−1, 0, 0, 0, 0) with local
uniformization group Z2. This quotient is a spherical orbifold denoted
by S4/(x,±x′). The orbifold cap of Type II, denoted by S4/(x,±x′)\B̄4,
is then obtained by removing a neighborhood of a smooth point from
the spherical orbifold S4/(x,±x′).

Roughly speaking, we will show below that either the ancient κ−orbifold
solution is diffeomorphic to a global quotient S4/Γ or else it has local
structures of necks, smooth caps, or orbifold caps of Type I or II de-
scribed above. We start with the definition of the ancient κ−orbifold
solution.

Definition 3.3. We say a solution to the Ricci flow is an ancient
κ−orbifold solution if it is a smooth complete nonflat solution to the
Ricci flow on a four-orbifold with at most isolated singularities satisfying
the following three conditions:

(i) the solution exists on the ancient time interval t ∈ (−∞, 0],
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(ii) it has positive isotropic curvature and bounded curvature, and
satisfies the restricted isotropic curvature pinching condition,

(3.4) a3 ≤ Λa1, c3 ≤ Λc1, b23 ≤ a1c1,

(iii) κ-noncollapsed on all scales for some κ > 0.

The canonical neighborhood structure of the ancient κ-orbifold solu-
tions are described in the following two subsections.

3.1. Ancient κ-orbifold solution with null eigenvector in cur-
vature operator.

Theorem 3.4. Let (X, gt) be an ancient κ−orbifold solution defined
in Definition 3.3 such that the curvature operator has a nontrivial null
eigenvector somewhere. Then we have

(i) if X is a smooth manifold, then either X = (S3/Γ)×R, or X = Cσ
Γ′

for some fixed point free isometric subgroup Γ or Γ′ of S3 and σ is an
fixed point free isometry on S3/Γ′ with σ2 = 1;

(ii) if X has singularities, then X is diffeomorphic to S4/(x,±x′)\ B̄.
In particular, X has exactly two singularities.

Proof. Suppose the curvature operator has a nontrivial null eigenvec-
tor somewhere. Then the null eigenvectors exist everywhere in space
time by Hamilton’s strong maximum principle [13].

Case 1: X is a smooth manifold.
In this case, it is known from lemma 3.2 in [8] that the universal cover

ofX is S3×R. Let Γ be the group of deck transformations. We claim that
the second components (acting on R isometrically) of Γ must contain
no translation. It is the same as saying that X cannot be compact. For
this, we first note that for the Ricci flow on S3×R, the flat R factor does
not change while the spherical factor simply expands when time goes to
−∞. If X is compact, the above solution of the Ricci flow descends to a
solution on X which contradicts the κ-noncollapsing assumption in the
definition of ancient κ-orbifold solution. This proves our claim. Now,
let Γ = Γ0 ∪ Γ1 where the second components of Γ0 and Γ1 act on R as
an identity or reflection respectively. If Γ1 is empty, X = (S3/Γ) × R,
where Γ acts on S3 isometrically with no fixed point. If Γ1 is not empty,
take σ ∈ Γ1; we have σ2 ∈ Γ0 and σΓ0 = Γ1. It is clear that X is
obtained by taking the quotient of (S3/Γ0)×R by the group of order 2
generated by σ. Hence X = Cσ

Γ0 in the notation of Section 2.

We remark that the (S3/Γ) × R has two ends, but Cσ
Γ0 has only one

end.
Case 2: X is an orbifold with nonempty isolated singularities.
We first note that the complete metric space X is modeled on the

geometric space S3×R via the group ISO(S3 ×R), where ISO(S3×R)
is the group of isometries of S3 × R. In other words, X is an (S3 ×
R, ISO(S3 × R))-orbifold. By [27] or theorem 13.3.10 in [24], X must
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be isometric to a global quotient S3×R/Γ of S3×R, where Γ is a discrete
subgroup of standard isometries of S3 × R. We proceed to analyze Γ in
our situation.

For an (isolated) fixed point z ∈ S3 × R, denote by Γz = {γ(z) =
z, γ ∈ Γ} the isotropy group of Γ at z. Let Γz = Γ0

z ∪ Γ1
z where the R

components of Γ0
z and Γ1

z act on R as identity or reflection respectively.
We write z = (o, 0) where 0 ∈ R and o ∈ S3. Since (o, 0) is an isolated
fixed point of each γ ∈ Γz, this implies that Γ0

z = {1}, otherwise a non-
trivial element of Γ0

z will fix the whole {o} ×R. Also Γz = Γ1
z =< σz >

is generated by an isometric involution σz whose S3 component fixes the
axis through o and acts antipodally on its orthogonal complement.

Note that, by the same argument as in Case 1, the R components of
Γ must contain no translation. This implies that all fixed points of Γ
have the same R coordinates because if we would have two elements in Γ
whose R components reflect about points with different R coordinates,
this will produce an element in Γ with nontrivial translation on the R
factor. We may assume these fixed points z, w, . . . etc. lie in S3×{0}.We
denote the generators of their isotropy groups by σz, σw, . . . etc. We call
the orthogonal complement of the fixed axis of each σz its associated
equator. Recall that σz acts by the antipodal map on its associated
equator. If σx 6= σy, since the action of σzσw on R is trivial, we have
σzσw = identity on the great circle C given by the intersection of their
associated equators. This implies that σzσw fixes every point of R×C,
which is a contradiction. We conclude that there are exactly two fixed
points A,B of Γ whose S3 components lie antipodally on S3.

Now, let Γ0 be the subgroup of Γ generated by ΓA and ΓB . Clearly,
Γ0 is a normal subgroup of Γ. We claim that the action of G = Γ/Γ0

on S3 × R/Γ0 has no fixed point. Indeed, if there is some g ∈ Γ and
x ∈ S3 × R such that gΓ0(x) = Γ0(x), this will imply gx = γx for some
γ ∈ Γ0. Hence γ

−1g ∈ Γx ⊂ Γ0 and g ∈ Γ0, and our claim is proved. Let
G = Γ/Γ0. We have G = 1. If not, we can pick 1 6= g ∈ G; then g is a
fixed point free isometry of (R× S3)/Γ0. Since we must have g(A) = B
and g(B) = A, and g sends geodesics connecting A to B to geodesics
connecting B to A, this implies that g acts on RP2 (as quotient of the
orthogonal complement of the axis joining A and B by Γ0) without fix
points. This is impossible. So we have showed that G is trivial.

In summary, we have proved that X = (S3 × R)/Γ0. By using our
notation in Section 2, X is diffeomorphic to S4/(x,±x′)\B̄4. We note
that in this case X has only one end, which is diffeomorphic to S3 ×R.

q.e.d.

3.2. Ancient κ-orbifold solution with positive curvature oper-
ator. In this section, we study ancient κ-orbifold solutions with posi-
tive curvature operator. Together with the result in section 3.1, this
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completes our analysis of the canonical neighborhood structure of any
ancient κ-orbifold solution.

We first recall the manifold case of the result obtained in [8].

Theorem 3.5. (theorem 3.8 in [8]) For every ǫ > 0, one can find
positive constants C1 = C1(ǫ), C2 = C2(ǫ) such that for each point
(x, t) in every four-dimensional ancient κ-manifold solution (for some
κ > 0) with restricted isotropic curvature pinching and with positive

curvature operator, there is a number r with 0 < r < C1(R(x, t))
− 1

2 , so
that for some open set B with Bt(x, r) ⊂ B ⊂ Bt(x, 2r), we have one of
the following three cases:

(a) B is an evolving ǫ-neck, in the sense that it is the time slice at
time t of the parabolic region {(x′, t′)|x′ ∈ B, t′ ∈ [t − ǫ−2R(x, t)−1, t]}
which is, after scaling with factor R(x, t) and shifting the time t to 0, ǫ-

close (in C [ǫ−1] topology) to the subset (I×S3)× [−ǫ−2, 0] of the evolving
round cylinder R× S3, having scalar curvature one and length 2ǫ−1 for
I at time zero, or

(b) B is an evolving ǫ-cap, in the sense that it is the time slice at

the time t of an evolving metric on open B4 or RP4 \ B4 such that the

region outside some suitable compact subset of B4 or RP4 \ B4 is an
evolving ǫ-neck, or

(c) B is a compact manifold (without boundary) with positive curva-
ture operator (thus it is diffeomorphic to S4 or RP4).
Furthermore, the scalar curvature of the ancient κ-solution in B at time
t is between C−1

2 R(x, t) and C2R(x, t).

Compared to the manifold case, the key difficulty in analyzing the
local structure of ancient κ-orbifold solution is the possible collapsing
of the solution in the presence of orbifold singularities with big local uni-
formization groups so that one might not be able to choose the constants
C1, C2 independent of the noncollapsing constant κ. We will solve this
problem below by lifting the ancient κ-orbifold solution to its universal
cover where the above result in the manifold case can be applied and we
get uniformity for the constants C1, C2 in our present case. Here, first
of all, we need to generalize the concept of ε-neck and ε-cap to orbifold
solutions with at most isolated singularities. The point is to allow a
suitable isometry group to act on the usual necks and caps.

Definition 3.6. Fix ε > 0 and a space time point (x, t). Let B ⊂ X
be a space open subset containing x: (i) we call B an evolving ε-neck
around (x, t) if it is the time slice at time t of the parabolic region
{(x′, t′)|x′ ∈ B, t′ ∈ [t − ε−2R(x, t)−1, t]} which satisfies the following:
there is a diffeomorphism ϕ : I × (S3/Γ) → B such that, after pulling
back the solution (ϕ)∗g(·, ·) to I× S3/Γ, scaling with factor R(x, t) and

shifting the time t to 0, the solution is ε-close (in C [ε−1] topology) to the
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subset (I × S3/Γ) × [−ε−2, 0] of the evolving round cylinder R × S3/Γ,
having scalar curvature one and length 2ε−1 for I at time zero.

(ii) We call B an evolving ε-cap if it is the time slice at time t of an
evolving metric on either one of the following spaces: an open smooth
cap B4 or Cσ

Γ , an open orbifold cap CΓ of type 1 or S4/(x,±x′) \ B̄4 of
type 2, such that the region outside some suitable compact subset of
the space is an evolving ε-neck around some point in the sense of (i).

Let us start with the following elliptic type curvature estimate for
our ancient κ-orbifold solution. The idea of the proof is to find out a
global uniformization space which is not collapsed and investigate the
isometric group action on it.

Proposition 3.7. There is a universal positive function ω : [0,∞) →
[0,∞) such that for any ancient κ-orbifold solution on 4-orbifold X, we
have

R(x, t) ≤ R(y, t)ω(R(y, t)dt(x, y)
2)

for any x, y ∈ X, t ∈ (−∞, 0].

Proof. This proposition for the case that X is a smooth manifold
has been established in [8] (see theorem 3.5 and proposition 3.3 in [8]).
Thus we assume that X has at least one (orbifold) singularity below.

Case 1: Curvature operator has zero (eigenvalue) somewhere. Then
by Section 3.1, the scalar curvature is constant. So the proposition holds
trivially in this case.

Case 2: X is compact with positive curvature operator. By the work
of Hamilton, if we continue to evolve the metric, the metric will be-
come rounder and rounder. On the other hand, by our κ-noncollapsing
assumption, and the compactness theorem of [17], we can extract a con-
vergent subsequence to get a limit which is compact and round. From
this, we know that the orbifold X is diffeomorphic to a compact orbifold
with positive constant sectional curvature and with at most isolated sin-
gularities. By [27] or theorem 13.3.10 in [24], there is a finite subgroup
G ⊂ O(5) of isometries of S4 such that S4/G is diffeomorphic to X. Let
π : S4 → X be the naturally defined smooth map, and g̃(·, t) = π∗g(·, t)
be the induced G invariant solution of Ricci flow on smooth manifold
S4. Now we check the κ-noncollapsing of g̃ on S4. Fix a positive number
r, and suppose R̃(·, t) ≤ r−2 on B̃t0(x̃, r) for all t ∈ [t0 − r2, t0]. Let
x = π(x̃) ∈ X, γ be a geodesic in X of length ≤ r with x = γ(0).
Then γ has a lift to a geodesic γ̃ (which may not be unique) in S4 with

γ̃(0) = x̃, and L(γ̃) = L(γ). This implies that π : B̃t0(x̃, r) → Bt0(x, r)
is surjective. As a result, the curvature of X is also bounded by r−2 on
Bt0(x, r) × [t0 − r2, t0]. Hence volt0(B̃(x̃, r)) ≥ volt0(B(x, r)) ≥ κr4 by
the κ-noncollapsing assumption on X. Thus, we have showed that the
solution g̃ is an ancient κ-solution on the smooth manifold S4. By [8]
(theorem 3.5 and proposition 3.3 in [8]), g̃(·, t) is κ0-noncollapsed for
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some universal constant κ0. Furthermore, there is a universal positive
function ω such that

(3.5) R̃(x̃, t) ≤ R̃(ỹ, t)ω(R̃(ỹ, t)d̃t(x̃, ỹ)
2)

for the scalar curvature of the induced Ricci flow g̃(·, t) at any two points
x̃, ỹ ∈ S4, t ∈ (0,∞]. Now, for any pair of points x, y ∈ X, we take a
minimal geodesic γ connecting x, y in X. Then γ can be lifted to a
geodesic γ̃ ⊂ S4 connecting two points x̃ ∈ π−1(x), ỹ = π−1(y). Since we

have d̃(x̃, ỹ) ≤ L(γ̃) = d(x, y), R(x, t) = R(x̃, t), and R(y, t) = R̃(ỹ, t),
by (3.5), we get

R(x, t) ≤ R(y, t)ω(R(y, t)dt(x, y)
2)

as desired.
Case 3: X is noncompact with positive curvature operator. First, we

define a Busemann function ϕ at time −1 in the following way:

ϕ(x) = sup
γ

lim
s→+∞

(s− d−1(x, γ(s)))

where the supremum is taken over all geodesic rays γ originating from
some fixed point on X. It is well-known that ϕ is convex (with respect
to the metric at time −1), proper, and has Lipschitz constant ≤ 1.
Deforming ϕ by the heat equation (where the Laplacian is taken with
respect to the metric at time t),

∂u

∂t
= △u

with u|t=−1 = ϕ. By a straightforward computation, we have

∂

∂t
uij = △uij + 2Rikjlukl −Rikukj −Rjkuki

where uij = ∇2
iju is the Hessian of u. Since the curvature operator is

positive, by maximum principle, we know that the condition ∇2u ≥ 0
is preserved. Moreover, we have ∇2u > 0 at t = 0 because of the
following. The kernel of ∇2u is a parallel distribution by the strong
maximum principle of Hamilton [13]. If the kernel is nontrivial, then
either the space splits into a product R×Σ locally or it admits a linear
function (∇2u = 0). But both cases contradict the strict positivity of
the curvature operator.

We fix the time at t = 0. Note that u is still a proper function. Thus,
by strict convexity of u, we know that u has a unique critical point,
which is the minimal point. Now, if P is an (isolated) singular point on

X, we claim that P must be a critical point of u. Indeed, let π : Ũ → U,
U = Ũ/Γ be the local uniformization near P. Then ũ = u ◦ π is Γ
invariant, and we have dγ(∇ũ)(P ) = ∇ũ(P ) for any γ ∈ Γ. Since Γ
has an isolated fixed point at P , we have

∑
γ∈Γ dγ(∇ũ)(P ) = 0 and
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∇ũ(P ) = 0 consequently. As a result, X has exactly one singularity (at
P ).

Next, we let ξ = ∇u
|∇u| be the vector field which is singular only at P.

Consider the map Φ : CpX = Cone(S3/Γ) → X defined by

Φ(v, s) = αv(s)

where αv(s) is the integral curve of ξ with αv(0) = P and α′
v(0) = v.

Clearly, Φ is a global orbifold diffeomorphism. We define Φ̃ : R4 =
Cone(S3) → X by

Φ̃ = Φ · π
where π : Cone(S3) → Cone(S3/Γ) is the natural projection map. De-
fine

g̃(·, t) = Φ̃∗g(·, t).
Then g̃(·, t) is a smooth complete ancient κ solution on the smooth
manifold R4 with positive curvature operator and restricted isotropic
pinching condition. Moreover by [8] again, g̃(·, t) is κ0-noncollapsed
for some universal constant κ0, and the same argument as in Case 2
completes the proof. q.e.d.

From the proof of the proposition, we get

Corollary 3.8. Let gt be an ancient κ-orbifold solution on a com-
plete noncompact 4-orbifold X with positive curvature operator and
nonempty isolated singularities; then there is exactly one singularity O
and there is a finite group of isometries Γ ⊂ O(4) of the standard R4,
such that O is the only fixed point for any element of Γ, and X is dif-
feomorphic to R4/Γ as orbifold.

Now we can state the orbifold analogue of Theorem 3.5 in the non-
compact case.

Theorem 3.9. For every ε > 0, one can find positive constants
C1 = C1(ε), C2 = C2(ε) such that for each point (x, t) in every complete
noncompact four-dimensional ancient κ-orbifold solution with posi-

tive curvature operator and nonempty isolated singularities, there is a

positive number r with 1
C1

(R(x, t))−
1

2 < r < C1(R(x, t))
− 1

2 , so that for

some open subset B with Bt(x, r) ⊂ B ⊂ Bt(x, 2r), one of the following
cases occurs:

(a) B is an evolving ε-neck around (x, t),
(b) B is an evolving ε-cap of Type I.
Moreover, the scalar curvature in B at time t is between C−1

2 R(x, t)
and C2R(x, t).

Proof. We denote the unique orbifold singularity by O. By Corollary
3.8, X is diffeomorphic to X̃/Γ, where X̃ is diffeomorphic to R4 and
Γ ⊂ O(4) fixes the origin, denoted also by O. Let g̃ be the pulled back



58 B.-L. CHEN, S.-H. TANG & X.-P. ZHU

solution on X̃, which is a Γ-invariant solution on X̃. Note that the
solution g̃ is also κ-noncollapsed and therefore κ0-noncollapsed for some
universal κ0 > 0 by theorem 3.5 in [8]. Fix time t = 0. Now by the

proof of theorem 3.8 in [8], there is a point x0 ∈ X̃, such that for any
given small η > 0, there is a constant D(η) > 0 depending only on
η such that any (x, 0) satisfying R(x0, 0)d0(x, x0)

2 ≥ D(η) admits an
evolving η-neck around it. We scale the solution so that R(x0, 0) = 1. In
the following, we describe the canonical parametrization of necks which
was given by Hamilton in section C of [14]. We will use Hamilton’s
canonical parametrization to parametrize all the points outside a ball
of radius

√
D(η) + 1 centered at x0 by a canonical diffeomorphism Φ

from S3 × I, where I ⊂ R is an interval.
For any z ∈ X̃ with d0(z, x0)

2 ≥ D(η), there is a unique constant

mean curvature hypersurface Sz ∈ X̃ passing through z. Thus, such hy-
persurfaces foliate X̃ outside the ball of radius

√
D(η)+1 centered at x0.

Each (Sz, g̃) can be parametrized by a harmonic diffeomorphism from
the standard sphere (S3, ḡ), which is unique up to precomposing with a
rotation of (S3, ḡ) since the (induced) metrics g̃ and the standard metric
ḡ are very close. Now, to construct Hamilton’s canonical parametriza-
tion, we first choose the coordinate function s of the R factor as follows:
if r(s) is defined by

vol(S3 × {s}, g̃) = vol(S3, ḡ)r(s)3,

then we require the function s to satisfy

vol(S3 × [s1, s2], g̃) = vol(S3, ḡ)
∫ s2

s1

r(s)3ds.

Next, we require the above harmonic diffeomorphisms to satisfy the
following condition. Let W be the unit vector field which is g̃ orthonor-
mal to the sphere S3 × {s}; then for any infinitesimal rotation V̄ on
(S3 × {s}, ḡ), we have

(3.6)

∫

S3×{s}
ḡ(V̄,W ) dvolḡ = 0.

The above parametrization Φ : S3 × (A,B) → X̃ can be extended on

one end so that it covers all points outside a ball of radius
√
D(η) + 1

centered at x0. Without loss of generality, we assume that as s → B,
the points on the manifold X̃ diverge to infinity. Note that it was
shown by Hamilton that this parametrization of a neck is unique up to
precomposing with an isometry on S3 × (A,B).

Let ĝ = Φ∗g̃. Take any γ ∈ Γ and let γ̂ be the induced diffeomorphism
on S3× (A,B) via Φ, i.e., γ̂ = Φ−1γΦ. Clearly, Φγ̂ still satisfies the con-
ditions in the above definition of Hamilton’s canonical parametrization.
Hence, γ̂ acts as an isometry on S3 × (A,B). In other words, the group

Γ̂ = Φ−1ΓΦ acts isometrically on S3×(A,B) equipped with the standard
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metric. We claim that the R factors of Γ̂ do not contain translation.
Indeed, suppose there is a γ̂ ∈ Γ̂ such that its R factor is a translation
s 7→ s + L with L > 0 (if L < 0, we consider γ̂−1); then a point in a
finite region will be mapped to points near infinity by γ̂m for large m.
Since γ̂m are isometries, and X̃ splits off a line at infinity, we conclude
that the curvature operator is not strictly positive in a finite region.
This is a contradiction with our assumption. By similar argument, we
see that the R factors of Γ̂ also contain no reflection. As a result, Γ̂
only acts on the S3 factor in S3 × (A,B). This implies that the above

neck parametrization Φ on X̃ descends to a neck parametrization on X,
φ : S3/Γ× (A,B) → X.

We can also show that the point O has distance ≤
√
D(η)+1 from x0.

Indeed, if d0(x0, O) ≥
√
D(η)+1, then O is covered by the parametriza-

tion Φ : S3 × (A,B) → X̃. Let O = Φ(x̄, s̄), x̄ ∈ S3, s̄ ∈ (A,B). Since

the group Γ̂ only acts on the S3 factor, we conclude that Γ̂ fixes every
point on {x̄} × (A,B). This is a contradiction.

Note that as η → 0, after normalization, the metric ĝ will converge
in C∞

loc topology to the standard one. This implies that, for any ε > 0 ,
there is an ε̃ > 0 such that if η < ε̃ then for any point P ∈ S3/Γ×(A,B),
the (descended) metric ĝ on S3/Γ × (A,B) around P is ε close to the

standard one after scaling with the factor R̂(P ).
Now we are ready to prove the theorem. For the given ε > 0 in the

theorem, there is an ε̃ > 0 defined as above. For any point x ∈ X

with d0(O,x) ≥ 2
√
D(12 ε̃) + 1, a suitable portion S3/Γ × (A′, B′) of

S3/Γ × (A,B) in the above parametrization will give an ε-neck neigh-

borhood of x. Let x̃ ∈ X̃ satisfy d0(x̃, O) = 10
√
D(12 ε̃), and denote the

constant mean curvature hypersurface passing through x̃ by Σ. By the-
orem G1.1 in [14], Σ bounds an open set Ω, which is diffeomorphic to a

ball B4, in X̃. Ω is Γ-invariant, and Ω/Γ contains an ε-neck as its end.
The curvature estimate on Ω/Γ follows from the elliptic type curvature
estimate in Proposition 3.7. Thus we only need to show that Ω/Γ is
diffeomorphic to the orbifold cap CΓ of Type I.

Let ϕ : X → R be the Busemann function at time t = 0 on X
constructed around the singular point O. Let uδ be a family of strictly
convex smooth perturbation of ϕ as in Proposition 3.7, such that u0 = ϕ.
By considering the integral curves of uδ as in Proposition 3.7, one can
show that the sublevel sets u−1

δ (−∞, c] of uδ are diffeomorphic to CΓ

for large c.
On the other hand, we let f be the R coordinate of the parametriza-

tion φ : S3/Γ × (A,B) → X. By a geometric argument, one can show
easily that ∇ϕ is almost parallel (with error controlled by ε) to ∇f, and
so does ∇uδ for small δ. By blending the function uδ and a multiple
of f by a bump function, we get a function ψ, whose gradient curves
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give a diffeomorphism between f−1(−∞, c′] and u−1
δ (−∞, c] for some

large c and c′ by Morse theory. In particular, this shows that Ω/Γ is
diffeomorphic to CΓ. The proof of the theorem is completed. q.e.d.

3.3. Summary. We can now collect all the results obtained in this sec-
tion to give the following canonical neighborhood decomposition theo-
rem for an ancient κ-orbifold solution.

Theorem 3.10. For every ε > 0, one can find positive constants
C1 = C1(ε), C2 = C2(ε) such that, for every four-dimensional ancient
κ-orbifold solution (X, gt) and for each point (x, t), there is a number

r with 1
C1

(R(x, t))−
1

2 < r < C1(R(x, t))
− 1

2 so that for some open subset

B with Bt(x, r) ⊂ B ⊂ Bt(x, 2r), we have one of the following cases:
(a) B is an evolving ε-neck around (x, t),
(b) B is an evolving ε-cap,
(c) X is diffeomorphic to a closed spherical orbifold S4/Γ with at most

isolated singularities.
Moreover, the scalar curvature of B in case (a) or (b) at time t lies

between C−1
2 R(x, t) and C2R(x, t).

Proof. By Theorem 3.4 and Theorem 3.9, we only need to consider the
case when X is compact with positive curvature operator. In this case,
we continue to evolve the metric by Ricci flow. Since the scalar curvature
is strictly positive, the solution will blow up in finite time. By using the
κ-noncollapsing of the solution as in [22] and the compactness theorem
in [17], we can scale the solution in space time around a sequence of
points and extract a convergent subsequence. Moreover, the limit is still
an orbifold with at most isolated singularities by [17]. By the pinching
estimate of Hamilton [13], the Riemannian metric in the limit orbifold
has constant positive sectional curvature. So it is a global quotient of
the four-sphere. q.e.d.

4. Surgical solutions

The complete description of the canonical neighborhood structure of
an ancient κ-orbifold solution given in the last section will allow us to
perform surgeries to the Ricci flow solution of a compact four-orbifold
with positive isotropic curvature and at most isolated singularities as
explained in this section.

4.1. Surgery at the first singular time. Since the scalar curvature
at the initial time is strictly positive, it follows from the maximum
principle and the evolution equation of the scalar curvature that the
curvature must blow up at some finite time 0 < T <∞. As the canon-
ical neighborhood structures of ancient κ-orbifold solutions have been
completely described in the last section, by combining with a techni-
cal geometric lemma (Proposition 6.1 in the appendix), we can prove a
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similar singularity structure theorem for the Ricci flow solution before
time T as in the manifold case (see theorem 4.1 in [8]).

Theorem 4.1. Given small ε > 0, there is r = r(T ) > 0 depend-
ing on ε, T and the initial metric such that for any point (x0, t0) with
Q = R(x0, t0) ≥ r−2, the solution in the parabolic region {(x, t) ∈
X × [0, T )| d2t0(x, x0) < ε−2Q−1, t0 − ε−2Q−1 < t ≤ t0} is, after scaling

by the factor Q, ε-close (in C [ε−1]-topology) to the corresponding subset
of some ancient κ-orbifold solution.

Proof. First of all, we may assume that the orbifold is not diffeo-
morphic to a spherical orbifold S4/Γ; otherwise we are in case (c) of
Theorem 3.10.

Then we can argue by contradiction as in the manifold case [8] as
follows. We choose a point (x0, t0) almost critically violating the con-
clusion of the theorem. Scale the solution around (x0, t0) with factor
R(x0, t0) and shift the time t0 to 0. The key point of the proof is to
bound the curvature. Note that the κ-noncollapsing condition (Lemma
3.2) and the compactness theorem [17] still hold for κ-noncollapsed Ricci
flow solutions on orbifolds with isolated singularities. By the canonical
neighborhood decomposition theorem for ancient κ-orbifold solutions,
i.e., Theorem 3.10, we can show that the curvature is bounded in ge-
odesic balls centered at x0 with bounded radius with respect to the
normalized distance. The boundedness of curvature on the limit space
then follows from Proposition 6.1 in the appendix. Thus, we have all
the ingredients we need to mimic the same proof in the manifold case [8]
to show that we can extract a convergent subsequence which converges
to an ancient κ-orbifold solution. This is a contradiction. q.e.d.

We denote by Ω the open set of points where curvature remains
bounded as t→ T. Denote by ḡ the limit of gt on Ω as t→ T.

Fix 0 < δ << ε small. Let ρ = ρ(T ) = δr(T ) and Ωρ = {x ∈ X |
R̄ ≤ ρ−2} where r(T ) is given in Theorem 4.1. If Ωρ is empty, then by
Theorem 4.1 and Theorem 3.10, X is either diffeomorphic to a spher-
ical orbifold S4/Γ with at most isolated singularities, or X is covered
by ε-necks and ε-caps. In the latter case, if there is no cap, then X is
covered by ε-necks and is then diffeomorphic to S3/Γ×S1 or S3/Γ×fS1;
if there are caps, namely Cσ

Γ , CΓ, S4/(x,±x′) \ B̄4, B4, then X is dif-

feomorphic to either the smooth manifolds S4, RP4, Cσ
Γ ∪f C

σ′

Γ′ , or one
of the orbifolds Cσ

Γ ∪f CΓ′ , CΓ ∪f CΓ′ , S4/(x,±x′), S4/(x,±x′)#RP4,
S4/(x,±x′)#S4/(x,±x′). So we conclude that if Ωρ is empty, then X is
diffeomorphic to a spherical orbifold S4/Γ with at most isolated singu-
larities or a connected sum of two spherical orbifolds S4/Γ1 and S4/Γ2

with at most isolated singularities.
On the other hand, if the solution of the Ricci flow achieves positive

curvature operator everywhere at some time, it follows from the proof



62 B.-L. CHEN, S.-H. TANG & X.-P. ZHU

of Theorem 3.10 that X is diffeomorphic to a spherical orbifold with at
most isolated singularities.

In the following, we will consider Ricci flow with surgery. The so-
lution after the surgeries may be decomposed into several connected
components. We will stop the Ricci flow on a component if either Ωρ is
empty or the solution achieves positive curvature operator everywhere
on that component. We will say that the (possibly disconnected) so-
lution of the Ricci flow (with surgery) becomes extinct if either one of
the above two cases occurs for every component of the solution. Then,
we can recover the topology of our initial four-orbifold as an orbifold
connected sum in Section 4.3. The purpose of the remainder of this and
the next subsections is thus to construct a Ricci flow with surgery on
X which becomes extinct.

We may then assume that Ωρ 6= φ and so any point outside Ωρ has
an ε-neck or ε-cap neighborhood. We are interested in those ε-horn H
(consisting of ε-necks) where one of the ends is in Ωρ while the curvature
becomes unbounded near the other end. We will perform surgeries on
these horns. First of all, we need the existence of finer (than ε) necks
in the ε-horn H. The reason for finding finer necks to perform surgeries
is to control quantitatively the accumulation of errors caused by the
surgeries.

Proposition 4.2. For the arbitrarily given small 0 < δ << ε, there
is a 0 < h < δρ depending only on δ and ε, and independent of the
noncollapsing parameter κ such that if H is an ε-horn whose finite end
is in Ωρ and x is a point on H with scalar curvature ≥ h−2, then there
is a δ-neck around x.

The argument is a bit different from lemma 5.2 in [8]. The reason
is that the canonical neighborhoods in [8] are universally noncollapsed,
but in the present situation we do not know it beforehand.

Proof. There is a fixed point free finite group of isometries Γ ∈ O(4)
so that we can apply Hamilton’s parametrization to parametrize the
whole H, ΦΓ : (S3/Γ) × (A,B) → H, where ΦΓ is a diffeomorphism.
Denote by Φ : S3 × (A,B) → H the natural lifting of ΦΓ. Without loss
of generality, we assume that Φ(S3 × {s}) has nonempty intersection
with Ωρ as s → A, and the curvature becomes unbounded as s → B.
To prove the proposition, we argue by contradiction. Suppose xj ∈ H

is a sequence of points with R̄(xj) ≥ h−2
j → ∞ but xj has no δ-neck

neighborhood. We pull back the solution to S3 × (A,B) and pick a
lifting x̃j of xj for each j. Then we scale the solution by a factor
R̄(xj) around x̃j and shift the time T to 0. Note that the rescaled
solution on S3 × (A,B) is smooth (without orbifold singularities) and
uniformly noncollapsed. We can apply the same argument of step 2
in theorem 4.1 in [8] to show that the curvature is bounded in any
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fixed finite ball around the point x̃j for the rescaled solution; otherwise
we get a piece of non-flat nonnegatively curved metric cone as a blow
up limit, which contradicts Hamilton’s strong maximum principle (see
[13]). This implies that the two ends of S3 × (A,B) are very far away
from the points x̃j (in the normalized distance). We can then extract
(around (x̃j , T )) a convergent subsequence so that the limit splits off
a line by the Toponogov splitting theorem. By the restricted isotropic
curvature pinching estimate (3.4), the limit is the standard S3×R. Since
the solution is Γ invariant, it descends to H and gives a δ-neck around
xj for j large enough. This is a contradiction. q.e.d.

Now we give a brief description of the original surgery of Hamilton
along a usual δ-neck (N, g) with scalar curvature h−2 at the center x̄.
We assume the parametrization Φ : S3 × (A,B) → N satisfies that the
metric h−2Φ∗g near Φ−1(x̄) ∈ S3 × (A,B) is δ′ close to the standard
metric on S3 × R normalized with scalar curvature 1. Here δ′ is a
constant depending on δ which satisfies lim

δ→0
δ′ = 0.

We assume that the center x̄ has R coordinate s = 0. The surgery is
to cut open the neck at the sphere {s = 0} and then glue back two caps
(B4, g̃) on both sides of the opening. We describe the metric g̃ on the
left hand cap as follows; here the cap B4 is identified with S3 × (0, 4]
with the end S3 × {4} collapsed to a point:

g̃ =





g, s = 0,

e−2fg, s ∈ [0, 2],

ϕe−2fg + (1− ϕ)e−2fh2g0, s ∈ [2, 3],

h2e−2fg0, s ∈ [3, 4],

where f is some suitably chosen smooth nondecreasing convex function,
ϕ is a smooth bump function with ϕ = 1 for s ≤ 2 and ϕ = 0 for s ≥ 3,
and g0 is the standard metric on S3 × R. The description of the metric
on the right hand cap is similar.

To apply the above construction to our situation, we observe that the
parametrization of our horn H, ΦΓ : (S3/Γ)× (A,B) → H, comes from
a Γ-equivariant parametrization S3 × (A,B) → N of a usual neck N .
The above construction then descends to our situation, which gives us a
surgery by gluing back two orbifold caps CΓ after we cut open the horn
H. We call the above procedure a δ-cutoff surgery.

Now the proof that the pinching estimates of Hamilton are preserved
after surgeries can be carried through without changing a word.

Lemma 4.3. (Hamilton [14] D3.1, Preservation of the pinching con-
dition)
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There is a universal positive constant δ0 satisfying the following con-
dition: For any T̃ , there is a constant h0 > 0 depending on the initial
metric and T̃ such that if we perform the above δ-cutoff surgery at a
δ-neck of radius h at time T ≤ T̃ with δ < δ0 and h−2 ≥ h−2

0 , then
after the surgery, the pinching condition (3.2) still holds at all points at
time T .

4.2. Ricci flow with surgery which becomes extinct. We can de-
fine the notion of Ricci flow with surgery in the same way as in [8] by
replacing manifolds by orbifolds with at most isolated singularities. As
in [8], the solutions to the Ricci flow with surgery in this paper are ob-
tained by performing concrete surgeries. We cut open a neck in a horn
and glue back two caps. As a result, all the connected components of
the solution after surgeries are still closed orbifolds with at most iso-
lated singularities. Note that each cross section of the neck in a horn is
diffeomorphic to S3/Γ. If Γ is trivial, we glue back a usual cap B4. If Γ
is nontrivial, we glue back an orbifold cap CΓ which will produce a new
orbifold singularity coming from the tip of the cap.

As we said in the last subsection, our goal is to produce a Ricci flow
solution with surgery on our initial four-orbifold which becomes extinct.
To achieve this, we have to make sure that the following two properties
of the solution are preserved after suitable surgeries are performed. Note
that we have already shown these properties for the solution of the Ricci
flow before the first singular time.

Pinching condition: There exist positive constants ρ,Λ, P < +∞
such that there hold

a1 + ρ > 0 and c1 + ρ > 0,

max{a3, b3, c3} ≤ Λ(a1 + ρ) and max{a3, b3, c3} ≤ Λ(c1 + ρ),

and

b3√
(a1 + ρ)(c1 + ρ)

≤ 1 +
ΛePt

max{log
√

(a1 + ρ)(c1 + ρ), 2}
,

everywhere.

Canonical neighborhood condition (with accuracy ε): Let gt
be a solution to the Ricci flow with surgery starting with (3.1). For the
given ε > 0, there exist two constants C1(ε), C2(ε) and a non-increasing
positive function r(t) on [0,+∞) with the following properties. For every
point (x, t) where the scalar curvature R(x, t) is at least r−2(t), there is

an open set B, Bt(x, σ) ⊂ B ⊂ Bt(x, σ), with 0 < σ < C1(ε)R(x, t)
− 1

2

such that one of the following cases occurs:
(a) B is a strong ε-neck,
(b) B is an ε-cap,
(c) at time t, X is diffeomorphic to a closed spherical orbifold S4/Γ

with at most isolated singularities.
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Moreover, for (a) and (b), the scalar curvature in B at time t is between
C−1
2 R(x, t) and C2R(x, t), and satisfies the gradient estimate

|∇R| < ηR
3

2 and |∂R
∂t

| < ηR2,

for some universal constant η.
Here, we give the precise definitions of ε-cap and strong ε-neck. We

say that an open set B on an orbifold is an ε-neck if there is a dif-
feomorphism ϕ : I × (S3/Γ) → B such that the pulled back metric

(ϕ)∗g, after scaling with suitable factor, is ε-close (in C [ε−1] topol-
ogy) to the standard metric on I × (S3/Γ) with scalar curvature 1 and
I = (−ε−1, ε−1). An open set B on an orbifold is an ε-cap if B is
diffeomorphic to either a smooth cap B4, Cσ

Γ , or an orbifold cap of
Type I or Type II, i.e., CΓ or S4/(x,±x′)\B̄4, and if the region around
the end of B is an ε-neck. A strong ε-neck B at (x, t) is the time
slice at time t of the solution of the Ricci flow in the parabolic region
{(x′, t′)|x′ ∈ B, t′ ∈ [t−R(x, t)−1, t]}, which also has the property that
there is a diffeomorphism ϕ : I× (S3/Γ) → B such that the pulled back
solution (ϕ)∗g(·, ·), after scaling with the factor R(x, t) and shifting the

time t to 0, is ε-close (in C [ε−1] topology) to the subset (I×S3/Γ)×[−1, 0]
of the evolving round cylinder R × (S3/Γ) having scalar curvature one
and length 2ε−1 for I at time zero.

Besides the two conditions above, the κ-noncollapsing condition de-
fined in the last section is also crucial. For convenience, we first recall
its definition here. Let κ be a positive constant. We say that the solu-
tion is κ-noncollapsed on the scales less than ρ if it satisfies the
following property: if

|Rm(·, ·)| ≤ r−2

on P (x0, t0, r,−r2) = {(x′, t′) | x′ ∈ Bt′(x0, r), t
′ ∈ [t0 − r2, t0]} and

r < ρ, then we have

V olt0(Bt0(x0, r)) ≥ κr4.

Since we are dealing with a solution with surgeries, the condition
|Rm(x, t)| ≤ r−2 is only imposed on the region of the parabolic neigh-
borhood P (x0, t0, r,−r2) where the solution is defined.

The importance of the κ-noncollapsing condition is (at least) twofold.
First of all, the κ-noncollapsing condition allows us to take limits of
surgical orbifold solutions of the Ricci flow; this is used to verify the
canonical neighborhood condition after surgeries. Secondly, in the end,
the κ-noncollapsing condition allows us to show that the number of
surgeries performed is finite before the solution becomes extinct.

To justify the preservation of the above conditions of the solution of
the Ricci flow of our initial four-orbifold after surgeries, we must perform
our surgeries carefully. For this, we need the following extension of the
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result of Proposition 4.2 which allows us to find finer necks to perform
surgeries for surgical orbifold solutions.

Proposition 4.4. Suppose that we have a solution to the Ricci flow
with surgery on (0, T ) satisfying the a priori conditions as above and
the solution becomes singular as t → T. Then, for the ε given in the
canonical neighborhood condition and for an arbitrarily given small δ
with 0 < δ << ε, there is a constant h with 0 < h < δρ(T ) = δ2r(T )
(r(T ) as given in the canonical neighborhood condition) and depending
only on δ, ε, and r(T ) such that the following holds: If, at the time T ,
a point x on an ε-horn H whose finite end is in Ωρ(T ) has curvature

≥ h−2, then there is a δ-neck around it.

Proof. We observe that the canonical neighborhoods of the points in
the ε-horn H which are far from the end are all strong ε-necks. Thus
the solution around any point x̄ on H with R(x̄, T ) ≥ h−2 has existed
for a previous time interval (T −R(x̄, T )−1, T ). Suppose the proposition
is not true. We use Hamilton’s parametrization as in Proposition 4.2 to
pull back the solution to S3 × (A,B). By the same argument there, we
can extract a convergent subsequence from the parabolic scalings around
suitable points x̄ with R(x̄, T ) ≥ h−2 → ∞. The limit solution is just
the standard solution on S3×R which exists at least on the time interval
(−1, 0] after shifting the time to 0. Moreover, the solution on all points
(on the original space) at normalized time −1 + 1

100 still has strong ε-

neck neighborhoods and the scalar curvature is ≤ 1 as h−1 → ∞. So we
can actually extract a subsequence so that the limit solution is defined
at least on [−2, 0]. Since this solution on S3× (A,B) is Γ-invariant, this
gives a δ-neck, as h−1 is very large. This is a contradiction. q.e.d.

We can now discuss the preservation of the pinching condition, the
canonical neighborhood condition with accuracy ε, and the uniform κ-
noncollapsing condition of the solution of our Ricci flow after suitable
surgeries are performed. First of all, the condition for the preservation
of the pinching condition after surgeries is already given in Lemma 4.3.
Our proof of the justification of the other two conditions after suitable
surgeries will follow the same strategy as in [8]. In Lemma 4.5 below, we
will prove the uniform κ-noncollapsing condition under the assumption
that the canonical neighborhood condition holds with accuracy ε for
some parameter r̃ which may be very small. This will then be used to
justify the canonical neighborhood condition itself (see Theorem 4.6).

The key point of Lemma 4.5 is that even if we perform δ-cutoff surg-
eries with sufficiently fine δ, which depends on r̃, the noncollapsing
constant κ we obtained is uniform and independent of r̃. In lemma
5.5 of [8], the same estimate was deduced when the initial space is a
compact four-manifold with no essential space form (and with positive
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isotropy curvature). The fact that the canonical neighborhoods in [8]
are not collapsed played a crucial role in the proof there. In the cur-
rent context, a priori, the canonical neighborhoods may be sufficiently
collapsed. Therefore, we need a different argument. Our idea is the
following. Suppose we want to check the uniform κ-noncollapsing at a
space time point (x0, t0). When the scale at (x0, t0) is not too small
compared with the canonical neighborhood parameter r̃, we observe
that if a surgery occurred near the time t0, then it is performed far
away from x0. The argument of Perelman’s Jacobian comparison theo-
rem can be modified to apply as in the previous case in [8] to show the
uniform κ-noncollapsing. When the scale at (x0, t0) is small compared
with the canonical neighborhood parameter r̃, we first show that the
space has a canonical geometric neck near x0 and it can be extended
to form a long geometric tube so that the other end of the tube has a
neck of big scale. After showing that the neck with big scale is uniform
κ-noncollapsing, we get a control on the order of the fundamental group
of the neck which shows that the original neck with small scale is also
uniform κ-noncollapsing.

Lemma 4.5. Given a compact four-orbifold M with positive isotropic
curvature and with at most isolated singularities, a small ε > 0, and a
positive integer l, recall that δ0 is the universal constant appearing in
Lemma 4.3. Suppose that we have already constructed the sequences
δ̃j > 0, r̃j > 0, κj > 0, for 0 ≤ j ≤ l − 1, with the following properties:
for any solution of the Ricci flow with surgery on [0, T ) with T ∈ [lε2, (l+
1)ε2] and with the four-orbifold M as initial data, obtained by δ(t)-cutoff

surgeries at different times t’s where δ(t) satisfies δ(t) ≤ δ0 and δ(t) ≤ δ̃j
for t ∈ [jε2, (j + 1)ε2] for all 0 ≤ j ≤ l − 1, we have

(i) the pinching condition holds on [0, T );
(ii) the canonical neighborhood condition (with accuracy ε) holds with

parameter r̃j > 0 on each [jε2, (j + 1)ε2] for all 0 ≤ j ≤ l − 1;
(iii) the κj-noncollapsing condition for all scales less than ε holds on

[jε2, (j + 1)ε2] for all 0 ≤ j ≤ l − 1.
Then there exists a κl = κl(κl−1, r̃l−1, ε) > 0, and for any r̃ > 0, there

exists δ̃l = δ̃l(κl−1, r̃, ε) > 0 such that if we have a solution of the Ricci
flow with δ(t)−cutoff surgery on [0, T ′) for some T ′ ∈ [lε2, (l + 1)ε2]
which satisfies the following:

(a) the canonical neighborhood condition (with accuracy ε) with pa-
rameter r̃ on [lε2, T )

(b) the condition that for each t ∈ [lε2, T ) and on each connected
component of the solution, there is a point x on it such that R(x, t) ≤
r̃−2;

(c) the condition that δ(t) ≤ δ̃j on [jε2, (j+1)ε2] for all 0 ≤ j ≤ l−1,

and δ(t) ≤ δ̃l on [(l − 1)ε2, T ′),
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then the solution is κl-noncollapsed on [(l − 1)ε2, T ′) for all scales less
than ε.

Proof. Take any r0 < ε, t0 ∈ (lε2, T ) and x0 in the solution of the
Ricci flow at time t0. Suppose R(·, ·) ≤ r−2

0 on P (x0, t0, r0,−r20) =
{(x′, t′) | x′ ∈ Bt′(x0, r0), t

′ ∈ [t0 − r20, t0]}; we need to prove that
volt0(Bt0(x0, r0))/r

4
0 can be bounded from below by some constant in-

dependent of r̃ (and of course r0, t0, x0) provided that the surgeries are
performed in sufficiently small scale, which may depend on r̃. As we
explained above, we will divide the proof into two steps.

Step 1: In this step, we deal with the estimates when the scale r0 is
not too small compared with r̃. We assume that r0 ≥ r̃

C(ε) , where C(ε)

is some fixed constant (to be determined later in Step 2) depending only
on ε. In this case, we adapt the proof of lemma 5.5 in [8] as follows.

Since the surgeries occur in places where the curvatures are bigger
than δ−2(t)r̃−2, which is much larger than r̃−2, we first modify the
argument of lemma 5.5 in [8] to show that any L geodesic γ(τ), τ ∈ [0, τ̄)
(τ̄ ≤ t0 − (l − 1)ε2), starting from (x0, t0) with reduced length ≤ ε−1,
stays far away from the places where surgeries occur. More precisely,
we claim that if some γ(τ0) is not far from some cap which is glued
by surgery procedure at time t = t0 − τ0, then the reduced length of γ
defined by

1

2
√
τ̄

∫ τ̄

0

√
τ(R(γ(τ), τ) + |γ̇(τ)|2)dτ

is ≥ 25ε−1.
This estimate for the manifold case was established in (5.8) on page

238 of [8]. Let us first recall the idea of the proof there. Note that
the place where a δ(t)-cutoff surgery is performed is deep inside the
horn (after normalization) and the parabolic region P (x0, t0, r0,−r20) is
far from it by the curvature estimates in the canonical neighborhood
condition. Thus at time t = t0 − τ0, the point γ(τ0) lies deeply inside a
very long tube and the segment γ(τ), τ ∈ [0, τ0] tends to escape from the
tube. If γ(τ) escapes from the very long tube within a short time, say
≤ CR(x1, t0 − τ0)

−1, from τ0, where C is some universal constant and

x1 is a point in the neck where surgery takes place, then
∫ τ̄

0 |γ̇(τ)|2dτ
contributes a big quantity to the above integral since the tube is quite
long. However, if γ(τ) stays a longer time, say ≥ CR(x1, t0 − τ0)

−1, on

the long tube, then
∫ τ̄

0 Rdτ contributes a large quantity to the above
integral, since for any 1 > ζ > 0, we have the estimate

(4.1) R(x, t) ≥ R(x1, t0 − τ0)
Const.

3
2 −R(x1, t0 − τ0)(t− t0 + τ0)

on γ |[τ0− 3

2
(1−ζ)R(x1,t0),τ0]

, when δ(t) is small enough and γ(τ) stays not

too far from the cap.
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All the above arguments of [8] still work in our present orbifold case
except the verification of the last statement on the estimate of the scalar
curvature on the tube. In [8], the proof of the above estimate on the
scalar curvature on the tube was given as follows: Rescale the solution
with factor R(x1, t0 − τ0) around (x0, t0 − τ0). Since the necks in the
manifold case of [8] are uniformly noncollapsing, we can extract a con-
vergent limit as δ(t0 − τ0) → 0. The limit, called standard solution, is
rotationally symmetric. It exists exactly on the time interval [0, 32) and

has the curvature estimates Const.
3

2
−s

at time s, which gives the estimate

4.1 when scaling back to the original solution. But in the current orb-
ifold case, a priori, we do not know whether the necks in the canonical
neighborhoods are collapsed or not.

To overcome this difficulty, we again use Hamilton’s canonical para-
metrization as in Proposition 4.2. So we have ΦΓ : S3/Γ×(−L,L)s → H,
where H is a horn and we assume that the surgery is performed at
the cross section corresponding to {s = 0} (at time t = t0 − τ0). Let
Φ : S3×(−L,L) → H be the natural lifting of Φ. The pullback metric on
S3× (−L,L) via Φ (after scaling) is very close to the standard cylinder.
We perform a standard surgery on S3 × (−L,L) by cutting open the
cylinder at {s = 0} and gluing back two (smooth) caps. Denote the
resulting space by Y . Clearly, we can require Φ to be extended and
defined on Y to the space after surgery, and the pullback metric is close
to the (two) standard capped infinite cylinders. Note that the gradient
estimates in the canonical neighborhood condition (with accuracy ε)
imply a curvature bound for the pullback solution of the Ricci flow on
Y . Then as δ(t0 − τ0) → 0, we can apply the uniqueness theorem [7] to
show that the solutions on Y around points near the caps converge to
a standard solution. So the above estimate 4.1 on the scalar curvature
also holds in our present case.

After proving that any L geodesic of reduced length < 25ε−1 does
not touch the surgery region, one can apply the same argument of
lemma 5.5 in [8] of using Perelman’s Jacobian comparison to bound
volt0(Bt0(x0, r0))/r

4
0 from below by constant depending only on ε, κl−1, r̃l−1

(see [8], pages 238–241, for the details).
Step 2: In this step, we deal with the estimates on scales less than

r̃
C(ε) . This case is easier in [8] because the space has no singularity and

the canonical neighborhoods are not collapsed there. In our present
orbifold case, a priori, the canonical neighborhoods in our orbifold may
be sufficiently collapsed. So we need a new argument.

Clearly, we may assume R(x′, t′) = r−2
0 for some point on P (x0, t0, r0,

−r20) = {(x′, t′) | x′ ∈ Bt′(x0, r0), t
′ ∈ [t0 − r20, t0]}. Since r0 ≤ r̃

C(ε) ,

by the gradient estimates of curvature in the canonical neighborhood
condition (with accuracy ε), we can choose C(ε) large enough so that
every point in Bt0(x0, r0) has curvature ≥ r̃−2. In particular, the point
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x0 at the time t0 has a canonical neighborhood which is a strong ε-neck
or ε-cap. For both cases, the canonical neighborhood contains an ε-neck
N which is close to (−ε−1, ε−1) × (S3/Γ). Clearly, in order to get the
uniform κ-noncollapsing, we only need to bound the order |Γ| of the
group Γ from above.

Now we consider one of the boundaries of N. Since the curvature is
≥ r̃−2 there, there is an ε-neck or ε-cap adjacent to N. If it is an ε-cap
which is adjacent to N, we stop for this end and consider the other
boundary of N. If it is an ε-neck (denoted by N ′) which is adjacent
to N , and N ′ contains a point having curvature ≤ r̃−2, then we also
stop and consider the other boundary of N . Otherwise, N ∪N ′ forms a
longer (topological) neck with curvature ≥ r̃−2 everywhere. We repeat
the above process with N replaced by N ∪ N ′. Since there is a point
x̄ on the space such that R(x̄, t0) ≤ r̃−2 according to assumption (b)
in the lemma, there must be an extension of one boundary of N such
that the final adjacent neck or cap has a point with curvature ≤ r̃−2.
By the gradient estimate of the canonical neighborhood condition (with
accuracy ε), the curvature at the final neck or cap is ≤ C(ε)2r̃−2 every-
where. We conclude that there is a tube T consisting of ε-necks such
that T contains the initial neck N and another ε-neck N1 with curvature
≤ C(ε)2r̃−2 everywhere. By Step 1, we can bound

volt0(N1)

ε3diam(N1)4
≥ 1

C(ε, κl−1, r̃l−1)

from below uniformly. On the other hand, by using Hamilton’s canonical
parametrization ΦΓ : S3/Γ × (A,B) → N1 to parametrize N1, we get
|Γ|volt0(N1) ≤ C(ε)diam(N1)

4. Combining the above two inequalities,
we get the desired uniform upper bound of |Γ|.

The proof of the lemma is completed. q.e.d.

With Lemma 4.5, we can now justify the canonical neighborhood
condition with accuracy ε and hence the construction of solution of
the Ricci flow with surgery on our initial manifold M which becomes
extinct.

Theorem 4.6. Given a compact four-dimensional orbifold (M,g)
with positive isotropic curvature and with at most isolated singulari-
ties, and given any fixed small constant ε > 0, one can find three non-

increasing positive and continuous functions δ̃(t), r̃(t) and κ̃(t) defined
on whole [0,+∞) with the following properties: For arbitrarily given

positive continuous function δ(t) ≤ δ̃(t) on [0,+∞), the Ricci flow
with δ(t)-cutoff surgery, starting with g, admits a solution satisfying the
pinching condition, the canonical neighborhood condition (with accuracy
ε and scale r = r̃(t)) and the κ-noncollapsing condition (with κ = κ̃(t))
on a maximal time interval [0, T ) with T < +∞ and becoming extinct
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at T. Moreover, the solution is obtained by performing at most a finite
number of δ(t)-cutoff surgeries on [0, T ).

Proof. The pinching condition has already been justified in Lemma
4.3. To justify the canonical neighborhood condition with accuracy
ε, we can apply the same argument as in [8] because we have all the
ingredients we need to mimic the proof of Proposition 5.4 there. We note
that the surgery does not occur on the place where the scalar curvature
achieves its minimum. Then by applying the maximum principle to the
scalar curvature equation ( ∂

∂t
− △)R = 2|Ric|2, we conclude that the

surgical solution must be extinct in finite time. Finally, the finiteness of
the number of surgeries is guaranteed by the κ-noncollapsing condition
of the solution. Therefore, the proof of the theorem is completed. q.e.d.

4.3. Recovering the topology as an orbifold connected sum.
Now we are ready to prove Theorem 2.1.

Proof. Consider a surgical solution to the Ricci flow with surgery
obtained by Theorem 4.6 on [0, T ) (where T < +∞) which becomes
extinct. Now we can recover the topology of the initial orbifold M as
an orbifold connected sum of spherical orbifolds as follows.

Suppose our surgery times are 0 < t1 < t2 < · · · < tk < T. For
each p ∈ {1, 2, . . . , k}, right after the surgery performed at time tp, we
denote by Mp

1 ,M
p
2 , . . .M

p
ip

all the connected components of the surgical

solution which either have positive curvature operator or contain no
point of Ωρ(tp), the remaining connected components are denoted by

Np
1 , . . . , N

p
i′p
. Recall that our construction for the surgical solution is to

stop the Ricci flow on Mp
l for l = 1, . . . , ip and to continue the Ricci

flow on Np
l for l = 1, . . . , i′p. Thus, we also denote Nk

1 , . . . , N
k
i′
k

by

Mk+1
1 ,Mk+1

2 , . . . ,Mk+1
ik+1

because our surgical solution becomes extinct

at time T . Now, we collect all these M i
j ’s in a set S = {M1

1 , . . . ,M
k+1
ik+1

}.
On eachM i

j , we will mark a finite number of points P i
j,l’s in the following

inductive way.
At the first surgery time t1, we perform a surgery on a δ-horn H; i.e.,

we cut open the δ-horn along a cross section of its neck N and glue back
a (smooth or orbifold) cap to the finite part of the horn connected to
Ωρ(t1). Remember that we also glue back a cap to the infinite part of

the horn (the so-called horn-shape end). We denote by P , P̄ the tips
of these two caps. P and P̄ are the marked points alluded to above.
Inductively, at the surgery time tp for p ∈ {1, . . . , k}, we apply the

same procedure as above to the Np−1
l ’s to obtain new marked points.

Note that the points marked in previous surgeries may be separated to
lie in different connected components. Also, once a component M i

j is
terminated at a surgery time ti, then there is no more point marked
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on it in any later surgery time. At the end, we obtain a collection of
marked points on the M i

j ’s in S.

Now we investigate the topology of each M i
j ∈ S.We know thatM i

j is

either diffeomorphic to a spherical orbifold S4/Γ with at most isolated
singularities, or it is covered by ε-necks and ε-caps. Now we consider
the latter case.

If M i
j contains no cap, then M i

j is diffeomorphic to smooth manifold

S3/Γ× S1 or S3/Γ×fS1.
If M i

j contains caps, then M i
j is diffeomorphic either to one of the

smooth manifolds S4, RP4, Cσ
Γ∪fC

σ′

Γ′ , or to one of the orbifolds Cσ
Γ∪fCΓ′ ,

CΓ ∪f CΓ′ , S4/(x,±x′), S4/(x,±x′)#RP4, S4/(x,±x′)#S4/(x,±x′).
So we conclude that each M i

j is diffeomorphic to an orbifold con-

nected sum of at most two spherical orbifolds S4/Γi
j,1 and S4/Γi

j,2 with
at most isolated singularities. Now, reversing the surgery procedures is
clearly equivalent to removing the open neighborhoods of suitable pairs
of marked points above and gluing the corresponding boundaries by
suitable diffeomorphisms. This amounts to taking orbifold connected
sums of the spherical orbifolds with at most isolated singularities which
form the M i

j ’s. Thus, Theorem 2.1 is proved. q.e.d.

5. Proof of Main Theorem

The main purpose of this section is to deduce the Main Theorem from
Theorem 2.1. For this, we need an algebraic lemma, Lemma 5.2, on the
action of a finite group of isometries on the standard sphere S2n. We
first prove a special case in Lemma 5.1 below.

Lemma 5.1. Let G ⊂ SO(2n + 1)(n ≥ 2) be a finite subgroup such
that each nontrivial element in G has exactly one eigenvalue equal to 1.
Then there is a common nonzero vector 0 6= v ∈ R2n+1 such that for all
g ∈ G we have g(v) = v.

Proof. The idea of the proof is similar to the classification of fixed
point free finite subgroups of the isometry group of S2n+1 in [28]. We
divide our argument into two cases.

Case 1): |G| is even. In this case, there is an element of order 2 by
Cauchy theorem. We denote this element by σ. We claim that σ is the
unique element of order 2 in G. Indeed, suppose σ′ is another distinct
order 2 element. Note that, by our assumption, σ and σ′ must have one
eigenvalue equal to 1 and 2n eigenvalues equal to −1. Let E1 and E2

be the eigenspaces with eigenvalue −1 of σ and σ′ respectively. Clearly,
G � σσ′−1 = 1 on E1 ∩ E2. Since n ≥ 2, the intersection E1 ∩ E2 has
dimension ≥ 2n − 1 ≥ 3; this implies that σ = σ′ on the whole space.
This is a contradiction.
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By the uniqueness of σ, we know that g−1σg = σ for any g ∈ G.
Suppose σ(v) = v for |v| = 1; then σg(v) = g(v). Hence g(v) = v or
g(v) = −v. We claim that g(v) = −v cannot happen. The reason is as
follows. Let g(u) = u for |u| = 1; then g2(u) = u. By combining with
g2(v) = v, we know that either g2 = 1 or v = ±u. If g(v) = −v, then v
cannot be ±u, so g has order 2, and is equal to σ by the uniqueness of
the order 2 element, this contradicts σ(v) = v. So we have showed that
g(v) = v for any g ∈ G.

Case 2): |G| is odd. First, we show that every subgroup of order p2 (p
is a prime number) of G is cyclic. Namely, we will show that G satisfies
the p2 condition.

Indeed, supposeH is a noncyclic subgroup of order p2 for some prime
number p. Since a group of order p2 with p prime must be abelian, we
can apply the same argument as in Case (1) to conclude that there is a
unit vector v fixed by the whole group. Let W ∼= R2n be the orthogonal
complement of v in R2n+1. Then H induces a fixed point free action
on the unit sphere S2n−1 of W. So for any v′ ∈ S2n−1, we have 0 =∑

g∈H g(v
′), as

∑
g∈H g(v′) is fixed by all elements in H. On the other

hand, since G is abelian and noncyclic, we conclude that each nontrivial
element has order exactly p; the intersection of any two distinct order p
groups contains only the identity. Let Hi, i = 1, . . . ,m,(m ≥ 2) be the
subgroups in H of order p; then for any v′ ∈ S2n−1, we have

0 =
∑

g∈G
g(v′) =

m∑

i=1

∑

g∈Hi

g(v′)− (m− 1)v′ = −(m− 1)v′,

where we have used the fact
∑

g∈Hi
g(v′) = 0, since Hi also acts freely

on S2n−1. The contradiction shows that H is cyclic.
Now, the fact that G satisfies the p2 condition implies that every

Sylow subgroup of G is cyclic (see theorem 5.3.2 in [28]; note that since
|G| is odd, so must be p). By Burnside theorem (see theorem 5.4.1 in
[28]), once we know that every Sylow subgroup of G is cyclic, then G
is generated by two elements A and B with defining relations

Am = Bn = 1, BAB−1 = Ar, |G| = mn;

((r − 1)n,m) = 1, rn ≡ 1(mod m).

We may assume that both m and n are greater than 1; otherwise G is
cyclic and the conclusion of our lemma clearly holds. Now, let A(v) = v
for |v| = 1. We will show that B(v) = v. Indeed, by the relation
BAB−1 = Ar, we have AB−1(v) = B−1(v). This implies B−1(v) = v
or B−1(v) = −v. B−1(v) = −v will not happen, because it implies
B−2 = 1 by the argument in Case 1). This will imply the order of |G|
is even, which is a contradiction with our assumption. So v is fixed by
the whole group G. q.e.d.
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The following is the algebraic lemma needed to prove our Main The-
orem; it is proved by reducing to the special case in Lemma 5.1.

Lemma 5.2. Let G ⊂ O(2n + 1)(n ≥ 2) be a finite group of orthog-
onal matrices such that each nontrivial element in G has at most one
eigenvalue equal to 1. Then there is a finite group G′ ⊂ SO(2n) (which
is isomorphic to G as an abstract group) acting freely on the sphere
S2n−1 and a character χ : G′ → {±1} such that after conjugation, the

group G = {
(
χ(g) 0

0 g

)
: g ∈ G′}.

Proof. Let G0 = G∩SO(2n+1). If G0 = G, every nontrivial element
of G has exactly one eigenvalue equal to 1. By Lemma 5.1, there exists
a nontrivial common fixed vector v of G. Now, let G′ = the restriction
of G on the orthogonal complement of v and χ ≡ 1. We are done.

If G0 6= G, then G0 is an index 2 normal subgroup of G. We again
assume that v is a nontrivial common fixed vector of G0. Then we claim
that for any g ∈ G\G0, we have g(v) = −v. The argument is as follows.
Since g2 ∈ G0, we have g2(v) = v. Let E = span{v, g(v)}. We will show
dimE = 1. Indeed, suppose dimE = 2. Since g(v+g(v)) = v+g(v) and
g(v−g(v)) = −(v−g(v)), E is an invariant subspace of g, dimE⊥ is odd,
and det(g |E⊥) = 1. So g has another fixed nonzero vector in E⊥. This
contradiction shows that dimE = 1 and hence g(v) = v or g(v) = −v.
If g(v) = v, then det(g |{v}⊥) = −1, and hence g must have another

fixed vector in {v}⊥ since dim{v}⊥ is even; this again contradicts the
assumption that g has at most one eigenvalue 1. This proves our claim.

Next, we show that G acts freely on the unit sphere of {v}⊥. For
this, we only need to check for any g ∈ G\G0; g has no nonzero fixed
vector in {v}⊥. But if this is not true, we have g2 = 1; this implies that
g has one eigenvalue 1 (by assumption) and 2n eigenvalues −1, which
contradicts det(g) = −1. To finish the proof, we only have to take G′ =
the restriction of G on {v}⊥ and χ is the character which takes value 1
on G0 and −1 otherwise. q.e.d.

In the following, we prove the Main Theorem by using Theorem 2.1
and Lemma 5.2. Note that, for the purpose of our Main Theorem, we
will apply Theorem 2.1 where the initial space M is a manifold.

Proof. With the help of Lemma 5.2, we can describe the structure
of the spherical orbifolds S4/Γ appearing in Theorem 2.1. Since the
resulting quotient space S4/Γ has at most isolated singularities, each
nontrivial element of Γ has at most a pair of antipodal fixed points, so
the group Γ satisfies the assumption in Lemma 5.2.

There are three cases for the resulting space S4/Γ. The first case
is that Γ acts on S4 freely; this can only occur when Γ is trivial or
when Γ is equal to Z2 generated by the antipodal map. The resulting
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space is a smooth manifold diffeomorphic to S4 or RP4. The second case
is that Γ 6= {1} and Γ ⊂ SO(5). Assume that S4 ⊂ R5 has equation
x21+x

2
2+· · ·+x55 = 1. By Lemma 5.2, we may assume that the north pole

P = (0, 0, 0, 0, 1) and the south pole −P = (0, 0, 0, 0,−1) of S4 are the
common fixed points of Γ. The resulting spherical orbifold S4/Γ has two
orbifold singularities at P and −P . Let S3 = S4∩{x5 = 0}. Then Γ also
acts on S3 without a fixed point. After removing suitable neighborhoods
of P and −P from the spherical orbifold S4/Γ, the resulting space is
diffeomorphic to S3/Γ × [−1, 1]. Here we regard Γ as a fixed point free
isometry subgroup of S3. We will call it C(Γ) as in the introduction.
The third case is that Γ 6= Z2 and Γ * SO(5). We let Γ0 = Γ ∩ SO(5),
which is nontrivial and $ Γ. By Lemma 5.2, with the same notation
as in the second case, we may assume that the north pole P and the
south pole −P of S4 are the fixed points of Γ0. Also, any element in
Γ\Γ0 exchanges P and −P . The resulting spherical orbifold S4/Γ will
thus have only one orbifold singularity, which is given by the Γ orbit
of P . Note that Γ again acts on S3 as a fixed point free isometry
subgroup. After removing suitable neighborhoods of the Γ orbit of P
from the spherical orbifold S4/Γ, the resulting space is diffeomorphic to
the quotient of S3/Γ0 × [−1, 1] by a group of order two generated by
σ̂ : (x, s) 7→ (σ(x),−s) where σ is a fixed point free isometric involution
on S3/Γ0 induced by an element in Γ\Γ0. This is simply the smooth
cap Cσ

Γ0
in our previous notation.

Now let X1, . . . ,Xm be the spherical orbifolds with at most isolated
singularities appearing in Theorem 2.1. The orbifold connected sum
procedures there can be described in two steps. The first step is to
resolve by orbifold connected sums all singularities of X1, . . . ,Xm which
are introduced pairwise in the surgeries of the Ricci flow. The resulting
space consists of a finite number of smooth closed connected manifolds,
denoted by Y1, . . . , Yn. The second step in the connected sum procedures
corresponds to reversing the surgeries of the Ricci flow which do not
introduce singularity, i.e., when smooth caps B4 are glued during the
surgeries. For this, we perform the usual connected sums among the
Y1, . . . , Yn and a finite number of S4, RP4, S3 × S1, or S3×̃S1. Note
that the last two manifolds occur because taking the usual connected
sum through two embedded 3-spheres on a connected smooth manifold
is equivalent to taking the usual connected sum of this manifold with
S3 × S1 or S3×̃S1.

Thus, to prove our Main Theorem, it remains to show that each Yl
is diffeomorphic to a cocompact quotient of the standard S3 × R by a
discrete isometry group. For this, we first note that each spherical orb-
ifold Xi (with at most isolated singularities) falls into one of the three
cases mentioned above. In particular, each Yl is obtained by gluing a
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number of cylinders C(Γk)’s and caps Cσi

Γj
’s along their common bound-

aries for suitable Γk’s, Γj ’s, and σi’s. Since there is only one end for a
cap, at most two caps can occur. To proceed, we make the following
observations:

1. Each of the two boundaries of C(Γ) is diffeomorphic to S3/Γ and
the (only) boundary of Cσ

Γ is diffeomorphic to S3/Γ.
2. S3/Γ1 is diffeomorphic to S3/Γ2 if and only if Γ1 and Γ2 are

conjugate in SO(4).
3. Up to diffeomorphisms, the gluing of two cylinders C(Γ)’s or the

gluing of a cylinder C(Γ) with a cap Cσ
Γ is independent of the gluing

diffeomorphism.
4. Both C(Γ) and Cσ

Γ can be equipped with a metric which is locally
isometric to S3 × R.

From observations 1 and 2, we see that Yl is obtained by gluing a finite
number of C(Γ)’s and Cσi

Γ ’s along their common boundaries S3/Γ for
some Γ and σi’s. Observation 3 then says that, up to diffeomorphisms, Yl
is one of the following types: the self-gluing of the two ends of a cylinder
C(Γ) or the gluing of two caps, Cσ

Γ and Cσ′

Γ , by suitable diffeomorphism
on S3/Γ. Now, by observation 4 and the fact that any diffeomorphism
on a three-dimensional spherical space form is isotopic to an isometry
(see [18]), Yl can be equipped with a metric which is locally isometric
to S3 × R. This completes the proof of our Main Theorem. q.e.d.

Our proof of the Main Theorem actually works when the initial space
M is an orbifold with at most isolated singularities. The result is given
in the following

Corollary 5.3. A compact 4-orbifold with at most isolated singular-
ities and with positive isotropic curvature is diffeomorphic to the con-
nected sum #i(S3 × R/Gi)#j(S4/Γj), where Gi and Γj are standard
group actions and the connected sum is in the usual sense.

Proof. Since Theorem 2.1 already works for orbifold, the only modi-
fication of the proof of the Main Theorem we have to make is to allow
the Yl’s to be orbifolds with at most isolated singularities. Thus, besides
the smooth manifolds S3/Γ×f S1 and Cσ

Γ ∪f C
σ′

Γ obtained above, Yl can
also be given by Cσ

Γ ∪f CΓ or CΓ ∪f CΓ. Now, by [18], f is isotopic to
an isometry f ′ of S3/Γ, which can be naturally extended to a diffeomor-
phism from CΓ to itself. This gives a diffeomorphism from S4/{Γ, σ̂}
or S4/Γ to Cσ

Γ ∪f ′ CΓ or CΓ ∪f ′ CΓ respectively. Thus, Yl remains a
cocompact quotient of S3×R (with isolated orbifold singularities). The
remainder of the proof of our Main Theorem goes through. q.e.d.
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6. Appendix

Let ε be a positive constant. We call an open subset N ⊂ X in a
metric space GH ε-neck of radius r if r−1N is homeomorphic to and
Gromov-Hausdorff ε-close to a neck S × I where S is some Alexandrov
space with nonnegative curvature without boundary, diam(S) ≤ 1√

ε
and

I = (−ε−1, ε−1).

Proposition 6.1. There exists a constant ε0 = ε0(n) > 0 such that
for any complete noncompact n-dimensional intrinsic Alexandrov space
X with nonnegative curvature, there is a positive constant r0 > 0 and
a compact set K ⊂ X such that any GH ε-neck of radius r ≤ r0 on X
with ε ≤ ε0 must be contained in K entirely.

Proof. When the Alexandrov space is required to be smooth and the

topology used to define the ε-neck is in C [ 1
ε
], the proof is given in [8].

Now we modify the argument there to our present situation. The key
observation is that we used essentially only the triangle comparison in
[8]. Here we include the proof for completeness.

We argue by contradiction. Suppose that there exists a sequence
of positive constants εα → 0 and a sequence of n-dimensional com-
plete noncompact pointed Alexandrov spaces (Xα, Pα) with nonneg-
ative curvature such that for each fixed α, there exists a sequence of
GH εα-necks Nk of radius rk ≤ 1/k on Xα with Nk ⊂ Xα\B(Pα, k).
Recall that by the definition of Gromov-Hausdorff distance, there is a
metric space Zk containing isometric embeddings of r−1

k Nk and S × I
such that S×I ⊂ Bεα(r

−1
k Nk) and r

−1
k Nk ⊂ Bεα(S×I). Let Pk ∈ r−1

k Nk

be a point having distance ≤ εα with S × {0} (in Zk). Then we have
d(Pα, Pk) → ∞ as k → ∞.

Let α be fixed and sufficiently large, connecting each Pk to Pα by
a minimizing geodesic γk. By passing to subsequence, we may assume
that the angle θkl between the geodesics γk and γl at P

α is very small
and tends to zero as k, l → +∞, and we may also assume that the length
of γk+1 is much bigger than the length of γk. Let us connect Pk to Pl

by a minimizing geodesic ηkl.
For any three points A,B,C ∈ Xα, we use ∆̄ĀB̄C̄ to denote the corre-

sponding triangle in the Euclidean plane P with d(A,B) = |ĀB̄|, d(A,C)
= |ĀC̄|, d(B,C) = |B̄C̄|, and we also use ∠̄ĀB̄C̄ to denote the angle of
∆̄ĀB̄C̄ at B̄.

Clearly, for each l > k, ∠̄P̄αP̄kP̄l is close to π by angle comparison.
Let P ′

k ∈ γk ∩ ∂Nk and P ′′
k ∈ ηkl ∩ ∂Nk. It is clear that for any point

x ∈ ∂Nk, either we have ∠̄P̄ ′
kP̄kx̄ small and ∠̄P̄ ′′

k P̄kx̄ close to π or we

have ∠̄P̄ ′
kP̄kx̄ close to π and ∠̄P̄ ′′

k P̄kx̄ small. This depends on which
connected component of ∂Nk it is that x lies on.
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By using the above facts and the triangle comparison (see [8]), we
can show that when k is large enough, each minimizing geodesic γl with
l > k, connecting Pα to Pl, must go through the whole Nk.

Hence by taking a limit, we get a geodesic ray γ emanating from Pα

which passes through all the necks Nk, k = 1, 2, . . . , except for a finite
number of them. Throwing away this finite number of necks, we may
assume that γ passes through all necks Nk, k = 1, 2, . . . . Denote the
central cross section of Nk by Sk and their intersection points with γ
by pk ∈ Sk ∩ γ, for k = 1, 2, . . . . Take a sequence of points γ(m) with
m = 1, 2, . . . . For each fixed neck Nk, choose an arbitrary point qk ∈ Nk

near Sk and draw a geodesic segment γkm from qk to γ(m). Now we
can show by triangle comparison that for any fixed neck Nl with l > k,
γkm will pass through Nl for all sufficiently large m.

For any s > 0, choose two points p̃k on pkγ(m) ⊂ γ and q̃k on

qkγ(m) ⊂ γkm with d(pk, p̃k) = d(qk, q̃k) = s. By Toponogov compari-
son theorem, we have

lim
m→∞

d(p̃k, q̃k)

d(pk, qk)
≥ 1.

Lettingm→ ∞, we see that γkm has a convergent subsequence whose
limit γk is a geodesic ray passing through all Nl with l > k. Denote by
pj = γ(tj), j = 1, 2, . . . . From the above computation, we deduce that

d(pk, qk) ≤ d(γ(tk + s), γk(s))

for all s > 0.
Let ϕ(x) = limt→+∞(t − d(x, γ(t))) be the Busemann function con-

structed from the ray γ. By the definition of Busemann function ϕ
associated to the ray γ, we see that ϕ(γk(s1)) − ϕ(γk(s2)) = s1 − s2
for any s1, s2 ≥ 0. Consequently, by investigating the value of ϕ on
∂Nl and from the linearity of ϕ |γk , we know that for each l > k, we

have γk(tl − tk) ∈ ϕ−1(ϕ(pl)) ∩ Nl. This implies that the diameter of
ϕ−1(ϕ(pk)) ∩ Nk is not greater than the diameter of ϕ−1(ϕ(pl)) ∩ Nl

for any l > k, which is a contradiction as l is much larger than k. The
proposition is proved. q.e.d.

Remark 6.2. Without introducing a compact set K, the conclusion
of Proposition 6.1 may not be true. Counterexamples can be given by
cones with small aperture.
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