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RIGIDITY FOR LOCAL HOLOMORPHIC ISOMETRIC

EMBEDDINGS FROM B
n INTO B

N1 × · · · × B
Nm

UP TO CONFORMAL FACTORS

Yuan Yuan & Yuan Zhang

Abstract

In this article, we study local holomorphic isometric embed-
dings from Bn into BN1 × · · · × BNm with respect to the normal-
ized Bergman metrics up to conformal factors. Assume that each
conformal factor is smooth Nash algebraic. Then each component
of the map is a multi-valued holomorphic map between complex
Euclidean spaces by the algebraic extension theorem derived along
the lines of Mok, and Mok and Ng. Applying holomorphic contin-
uation and analyzing real analytic subvarieties carefully, we show
that each component is either a constant map or a proper holomor-
phic map between balls. Applying a linearity criterion of Huang,
we conclude the total geodesy of non-constant components.

1. Introduction

Write Bn := {z ∈ C
n : |z| < 1} for the unit ball in C

n. Denote by ds2n
the normalized Bergman metric on B

n defined as follows:

ds2n =
∑

j,k≤n

1

(1− |z|2)2
(
(1− |z|2)δjk + z̄jzk

)
dzj ⊗ dz̄k.(1)

Let U ⊂ B
n be a connected open subset. Consider a holomorphic iso-

metric embedding

(2) F = (F1, . . . , Fm) : U → B
N1 × · · · × B

Nm

up to conformal factors {λ(z, z̄);λ1(z, z̄), · · · , λm(z, z̄)} in the sense that

λ(z, z̄)ds2n =

m∑

j=1

λj(z, z)F
∗
j (ds

2
Nj

).

Here and in what follows, the conformal factors λ(z, z̄), λj(z, z̄) (j =
1, · · · ,m) are assumed to be positive smooth Nash algebraic functions
over Cn. One can in fact assume that λ(z, z̄) = 1, and replace λj(z, z̄) by
λj(z,z̄)
λ(z,z̄) . Under such notation, λj(z, z̄) is assumed to be positive, smooth,

and Nash algebraic. Moreover, for each j with 1 ≤ j ≤ m, ds2Nj
denotes

Received 1/19/2010.

329



330 Y. YUAN & Y. ZHANG

the corresponding normalized Bergman metric of BNj , and Fj is a holo-
morphic map from U to B

Nj . We write Fj = (fj,1, . . . , fj,l, . . . , fj,Nj
),

where fj,l is the lth component of Fj . In this paper, we prove the fol-
lowing rigidity theorem:

Theorem 1.1. Suppose n ≥ 2. Under the above notation and as-
sumption, we then have, for each j with 1 ≤ j ≤ m, that either Fj is
a constant map or Fj extends to a totally geodesic holomorphic embed-
ding from (Bn, ds2n) into (BNj , ds2Nj

). Moreover, we have the following

identity: ∑

Fj is not a constant

λj(z, z̄) = λ(z, z̄).

In particular, when λj(z, z̄), λ(z, z̄) are positive constant functions,
we have the following rigidity result for local isometric embeddings:

Corollary 1.2. Let

(3) F = (F1, . . . , Fm) : U ⊂ B
n → B

N1 × · · · × B
Nm

be a local holomorphic isometric embedding in the sense that

λds2n =

m∑

j=1

λjF
∗
j (ds

2
Nj

).

Assume that n ≥ 2 and λ, λj are positive constants. We then have,
for each j with 1 ≤ j ≤ m, that either Fj is a constant map or Fj

extends to a totally geodesic holomorphic embedding from (Bn, ds2n) into
(BNj , ds2Nj

). Moreover, we have the following identity:

∑

Fj is not a constant

λj = λ.

Recall that a function h(z, z̄) is called a Nash algebraic function over
C
n if there is an irreducible polynomial P (z, ξ,X) in (z, ξ,X) ∈ C

n ×
C
n×C with P (z, z̄, h(z, z̄)) ≡ 0 over Cn. We mention that a holomorphic

map from B
n into B

N is a totally geodesic embedding with respect to
the normalized Bergman metric if and only if there are a (holomorphic)
automorphism σ ∈ Aut(Bn) and an automorphism τ ∈ Aut(BN ) such
that τ ◦ F ◦ σ(z) ≡ (z, 0). Also, we mention that by the work of Mok
[Mo1], the result in Corollary 1.2 does not hold anymore when n = 1.
(See also many examples and related classification results in the work
of Ng ([Ng1]).

The study of the global extension and rigidity problem for local iso-
metric embedding was first carried out in a paper of Calabi [Ca]. After
[Ca], there appeared quite a few papers along these lines of research (see
[Um], for instance). In 2003, motivated by problems from Arithmetic
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Algebraic Geometry, Clozel and Ullmo [CU] took up again the prob-
lem by considering the rigidity problem for a local isometric embedding
with a certain symmetry from B

1 into B
1×· · ·×B

1. More recently, Mok
carried out a systematic study of this problem in a very general setting.
Many far-reaching deep results have been obtained by Mok and later by
Ng, and Mok and Ng. (See [Mo1, Mo2, MN, Ng1, Ng2, Ng3] and
the references therein). Here, we would like to mention that our result
was already included in the papers by Calabi when m = 1 [Ca], by Mok
[Mo1, Mo2] when N1 = · · · = Nm, and by Ng [Ng1, Ng3] when m = 2
and N1, N2 < 2n.

As in the work of Mok [Mo1], our proof of the theorem is also based
on the similar algebraic extension theorem derived in [Mo2] and [MN].
However, different from the case considered in [Mo1] [Ng2], the proper-
ness of a factor of F does not immediately imply the linearity of that
factor; for the classical linearity theorem does not hold anymore for
proper rational mappings from B

n into B
N with N > 2n − 2. (See

[Hu1]). Hence, the cancelation argument as in [Mo1, Ng3] seems to
be difficult to apply in our setting.

In our proof of Theorem 1.1, a major step is to prove that a non-
constant component Fj of F must be proper from B

n into B
Nj , using the

multi-valued holomorphic continuation technique. This then reduces the
proof of Theorem 1.1 to the case when all components are proper. Un-
fortunately, due to the non-constancy for the conformal factors λj(z, z̄)
and λ(z, z̄), it is not immediate that each component must also be con-
formal (and thus λj must be a constant multiple of λ) with respect to
the normalized Bergman metric. However, we observe that the blowing-
up rate for the Bergman metric of Bn with n ≥ 2 in the complex normal
direction is twice of that along the complex tangential direction, when
approaching the boundary. From this, we will be able to derive an equa-
tion regarding the CR invariants associated to the map at the boundary
of the ball. Lastly, a linearity criterion of Huang in [Hu1] can be applied
to simultaneously conclude the linearity of all components.

We mention that in the context of Corollary 1.2, namely, when each
conformal factor is assumed to be constant, the proof used to prove The-
orem 1.1 can be further simplified as told by Mok and Ng in their private
communications. In this case, one can work directly on the Kähler po-
tential functions instead of the hyperbolic metrics. However, when the
conformal factors are not constant, then the ∂∂̄-lemma cannot be ap-
plied and the metric equation (which can be regarded as differential
equations on the map) does not lead to the functional equation on the
components of the map. We appreciate very much many valuable com-
ments of Mok and Ng to the earlier version of this paper, especially, for
telling us how to essentially simplify the proof of a key lemma (Lemma



332 Y. YUAN & Y. ZHANG

2.2) through the consideration of the metric potential functions. Their
very helpful comments lead to the present version.

Acknowledgments. The present work is written under the guidance of
Professor Xiaojun Huang. The authors are deeply indebted to Professor
Huang, especially for formulating the problem and for suggesting the
method used in the paper. The authors also would like to thank very
much N. Mok and, in particular, S. Ng for many stimulating discussions
and conversations that inspired the present work as well as many valu-
able suggestions and comments. In fact, this work was originated by
reading the work of Mok ([Mo1]) and Ng ([Ng1, Ng2, Ng3]). The au-
thors acknowledge the partial financial support of NSF-0801056 for the
summer research project (through Professor Huang). Part of the work
was done when the first author was visiting the Erwin Schrödinger In-
stitute in Vienna, Austria, in the fall semester of 2009. He also would
like to thank members in the institute, especially, Professor Lamel, for
the invitation and hospitality. Finally, the authors would like to thank
the referees for the valuable comments.

2. Bergman metric and proper rational maps

Let Bn and ds2n be the unit ball and its normalized Bergman metric,
respectively, as defined before. Denote by H

n ⊂ C
n the Siegel upper half

space. Namely, Hn = {(z, w) ∈ C
n−1 × C : ℑw − |z|2 > 0}. Here, for

m-tuples a, b, we write dot product a · b = ∑m
j=1 ajbj and |a|2 = a · ā.

Recall the following Cayley transformation:

(4) ρn(z, w) =

(
2z

1− iw
,
1 + iw

1− iw

)
.

Then ρn biholomorphically maps Hn to B
n and biholomorphically maps

∂Hn, the Heisenberg hypersurface, to ∂Bn\{(0, 1)}. Applying the Cayley
transformation, one can compute the normalized Bergman metric on H

n

as follows:

ds2Hn =
∑

j,k<n

δjk(ℑw − |z|2) + z̄jzk
(ℑw − |z|2)2 dzj ⊗ dz̄k +

dw ⊗ dw̄

4(ℑw − |z|2)2

+
∑

j<n

z̄jdzj ⊗ dw̄

2i(ℑw − |z|2)2 −
∑

j<n

zjdw ⊗ dz̄j
2i(ℑw − |z|2)2 .

(5)
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One can easily check that

Lj =
∂

∂zj
+ 2iz̄j

∂

∂w
, j = 1, . . . , n− 1,

Lj =
∂

∂z̄j
− 2izj

∂

∂w̄
, j = 1, . . . , n− 1,

T = 2(
∂

∂w
+

∂

∂w̄
)

span the complexified tangent vector bundle of ∂Hn. (See, for instance,
[BER, Hu2, Hu3, HJX, JX, Mi].)

Let F be a rational proper holomorphic map from H
n to H

N . By a
result of Cima and Suffridge [CS], F is holomorphic in a neighborhood
of ∂Hn. Assign the weight of w to be 2 and that of z to be 1. Denote by
owt(k) terms with weighted degree higher than k and by P (k) a function
of weighted degree k. For p0 = (z0, w0) ∈ ∂Hn, write σ0p0 : (z, w) →
(z + z0, w +w0 + 2iz · z̄0) for the standard Heisenberg translation. The
following normalization lemma will be used here:

Lemma 2.1. [Hu2, Hu3] For any p ∈ ∂Hn, there is an element
τ ∈ Aut(HN+1) such that the map F ∗∗

p = ((f∗∗p )1(z), . . . , (f
∗∗
p )n−1(z),

φ∗∗p , g
∗∗
p ) = (f∗∗p , φ∗∗p , g

∗∗
p ) = τ ◦ F ◦ σ0p takes the following normal form:

f∗∗p (z, w) = z +
i

2
a(1)(z)w + owt(3),

φ∗∗p (z, w) = φ(2)(z) + owt(2),

g∗∗p (z, w) = w + owt(4),

with

(6) (z̄ · a(1)(z))|z|2 = |φ(2)(z)|2.

In particular, write (f∗∗p )l(z) = zj +
i
2

∑n−1
k=1 alkzkw + owt(3). Then,

(alk)1≤l,k≤n−1 is an (n − 1) × (n − 1) semi-positive Hermitian metrix.
We next present the following key lemma for our proof of Theorem 1.1:

Lemma 2.2. Let F be a proper rational map from B
n to B

N . Then

(7) X := ds2n − F ∗(ds2N ),

is a semi-positive real analytic symmetric (1, 1)-tensor over B
n that ex-

tends also to a real analytic (1, 1)-tensor in a small neighborhood of ∂Bn

in C
n.

Proof of lemma 2.2. Our original proof was largely simplified by Ng
[Ng4] and Mok [Mo3] by considering the potential − log(1− ‖F (z)‖2)
of the pull-back metric F ∗(ds2N ) as follows: Since 1− ‖F (z)‖2 vanishes
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identically on ∂Bn, and since 1 − ‖z‖2 is a defining equation for ∂Bn,
one obtains

1− ‖F (z)‖2 = (1− ‖z‖2)ϕ(z)

for a real analytic function ϕ(z).

Since ρ := ‖F (z)‖2 − 1 is subharmonic over B
n and has maximum

value 0 on the boundary, applying the classical Hopf lemma, we conclude
that ϕ(z) cannot vanish at any boundary point of Bn. Apparently, ϕ(z)
cannot vanish inside Bn. Therefore, X =

√
−1∂∂̄ logϕ(z) is real analytic

on an open neighborhood of Bn. The semi-positivity of X over Bn is an
easy consequence of the Schwarz lemma. q.e.d.

Applying the Cayley transformation (and also a rotation transforma-
tion when handling the regularity near (0, 1)), we have the following
corollary:

Corollary 2.3. Let F be a rational proper holomorphic map from
H

n to H
N . Then

(8) X := ds2Hn − F ∗(ds2
HN )

is a semi-positive real analytic symmetric (1, 1)-tensor over H
n that ex-

tends also to a real analytic (1, 1)-tensor in a small neighborhood of ∂Hn

in C
n.

The boundary value of X is an intrinsic CR invariant associated with
the equivalence class of the map F . Next, we compute X in the normal
coordinates at the boundary point.

Write t = ℑw− |z|2 and H = ℑg− |f̃ |2. Here, (f̃ , g) denotes the map
between Heisenberg hypersurfaces. Write o(k) for terms whose degrees
with respect to t are higher than k. For a real analytic function h in
(z, w), we use hz, hw to denote the derivatives of h with respect to z, w.
By replacing w by u+ i(t+ |z|2), H can also be regarded as an analytic
function on z, z̄, u, t. The following lemma gives an asymptotic behavior
of H with respect to t:

Lemma 2.4. H(z, z̄, u, t) = (gw − 2if̃w · ¯̃
f)|t=0t − (2|f̃w|2)|t=0t

2 +
1
3(−1

2gw3 + 3if̃w · f̃w2 + if̃w3 · ¯̃f)|t=0t
3 + o(3).

Proof of Lemma 2.4. Write H = H(z, z̄, u + i(t + |z|2), u − i(t + |z|2)).
Since F is proper, H, as a function of t with parameters {z, u}, can
be written as P1t+ P2t

2 + P3t
3 + o(3), where P1, P2, P3 are analytic in
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(z, z̄, u). Then

P1 =
∂H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))

∂t

∣∣∣∣
t=0

= iHw − iHw̄

∣∣∣∣
t=0

=
1

2
(gw + gw) + i(f̃ · f̃w − ¯̃f · f̃w)

∣∣∣∣
t=0

,

(9)

P2 =
1

2

∂2H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))
∂t2

∣∣∣∣
t=0

=
1

2
(−Hw2 + 2Hww̄ −Hw̄2)

∣∣∣∣
t=0

=
1

2
(
i

2
gw2 − i

2
gw2 − 2|f̃w|2 + f̃w2 · ¯̃f + f̃ · f̃w2)

∣∣∣∣
t=0

,

(10)

and

P3 =
1

6

∂3H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))
∂t3

∣∣∣∣
t=0

=
1

6
(−iHw3 + 3iHw2w̄ − 3iHw̄2w + iHw̄3)

∣∣∣∣
t=0

=
1

6
(−1

2
gw3 − 1

2
gw3 + if̃w3 · ¯̃f − if̃ · f̃w3 − 3if̃w2 · f̃w + 3if̃w · f̃w2)

∣∣∣∣
t=0

.

(11)

On the other hand, applying T, T 2, T 3 to the defining equation g − ḡ =

2if̃ · ¯̃f , we have

gw − gw − 2i(f̃w · ¯̃f + f̃ · f̃w) = 0,(12)

gw2 − gw2 − 2i(f̃w2 · ¯̃f + f̃w2 · f̃ + 2|f̃w|2) = 0,(13)

gw3 − gw3 − 2i(f̃w3 · f̃ + f̃w3 · f̃ + 3f̃w2 · f̃w + 3f̃w · f̃w2) = 0(14)

over ℑw = |z|2.
Substituting (12), (13), and (14) into (9), (10), and (11), we get

P1 = gw − 2if̃w · ¯̃f
∣∣∣∣
t=0

,

P2 = −2|f̃w|2
∣∣∣∣
t=0

,

P3 =
1

3
(−1

2
gw3 + 3if̃w · f̃w2 + if̃w3 · ¯̃f)

∣∣∣∣
t=0

.

(15)

q.e.d.
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We remark that by the Hopf Lemma, it follows easily that P1 6= 0
along ∂Hn.

We next write X = Xjkdzj ⊗ dz̄k + Xjndzj ⊗ dw̄ + Xnjdw ⊗ dz̄j +
Xnndw ⊗ dw̄. By making use of Lemma 2.1, we shall compute in the
next proposition the values of X at the origin. The proposition might
be of independent interest, as the CR invariants in the study of proper
holomorphic maps between Siegel upper half spaces are related to the
CR geometry of the map.

Proposition 2.5. Assume that F = (f̃ , g) = (f1, . . . , fN−1, g) :
H

n → H
N is a proper rational holomorphic map that satisfies the nor-

malization (at the origin) stated in Lemma 2.1. Then

Xjk(0) = −2i(fk)zjw(0) = akj,

Xjn(0) = Xnj(0) =
3i

4
(fj)w2(0) +

1

8
gzjw2(0),

Xnn(0) =
1

6
gw3(0).

Proof of Proposition 2.5. Along the direction of dzj⊗dz̄k, collecting the
coefficient of t2 in the Taylor expansion of H2X with respect to t, we
get

P 2
1Xjk(0) =

[
(2P1P2δjk + (P 2

2 + 2P1P3)z̄jzk)

− 1

2

{
2iP1(f̃wzj · f̃zk − f̃zj · f̃wzk) + 2P2f̃zj · f̃zk

− (f̃w2 · f̃zj)(f̃ · f̃zk) + 2(f̃w · f̃zj)(f̃w · f̃zk)

+ 2(f̃w · f̃wzj)(f̃ · f̃zk)− 2(f̃w · f̃zj)(f̃ · f̃zkw)

− ( ¯̃f · f̃zj)(f̃w2 · f̃zk)− 2( ¯̃f · f̃zjw)(f̃w · f̃zk)

+ 2(
¯̃
f · f̃zj)(f̃w · f̃zkw)− (f̃zjw2 · ¯̃f)(f̃ · f̃zk)

+ 2(
¯̃
f · f̃zjw)(f̃ · f̃zkw)− (

¯̃
f · f̃zj)(f̃ · f̃zkw2)− 1

4
gzjw2gzk

+
1

2
gzjwgzkw − 1

4
gzjgzkw2 +

i

2
(f̃w2 · f̃zj)ḡzk

− i(f̃w · f̃wzj)gzk + i(f̃w · f̃zj)gzkw +
i

2
(
¯̃
f · f̃zjw2)gzk

− i(
¯̃
f · f̃zjw)gzkw +

i

2
(
¯̃
f · f̃zj)gzkw2 − i

2
(f̃w2 · f̃zk)gzj

− i(f̃w · f̃zk)gzjw + i(f̃w · f̃zkw)gzj

− i

2
(f̃ · f̃zk)gzjw2 + i(f̃ · f̃zkw)gzjw − i

2
(f̃ · f̃zkw2)gzj

}]∣∣∣∣
t=0

.
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Letting (z, w) = 0 and applying the normalization condition as stated
in Lemma 2.1, we have

Xjk(0) =
∂a

(1)
k (z)

∂zj
= akj.

Similarly, considering the coefficients of t2 along dzj ⊗ dw̄ and dw⊗ dw̄,
respectively, we have

P
2

1Xjn(0) =

[

(−iP1P3 −
i

2
P

2

2 )z̄j −
1

2
{2iP1(f̃wzj · f̃w − f̃zj · f̃w2 ) + 2P2f̃zj · f̃w

− (f̃w2 · f̃zj )(f̃ · f̃w) + 2(f̃w · f̃zj )(f̃w · f̃w) + 2(f̃w · f̃wzj )(f̃ · f̃w)

− 2(f̃w · f̃zj )(f̃ · f̃w2)− ( ¯̃f · f̃zj )(f̃w2 · f̃w)− 2( ¯̃f · f̃zjw)(f̃w · f̃w)

+ 2(
¯̃
f · f̃zj )(f̃w · f̃w2)− (f̃zjw2 ·

¯̃
f)(f̃ · f̃w) + 2(

¯̃
f · f̃zjw)(f̃ · f̃w2 )− (

¯̃
f · f̃zj )(f̃ · f̃w3 )

−
1

4
gzjw2gw +

1

2
gzjwgw2 −

1

4
gzjgw3 +

i

2
(f̃w2 · f̃zj )gw − i(f̃w · f̃wzj )gw + i(f̃w · f̃zj )gw2

+
i

2
(
¯̃
f · f̃zjw2)gw − i(

¯̃
f · f̃zjw)gw2 +

i

2
(
¯̃
f · f̃zj )gw3 −

i

2
(f̃w2 · f̃w)gzj − i(f̃w · f̃w)gzjw

+ i(f̃w · f̃w2)gzj −
i

2
(f̃ · f̃w)gzjw2 + i(f̃ · f̃w2 )gzjw −

i

2
(f̃ · f̃w3 )gzj}

]∣

∣

∣

∣

t=0

and

P
2

1Xnn(0) =

[

1

4
(2P1P3 + P

2

2 )−
1

2
{2iP1(f̃w2 · f̃w − f̃w · f̃w2 )

+ 2P2f̃w · f̃w − (f̃w2 · f̃w)(f̃ · f̃w)

+ 2(f̃w · f̃w)(f̃w · f̃w) + 2(f̃w · f̃w2 )(f̃ · f̃w)− 2(f̃w · f̃w)(f̃ · f̃w2 )

− (
¯̃
f · f̃w)(f̃w2 · f̃w)− 2(

¯̃
f · f̃w2)(f̃w · f̃w) + 2(

¯̃
f · f̃w)(f̃w · f̃w2)− (f̃w3 ·

¯̃
f)(f̃ · f̃w)

+ 2( ¯̃f · f̃w2 )(f̃ · f̃w2 )− ( ¯̃f · f̃w)(f̃ · f̃w3 )−
1

4
gw3gw +

1

2
gw2gw2 −

1

4
gwgw3

+
i

2
(f̃w2 · f̃w)ḡw − i(f̃w · f̃w2)gw + i(f̃w · f̃w)gw2 +

i

2
(
¯̃
f · f̃w3 )gw − i(

¯̃
f · f̃w2 )gw2

+
i

2
(
¯̃
f · f̃w)gw3 −

i

2
(f̃w2 · f̃w)gw − i(f̃w · f̃w)gw2

+ i(f̃w · f̃w2)gw −
i

2
(f̃ · f̃w)gw3 + i(f̃ · f̃w2)gw2 −

i

2
(f̃ · f̃w3 )gw}

]∣

∣

∣

∣

t=0

.

Let (z, w) = 0. It follows that

Xjn(0) =
3i

4
(fj)w2(0) +

1

8
gzjw2(0),

Xnn(0) =
1

6
gw3(0),

for gw3(0) = gw3(0) by (14). q.e.d.

Making use of the computation in Proposition 2.5, we give a proof
of Theorem 1.1 in the case when each component extends as a proper
holomorphic map. Indeed, we prove a slightly more general result than
what we will need later as follows.
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Proposition 2.6. Let

F = (F1, . . . , Fm) : Bn → B
N1 × · · · × B

Nm

be a holomorphic isometric embedding up to conformal factors {λ(z, z̄);
λ1(z, z̄), . . . , λm(z, z̄)} in the sense that

λ(z, z̄)ds2n =
m∑

j=1

λj(z, z)F
∗
j (ds

2
Nj

).

Here for each j, λ(z, z), λj(z, z) are positive C2-smooth functions over

Bn, and Fj is a proper rational map from B
n into B

Nj for each j. Then

λ(z, z̄) ≡
∑m

j=1 λj(z, z) over Bn, and for any j, Fj is a totally geodesic

embedding from B
n to B

Nj .

Proof of Proposition 2.6. After applying the Cayley transformation and
considering

(
(ρN1

)−1, . . . , (ρNm)−1
)
◦F ◦ρn instead of F , we can assume,

without loss of generality, that

F = (F1, . . . , Fm) : Hn → H
N1 × · · · ×H

Nm

is an isometric map up to conformal factors {λ(Z, Z̄);λ1(Z, Z̄), . . . ,
λm(Z, Z̄)} in the sense that

λ(Z, Z̄)ds2Hn =

m∑

j=1

λj(Z,Z)F
∗
j (ds

2
H

Nj
).

Also, each Fj is a proper rational map from H
n into H

Nj , respectively.
Here, we write Z = (z, w). Moreover, we can assume, without loss of
generality, that each component Fj of F satisfies the normalization con-
dition as in Lemma 2.1. Since F is an isometry, we have

λ(Z, Z̄)ds2Hn =
m∑

j=1

λj(Z, Z̄)F
∗
j (ds

2
H

Nj
), or(16)

(λ(Z, Z̄)−
m∑

j=1

λj(Z, Z̄))ds
2
Hn +

m∑

j=1

λj(Z, Z̄)X(Fj) = 0.

Here, we write X(Fj) = ds2
Hn − F ∗

j (ds
2
H

Nj
). Collecting the coefficient of

dw ⊗ dw̄, one has

(17)
λ(Z, Z̄)−∑m

j=1 λj(Z, Z̄)

4(ℑw − |z|2)2 +

m∑

j=1

λj(Z, Z̄)(X(Fj))nn = 0.

SinceX(Fj) is smooth up to ∂Hn, we see that λ(Z, Z̄)−∑m
j=1 λj(Z, Z̄) =

O(t2) as Z = (z, w)(∈ H
n) → 0, where t = ℑw−|z|2. However, since the

dzl ⊗ dz̄k-component of ds2
Hn blows up at the rate of o( 1

t2
) as (z, w)(∈

H
n) → 0, collecting the coefficients of the dzl ⊗ dz̄k-component in (16)
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and then letting (z, w)(∈ H
n) → 0, we conclude that, for any 1 ≤ l, k ≤

n− 1,
m∑

j=1

λj(0, 0)(X(Fj ))kl(0) = 0.

By Proposition 2.5, we have
∑m

j=1 λj(0, 0)a
j
lk(0) = 0, where ajkl is as-

sociated with Fj in the expansion of Fj at 0 as in Lemma 2.1. Since

(ajkl)1≤l,k≤n−1 is a semi-positive matrix and λj(0, 0) > 0, it follows im-

mediately that ajlk(0) = 0 for all j, k, l. Namely, Fj = (z, w)+Owt(3) for
each j.

Next, for each p ∈ ∂Hn, let τj ∈ Aut(HN ) be such that (Fj)
∗∗
p =

τj ◦Fj ◦σ0p has the normalization as in Lemma 2.1. Let τ = (τ1, . . . , τm).

Note that F ∗∗
p := ((F1)

∗∗
p , . . . , (Fm)∗∗p ) = τ ◦ F ◦ σ0p is still an isometric

map satisfing the condition as in the proposition. Applying the just-
presented argument to F ∗∗

p , we conclude that (Fj)
∗∗
p = (z, 0, w)+Owt(3).

By Theorem 4.2 of [Hu2], this implies that Fj = (z, 0, w). Namely, Fj

is a totally geodesic embedding. In particular, we have X(Fj) ≡ 0. This
also implies that λ ≡ ∑m

j=1 λj over B
n. The proof of Proposition 2.6 is

complete. q.e.d.

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. As in the theorem,
we let U ⊂ B

n be a connected open subset. Let

F = (F1, . . . , Fm) : U → B
N1 × · · · × B

Nm

be a holomorphic isometric embedding up to conformal factors {λ(z, z̄);
λ1(z, z̄), . . . , λm(z, z̄)} in the sense that

λ(z, z̄)ds2n =

m∑

j=1

λj(z, z)F
∗
j (ds

2
Nj

).

Here, λj(z, z̄), λ(z, z̄) > 0 are smooth Nash algebraic functions; ds2n
and ds2Nj

are the Bergman metrics of B
n and B

Nj , respectively; and

Fj is a holomorphic map from U into B
Nj for each j. For the proof

of Theorem 1.1, we can assume without loss of generality that none of
the Fj ’s is a constant map. Following the idea in [MN], we can show
that F extends to an algebraic map over C

n. (For the convenience of
the reader, we include the detailed argument in the appendix.) Namely,
for each (non-constant) component fj,l of Fj , there is an irreducible
polynomial Pj,l(z,X) = aj,l(z)X

mjl + . . . in (z,X) ∈ C
n × C of degree

mjl ≥ 1 in X such that Pj,l(z, fj,l) ≡ 0 for z ∈ U .
We will proceed to show that, for each j, Fj extends to a proper

rational map from B
n into B

Nj . For this purpose, we let Rj,l(z) be
the resultant of Pj,l in X and let Ej,l =

{
Rj,l ≡ 0, aj,l ≡ 0

}
, E =
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∪Ej,l. Then E defines a proper affine-algebraic subvariety of Cn. For
any continuous curve γ : [0, 1] → C

n \ E where γ(0) ∈ U , F can be
continued holomorphically along γ to get a germ of holomorphic map
at γ(1). Also, if γ1 is homotopic to γ2 in C

n \E, γ1(0) = γ2(0) ∈ U and
γ1(1) = γ2(1), then continuations of F along γ1 and γ2 are the same at
γ1(1) = γ2(1). Now let p0 ∈ U and p1 ∈ ∂Bn \ E. Let γ(t) be a smooth
simple curve connecting p0 to p1 and γ(t) /∈ ∂Bn for t ∈ (0, 1). Then
each Fj defines a holomorphic map in a connected neighborhood Vγ of γ
by continuing along γ the initial germ of Fj at p0. (We can also assume
that Vγ ∩ B

n is connected.) Let

Sγ =
{
p ∈ Vγ : ‖Fj(p)‖ = 1 for some j}.

Then Sγ is a real analytic (proper) subvariety of Vγ . We first prove:

Claim 3.1. When Vγ is sufficiently close to γ, dim(Sγ∩B
n) ≤ 2n−2.

Proof of Claim 3.1. Supposing otherwise, we are going to deduce a con-
tradiction. Assume that t0 ∈ (0, 1] is the first point such that for a
certain j, the local variety defined by ‖Fj(z)‖2 = 1 near p∗ = γ(t0)
has real dimension 2n − 1 at p∗. Let Σ0 be an irreducible component
of the germ of the real analytic subvariety Sγ at p∗ of real codimension
1, and let Σ be a connected locally closed subvariety of Bn representing
the germ Σ0 at p∗. Since any real analytic subset of real codimension 2
inside a connected open set does not affect the connectivity, by slightly
changing γ without changing its homotopy type and terminal point, we
can assume that γ(t) 6∈ Sγ for any t < t0. Hence, p

∗ also lies on the

boundary of the connected component V̂ of (Vγ ∩B
n)\Sγ that contains

γ(t) for t < t0, and Σ also lies in the boundary of V̂ . Now, for any p ∈ Σ,

let q(∈ V̂ ) → p, we have along {q},

λ(z, z̄)ds2n =
∑

j

λj(z, z̄)F
∗
j (ds

2
Nj

).

Suppose that j♯ is such that ‖Fj♯(p)‖ = 1 and ‖Fj(z)‖ < 1 for any j,

p ∈ Σ and z ∈ V̂ . Since p ∈ Σ ⊂ B
n, ds2n is a smooth Hermitian metric

in an open neighborhood of p. For any v = (v1, . . . , vξ, . . . , vn) ∈ C
n

with ‖v‖ = 1, it follows that
∣∣∣limq→pF

∗
j♯(ds

2
N

j♯
)(v, v)(q)

∣∣∣ <∞.

On the other hand,

F ∗
j♯(ds

2
N

j♯
) =

∑
l,k{δlk(1− ‖Fj♯‖2) + f̄j♯,lfj♯,k}dfj♯,l ⊗ df j♯,k

(1− ‖Fj♯‖2)2
.
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It follows that

F ∗
j♯(ds

2
N

j♯
)(v, v)(q) =

‖∑ξ

∂f
j♯,l

∂zξ
(q)vξ‖2

1− ‖Fj♯(q)‖2
+

|∑l,ξ fj♯,l(q)
∂f

j♯,l

∂zξ
(q)vξ|2

(1− ‖Fj♯(q)‖2)2
.

(18)

Letting q → p, since 1− ‖Fj♯(q)‖2 → 0+, we get

∥∥∑

ξ

∂fj♯,l(p)

∂zξ
vξ
∥∥2 = 0.

Thus,

∂fj♯,l(p)

∂zξ
= 0, for l = 1, . . . , Nj♯ .

Hence, we see dFj♯ = 0 in a certain open subset of Σ. Since Σ is of real
codimension 1 in B

n, any non-empty open subset of Σ is a uniqueness set
for holomorphic functions. Hence, Fj♯ ≡ const. This is a contradiction.

q.e.d.

Now, since dim(Sγ ∩ B
n) ≤ 2n − 2, we can always slightly change

γ without changing the homotopy type of γ in Vγ \ E and the end
point of γ so that γ(t) /∈ Sγ for any t ∈ (0, 1). Since λ(z, z̄)ds2n =∑m

j=1 λj(z, z̄)F
∗
j (ds

2
Nj

) in (Vγ∩Bn)\Sγ and since ds2n blows up when q ∈
Vγ∩Bn approaches to ∂Bn, we see that for each q ∈ Vγ∩∂Bn, ‖Fjq (q)‖ =
1 for some jq. Hence, we can assume without loss of generality, that there
is a j0 ≥ 1 such that each of F1, . . . , Fj0 maps a certain open piece of

∂Bn into ∂BN1 , . . . , ∂BNj0 , but for j > j0,

dim{q ∈ ∂Bn ∩ Vγ : ‖Fj(q)‖ = 1} ≤ 2n− 2.

It follows from the Hopf lemma that Nj ≥ n for j ≤ j0. By the results of
Forstneric [Fo] and Cima and Suffridge [CS], Fj extends to a rational
proper holomorphic map from B

n into B
Nj for each j ≤ j0. Now, we

must have

λ(z, z̄)ds2n −
j0∑

j=1

λj(z, z̄)F
∗
j (ds

2
Nj

) =
m∑

j=j0+1

λj(z, z̄)F
∗
j (ds

2
Nj

)

in (Vγ ∩ B
n) \ Sγ , which is a connected set by Claim 3.1. Let q ∈ (Vγ ∩

B
n) \ Sγ → p ∈ ∂Bn ∩ Vγ . Write

(λ(z, z̄)−
j0∑

j=1

λj(z, z̄))ds
2
n

∣∣∣∣
q

+

j0∑

j=1

λj(z, z̄)(ds
2
n − F ∗

j (ds
2
Nj

))

∣∣∣∣
q

=

m∑

j=j0+1

λj(z, z̄)F
∗
j (ds

2
Nj

)

∣∣∣∣
q

.
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By Lemma 2.2, Xj := ds2n − F ∗
j (ds

2
Nj

) is smooth up to ∂Bn for j ≤ j0.

We also see, by the choice of j0 and Claim 3.1, that for a generic point
p in ∂Bn∩Vγ , F ∗

j (ds
2
Nj

) is real analytic in a small neighborhood of p for

each j ≥ j0 + 1. Thus, by considering the normal component as before

in the above equation, we see that λ(z, z̄) − ∑j0
j=1 λj(z, z̄) vanishes to

the order ≥ 2 with respect to 1− |z|2 in an open set of the unit sphere.

Since λ(z, z̄)−
∑j0

j=1 λj(z, z̄) is real analytic over Cn, we obtain

(19) λ(z, z̄)−
j0∑

j=1

λj(z, z̄) = (1− |z|2)2ψ(z, z̄).

Here, ψ(z, z̄) is a certain real analytic function over Cn. Let

Y = (λ(z, z̄)−
j0∑

j=1

λj(z, z̄))ds
2
n.

Then Y extends real analytically to C
n. Write X =

∑j0
j=1 λj(z, z̄)Xj .

From what we argued above, we easily see that there is a certain small
neighborhood O of q ∈ ∂Bn in C

n such that (1): we can holomorphically
continue the initial germ of F in U through a certain simple curve γ
with γ(t) ∈ B

n for t ∈ (0, 1) to get a holomorpic map, still denoted by
F , over O; (2): ‖Fj‖ < 1 for j > j0 and ‖Fj‖ > 1 for j ≤ j0 over O \ Bn;
and (3):

X =

j0∑

j=1

λj(z, z̄)(ds
2
n − F ∗

j (ds
2
Nj

))

(
=

j0∑

j=1

λj(z, z̄)Xj

)
(20)

=

m∑

j=j0+1

λj(z, z̄)F
∗
j (ds

2
Nj

)− Y.

We mention that we are able to make ‖Fj‖ < 1 for any z ∈ O and j > j0
in the above due to the fact that (Vγ ∩ B

n) \ Sγ , as defined before, is
connected.

Now, let P be the union of the poles of F1, . . . , Fj0 . Fix a certain

p∗ ∈ O∩∂Bn and let Ẽ = E∪P. Then for any γ : [0, 1] → C
n \ (Bn∪ Ẽ)

with γ(0) = p∗ and γ(t) 6∈ ∂Bn for t > 0, Fj extends holomorphically
to a small neighborhood Uγ of γ that contracts to γ. Still denote the
holomorphic continuation of Fj (from the initial germ of Fj at p∗ ∈ O)
over Uγ by Fj . If for some t ∈ (0, 1), ‖Fj (γ(t))‖ = 1, then we similarly
have:

Claim 3.2. Shrinking Uγ if necessary, then dim
{
p ∈ Uγ : ‖Fj(p)‖ =

1 for some j
}
≤ 2n− 2.
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Proof of the Claim 3.2. Supposing otherwise, we are going to deduce a
contradiction. Define Sγ in a similar way. Without loss of generality, we
assume that t0 ∈ (0, 1) is the first point such that for a certain jt0 , the
local variety defined by ‖Fjt0

(z)‖2 = 1 near γ(t0) has real dimension
2n− 1 at γ(t0). Then, as before, we have

X =

j0∑

j=1

λj(z, z̄)(ds
2
n − F ∗

j (ds
2
Nj

)) =

m∑

j=j0+1

λj(z, z̄)F
∗
j (ds

2
Nj

)− Y(21)

in a connected component W of Uγ \ Sγ that contains γ(t) for t << 1
with γ(t0) ∈ ∂W . Now, for any q(∈W ) → p ∈ ∂W near p0 = γ(t0) and
v ∈ C

n with ‖v‖ = 1, we have the following:

j0∑

j=1

λj(q, q̄)

(
ds2n(v, v)

∣∣∣∣
q

−
‖∑ξ

∂fj,l
∂zξ

(q)vξ‖2

1− ‖Fj(q)‖2
−

|∑l,ξ fj,l(q)
∂fj,l
∂zξ

(q)vξ|2

(1− ‖Fj(q)‖2)2
)

=

m∑

j=j0+1

λj(q, q̄)

(‖∑ξ
∂fj,l
∂zξ

(q)vξ‖2

1− ‖Fj(q)‖2
+

|∑l,ξ fj,l(q)
∂fj,l
∂zξ

(q)vξ |2

(1− ‖Fj(q)‖2)2
)
− Y (v, v)

∣∣∣∣
q

.

(22)

Now, if the local variety defined by ‖Fj(z)‖2 = 1 is not of real codi-
mension 1 at p0 for each j ≤ j0, then the local variety Sj′ defined by
‖Fj′(z)‖2 = 1 has to be of real codimension 1 at p0 for certain j′ > j0.
Let J be the collection of all such j′. Let S0 be a small open piece of
∂W near p0. Then for a generic p ∈ S0, the left-hand side of (22) re-
mains bounded as q → p ∈ S0. For a term on the right-hand side with
index j ∈ J , if S0 ∩ Sj contains a germ of an irreducible component
of ∂W of real codimension 1 containing p0, then it approaches +∞ for
a generic p unless Fj = constant as argued in the proof of Claim 3.1.
The other terms on the right-hand side remain bounded as q → p for a
generic p. This is a contradiction to the assumption that none of Fj ’s for
j > j0 is constant. Hence, we can assume that the local variety defined
by ‖Fj(z)‖2 = 1 near p0 is of real codimension 1 for a certain j ≤ j0.
Let J be the set of indices such that for j′ ∈ J , and we have j′ ≤ j0 and
Sj′ := {‖Fj′‖ = 1} is the local real analytic variety of real codimension
1 near p0. For j > j0, since ‖Fj(z)‖ < 1 for z(∈ Uγ) ≈ p0 and since t0 is
the first point such that ‖Fj∗‖ = 1 defines a variety of real codimension
1 for some j∗, we see that ‖Fj(z)‖ < 1 for z(∈ W ) ≈ p0. Define S0

similarly, as an small open piece of ∂W . Hence, as q(∈ W ) → p ∈ S0,
the right-hand side of (22) is uniformly bounded from below. On the
other hand, on the left-hand side of (22), for any j′ ∈ J with Sj′ ∩ S0

containing an irreducible component of ∂W of real codimension 1 near

p0, if the numerator |∑l,ξ fj′,l(q)
∂fj′,l
∂zξ

(q)vξ |2 of the last term does not

go to 0 for some vectors v, then the term with index j′ on the left-hand
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side would go to −∞ for a generic p ∈ S0. If this happens to such j′,
the left-hand side would approach −∞. Notice that all other terms on
the right-hand side remain bounded from below as q → p ∈ S0 for a
generic p. This is impossible. Therefore, we must have for some j′ ∈ J

that |∑l fj′,l(q)
∂fj′,l
∂zξ

(q)|2 =
∂
∑

l |fj′,l|
2

∂zξ
(q) =

∂‖Fj′‖
2

∂zξ
(q) → 0 and thus

∂‖Fj′‖
2

∂zξ
(p) = 0 for all ξ and p ∈ Sj′ . This immediately gives the equality

d(‖Fj′‖2) = 0 along Sj′ . Assume, without loss of generality, that p0 is
also a smooth point of Sj′ . If Sj′ has no complex hypersurface passing
through p0, by a result of Trepreau [Tr], the union of the image of local
holomorphic disks attached to Sj′ passing through p0 fills in an open sub-
set. Since Fj′ is not constant, there is a small holomorphic disk smooth
up to the boundary φ(τ) : B1 → C

n such that φ(∂B1) ⊂ Sj′ , φ(1) = p0
and Fj′ is not constant along φ. Since ∂B

Nj′ does not contain any non-
trival complex curves, r = (‖Fj′‖2 − 1) ◦ φ 6≡ 0. Applying the maxi-
mum principle and then the Hopf lemma to the subharmonic function
r = (‖Fj′‖2 − 1) ◦ φ, we see that the outward normal derivative of r
at τ = 1 is positive. This contradicts to the fact that d(‖Fj′‖2) = 0
along Sj′ . We can argue in the same way for points p ∈ Sj′ near p0 to
conclude that for any p ∈ Sj′ near p0, there is a complex hypersurface
contained in Sj′ passing through p. Namely, Sj′ is Levi flat, foliated
by a family of smooth complex hypersurfaces denoted by Yη with real
parameter η near p0. Let Z be a holomorphic vector field along Yη. We

then easily see that 0 = ZZ(‖Fj′‖2 − 1) =
∑Nj′

k=1 |Z(fj′,k)|2. Thus, we
see that Fj′ is constant along each Yη. Hence, Fj′ cannot be a local em-
bedding at each point of Sj′. However, on the other hand, notice that

Fj′ is a proper holomorphic map from B
n into B

N ′

; then Fj′ is a local
embedding near ∂Bn. This implies that the set of points where Fj′ is not
a local embedding can be at most of complex codimension 1 (and thus
real codimension 2). This is a contradiction. This proves Claim 3.2.

Hence, we see that E = {p ∈ C
n \ (Bn ∪ Ẽ) : some branch, obtained

by the holomorphic continuation through curves described before, of
Fj for some j maps p to ∂BNj} is a real analytic variety of real dimension

at most 2n − 2. Now, for any p ∈ C
n \ (Bn ∪ Ẽ), any curve γ : [0, 1] →

C
n \ (Bn ∪ Ẽ) with γ(0) = p∗ ∈ O ∩ ∂Bn, γ(t) 6∈ ∂Bn for t > 0 and

γ(1) = p, we can homotopically change γ in C
n \ (Bn ∪ Ẽ) (but without

changing the terminal point) such that γ(t) /∈ E for t ∈ (0, 1). Now, the
holomorphic continuation of the initial germ of Fj from p∗ never cuts
∂BNj along γ(t) (0 < t < 1). We thus see that ‖Fj(p)‖ ≤ 1 for j > j0.

Let {(fj,l)k;p}njl

k=1 be all possible (distinct) germs of holomorphic func-
tions that we can get at p by the holomorphic continuation, along curves
described above in C

n \ (Bn ∪ Ẽ), of fj,l. Let σjl,τ be the fundamental

symmetric function of {(fj,l)k;p}njl

k=1 of degree τ . Then σjl,τ well defines
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a holomorphic function over Cn \Bn. |σjl,τ | is bounded in C
n \ (Bn∪ Ẽ).

By the Riemann removable singularity theorem, σjl,τ is holomorphic

over C
n \ Bn. By the Hartogs extension theorem, σjl,τ extends to a

bounded holomorphic function over C
n. Hence, by the Liouville theo-

rem, σjl,τ ≡ const. This forces (fj,l)k and thus Fj for j > j0 to be
constant. We obtain a contradiction. This proves that each Fj extends
to a proper rational map from B

n into B
Nj . Together with Proposition

2.6, we complete the proof of the main Theorem. q.e.d.

Remark 3.3. The regularity of λj , λ can be reduced to be only real
analytic in the complement of a certain real codimension 2 subset. Also,
we need only to assume that they are positive outside a real analytic
variety of real codimension 2. This is obvious from our proof of Theorem
1.1.

Remark 3.4. Assume that λ, λj are smooth, positive Nash algebraic
(or more generally, real analytic) functions on B

n,BNj , respectively, for
all j, and also assume F = (F1, . . . , Fm) : U ⊂ B

n → B
N1 × · · · × B

Nm

is a holomorphic embedding such that

λds2n =

m∑

j=1

F ∗
j (λjds

2
Nj

).

It would be very interesting to prove the total geodesy for each non-
constant component Fj . However, different from the situation in Theo-
rem 1.1, one cannot prove the algebraic extension of F using the tech-
nique in the appendix since we do not know yet how to construct a
target real algebraic hypersurface associated to F . Once the algebraic
extension of F is obtained, the total geodesy should follow from our ar-
gument without much modification. For the related algebraic extension
problem, see [HY].

4. Appendix: Algebraic extension

In this appendix, we prove the algebraicity of the local holomorphic
map F in Theorem 1.1. As in the theorem, we let U ⊂ B

n be a connected
open subset. Let

F = (F1, . . . , Fm) : U → B
N1 × · · · × B

Nm

be a holomorphic isometric embedding up to conformal factors {λ(z, z̄);
λ1(z, z̄), . . . , λm(z, z̄)} in the sense that

λ(z, z̄)ds2n =

m∑

j=1

λj(z, z)F
∗
j (ds

2
Nj

).

Here λj(z, z̄) > 0, λ(z, z̄) > 0 are smooth Nash algebraic functions in C
n,

and ds2n and ds2Nj
are the Bergman metrics of Bn and B

Nj , respectively.
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We further assume without loss of generality that none of the Fj ’s is a
constant map. Our proof uses exactly the same method employed in the
paper of Mok and Ng [MN], following a suggestion of Yum-Tong Siu.
Namely, we use the Grauert tube technique to reduce the problem to
the algebraicity problem for CR mappings. However, different from the
consideration in [MN], the Grauert tube constructed by using the unit
sphere bundle over BN1×· · ·×B

Nm with respect to the metric ⊕m
j=1ds

2
Nj

,

up to conformal factors, may have complicated geometry and may not
even be pseudoconvex anymore in general. To overcome the difficulty,
we bend the target hypersurface to make it sufficiently positively curved
along the tangential direction of the source domain.

Let K > 0 be a large constant to be determined. Consider S1 ⊂ TU
and S2 ⊂ U × TBN1 × · · · × TBNm as follows:

(23) S1 :=
{
(t, ζ) ∈ TU : (1 +K|t|2)λ(t, t̄)ds2n(t)(ζ, ζ) = 1

}
,

S2 := {(t, z1, ξ1, . . . , zm, ξm) ∈ U × TBN1 × · · · × TBNm :

(1 +K|t|2)[λ1(t, t̄)ds2N1
(z1)(ξ1, ξ1)

+ · · · + λm(t, t̄)ds2Nm
(zm)(ξm, ξm)] = 1}.

(24)

The defining functions ρ1, ρ2 of S1, S2 are, respectively, as follows:

ρ1 = (1 +K|t|2)λ(t, t̄)ds2n(t)(ζ, ζ)− 1,

ρ2 = (1+K|t|2)[λ1(t, t̄)ds2N1
(z1)(ξ1, ξ1)+· · ·+λm(t, t̄)ds2Nm

(zm)(ξm, ξm)]−1.

Then one can easily check that the map (id, F1, dF1, . . . , Fm, dFm) maps
S1 to S2 according to the metric equation

λ(t, t̄)ds2n = λ1(t, t̄)F
∗
1 (ds

2
N1

) + · · · + λm(t, t̄)F ∗
m(ds2Nm

).

Lemma 4.1. S1, S2 are both real algebraic hypersurfaces. Moreover
for K sufficiently large, S1 is smoothly strongly pseudoconvex. For any
ξ1 6= 0, . . . , ξm 6= 0, (0, 0, ξ1, . . . , 0, ξm) ∈ S2 is a smooth strongly pseu-
doconvex point when K is sufficiently large, where K depends on the
choice of ξ1, . . . , ξm.

Proof of Lemma 4.1. It is immediate from the defining functions that
S1, S2 are smooth real algebraic hypersurfaces. We show the strong pseu-
doconvexity of S2 at (0, 0, ξ1, . . . , 0, ξm) as follows. (The strong pseudo-
convexity of S1 follows from the same computation.)

By applying ∂∂̄ to ρ2 at (0, 0, ξ1, . . . , 0, ξm), we have the following
Hessian matrix

(25)




A 0 D1 · · · 0 Dm

0 B1 0 · · · 0 0
D̄1 0 C1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · Bm 0
D̄m 0 0 · · · 0 Cm
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where A,Bj , Cj ,Dj , j = 1, 2, . . . ,m are function-valued matrices with
the following (in)equalities:

A : =

(
∂ti∂tj̄ρ2

)
=

(
K

m∑

ν=1

λν(0)|ξν |2δij +
m∑

ν=1

∂ti∂tj̄λν(0)|ξν |
2

)

≥ δK(|ξ1|2 + · · · + |ξm|2)In,
(26)

Bj :=

(
∂zjk∂z̄jlρ2

)
=

(
− λj(0)

Nj∑

ν,µ=1

Rzjk z̄jlµν̄(0)ξjµξ̄jν

)
≥ δ|ξj |2INj

,

(27)

Cj :=

(
∂ξjk∂ξ̄jlρ2

)
=

(
λj(0)δkl̄

)
≥ δINj

,(28)

Dj :=

(
∂ti∂ξ̄jlρ2

)
=

(
∂tiλj(0)ξjl

)l≤Nj

i≤n

,(29)

at (0, 0, ξ1, . . . , 0, ξm) for some δ > 0.
Let (e, r1, s1, . . . , rm, sm) 6= 0, where e = (e1, . . . , en), rj = (rj1,

. . . rjNj
), sj = (sj1, . . . sjNj

) for all j. It holds that

[
e r1 s1 · · · rm sm

]




A 0 D1 · · · 0 Dm

0 B1 0 · · · 0 0
D̄1 0 C1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · Bm 0
D̄m 0 0 · · · 0 Cm







ēt

r̄t1
s̄t1
· · ·
r̄tm
s̄tm




≥ δK|e|2
m∑

j=1

|ξj |2 + δ

m∑

j=1

|ξj |2|rj |2 + δ

m∑

j=1

|sj|2

− 2

m∑

j=1

∣∣∣∣∣∣

∑

i≤n, l≤Nj

ei∂tiλj(0)ξjls̄jl

∣∣∣∣∣∣

≥
m∑

j=1

[
(δK −M)|ξj |2|e|2 + δ|ξj |2|rj|2 + (δ − ǫ)|sj |2

]

> 0.

(30)

Here, the second inequality holds since

∣∣∣∣∣∣

∑

i,l

ei∂tiλj(0)ξjls̄jl

∣∣∣∣∣∣
≤M1|e||ξj ·s̄j| ≤M1|e||ξj ||sj | ≤

M

2
|e|2|ξj|2+

ǫ

2
|sj|2
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by the standard Cauchy–Schwarz inequality and M =
M2

1

ǫ
. The last

strict inequality holds as ξj 6= 0 for all j by letting ǫ < δ and raising K
sufficiently large. q.e.d.

Theorem 4.2. Under the assumption of Theorem 1.1, F is Nash
algebraic.

Proof of Theorem 4.2. Without loss of generality, one can assume that
F (0) = 0 by composing elements from Aut(Bn) and Aut(BN1) × · · · ×
Aut(BNm). Furthermore, since F1, . . . , Fm are not constant maps, we
can assume that dF1|0 6≡ 0, . . . , dFm|0 6≡ 0. Therefore, there exists 0 6=
ζ ∈ T0B

n such that dFj(ζ) 6= 0 for all j. After scaling, we assume that
(0, ζ) ∈ S1. Notice that both the fiber of S1 over 0 ∈ U and the fiber of
S2 over (0, 0, . . . , 0) ∈ U×B

N1×· · ·×B
Nm are independent of the choice

of K. Now the theorem follows by applying the algebracity theorem of
Huang [Hu1] and Lemma 4.1 to the map (id, F1, dF1, . . . , Fm, dFm) from
S1 into S2. q.e.d.
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[Tr] J.-M. Trépreau, Sur le prolongement holomorphe des fonctions CR défines sur

une hypersurface réelle de classe C
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