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MINIMAL SURFACES IN R
3

PROPERLY PROJECTING INTO R
2

Antonio Alarcón & Francisco J. López

Abstract

For all open Riemann surface N and real number θ ∈ (0, π/2),
we construct a conformal minimal immersion X = (X1, X2, X3) :
N → R

3 such thatX3+tan(θ)|X1| : N → R is positive and proper.
Furthermore, X can be chosen with an arbitrarily prescribed flux
map.

Moreover, we produce properly immersed hyperbolic minimal
surfaces with non-empty boundary in R3 lying above a negative
sublinear graph.

1. Introduction

The conformal structure of a complete minimal surface plays a fun-
damental role in its global properties. It is then important to determine
the conformal type of a given minimal surface. An open Riemann surface
is said to be hyperbolic if and only if it carries a negative non-constant
subharmonic function. Otherwise, it is said to be parabolic. Compact
Riemann surfaces with empty boundary are said to be elliptic.

Complete minimal surfaces with finite total curvature or complete
embedded minimal surfaces with finite topology in R

3 are properly im-
mersed and have parabolic conformal type (for further information, see
[26, 13, 7, 21, 20]). On the other hand, there exist properly immersed
hyperbolic minimal surfaces in R

3 with arbitrary non-compact topology
(see [22] for a pioneering work, and [11, 5] and references therein for a
good setting).

It is then interesting to elucidate how properness and completeness
influence the conformal geometry of minimal surfaces. In [16] it is shown
that any open Riemann surface admits a conformal complete minimal
immersion in R

3, even with an arbitrarily prescribed flux map. In this
paper, we extend this result to the family of proper minimal immersions,
proving considerably more (see Theorem 5.6):

Theorem I. For all open Riemann surface N , group morphism p :
H1(N ,Z) → R

3, and real number θ ∈ (0, π2 ), there exists a conformal

minimal immersion X = (X1,X2,X3) : N → R
3 satisfying that:
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• X3 + tan(θ)|X1| : N → R is positive and proper, and
•
∫

γ ∂X = ip(γ) for all γ ∈ H1(N ,Z), where ∂ is the complex dif-

ferential operator.

The strength of the theorem lies in the case θ ≈ 0. As a matter of
fact, if the theorem holds for some θ0 ∈ (0, π/2), then it is trivially valid
for any θ ∈ [θ0, π/2). Furthermore, the result is sharp in the sense that
the angle θ cannot be zero. Indeed, by the Strong Half Space Theorem
[12], properly immersed minimal surfaces in a half space are planes.
Contrariwise, Theorem I shows that any wedge of angle greater than
π in R

3 contains minimal surfaces properly immersed in R
3, even of

hyperbolic type. In particular, neither open wedges nor closed wedges
of angle greater than π are universal regions for surfaces (see [19] for a
good setting). Other Picard conditions for properly immersed minimal
surfaces in R

3 guaranteeing parabolicity can be found in [15].
From Theorem I follow some remarkable results concerning not only

minimal surfaces. We are going to mention three of them related to
proper harmonic maps into C, proper holomorphic null curves in C

3,
and maximal surfaces in the Lorentz-Minkowski space R

3
1.

Schoen and Yau conjectured that there are no proper harmonic maps
from D to C with flat metrics, and connected this question with the
existence of hyperbolic minimal surfaces in R

3 properly projecting into
R
2 [33, p. 18]. A counterexample to this conjecture follows from the

results in [9], which imply the existence of proper harmonic maps from
any finite bordered Riemann surface into R

2. It remains open whether
or not a hyperbolic minimal surface in R

3 can be properly projected into
R
2. The following direct corollary of Theorem I provides a full answer

to Schoen and Yau’s questions:

Corollary 1.1. Any open Riemann surface N admits a conformal
minimal immersion X = (X1,X2,X3) : N → R

3 such that (X1,X3) :
N → R

2 is a proper (harmonic) map.

It is well known that any open Riemann surface properly holomor-
phically embeds in C

3 and immerses in C
2 [6, 24, 29]. Moreover, there

are proper null immersions in C
3 of the unit disc [22], and of any open

parabolic Riemann surface of finite topology [28, 16]. Theorem I also
shows that any open Riemann surface admits a proper null immersion
in C

3, and a holomorphic immersion in C
2 properly projecting into R

2.
Indeed, choosing p = 0 in Theorem I and labeling X∗ = (X∗

1 ,X
∗
2 ,X

∗
3 ) as

the conjugate minimal immersion ofX, the mapX+iX∗ = (F1, F2, F3) :
N → C

3 is a proper holomorphic null immersion, and (F1, F3) : N → C
2

is a holomorphic immersion which properly projects into R
2.

Finally, from Theorem I follows the existence of proper Lorentzian
null holomorphic immersions in C

3 (see [34]) and proper conformal
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maximal immersions in the Lorentz-Minkowski space, with singulari-
ties and arbitrary conformal structure. See [2] for the hyperbolic simply
connected case.

The last part of the paper is devoted to properly immersed minimal
surfaces in R

3 with non-empty boundary. A Riemann surface M with
non-empty boundary is said to be parabolic if bounded harmonic func-
tions on M are determined by their boundary values, or equivalently,
if the harmonic measure of M with respect to a point P ∈ M − ∂(M)
is full on ∂(M). Otherwise, the surface is said to be hyperbolic (see
[1, 27] for a good setting). For instance, D − {1} is parabolic whereas
D+ := D ∩ {z ∈ C | Im(z) > 0} is hyperbolic. Properly immersed mini-
mal surfaces with non-empty boundary lying in a half space of R3 are
parabolic [8], and the same result holds for proper minimal graphs in
R
3 [25]. It is also known that any properly immersed minimal surface

in R
3 with non-empty boundary lying over a negative sublinear graph

in R
3 and whose Gaussian image is contained in a hyperbolic domain of

the Riemann sphere is parabolic [18]. We prove the following comple-
mentary result (see Theorem 6.1), which also shows that the condition
about the size of the Gauss map in [18] plays an important role:

Theorem II. There exists a conformal minimal immersion X =
(X1,X2,X3) : D+ → R

3 such that (X1,X3) : D+ → R
2 is proper and

limn→∞min{ X3(pn)
|X1(pn)|+1 , 0} = 0 for all divergent sequences {pn}n∈N in

D+.

Theorem II contributes to the understanding of Meeks’ conjecture
about parabolicity of minimal surfaces with boundary. This conjecture
asserts that any properly immersed minimal surface lying above a neg-
ative half catenoid is parabolic.

The techniques developed in this paper may be applied to a wide
range of problems on minimal surface theory. In the papers [3, 4], com-
plete minimal surfaces in R

N with prescribed coordinate functions are
constructed, and in [5] some Calabi-Yau type conjectures are treated.
Our tools come from deep results on approximation theory by meromor-
phic functions [31, 32, 30]. The most useful one is the Approximation
Lemma in Section 4, where accurate use of Runge-Mergelyan approx-
imation theorems and classical theory of Riemann surfaces [1, 10] is
made. In this way, we can refine the classical construction methods of
complete minimal surfaces (see, among others, [14, 23, 17] for a good
setting).

The paper is laid out as follows. In Section 2 we introduce the nec-
essary background on Riemann surfaces and the required notations for
a good understanding of the subsequent sections. Section 3 is devoted
to some preliminaries on minimal surfaces in R

3. In Section 4 we state
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and prove the Approximation Lemma. Finally, Theorems I and II are
proved in Sections 5 and 6, respectively.

Acknowledgments. The research of both authors is partially supported
by MCYT-FEDER research projects MTM2007-61775 and MTM2011-
22547 and Junta de Andalućıa Grant P09-FQM-5088.

2. Background on Riemann surfaces

Given a compact topological space K and f = (fj)j=1,...,n : K → K
n,

K = R, C, we denote by

‖f‖0,K := max
K

{(

n
∑

j=1

|fj|
2
)1/2}

the maximum norm of f on K. The corresponding space of continuous
functions on K will be endowed with the C0 topology associated to
‖ · ‖0,K .

Given a topological surface N, ∂(N) will denote the one dimensional
topological manifold determined by the boundary points of N. Given
A ⊂ N, call by A◦ and A the interior and the closure of A in N, respec-
tively. Open connected subsets of N −∂(N) will be called domains, and
those proper connected topological subspaces of N being surfaces with
boundary are said to be regions.

A Riemann surface M is said to be open if it is non-compact and
∂(M) = ∅. As usual, C = C∪ {∞} will denote the Riemann sphere. We
denote ∂ as the global complex operator given by ∂|U = ∂

∂zdz for any
conformal chart (U, z) on M.

Remark 2.1. Throughout this paper, N and σ2N will denote a fixed
but arbitrary open Riemann surface and conformal Riemannian metric
on it.

In the following, we introduce the necessary notations for a good
understanding of Sections 3 and 4.

For any A ⊂ N , we denote by Div(A) the free commutative group of
divisors of A with multiplicative notation. If D =

∏n
i=1Q

ni

i ∈ Div(S),
where ni ∈ Z − {0} for all i, the set {Q1, . . . , Qn} is said to be the
support of D, written supp(D). A divisor D ∈ Div(A) is said to be
integral if D =

∏n
i=1Q

ni

i and ni ≥ 0 for all i. Given D1, D2 ∈ Div(A),

D1 ≥ D2 if and only if D1D
−1
2 is integral.

Given an open subset W ⊂ N , we write Fh(W ) and Fm(W ) for the
spaces of holomorphic and meromorphic functions on W, respectively.
Likewise, Ωh(W ) and Ωm(W ) will denote the spaces of holomorphic and
meromorphic 1-forms on W, respectively.

Let S be a compact subset ofN . By definition, a connected component
V of N −S is said to be bounded if V is compact. S is said to be Runge
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if N −S has no bounded components. Recall that a compact Jordan arc
in N is said to be analytical (smooth, continuous, . . . ) if it is contained
in an open analytical (smooth, continuous, . . .) Jordan arc in N .

Definition 2.2. A (possibly non-connected) compact subset S ⊂ N
is said to be admissible if and only if (see Figure 1):

(a) S is Runge,
(b) MS := S◦ is non-empty and consists of a finite collection of pairwise

disjoint compact regions in W with C0 boundary,
(c) CS := S −MS consists of a finite collection of pairwise disjoint

analytical Jordan arcs, and
(d) any component α of CS with an endpoint P ∈ MS admits an ana-

lytical extension β in N such that the unique component of β − α
with endpoint P lies in MS .

Figure 1. An admissible set S.

A compact subset S ⊂ N satisfying (b), (c), and (d) is Runge (hence
admissible) if and only if i∗ : H1(S,Z) → H1(N ,Z) is a monomorphism,
where H1(·,Z) means first homology group, i : S → N is the inclusion
map, and i∗ is the induced group morphism. Elementary topological
arguments give that H1(S,Z) is finitely generated and χ(MS) ≥ χ(S) ≥
χ(MS)− k for any admissible S, where χ(·) means Euler characteristic
and k is the number of Jordan arcs in CS . In particular, χ(S) is finite.

Notice that if S ⊂ N is a compact Runge subset consisting of a finite
collection of pairwise disjoint compact regions with C0 boundary, then
S is admissible. For most of the admissible subsets S we will deal with
in this paper, MS will have smooth (or even analytical) boundary and
the arcs in CS will meet transversally ∂(MS).

In the sequel, S will denote an admissible set.

Definition 2.3. We denote by

• Fh(S) the space of continuous functions f : S → C being holo-
morphic on an open neighborhood of MS in N , and

• Fm(S) the space of continuous functions f : S → C being mero-
morphic on an open neighborhood of MS in N and satisfying that
f−1(∞) ⊂ S◦ =MS − ∂(MS).
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As usual, a 1-form θ on S is said to be of type (1, 0) if for any confor-
mal chart (U, z) in N , θ|U∩S = h(z)dz for some function h : U ∩S → C.
Finite sequences Θ = (θ1, . . . , θn), where θj is a (1, 0)-type 1-form for
all j, are said to be n-dimensional vectorial (1, 0)-forms on S. The space
of continuous n-dimensional (1,0)-forms on S will be endowed with the
C0 topology induced by the norm

(1) ‖Θ‖0,S := ‖
Θ

σN
‖0,S = max

S

{(

n
∑

j=1

|
θj
σN

|2
)1/2}

.

Fix any arbitrary meromorphic 1-form ϑS on N with neither zeroes
nor poles on S (the existence of such a ϑS is well known; it follows from
the Riemann-Roch theorem on open Riemann surfaces). Notice that the
following notions will not depend on the chosen ϑS .

Definition 2.4. We denote by

• Ωh(S) the space of 1-forms θ of type (1, 0) on S such that θ/ϑS ∈
Fh(S), and

• Ωm(S) the space of 1-forms θ of type (1, 0) on S such that θ/ϑS ∈
Fm(S).

The inclusions Fh(S) ⊂ Fm(S) and Ωh(S) ⊂ Ωm(S) are trivial.
For any f ∈ Fm(S), we denote by (f)0 and (f)∞ its associated integral

divisors of zeroes and poles in S, respectively, and label (f) = (f)0
(f)∞

as

the divisor associated to f on S. Obviously, supp((f)∞) = f−1(∞) and
supp((f)0) = f−1(0). Likewise, we define (θ)0, (θ)∞ for any θ ∈ Ωm(S)

and call (θ) = (θ)0
(θ)∞

as the divisor of θ on S.

Definition 2.5. Let W be an open subset of N containing S. We
shall say that

• a function f ∈ Fh(S) can be approximated in the C0 topology on
S by functions in Fh(W ) if there exists {fn}n∈N ⊂ Fh(W ) such
that {‖fn|S − f‖0,S}n∈N → 0;

• a function f ∈ Fm(S) can be approximated in the C0 topology on
S by functions in Fm(W ) if there exists {fn}n∈N ⊂ Fm(W ) such
that fn|S − f ∈ Fh(S) for all n and {‖fn|S − f‖0,S}n∈N → 0 (in
particular, (fn)∞ = (f)∞ on S◦ for all n);

• a 1-form θ ∈ Ωh(S) can be approximated in the C0 topology on S
by 1-forms in Ωh(W ) if there exists {θn}n∈N ⊂ Ωh(W ) such that
{‖θn|S − θ‖0,S}n∈N → 0,; and

• a 1-form θ ∈ Ωm(S) can be approximated in the C0 topology on
S by 1-forms in Ωm(W ) if there exists {θn}n∈N ⊂ Ωm(W ) such
that θn|S − θ ∈ Ωh(S) for all n and {‖θn|S − θ‖0,S}n∈N → 0 (in
particular (θn)∞ = (θ)∞ on S◦ for all n).

The notion of approximation in the C0 topology of vectorial func-
tions in Fh(S)

n (respectively, 1-forms in Ωh(S)
n) by vectorial functions
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in Fh(W )n (respectively, 1-forms in Ωh(W )n) is set in a similar way;
likewise for the spaces Fm(S)

n and Ωm(S)
n.

The following definition deals with the notion of smoothness of func-
tions and 1-forms on admissible subsets.

Definition 2.6. Let S be a compact admissible subset in N .

• A function f : S → K
n, K = R, C, or C, n ∈ N, is said to be

smooth if f |MS
admits a smooth extension f0 to an open domain

V in N containing MS ; and for any component α of CS and any
open analytical Jordan arc β in W containing α, f |α admits a
smooth extension fβ to β satisfying that fβ|V ∩β = f0|V ∩β.

• A vectorial 1-form Θ ∈ Ωm(S)
n is said to be smooth if Θ/ϑS :

S → C
n
is smooth.

Definition 2.7. Given a smooth f ∈ Fm(S), we set df as the 1-form
of type (1,0) given by

df |MS
= d(f |MS

) and df |α∩U = (f ◦ α)′(x)dz|α∩U

for any component α of CS, where (U, z = x+iy) is any conformal chart
on N satisfying that z(α ∩ U) ⊂ R (the existence of such a conformal
chart is guaranteed by the analyticity of α).

It is clear that df is well defined, belongs to Ωm(S) (to Ωh(S) if f ∈
Fh(S)), and is smooth. Furthermore, df |α(t) = (f ◦ α)′(t)dt for any
component α of CS , where t is any smooth parameter along α.

A smooth 1-form θ ∈ Ωm(S) is said to be exact if θ = df for some
smooth f ∈ Fm(S), or equivalently if

∫

γ θ = 0 for all γ ∈ H1(S,Z).

3. Weierstrass representation and flux map of minimal
surfaces

Let R be an open Riemann surface and let X = (X1,X2,X3) : R →
R
3 be a conformal minimal immersion. Denote by φj = ∂Xj , j = 1, 2, 3,

and Φ = ∂X ≡ (φj)j=1,2,3. The 1-forms φk are holomorphic, have no

real periods, and satisfy that
∑3

k=1 φ
2
k = 0. Furthermore, the intrinsic

metric in R is given by ds2 =
∑3

k=1 |φk|
2; hence φk, k = 1, 2, 3, have no

common zeroes.
Conversely, any vectorial holomorphic 1-form Φ = (φ1, φ2, φ3) on R

without real periods, and satisfying
∑3

k=1 φ
2
k = 0 and

∑3
k=1 |φk(P )|

2 6=
0 for all P ∈ R, determines a conformal minimal immersion X : R→ R

3

by the expression:

X = Re

∫

Φ.

By definition, the triple Φ is said to be the Weierstrass representation
of X. The meromorphic function g = φ3

φ1−iφ2
corresponds to the Gauss
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map of X up to the stereographic projection and

Φ =
(1

2
(1/g − g),

i

2
(1/g + g), 1

)

φ3

(see [26]).
We need the following

Definition 3.1. For any subset A ⊂ N , we denote by M(A) the
space of conformal minimal immersions of open domains W ⊂ N con-
taining A into R

3.

Let S ⊂ N be a compact admissible subset.

Definition 3.2. Given X ∈ M(S) and an arclength parameterized
curve γ(s) in S, the conormal vector field of X along γ is the unique
unitary tangent vector field µ of X along γ such that {dX(γ′(s)), µ(s)}
is a positive basis for all s. If in addition γ is closed, the flux pX(γ) of
X along γ is given by

∫

γ µ(s)ds.

It is easy to check that pX(γ) = Im
∫

γ ∂X and that the flux map

pX : H1(M,Z) → R
3 is a group morphism.

Definition 3.3. A smooth map X : S → R
3 (see Definition 2.6)

is said to be a generalized minimal immersion if X|MS
∈ M(MS) and

X|CS
is regular: that is to say, if X|α is a regular curve for all α ⊂ CS .

We denote by Mg(S) the space of generalized minimal immersions of S
into R

3.

It is clear that Y |S ∈ Mg(S) for all Y ∈ M(S).
Consider X ∈ Mg(S) and let ̟ : CS → R

3 be a smooth normal field
along CS with respect to X. This simply means that for any (analyt-
ical) arclength parameterized α(s) ⊂ CS , ̟(α(s)) is smooth, unitary,
and orthogonal to (X|α)

′(s); ̟ extends smoothly to any open analyt-
ical arc β in W containing α; and ̟ is tangent to X on β ∩ S. The
normal field ̟ is said to be orientable with respect to X if for any
component α ⊂ CS having endpoints P1, P2 lying in ∂(MS), the basis
Bi = {(X|α)

′(si),̟(si)} of the tangent plane of X|MS
at Pi, i = 1, 2,

are both positive or negative (with respect to the orientation of N ),
where si is the value of the arclength parameter s for which α(si) = Pi,
i = 1, 2.

The following objects will play a crucial role in the statement of our
approximation results by minimal surfaces (see Theorem 4.9 in Sec-
tion 4).

Definition 3.4. We call M∗
g(S) the space of marked immersions

X̟ := (X,̟), whereX ∈ Mg(S) and̟ is an orientable smooth normal
field along CS with respect to X.
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Given X̟ ∈ M∗
g(S), let ∂X̟ = (φ̂j)j=1,2,3 be the complex vec-

torial “1-form” on S given by ∂X̟|MS
= ∂(X|MS

), ∂X̟(α
′(s)) =

dX(α′(s))+ i̟(s), where α is a component of CS and s is the arclength
parameter of X|α for which {dX(α′(si)),̟(si)} are positive, where s1
and s2 are the values of s for which α(s) ∈ ∂(MS). If (U, z = x + iy)
is a conformal chart on N such that α ∩ U = z−1(R ∩ z(U)), it is
clear that (∂X̟)|α∩U =

[

dX(α′(s)) + i̟(s)
]

s′(x)dz|α∩U , and hence

∂X̟ ∈ Ωh(S)
3. Furthermore, ĝ = φ̂3/(φ̂1− iφ̂2) ∈ Fm(S), provided that

ĝ−1(∞) ⊂ S◦.

Obviously, φ̂j is smooth on S, j = 1, 2, 3, and the same occurs for ĝ.

Notice that
∑3

j=1 φ̂
2
j = 0,

∑3
j=1 |φ̂j |

2 never vanishes on S and Re(φ̂j)

is an “exact” real 1-form on S, j = 1, 2, 3; hence we also have X(P ) =

X(Q) + Re
∫ P
Q (φ̂j)j=1,2,3, P, Q ∈ S. For these reasons, (ĝ, φ̂3) will be

called the generalized “Weierstrass data” of X̟. As X|MS
∈ M(MS),

then (φj)j=1,2,3 := (φ̂j |MS
)j=1,2,3, and g := ĝ|MS

are the Weierstrass
data and the meromorphic Gauss map of X|MS

, respectively.
The space M∗

g(S) is naturally endowed with the following C1 topol-
ogy:

Definition 3.5. Given X̟, Yξ ∈ M∗
g(S), we set

‖X̟ − Yξ‖1,S := ‖X − Y ‖0,S +
∥

∥∂X̟ − ∂Yξ
∥

∥

0,S
(see (1)).

Given F ∈ M(S), we denote by ̟F the conormal field of F along
CS . Notice that (∂F )|S = ∂F̟F

, where F̟F
:= (F |S ,̟F ) ∈ M∗

g(S). If
F, G ∈ M(S), we set

‖F −X̟‖1,S := ‖F̟F
−X̟‖1,S and ‖F −G‖1,S := ‖F̟F

−G̟G
‖1,S .

Definition 3.6. Let W be an open subset of N containing S. We
shall say that a marked immersion X̟ ∈ M∗

g(S) can be approximated

in the C1 topology on S by conformal minimal immersions in M(W ) if
for any ǫ > 0 there exists Y ∈ M(W ) such that ‖Y −X̟‖1,S < ǫ.

The group homomorphism

pX̟ : H1(S,Z) → R
3, pX̟(γ) = Im

∫

γ
∂X̟

is said to be the generalized flux map ofX̟.Obviously, pX̟Y
= pY |H1(S,Z)

provided that X = Y |S .

4. The approximation lemmas

The aim of this section is to obtain an approximation result for
marked minimal immersions on admissible subsets by minimal immer-
sions defined on an arbitrary larger domain of finite topology (see The-
orem 4.9 below).
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Throughout this section, W will denote a domain of finite topology
in N and S an admissible compact subset contained in W.

Several extensions of classical Runge-Mergelyan theorems can be found
in [30, 31, 32]. For our purposes, we need only the following compilation
result:

Theorem 4.1. For any f ∈ Fm(S) and integral divisor D ∈ Div(S)
with supp(D) ⊂ S◦, there exists {fn}n∈N ∈ Fm(W ) such that fn|S − f ∈
Fh(S) and

(

fn|S − f
)

0
≥ D for all n, and {‖fn|S − f‖0,S}n∈N → 0.

We start with the following

Lemma 4.2. Consider f ∈ Fm(S) such that f never vanishes on
S − S◦(= ∂(MS) ∪ CS).

Then there exists {fn}n∈N ⊂ Fm(W ) satisfying that fn|S − f ∈ Fh(S)
and (fn) = (f) on W for all n, and {‖fn|S − f‖0,S}n∈N → 0. In partic-
ular, fn is holomorphic and never vanishing on W − S for all n.

Proof. Let µ and b denote the genus ofW and the number of topolog-
ical ends of W − supp((f)). It is well known (see [10]) that there exist
2µ + b − 1 cohomologically independent 1-forms in Ωm(W ) ∩ Ωh(W −
supp((f))) generating the first holomorphic De Rham cohomology group
H1

hol(W − supp((f))). Furthermore, the 1-forms can be chosen having
at most single poles at points of supp((f)). Thus, the map H1

hol(W −
supp((f))) → C

2µ+b−1, τ 7→
(∫

c τ
)

c∈B0
, where B0 is any homology basis

of W − supp((f)), is a linear isomorphism. By hypothesis, supp((f)) ⊂
S◦ and df/f ∈ Ωm(S). Thus, there exists τ ∈ Ωm(W ) ∩ Ωh

(

W −

supp((f))
)

with single poles at points of supp((f)) such that 1
2πi

∫

γ τ ∈ Z

for all γ ∈ H1

(

W − supp((f)),Z
)

and df/f − τ ∈ Ωh(S) is exact.

Set f0 = fe−
∫
τ . Since log(f0) ∈ Fh(S) then, f0 ∈ Fh(S), and it

never vanishes on S. By Theorem 4.1, there exists {hn}n∈N ⊂ Fh(W )

such that {‖hn|S − log(f0)‖0,S}n∈N → 0. It suffices to take fn = ehn+
∫
τ

for all n. q.e.d.

Lemma 4.3. Consider θ ∈ Ωm(S) never vanishing on S − S◦.
Then there exists {θn}n∈N ∈ Ωm(W ) satisfying that θn − θ ∈ Ωh(S)

and (θn) = (θ) on W, and {‖θn|S − θ‖0,S}n∈N → 0. In particular, θn is
holomorphic and never vanishing on W − S for all n.

Proof. First of all, notice that there exists τ ∈ Ωh(W ) with finitely
many zeroes. Indeed, since W has finite topology and up to elementary
surgery operations, we can view W as an open domain in a non-simply
connected compact Riemann surface Ŵ , ∂(Ŵ ) = ∅. It suffices to take a

non-identically zero holomorphic 1-form τ̂ on Ŵ and set τ = τ̂ |W .
Label f = θ/τ ∈ Fm(S). By Lemma 4.2, there exists {fn}n∈N in

Fm(W ) such that {‖fn|S − f‖0,S}n∈N → 0 and (fn) = (f) on W for all
n. It suffices to set θn := fnτ for all n ∈ N. q.e.d.
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The following lemma is the kernel of this section. It is the key for
proving Theorem 4.9.

Lemma 4.4 (The Approximation Lemma). Let Φ = (φj)j=1,2,3 be a

smooth triple in Ωh(S)
3 such that

∑3
j=1 φ

2
j = 0 and

∑3
j=1 |φj |

2 never

vanishes on S. Then Φ can be approximated in the C0 topology on S by
a sequence {Φn = (φj,n)j=1,2,3}n∈N ⊂ Ωh(W )3 satisfying that:

(i)
∑3

j=1 φ
2
j,n = 0 and

∑3
j=1 |φj,n|

2 never vanishes on W,

(ii) Φn − Φ is exact on S for all n.

Proof. Label g = φ3
φ1−iφ2

, η1 = 1
gφ3 = φ1 − iφ2, and η2 = gφ3 =

−φ1 − iφ2, and notice that η1, η2 ∈ Ωh(S).
Let BS be a homology basis of H1(S,Z), and label ν ∈ N as the

number of elements in BS .
The following two claims reduce the proof to a more comfortable

setting.

Claim 4.5. Without loss of generality, we can assume that g|MS
is

not constant.

Proof. Suppose for a moment that g|MS
is constant, and up to re-

placing Φ by Φ · A for a suitable orthogonal matrix A ∈ O(3,R), as-
sume that g 6= ∞. For each h ∈ Fh(W ), set η2(h) = (g + h)2η1 and
φ3(h) = η1(g + h). Consider the holomorphic map T : Fh(W ) → C

2ν ,
T (h) = (

∫

c(η2(h)−η2, φ3(h)−φ3))c∈B. Note that T
−1(0) is conical; that

is to say, if T (h) = 0, then T (λh) = 0 for all λ ∈ C. Furthermore, since
Fh(W ) has infinite dimension, we can choose a non-constant h ∈ T −1(0).
Take {λn}n∈N ⊂ C converging to zero, set hn := λnh ∈ T −1(0) for all
n, and notice that {hn}n∈N → 0 in the C0 topology on S.

Set Ψn ≡ (ψ1,n, ψ2,n, ψ3,n) := (12 (η1−η2(hn)),
i
2(η1+η2(hn)), φ3(hn)) ∈

Ωh(S)
3, and observe that

∑3
j=1 ψ

2
j,n = 0,

∑3
j=1 |ψj,n|

2 never vanishes on

S and gn =
ψ3,n

ψ1,n−iψ2,n
is holomorphic and non-constant on MS , n large

enough (without loss of generality, for all n). Since T (hn) = 0, it is clear
that Ψn − Φ is exact on S, n ∈ N. If the lemma holds for Ψn for all n,
we can construct a sequence {Ψ̂n,m}m∈N ⊂ Ωh(S)

3 converging to Ψn in

the C0 topology on S and satisfying that Ψ̂n,m − Ψn is exact on S for
all n. A standard diagonal argument proves the claim. q.e.d.

Claim 4.6. Without loss of generality, we can assume that g, 1/g,
and dg never vanish on ∂(MS)∪CS (hence the same holds for ηi, i = 1, 2,
and φj, j = 1, 2, 3). In particular, g ∈ Fm(S) and dg ∈ Ωm(S).

Proof. Take a sequenceM1 ⊃M2 ⊃ . . . of compact regions inW such
that M◦

n is a tubular neighborhood of MS in W for all n, Mn ⊂ M◦
n−1

for any n, ∩n∈NMn = MS , Φ holomorphically extends (with the same

name) to M1,
∑3

j=1 |φj |
2 6= 0 on M1, and g, 1/g, and dg never vanish
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on ∂(Mn) for all n (take into account Claim 4.5). Choose Mn in such
a way that Sn := Mn ∪ CS ⊂ W is an admissible subset and γ −M◦

n

is a (non-empty) Jordan arc for any component γ of CS. In particular,
CSn = CS −M◦

n, n ∈ N.
Let (hn, ψ3,n) ∈ Fm(Sn)× Ωh(Sn) be any smooth data such that

• (hn, ψ3,n)|MSn
= (g, φ3)|MSn

and
∑3

j=1 |ψj,n|
2 never vanishes on

Sn, where Ψn = (ψj,n)j=1,2,3 =
(

1
2(1/hn−hn),

i
2(1/hn+hn), 1

)

ψ3,n ∈
Ωh(Sn)

3, n ∈ N;
• hn, 1/hn, and dhn never vanish on ∂(MSn) ∪ CSn ;
• Ψn|S − Φ is exact on S; and
• the sequence {Ψn|S}n∈N ⊂ Ωh(S)

3 converges to Φ in the C0 topol-
ogy on S.

The existence of such data follows from classical approximation results
by smooth functions.

Label T ⊂ Ωh(W )3 as the subspace of data Ψ formally satisfying (i)
and (ii) in the statement of the lemma. If the lemma held for any of the
data in {Ψn | n ∈ N}, Ψn would lie in the closure of T in Ωh(Sn)

3 with
respect to the C0 topology on Sn for all n ∈ N. By a standard diagonal
argument again, the same would occur for Φ and we are done. q.e.d.

Consider the period map P : Fh(W )×Fh(W ) → C
3ν given by

P((h1, h2)) =
(

∫

c
((eh2−h1 − 1)η1, (e

h2+h1 − 1)η2, (e
h2 − 1)φ3)

)

c∈BS
.

The meromorphic data inside the integrals are the difference between the
Weierstrass data on S associated to (eh1g, eh2φ3) and the ones associated
to (g, φ3). The Weierstrass data determined by (eh1g, eh2φ3) satisfy (i),
and if in addition P((h1, h2)) = 0, then also (ii).

The first key step in the proof of the lemma is to show that the
Implicit Function Theorem can be applied to P at (0, 0). To do this,
endow Fh(S) with the maximum norm, and observe that P is Fréchet
differentiable. It suffices to check that the Fréchet derivative A0 of P at
(0, 0) has maximal rank.

Claim 4.7. A0 : Fh(W )×Fh(W ) → C
3ν is surjective.

Proof. Reason by contradiction and assume that A0(Fh(W )×Fh(W ))
lies in a complex subspace U = {

(

(xc, yc, zc)
)

c∈BS
∈ C

3ν |
∑

c∈BS

(

Acxc+

Bcyc + Dczc
)

= 0}, where Ac, Bc, and Dc ∈ C for all c ∈ BS and
∑

c∈BS

(

|Ac|+ |Bc|+ |Dc|
)

6= 0. This simply means that

(2) −

∫

Γ1

hη1 +

∫

Γ2

hη2 =

∫

Γ1

hη1 +

∫

Γ2

hη2 +

∫

Γ3

hφ3 = 0

for all h ∈ Fh(W ), where Γ1 =
∑

c∈BS
Acc, Γ2 =

∑

c∈BS
Bcc, and Γ3 =

∑

c∈BS
Dcc.
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Label Σ0 = {f ∈ Fh(W ) | (f) ≥ (φ3)
2}. By Theorem 4.1, the function

h = df/φ3 ∈ Fh(S) lies in the closure of Fh(W ) in the C0 topology on
Fh(S) for any f ∈ Σ0. Therefore, equation (2) can be applied formally to

h = df/φ3, getting that
∫

Γ1

1
gdf =

∫

Γ2
gdf = 0 for all f ∈ Σ0. Integrating

by parts,

(3)

∫

Γ1

f
dg

g2
=

∫

Γ2

f dg = 0

for all f ∈ Σ0.
Let us show that Γ1 = 0.
Let µ and b denote the genus of W and the number of ends of W. It

is well known (see [10]) that there exist 2µ + b− 1 cohomologically in-
dependent 1-forms in Ωh(W ) generating the first holomorphic De Rham

cohomology groupH1
hol(W ) ofW. Thus, the map H1

hol(W ) −→ C
2µ+b−1,

τ 7→
(∫

c τ
)

c∈B0
, where B0 is any homology basis of W, is a linear iso-

morphism. Assume that Γ1 6= 0 and take [τ ] ∈ H1
hol(W ) such that

∫

Γ1
τ 6= 0. Since W is an open surface, Fh(W ) has infinite dimension

and we can find F ∈ Fh(W ) such that (τ + dF )0 ≥ (dg)0(g)
2
∞(φ3)

2. Set

h := (τ+dF )g2

dg and note that (h) ≥ (φ3)
2. By Theorem 4.1, h lies in the

closure of Σ0 in Fh(S) with respect to the C0 topology; hence equation
(3) can be formally applied to h, to obtain that

∫

Γ1
τ + dF =

∫

Γ1
τ = 0,

a contradiction.
By a similar argument, Γ2 = 0 and equation (2) becomes

(4)

∫

Γ3

hφ3 = 0

for all h ∈ Fh(W ).
Since

∑

c∈BS

(

|Ac|+ |Bc| + |Dc|
)

6= 0, then Γ3 6= 0. Reason as above

and choose [τ ] ∈ H1
hol(W ) and F ∈ Fh(W ) such that

∫

Γ3
τ 6= 0 and (τ +

dF )0 ≥ (φ3). Set h := τ+dF
φ3

and note that h ∈ Fh(S). By Theorem 4.1,

h lies in the closure of Fh(W ) in Fh(S) with respect to the C0 topology,
and equation (4) gives that

∫

Γ3
τ + dF =

∫

Γ3
τ = 0, a contradiction.

This proves the claim. q.e.d.

Let {e1, . . . , e3ν} be a basis of C3ν , fix Hi = (h1,i, h2,i) ∈ A−1
0 (ei) for

all i, and set Q0 : C
3ν → C

3ν as the analytical map given by

Q0((zi)i=1,...,3ν) = P(
∑

i=1,...,3ν

ziHi).

By Claim 4.7, d(Q0)0 is an isomorphism, so there exists a closed Eu-
clidean ball U ⊂ C

3ν centered at the origin such that Q0 : U → Q0(U)
is an analytical diffeomorphism. Furthermore, notice that 0 = Q0(0) ∈
Q0(U) is an interior point of Q0(U).
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On the other hand, by Lemmas 4.2 and 4.3 there exists a sequence
{(fn, ψn)}n∈N ⊂ Fm(W )×Ωh(W ) such that (fn) = (g) and (ψn) = (φ3)
for all n, and {(fn, ψn)|S}n∈N → (g, φ3) in the C0 topology on S.

Label Pn : Fh(W )×Fh(W ) → C
3ν as the Fréchet differentiable map

Pn((h1, h2)) =
(

∫

c
(eh2−h1η1,n − η1, e

h2+h1η2,n − η2, e
h2ψn − φ3)

)

c∈BS
,

where η1,n = 1
2ψn(1/fn − fn) and η2,n = i

2ψn(1/fn + fn), and call Qn :

C
3ν → C

3ν as the analytical map Qn((zi)i=1,...,3ν) = Pn(
∑

i=1,...,3ν ziHi)

for all n ∈ N. Since {Qn}n∈N → Q0 uniformly on compact subsets of
C
3ν , without loss of generality we can suppose that Qn : U → Qn(U)

is an analytical diffeomorphism and 0 ∈ Qn(U) for all n. Label yn =
(y1,n, . . . , y3ν,n) as the unique point in U such that Qn(yn) = 0 and note
that {yn}n∈N → 0. Setting

gn = e
∑

3ν
j=1

yj,nh1,jfn, φ3,n = e
∑

3ν
j=1

yj,nh2,jψn

for all n ∈ N, the sequence {(gn, φ3,n)}n∈N solves the lemma. q.e.d.

The proof of the following corollary is just an elementary adjustment
of the one above.

Corollary 4.8. In the previous lemma we can choose φ3,n = φ3 for
all n ∈ N, provided that φ3 extends holomorphically to W and φ3 never
vanishes on CS.

Proof. Without loss of generality, we can suppose that g, 1/g, and dg
never vanish on ∂(MS) ∪ CS . Indeed, consider a sequence {Mn}n∈N as
in the proof of Claim 4.6. We have that ∩∞

n=1Mn =MS , Sn :=Mn ∪CS
is admissible inW ; g, 1/g, and dg never vanishes on ∂(Mn); and γ−M

◦
n

is a (non-empty) Jordan arc for any component γ of CS , for all n ∈ N.
Let hn ∈ Fm(Sn) be a smooth datum such that:

• hn|MSn
= g|MSn

and
∑3

j=1 |ψj,n|
2 never vanishes on Sn, where

Ψn = (ψj,n)j=1,2,3 =
(

1
2(1/hn−hn),

i
2 (1/hn+hn), 1

)

φ3 ∈ Ωh(Sn)
3,

n ∈ N;
• hn, 1/hn, and dhn never vanish on ∂(MSn) ∪ CSn ;
• Ψn|S − Φ is exact on S, and
• the sequence {Ψn|S}n∈N ⊂ Ωh(S)

3 converges to Φ in the C0 topol-
ogy on S.

Reasoning as in the proof of Claim 4.6, if the lemma held for any of the
data in {Ψn | n ∈ N}, the same would occur for Φ and we are done.

Reasoning as in the proof of Lemma 4.4, we can prove that Â0 :
Fh(W ) → C

ν is surjective, where Â0 is the Fréchet derivative of P̂ :

Fh(W ) → C
2ν , P̂(h) := P(h, 0). Then take Ĥi ∈ Â−1

0 (ei) for all i,

where {e1, . . . , e2ν} is a basis of C2ν , and define Q̂0 : C2ν → C
2ν by

Q̂0((zi)i=1,...,2ν) = P̂(
∑

i=1,...,2ν ziĤi).
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Use the Riemann-Roch theorem to find a holomorphic function H ∈
Fh(W ) such that (H) = (φ3|W−S), and then Lemma 4.2 to get {fn}n∈N ⊂
Fm(W ) such that (fn) = (g|S) for all n and {fn|S}n∈N → g/H in the C0

topology on S.
Set P̂n : Fh(W ) → C

2ν by P̂n(h) =
( ∫

c(e
−hη1,n−η1, e

hη2,n−η2)
)

c∈BS
,

where η1,n = 1
2φ3(

1
fnH

−fnH) and η2,n = i
2φ3(

1
fnH

+fnH), and call Q̂n :

C
2ν → C

2ν as the analytical map Q̂n((zi)i=1,...,2ν) = P̂n(
∑

i=1,...,2ν ziĤi)
for all n ∈ N. To finish, reason as in the proof of Lemma 4.4. q.e.d.

As a consequence of Lemma 4.4 and Corollary 4.8, one has the follow-
ing approximation result of marked immersions by conformal minimal
immersions. It will play a crucial role in the proof of the main results of
this paper.

Theorem 4.9. Let S ⊂ N be admissible and connected, and let
W ⊂ N be a domain of finite topology containing S such that i∗ :
H1(S,Z) → H1(W,Z) is an isomorphism, where i : S → W denotes
the inclusion map. Let X̟ ∈ M∗

g(S), and write X = (Xj)j=1,2,3 and

∂X̟ = (φ̂j)j=1,2,3.
Then, for any ξ > 0 there exists Y ∈ M(W ) such that pY = pX̟ and

‖Y −X̟‖1,S < ξ.

Furthermore, if φ̂3 extends to a holomorphic 1-form on W that never
vanishes on CS, then Y = (Yj)j=1,2,3 can be chosen so that Y3|S = X3.

Proof. Applying Lemma 4.4 and Corollary 4.8 to the data (φ̂j)j=1,2,3,
and then integrating with the suitable initial condition (take into ac-
count that S is connected), we can find a sequence {Fn}n∈N ⊂ M(W )
such that {‖Fn −X̟‖1,S}n∈N → 0 and the flux map pFn = pX̟ for all

n ∈ N. Furthermore, if φ̂3 extends to a holomorphic 1-form on W that
never vanishes on CS , then Fn = (Fn,j)j=1,2,3 can be chosen so that
Fn,3|S = X3 for all n ∈ N.

It suffices to set Y := Fn for a large enough n. q.e.d.

The strength of this result is that only smoothness is assumed for X on
CS . This provides an enormous capability for modeling minimal surfaces
in R

3.

5. Properness and conformal structure of minimal surfaces

The Runge type lemma for minimal surfaces below concentrates most
of the technical computations required in the proof of the main theorem
of this section. Roughly speaking, this lemma asserts that a compact
minimal surface whose boundary lies outside a wedge on R

3 can be
stretched near the boundary in such a way that the boundary of the
new surface lies outside a parallel wedge. The strength of this lemma is
that in this process the topology and conformal structure of the surface
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can be arbitrarily enlarged. Moreover, the flux map of the arising surface
can be prescribed. See Figure 2.

From now on, we label xk : R3 → R as the k-th coordinate function,
k = 1, 2, 3. For each θ ∈ (0, π/2), δ ∈ R, we call

Πδ(θ) = {(x1, x2, x3) ∈ R
3 | x3 + tan(θ)x1 > δ}.

Although Theorem I in the Introduction was stated for θ ∈ (0, π/2), in
the following lemma and for technical reasons we will restrict ourselves
to the case θ ∈ (0, π/4).

Lemma 5.1. Let M, V ⊂ N be two Runge compact regions with
analytical boundary such that M ⊂ V ◦.

Consider X ∈ M(M) and let p : H1(V,Z) → R be any morphism
extension of pX . Suppose there are θ ∈ (0, π/4) and δ ∈ (0,+∞) such
that X(∂(M)) ⊂ Πδ(θ) ∪Πδ(−θ).

Then, for any ǫ > 0 there exists Y ∈ M(V ) such that

(1) pY = p.
(2) ‖Y −X‖1,M < ǫ.
(3) Y (∂(V )) ⊂ Πδ+1(θ) ∪Πδ+1(−θ).
(4) Y (V −M) ⊂ Πδ(θ) ∪Πδ(−θ).

Figure 2. Lemma 5.1

Before proving Lemma 5.1, let us show the following particular in-
stance:

Lemma 5.2. Lemma 5.1 holds when the Euler characteristic χ(V −
M◦) vanishes.

5.1. Proof of Lemma 5.2. SinceM ⊂ V ◦ and V ◦−M has no bounded
components in V ◦, then V −M◦ = ∪kj=1Aj , where A1, . . . , Ak are pair-

wise disjoint compact annuli. Write ∂(Aj) = αj ∪ βj , where αj ⊂ ∂(M)
and βj ⊂ ∂(V ) for all j.

First of all, let us introduce some subsets of V −M◦. See Figure 3.
Since X(∂(M)) ⊂ Πδ(θ)∪Πδ(−θ), each αj can be divided into finitely

many compact Jordan arcs αij , i = 1, . . . , nj ≥ 2, laid end to end and

satisfying that either X(αij) ⊂ Πδ(θ) or X(αij) ⊂ Πδ(−θ) for all i. Up
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to refining the partitions, we can assume that nj = m ∈ N for all j. Set
I = {1, . . . ,m} × {1, . . . , k}.

An arc αij is said to be positive if X(αij) ⊂ Πδ(θ), and negative oth-

erwise. Notice that X(αij) ⊂ Πδ(−θ) for any negative (and possibly for

some positive) αij . We also label Qij and Q
i+1
j as the endpoints of αij, in

such a way that Qi+1
j = αij∩α

i+1
j , i = 1, . . . ,m (obviously, Qm+1

j = Q1
j).

Let {rij | i = 1, . . . ,m} be a collection of pairwise disjoint analytical

compact Jordan arcs in Aj such that rij has initial point Qij ∈ αj ,

final point P ij ∈ βj , r
i
j is otherwise disjoint from ∂(Aj), and rij meets

transversally αij at Q
i
j , for all i and j. As above, P

m+1
j = P 1

j and rm+1
j =

r1j .
Let W be a small open tubular neighborhood of V in N , and notice

that i∗ : H1(M,Z) → H1(W,Z) is an isomorphism, where i : M → W
denotes the inclusion map.

Consider the admissible set

M0 =M ∪
(

∪(i,j)∈I r
i
j

)

.

Call Ωij as the closed disc in Aj bounded by αij ∪ rij ∪ ri+1
j and the

compact Jordan arc βij ⊂ βj connecting P
i
j and P

i+1
j , and containing no

P kj for k 6= i, i + 1. Obviously Ωij ∩ Ωi+1
j = ri+1

j , i < m, Ωmj ∩ Ω1
j = r1j ,

and Aj = ∪mi=1Ω
i
j. The region Ωij is said to be positive (respectively,

negative) if αij is positive (respectively, negative). See Figure 3.

Figure 3. The annulus Aj.

Denote by I+ = {(i, j) ∈ I | Ωij is positive} and I− = {(i, j) ∈

I | Ωij is negative}. Without loss of generality, and up to a symmetry

with respect to the plane {x1 = 0}, we suppose that I+ 6= ∅.
The proof consists of three different construction steps. In the first

one we construct an immersion H ∈ M(V ) satisfying the theses of the
lemma onM0 (see properties (1H) to (4H) below). In the second step we
deform H on ∪(i,j)∈I+Ω

i
j to obtain Z ∈ M(V ), satisfying the theses of
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the lemma onM0∪
(

∪(i,j)∈I+Ω
i
j

)

; see properties (1Z) to (4Z) for details.

Finally, in the third step of the proof (which is symmetric to the second
one), we modify Z on ∪(i,j)∈I−Ω

i
j to get the immersion Y ∈ M(V ),

which solves the lemma. Each stage preserves what is already done in
the previous ones.

The first step of the proof consists of constructing H ∈ M(V ) satis-
fying, among other properties, the theses of the lemma just on M0. To
be more precise, H will satisfy that:

(1H) pH = p.
(2H) ‖H −X‖1,M < ǫ/3.
(3H) H(P ij ) ∈ Πδ+1(θ) ∩Πδ+1(−θ) for all (i, j) ∈ I.

(4H)

{

(4+H) H(rij ∪ α
i
j ∪ r

i+1
j ) ⊂ Πδ(θ) for all (i, j) ∈ I+.

(4−H) H(rij ∪ α
i
j ∪ r

i+1
j ) ⊂ Πδ(−θ) for all (i, j) ∈ I−.

In particular, if (i, j) ∈ I+ and (i+ 1, j) ∈ I−, then H(ri+1
j ) ⊂ Πδ(θ) ∩

Πδ(−θ).

We proceed as follows. Take X̂ ∈ Mg(M0) such that X̂ |M = X, and

(5) X̂(P ij ) ∈ Πδ+1(θ) ∩Πδ+1(−θ) for all (i, j) ∈ I.

In addition, choose X̂ in such a way that:

(6) X̂(rij ∪ r
i+1
j ) ⊂ Πδ(θ) for all (i, j) ∈ I+ and

X̂(rij ∪ r
i+1
j ) ⊂ Πδ(−θ) for all (i, j) ∈ I−.

See Figure 4. The existence of such a X̂ is elementary. Choose any

Figure 4. X̂(M0).

arbitrary smooth normal field ̟0 along CM0
= ∪(i,j)∈Ir

i
j with respect

to X̂ so that X̟̂0
∈ M∗

g(M0). Applying Theorem 4.9 to X̟̂0
, W , and

a small enough ξ ∈ (0, ǫ/3), one can find H ∈ M(V ) such that pH =
pX̟̂0

= pX = p (hence (1H) holds) and

(7) ‖H − X̟̂0
‖1,M0

< ξ < ǫ/3 (hence (2H) holds).
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Properties (3H) and (4H) follow from (5), (6), and (7) provided that ξ
is chosen small enough. This concludes the construction of H.

In the second step of the proof, we will deform H hardly on M ∪
(

∪(i,j)∈I− Ωij
)

and strongly on V −
[

M ∪
(

∪(i,j)∈I− Ωij
)]

to obtain a new

immersion Z ∈ M(V ). This deformation will preserve the coordinate
function x3 + tan(θ)x1: that is to say,

(x3 + tan(θ)x1) ◦H = (x3 + tan(θ)x1) ◦ Z on V.

Furthermore, Z will satisfy the theses of Lemma 5.1 just on M0 ∪
(∪(i,j)∈I+Ω

i
j). To be more precise, Z will satisfy that:

(1Z) pZ = pH = p.
(2Z) ‖Z −H‖1,M < ǫ/3.

(3Z)

{

(3+Z) Z(βij) ⊂ Πδ+1(θ) ∪Πδ+1(−θ) for all (i, j) ∈ I+.

(3−Z) Z({P ij , P
i+1
j }) ⊂ Πδ+1(θ) ∩Πδ+1(−θ) for all (i, j) ∈ I−.

(4Z)

{

(4+Z) Z(Ωij) ⊂ Πδ(θ) ∪Πδ(−θ) for all (i, j) ∈ I+.

(4−Z) Z(rij ∪ α
i
j ∪ r

i+1
j ) ⊂ Πδ(−θ) for all (i, j) ∈ I−.

In order to construct Z and for simpler writing, it will be convenient
to rotate H as follows. Let L+ : R3 → R

3 denote the counterclockwise
rotation of angle θ around the straight line parallel to the x2-axis and
containing the point (0, 0, δ). As θ ∈ (0, π/4), then

(8) L+(Πδ(θ)) = Πδ(0), L+(Πδ(−θ)) = Πδ(−2θ),

L+(Πδ+1(θ)) = Πδ1(0) and L+(Πδ+1(−θ)) = Πδ2(−2θ),

where δ1 = δ + cos(θ) and δ2 = cos(θ) + sin(θ) cot(2θ).
Call H+ = (H+

j )j=1,2,3 := L+ ◦ H ∈ M(V ), and notice that H+
3 =

(x3 + tan(θ)x1) ◦H on V.
For any (i, j) ∈ I+, let K

i
j be a closed disc with analytical boundary

in Ωij such that Ki
j ∩ ∂(Ω

i
j) consists of a (non-empty) compact Jordan

arc in βij − {P ij , P
i+1
j },

(9) H+(βij −Ki
j) ⊂ L+

(

Πδ+1(θ) ∩Πδ+1(−θ)
)

⊂ Πδ1(0)

(that is to say, H+
3 > δ1 on βij −Ki

j), and

(10) H+(Ωij −Ki
j) ⊂ Πδ(0)

(that is to say, H+
3 > δ on Ωij −Ki

j). This choice is possible from (3H),

(4+H), (8), and a continuity argument, provided that Ki
j is chosen large

enough in Ωij. See Figures 5 and 6.

Since −2θ ∈ (−π/2, 0) and H+(∪(i,j)∈I+K
i
j) is compact, there exists

λ+ > 0 such that

(11) (−λ+, 0, 0) +H+(∪(i,j)∈I+K
i
j) ⊂ Πδ2(−2θ) = L+(Πδ+1(−θ)).
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Figure 5. The set Ωij.

The key idea in this stage is to push (H+
1 ,H

+
3 )(∪(i,j)∈I+K

i
j) ⊂ R

2 to

the left in the direction of the x1-axis a distance λ+, while preserving
H+

3 on V (see Figure 6) and hardly modifyingH+ onM∪
(

∪(i,j)∈I−Ω
i
j

)

.

In this way we obtain a new immersion Z+ ∈ M(V ) such that x3◦Z
+ =

H+
3 on V and Z+(∪(i,j)∈I+K

i
j) ⊂ L+(Πδ+1(−θ)). By (9), (10) and (11),

Z := (L+)−1 ◦Z+ will satisfy the desired properties. It does not matter
the values of both x2 ◦Z

+ on V −
[

M ∪
(

∪(i,j)∈I− Ωij
)]

and x1 ◦Z
+ on

V −
[

M ∪
(

∪(i,j)∈I+ K
i
j

)

∪
(

∪(i,j)∈I− Ωij
)]

.

Figure 6. H+(Ωij), (i, j) ∈ I+, and the second defor-
mation stage.

To carry out this deformation, we have to introduce a suitable ad-
missible set and marked immersion on it. For any (i, j) ∈ I+, let γ

i
j

be a compact analytical Jordan arc in Ωij satisfying that the endpoints

Sij and T ij of γij lie in αij − {Qij , Q
i+1
j } and ∂(Ki

j) − βij , respectively,

and γij is otherwise disjoint from Ki
j ∪∂(Ω

i
j). Without loss of generality,

we can suppose that γij and αij (resp., ∂(K
i
j)) meet transversally at Sij
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(resp., T ij ) and ∂H+
3 never vanishes on γij . See Figure 5. Consider the

admissible set

S+ =
(

M ∪
(

∪(i,j)∈I− Ωij
))

∪
(

∪(i,j)∈I+ (Ki
j ∪ γ

i
j)
)

,

and notice that MS+
=M ∪

(

∪(i,j)∈I− Ωij
)

∪
(

∪(i,j)∈I+ K
i
j

)

and CS+
=

∪(i,j)∈I+γ
i
j .

Claim 5.3. There exists Ĥ+
̟+

∈ M∗
g(S+), where Ĥ

+ = (Ĥ+
j )j=1,2,3,

such that

(i) Ĥ+ = H+ on M ∪
(

∪(i,j)∈I− Ωij
)

,

(ii) Ĥ+
1 = H+

1 − λ+ on ∪(i,j)∈I+K
i
j ,

(iii) Ĥ+
3 = H+

3 and (∂Ĥ+
̟+

)3 = ∂H+
3 on S+.

Proof. Call ψ+
3 := ∂H+

3 , and write g+ for the meromorphic Gauss
map of H+.

Consider any smooth ĝ+ ∈ Fm(S) such that: ĝ+ = g+ on MS+
, ĝ+

never vanishes on CS+, and 1
2Re

( ∫

γi,j
(1/ĝ+ − ĝ+)ψ+

3

)

= H+
1 (Ti,j) −

H+
1 (Si,j) − λ+, where we have oriented γij with initial point Si,j and

final point Ti,j, (i, j) ∈ I+. The existence of such a ĝ+ follows from the
surjectivity of the continuous map

J : V → R
ν+ , J(h) =

(

Re
(

∫

γij

(1/h − h)ψ+
3

))

(i,j)∈I+
,

where V is the space {h ∈ Fm(S) | h is smooth, h = g+ on MS+
and h

never vanishes on CS+
} endowed with the C0 topology on S, and ν+ is

the number of elements of I+.
It suffices to set Ĥ+ : S+ → R

3, Ĥ+ = H+(P+
0 ) +

∫

P+

0

Ψ̂+, and

̟+(s) := Im
(

Ψ̂+((γij)
′(s))

)

, where

Ψ̂+ =
(1

2
(1/ĝ+ − ĝ+),

i

2
(1/ĝ+ + ĝ+), 1

)

ψ+
3 ,

P+
0 ∈MS+

, and s is the arclength parameter along γij , (i, j) ∈ I+. q.e.d.

Applying Theorem 4.9 to Ĥ+
̟+
, W , and a small enough ξ ∈ (0, ǫ/3),

there exists Z+ ∈ M(V ) such that

(12) ‖Z+ − Ĥ+
̟+

‖1,S+
< ξ < ǫ/3,

(13) pZ+ = pĤ+
̟+

= pH+ ,

and x3 ◦ Z
+|S+

= x3 ◦ Ĥ
+. In particular, x3 ◦ Z

+ = x3 ◦H
+ on V (see

Claim 5.3-(iii)).
Then, one has:

(a1) ‖Z+ −H+‖1,M < ǫ/3. See (12) and Claim 5.3-(i).
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(a2) Z+
(

∪(i,j)∈I+ Ωij −Ki
j

)

⊂ Πδ(0). Indeed, by (10) one obtains that

H+(∪(i,j)∈I+Ω
i
j −Ki

j) ⊂ Πδ(0) = {x3 > δ}. Since x3 ◦ Z
+ = x3 ◦

H+, then the inclusion holds.
(a3) Z+

(

∪(i,j)∈I+ (βij −Ki
j)
)

⊂ Πδ1(0). Indeed, by (9) one infers that

H+(∪(i,j)∈I+(β
i
j − Ki

j)) ⊂ Πδ1(0) = {x3 > δ1}. Since x3 ◦ Z
+ =

x3 ◦H
+, we are done.

Furthermore, if ξ > 0 is chosen small enough, then, from (12),

(a4) Z+(∪(i,j)∈I+K
i
j) ⊂ Πδ2(−2θ). Take into account (11) and Claim

5.3-(ii).
(a5) Z+({P ij , P

i+1
j }) ⊂ Πδ2(−2θ)∩Πδ1(0), for any (i, j) ∈ I−. Use (3H),

(8), and Claim 5.3-(i).
(a6) Z+(rij ∪ α

i
j ∪ r

i+1
j ) ⊂ Πδ(−2θ) for any (i, j) ∈ I−. It follows from

(4−H), (8), and Claim 5.3-(i).

Taking into account (8), it is not hard to check that the immersion
Z := (L+)−1◦Z+ ∈ M(V ) satisfies the desired properties. Indeed, (1Z),
(2Z), (3

−
Z), and (4−Z) follow from (13), (12), (a5), and (a6), respectively.

Finally, (3+Z) follows from (a3) and (a4), whereas (4+Z) follows from (a2)
and (a4).

This concludes the second step of the proof.
The third step of the proof is symmetric to the second one. We will

deform Z hardly onM∪
(

∪(i,j)∈I+Ω
i
j

)

and strongly on V−
[

M∪
(

∪(i,j)∈I+

Ωij
)]

. Now we will preserve the coordinate function (x3 − tan(θ)x1) ◦Z
on V. The so-arising immersion Y ∈ M(V ) will be the solution of the
lemma. To be more precise, it will verify

(1Y ) pY = pZ = p.
(2Y ) ‖Y − Z‖1,M < ǫ/3.
(3Y ) Y (∂V ) ⊂ Πδ+1(θ) ∪Πδ+1(−θ).
(4Y ) Y (V −M) ⊂ Πδ(θ) ∪Πδ(−θ).

Remark 5.4. If I− = ∅, it suffices to set Y := Z and notice that
properties (1Y ) to (4Y ) follow directly from (1Z), (2Z), (3

+
Z), and (4+Z)

above.

Assume that I− 6= ∅, and let us construct Y.
First, set L− := (L+)−1 and observe that

(14) L−(Πδ(θ)) = Πδ(2θ), L−(Πδ(−θ)) = Πδ(0),

L−(Πδ+1(θ)) = Πδ2(2θ) and L−(Πδ+1(−θ)) = Πδ1(0).

Denote by Z− := L− ◦ Z ∈ M(V ), and notice that x3 ◦ Z
− = (x3 −

tan(θ)x1) ◦ Z on V.
Taking into account (14), properties (3Z) and (4Z) can be rewritten

in terms of Z− as follows:
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(3Z−)

{

(3+
Z−) Z−(βij) ⊂ Πδ2(2θ) ∪Πδ1(0) for all (i, j) ∈ I+.

(3−
Z−) Z−({P ij , P

i+1
j }) ⊂ Πδ2(2θ) ∩Πδ1(0) for all (i, j) ∈ I−.

(4Z−)

{

(4+
Z−) Z−(Ωij) ⊂ Πδ(2θ) ∪Πδ(0) for all (i, j) ∈ I+.

(4−
Z−) Z−(rij ∪ α

i
j ∪ r

i+1
j ) ⊂ Πδ(0) for all (i, j) ∈ I−.

For any (i, j) ∈ I−, let K
i
j be a closed disc with analytical boundary

in Ωij such that Ki
j ∩ ∂(Ωij) 6= ∅ consists of a compact Jordan arc in

βij − {P ij , P
i+1
j },

(15) Z−(βij −Ki
j) ⊂ Πδ2(2θ) ∩Πδ1(0) ⊂ Πδ1(0)

and

(16) Z−(Ωij −Ki
j) ⊂ Πδ(0).

This choice is possible from (3−
Z−), (4

−
Z−), and a continuity argument,

provided that Ki
j is chosen large enough in Ωij.

Since 2θ ∈ (0, π/2) and Z−(∪(i,j)∈I−K
i
j) is compact, then there exists

λ− > 0 such that

(17) (λ−, 0, 0) + Z−(∪(i,j)∈I−K
i
j) ⊂ Πδ2(2θ).

Now the idea is to push (Z−
1 , Z

−
3 )(∪(i,j)∈I−K

i
j) ⊂ R

2 to the right in

the direction of the x1-axis a distance λ−, while preserving Z−
3 on V

and hardly modifying Z− on M ∪
(

∪(i,j)∈I+ Ωij
)

. By (15), (16), and

(17), the arising immersion Y − will satisfy the desired properties (up
to composing with L+, we get Y )—this time, it does not matter the
values of both x2 ◦ Z

− on V −
[

M ∪
(

∪(i,j)∈I+ Ωij
)]

and x1 ◦ Z
− on

V −
[

M ∪
(

∪(i,j)∈I− K
i
j

)

∪
(

∪(i,j)∈I+ Ωij
)]

.
We proceed as in the previous step.
For any (i, j) ∈ I−, let γ

i
j be a compact analytical Jordan arc in Ωij

satisfying that the endpoints Sij and T ij of γij lie in αij − {Qij , Q
i+1
j }

and ∂(Ki
j) − βij, respectively, and γij is otherwise disjoint from Ki

j ∪

∂(Ωij). Without loss of generality, we can assume that γij and α
i
j (resp.,

∂(Ki
j)) meet transversally at Sij (resp., T

i
j ) and ∂Z

−
3 never vanishes on

γij . Consider the admissible subset

S− =M ∪
(

∪(i,j)∈I+ Ωij
)

∪
(

∪(i,j)∈I− (Ki
j ∪ γ

i
j)
)

.

Following the arguments in Claim 5.3, one can prove the following

Claim 5.5. There exists Ẑ−
̟−

∈ M∗
g(S−), where Ẑ

− = (Ẑ−
j )j=1,2,3,

such that

(i) Ẑ− = Z− on M ∪
(

∪(i,j)∈I+ Ωij
)

,

(ii) Ẑ−
1 = Z−

1 + λ− on ∪(i,j)∈I−K
i
j,

(iii) Ẑ−
3 = Z−

3 and (∂Ẑ−
̟−

)3 = ∂Z−
3 on S−.
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Again by Theorem 4.9 applied to Ẑ−
̟−
, W , and a small enough ξ ∈

(0, ǫ/3), there exists Y − ∈ M(V ) such that

(18) ‖Y − − Ẑ−
̟−

‖1,S−
< ξ < ǫ/3,

(19) pY − = pẐ−
̟−

= pZ− = L− ◦ p

and x3 ◦ Y
−|S−

= x3 ◦ Ẑ
−; hence x3 ◦ Y

− = x3 ◦ Z
− on V (see Claim

5.5-(iii)).
Arguing as above, if ξ is small enough, one has

(b1) ‖Y − − Z−‖1,M < ǫ/3. Use (18) and Claim 5.5-(i).

(b2) Y −
(

∪(i,j)∈I− Ωij −Ki
j

)

⊂ Πδ(0). Use that x3 ◦Y
− = x3 ◦Z

− on V

and (16).
(b3) Y −

(

∪(i,j)∈I− (βij −Ki
j)
)

⊂ Πδ1(0). Use that x3 ◦ Y
− = x3 ◦Z

− on

V and (15).
(b4) Y −(∪(i,j)∈I−K

i
j) ⊂ Πδ2(2θ). Take into account (17), (18), and

Claim 5.5-(ii).
(b5) Y −(∪(i,j)∈I+β

i
j) ⊂ Πδ2(2θ) ∪ Πδ1(0). It is implied by (3+

Z−) and

(18).
(b6) Y −(∪(i,j)∈I+Ω

i
j) ⊂ Πδ(0) ∪Πδ(2θ). See (4+

Z−) and (18).

Taking into account (14), it is easy to check that the immersion Y :=
L+ ◦ Y − ∈ M(V ) satisfies the desired properties. Indeed, properties
(1Y ) and (2Y ) follow from (19) and (b1), respectively. Property (3Y )
follows from (b3), (b4), and (b5), whereas (4Y ) follows from (b2), (b4),
and (b6). This concludes the third step of the proof.

To check that Y solves the lemma, observe that (1Y ) proves (1),
(2H), (2Z), and (2Y ) imply (2); (3Y )=(3) and (4Y )=(4). This con-
cludes the proof of Lemma 5.2.

5.2. Proof of Lemma 5.1. SinceM is Runge, then for any component
C of V −M◦ one has ∂(C)∩ ∂(V ) 6= ∅. In particular, V −M◦ does not
contain closed discs and −χ(V −M◦) ∈ N ∪ {0}.

The proof goes by induction on −χ(V −M◦). Lemma 5.2 shows the
basis of the induction: the result holds for −χ(V −M◦) = 0. To check
the inductive step, assume that Lemma 5.1 holds for −χ(V −M◦) =
m ∈ N ∪ {0} and let us prove it for −χ(V −M◦) = m+ 1.

Since −χ(V − M◦) = m + 1 > 0, there exists an analytic Jordan
curve γ̂ ∈ H1(V,Z) − H1(M,Z) intersecting V −M◦ in a Jordan arc
γ with endpoints P1, P2 ∈ ∂(M) and otherwise disjoint from ∂(M).
Without loss of generality, we can assume that γ matches smoothly
with M, and so M ∪ γ is admissible. Consider F̟ ∈ M∗

g(M ∪ γ) such
that F |M = X, F (γ) ⊂ Πδ(θ) ∪ Πδ(−θ), and pF̟(γ̂) = p(γ̂). Here,
we have taken into account that F (Pi) ∈ Πδ(θ) ∪ Πδ(−θ), for i = 1, 2.
Notice that pF̟ = p|H1(M∪γ,Z).
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Let W ⊂ V ◦ be a small open tubular neighborhood of M ∪ γ in N .
Notice that i∗ : H1(M ∪ γ,Z) → H1(W,Z) is an isomorphism, where
i : M ∪ γ → W is the inclusion map. Applying Theorem 4.9 to F̟,
S = M ∪ γ, and W, we can find a compact region M ′ with non-empty
analytical boundary and a minimal immersion Z ∈ M(M ′) such that

• M ∪ γ ⊂ (M ′)◦ ⊂M ′ ⊂W ⊂ V ◦, j∗ : H1(M ∪ γ,Z) → H1(M
′,Z)

is an isomorphism, where j : M ∪ γ → M ′ is the inclusion map,
−χ(V − (M ′)◦) = m, M ′ is Runge in N ;

• ‖Z−X‖1,M < ǫ/2, Z(∂(M ′)) ⊂ Πδ(θ)∪Πδ(−θ) and pZ = p|H1(M ′,Z).

Then, applying the induction hypothesis to M ′, V, Z, δ, θ, and ǫ/2, we
obtain an immersion Y ∈ M(V ) which satisfies the conclusion of the
lemma.

The proof is done.

5.3. Main Theorem. Now we can prove the main theorem of this
section.

Theorem 5.6. Let p : H1(N ,Z) → R
3 and θ be a group morphism

and a real number in (0, π/2), respectively. Let M ⊂ N be a Runge
compact region, and consider a non-flat Y ∈ M(M) satisfying that
pY = p|H1(M,Z) and (x3 + tan(θ)|x1|) ◦ Y > 1.

Then for any ǫ > 0 there exists a conformal minimal immersion
X : N → R

3 satisfying the following properties:

• pX = p,
• (x3 + tan(θ)|x1|) ◦X : N → R is a positive proper function, and
• ‖X − Y ‖1,M < ǫ.

Proof. Without loss of generality, we can assume that ǫ < 1 and
θ ∈ (0, π/4).

Let {Mn | n ∈ N} be an exhaustion of N by Runge compact regions
with analytical boundary satisfying that M1 = M and Mn ⊂ M◦

n+1
∀n ∈ N.

Label Y1 = Y, and by Lemma 5.1 and an inductive process, construct
a sequence {Yn}n∈N of minimal immersions and a sequence {ǫn}n∈N of
positives satisfying that

(a) Yn ∈ M(Mn) for all n ∈ N;
(b) ‖Yn − Yn−1‖1,Mn−1

< ǫn for all n ≥ 2, where

ǫn =
1

2n
min

{

ǫ , min
{

min
Mk

‖∂YkσN
‖ | k = 1, . . . , n− 1

}

}

> 0

(notice that ‖∂Yk‖0,Mk
> 0 since Yk is an immersion);

(c) pYn = p|H1(Mn,Z) for all n ∈ N;
(d) Yn(∂(Mn)) ⊂ Πn(θ) ∪ Πn(−θ) and Yn(Mn − Mn−1) ⊂ Πn−1(θ) ∪

Πn−1(−θ) for all n ≥ 2.
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By items (a) and (b) and Harnack’s theorem, {Yn}n∈N uniformly
converges on compact subsets of N to a conformal minimal (possibly
branched) immersion X : N → R

3.
Let us check that (x3+tan(θ)|x1|)◦X is positive and proper. Indeed,

from (b) one has ‖X − Yn‖1,Mn ≤ ǫ/2n for all n. In particular, from (d)
we have that (x3 + tan(θ)|x1|) ◦X ≥ n− 1− ǫ/2n−1 on Mn−Mn−1, for
all n ≥ 2. On the other hand, (x3 + tan(θ)|x1|) ◦X ≥ 1− ǫ > 0 on M1,
and so (x3 + tan(θ)|x1|) ◦X is a positive proper function on N .

To show that X is an immersion, it suffices to check that ‖∂X‖0,Mm >
0 for all m ∈ N. Taking into account (b), for any P ∈Mm,

‖∂X/σN ‖(P ) ≥ ‖∂Ym/σN ‖(P )−
∑

k>m

‖∂Yk − ∂Yk−1‖0,Mm

≥ ‖∂Ym/σN ‖(P )−
∑

k>m

‖Yk − Yk−1‖1,Mk−1

> ‖∂Ym/σN ‖(P )−
∑

k>m

ǫk

> ‖∂Ym/σN ‖(P )−
∑

k>m

1

2k
‖∂Ym/σN ‖(P )

= (1−
∑

k>m

1

2k
)‖∂Ym/σN ‖(P ) > 0.

Finally, item (c) gives that pX = p and we are done. q.e.d.

6. Proper minimal surfaces in regions with sublinear
boundary

The main goal of this section is to prove the existence of proper
hyperbolic minimal surfaces with non-empty boundary in R

3 contained
in the region above a negative sublinear graph.

Throughout this section, N will be the complex plane C.

Theorem 6.1. Let C denote the set [−1, 1]×(0, 1] ⊂ R
2 ≡ C endowed

with the conformal structure induced by C.
Then there exists X ∈ M(C) satisfying that:

(I) (x1, x3) ◦X : C → R
2 is proper.

(II) If we set f : C → (−∞, 0], f := min{ x3◦X
|x1◦X|+1 , 0}, then f = 0

on (x1 ◦X)−1((−∞, 0]), and limn→∞ f(Pn) = 0 for any divergent
sequence {Pn}n∈N in C.

Proof. LetDn denote the rectangle [−2, 2]×[ 1
n+1 , 2] ⊂ R

2 ≡ C, n ∈ N.

Label also D = [−2, 2]× [0, 2].
The immersion X will be constructed recursively. Let us show the

following



MINIMAL SURFACES IN R3 PROPERLY PROJECTING INTO R2 377

Lemma 6.2. Fix ǫ1 ∈ (0, 1). There exists a sequence of non-flat
Xn ∈ M(D), k ∈ N, such that

(i) ‖Xn −Xn−1‖1,Dn−1
< ǫn, where

ǫn =
1

2n
min

{

ǫ1 , min

{

∥

∥

∂Xk

dz

∥

∥

0,Dk
| k = 1, . . . , n− 1

}}

> 0,

for all n ≥ 2.
(ii) Xn([−2, 2] × { 1

n+1}) ⊂ Πn(
1
n).

(iii) Xn(Dn −Dn−1) ⊂ Πn−1(
1

n−1) ∪Πn(
1
n) for all n ≥ 2.

(iv) If P ∈ Dn and (x1◦Xn)(P ) < 0, then (x3◦Xn)(P ) > 1−
∑n

k=2 ǫk >
0.

Proof. Let us construct the sequence inductively. Take any non-flat
X1 ∈ M(D) satisfying that X1(D1) ⊂ Π1(1). Notice that X1 fulfills (ii)
and (iv), whereas (i) and (iii) make no sense for n = 1. Assume there
exists a non-flat immersion Xn−1, n ≥ 2, satisfying (i), (ii), (iii), and
(iv), and let us construct Xn.

Denote by L : R3 → R
3 the rotation of angle 1

n−1 around the straight

line parallel to the x2-axis and containing the point (0, 0, n− 1). Notice
that

(20) L(Πn−1(
1

n− 1
)) = Πn−1(0) and L(Πn(

1

n
)) = Πζ(−

1

n(n− 1)
),

where ζ = n− 1 + cos(1/n)sec(1/(n2 − n)).
Call Y = (Yj)j=1,2,3 := L ◦ Xn−1 ∈ M(D). From (ii) and (20), we

have

(21) Y ([−2, 2] × {1/n}) ⊂ Πn−1(0).

By continuity and equation (21), there exists µ ∈ ( 1
n+1 ,

1
n), close

enough to 1/n so that

(22) Y (Θ) ⊂ Πn−1(0), where Θ := [−2, 2] × [µ, 1/n],

that is to say, Y3 > n− 1 on Θ.
Denote by ∆ := [−2, 2]× [0, µ]. Notice that Dn−Dn−1 ⊂ ∆∪Θ, and

∅ = Dn−1 ∩∆ = D◦
n−1 ∩Θ◦ = Θ◦ ∩∆◦ (see Figure 7).

Since − 1
n(n−1) ∈ (−π/2, 0) and Y (∆) is compact, then there exists

λ > 0 such that

(23) (−λ, 0, 0) + Y (∆) ⊂ Πζ
(

−
1

n(n− 1)

)

.

The key idea to construct Xn is similar to the one in (the second
step of) the proof of Lemma 5.2. We deform Y by pushing (x1, x3) ◦
Y (∆) ⊂ R

2 to the left in the direction of the x1-axis a distance λ, while
preserving Y3 on D and hardly modifying Y on Dn−1. In this way, we
obtain a new immersion Z ∈ M(D) such that x3 ◦ Z = Y3 on D and
Z(∆) ⊂ L(Πn(

1
n)). By (22) and (23), Xn := L−1 ◦ Z will satisfy the
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Figure 7. The sets in D

desired properties. It does not matter the values of both x2 ◦Z on Θ∪∆
and x1 ◦ Z on Θ.

Consider γ an analytic Jordan arc on Θ with endpoints Q1 ∈ ∂(Dn−1)
and Q2 ∈ ∂(∆) and otherwise disjoint from ∂(Θ), and meeting transver-
sally Dn−1 and ∆ (see Figure 7). Moreover, we choose γ so that ∂Y3
never vanishes on γ. Denote by Λ the admissible subset Λ := Dn−1∪γ∪∆
in C and consider F̟ ∈ M∗

g(Λ), where F = (Fj)j=1,2,3, satisfying

(A) F = Y on Dn−1,
(B) F1 = Y1 − λ on ∆,
(C) F3 = Y3 and (∂F̟)3 = ∂Y3 on Λ.

The existence of F̟ follows by similar arguments to those used in Claim
5.3.

Let W ⊂ C be an open topological disc containing D, and without
loss of generality, suppose that ∂Y3 extends holomorphically to W. We
can apply Theorem 4.9 to the data W, S = Λ, F̟, and ξ ∈ (0, ǫn)
to obtain Z = (Zk)k=1,2,3 ∈ M(D) such that ‖Z − F̟‖1,Λ < ξ and
Z3 = F3 = Y3. Then,

• Z(Θ) ⊂ Πn−1(0) (take into account (22) and that Z3 = Y3),

and, if ξ is chosen small enough,

• ‖Z − Y ‖1,Dn−1
< ǫn.

• Z(∆) ⊂ Πζ(−
1

n(n−1)). Use (23) and (B).

• If P ∈ Dn−1 and Z(P ) ∈ L({x1 < 0}), then Z(P ) ∈ L({x3 >
1−

∑n−1
k=2 ǫk}). Use (iv) and the induction hypothesis.

Define Xn := L−1 ◦Z ∈ M(D). From (20) and translating the above
properties, we get

(a) ‖Xn −Xn−1‖1,Dn−1
< ǫn.

(b) Xn(Θ) ⊂ Πn−1(
1

n−1).

(c) Xn(∆) ⊂ Πn(
1
n).
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(d) If P ∈ Dn−1 and (x1◦Xn)(P ) < 0, then (x3◦Xn)(P ) > 1−
∑n−1

k=2 ǫk.

Property (a) directly gives (i). Since [−2, 2]×{ 1
n+1} ⊂ ∆, (c) implies

(ii). Taking into account that Dn − Dn−1 ⊂ Θ ∪ ∆, (iii) follows from
(b) and (c). Finally, (a) and (d) (respectively, (b) and (c)) give (iv) for
points P ∈ Dn−1 (respectively, P ∈ Θ ∪∆). q.e.d.

From (i) and Harnack’s theorem, the sequence {Xn}n∈N uniformly
converges on compact sets of (−2, 2) × (0, 2) to a conformal minimal

(possibly branched) immersion X̂ : (−2, 2) × (0, 2) → R
3. From (i)

and reasoning as in the proof of Theorem 5.6, we deduce that X̂ is an
immersion and X := X̂|C ∈ M(C).

Let us check that X satisfies item (I). Denote by Cn = [−1, 1] ×
[ 1
n+1 , 1] ⊂ C, n ∈ N. From (iii) we get that ‖(x1, x3) ◦Xn‖0,Cn−C◦

n−1
≥

distR3(0,Πn−1(
1

n−1)∪Πn(
1
n)). Then (i) gives ‖(x1, x3) ◦X‖0,Cn−C◦

n−1
≥

distR3(0,Πn−1(
1

n−1)∪Πn(
1
n))− ǫ1. Since limn→∞ distR3(0,Πn−1(

1
n−1 )∪

Πn(
1
n)) = ∞, we infer that (x1, x3) ◦X : C → R

2 is proper.
Finally, let us show that X satisfies item (2). Consider P ∈ C such

that (x1 ◦ X)(P ) < 0. For n large enough, P ∈ Cn ⊂ Dn and (x1 ◦
Xn)(P ) < 0 as well. Therefore (iv) gives (x3 ◦ X)(P ) = limn→∞(x3 ◦
Xn)(P ) ≥ 1 − ǫ1 > 0, and so f(P ) = 0. Finally, consider a divergent
sequence {Pn}n∈N in C with (x1 ◦X)(Pn) ≥ 0. For any n ∈ N, we label
k(n) ∈ N as the natural number such that Pn ∈ Ck(n)−Ck(n)−1 and note
that {k(n)}n∈N is divergent. From (i), (iii), and the fact (x1◦X)(Pn) ≥ 0,
one has (x3 + tan( 1

k(n)−1 )x1)(X(Pn)) > k(n) − 2ǫ1. Hence, for n large

enough,

0 ≥ f(X(Pn))

≥ min

{

k(n)− 2ǫ

x1(X(Pn)) + 1
− tan

(

1

k(n)− 1

)

x1
x1 + 1

(X(Pn)) , 0

}

≥ − tan

(

1

k(n)− 1

)

,

which converges to 0 as n goes to ∞. This shows (II) and concludes the
proof. q.e.d.

By Caratheodory’s Theorem, the set C in the above theorem is bi-
holomorphic to the half disc D+, which corresponds to the statement of
Theorem II in the introduction.
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Universidad de Granada
E-18071 Granada, Spain

E-mail address: alarcon@ugr.es

Departamento de Geometŕıa y Topoloǵıa
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