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Abstract

The Cauchy problem for the homogeneous real/complexMonge–
Ampère equation (HRMA/HCMA) arises from the initial value
problem for geodesics in the space of Kähler metrics equipped
with the Mabuchi metric. This Cauchy problem is believed to be
ill-posed and a basic problem is to characterize initial data of
(weak) solutions which exist up to time T . In this article, we use a
quantization method to construct a subsolution of the HCMA on
a general projective variety, and we conjecture that it solves the
equation for as long as the unique solution exists. The subsolu-
tion, called the “quantum analytic continuation potential,” is ob-
tained by (i) Toeplitz quantizing the Hamiltonian flow determined
by the Cauchy data, (ii) analytically continuing the quantization,
and (iii) taking a certain logarithmic classical limit. We then prove
that in the case of torus invariant metrics (where the HCMA re-
duces to the HRMA) the quantum analytic continuation potential
coincides with the well-known Legendre transform potential, and
hence solves the equation as long as it is smooth. In the sequel
[29], it is proved that the Legendre transform potential ceases to
solve the HCMA once it ceases to be smooth. The results here and
in the sequels in particular characterize the initial data of smooth
geodesic rays.

1. Introduction

This article is the first in a series whose aim is to study existence,
uniqueness, and regularity of solutions of the initial value problem (IVP)
for geodesics in the space of Kähler metrics in a fixed class. It is a spe-
cial case of the Cauchy problem for the HCMA (homogeneous complex
Monge–Ampère equation). Unlike the much-studied Dirichlet problem
(going back to [3]), little has been proven for the Cauchy problem for
the Monge–Ampère equation, and there is currently no known method
to solve it for smooth Cauchy data. Indeed, it is believed to be an ill-
posed problem and one does not expect global in time solutions to exist
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for ‘most’ initial data (ωϕ0
, ϕ̇0). The goal is thus to determine which

initial data give rise to global solutions, especially those of relevance in
geometry (‘geodesic rays’), to construct the solutions, and to determine
the lifespan Tspan of solutions for general initial data.

In this article, we define a quantum analytic continuation potential
ϕ∞(s, z) on any polarized Kähler manifold (M,ωϕ0

) by taking the log-
arithmic limit of a canonical sequence ϕN (s, z) of subsolutions of the
HCMA determined by the Cauchy data (ωϕ0

, ϕ̇0) (see Definition 2.1
and (6)). The sequence ϕN (s, z) is the quantum analogue of Semmes
and Donaldson’s formal solution of the Cauchy problem by analytic con-
tinuation in time of the Hamilton flow determined by the Cauchy data
(3) [13, 31], and ϕ∞(s, z) is its classical limit. For any (M,ωϕ0

, ϕ̇0),
ϕ∞(s, z) is a subsolution of the HCMA. We conjecture that it is the
solution of the Cauchy problem for the HCMA as long as a solution ex-
ists. The main result of this article (Theorem 1), together with further
results, in the sequels [29, 30] comes close to confirming this conjec-
ture when the Kähler manifold (M,ω) has an (S1)n symmetry with
n = dimM . Examples include toric Kähler manifolds and Abelian va-
rieties. In such cases, the HCMA reduces to the HRMA (homogeneous
real Monge–Ampère equation).

One of our principal goals in this series is to determine the lifespan
of solutions of the Cauchy problem for HCMA, and to determine the
Cauchy data for which the solution has an infinite lifespan (‘geodesic
rays’). In this article, we prove that in the (S1)n-invariant case, the
quantum analytic continuation potential is a smooth solution of the
HRMA until the convex lifespan T cvx

span of the problem (see Definition
2.5). In doing so, we also construct the quantization of the Hamilton-
ian flow and the quantum analytic continuation potential on a general
projective manifold. In the sequel [29], we show that the quantum an-
alytic continuation potential fails to solve the equation even in a weak
sense after the convex lifespan. This leaves open the possibility that
there exist other weak solutions with longer lifespans. But in [30], we
characterize the smooth lifespan of the HCMA. In particular, for the
HRMA, we show that the smooth lifespan T∞

span (see Definition 2.2) of
the Cauchy problem equals the convex lifespan. It follows that the di-
rections of smooth geodesic rays in the (S1)n-symmetric case are those
with infinite convex lifespan. It would be interesting to generalize this
condition to non-symmetric situations.

The Cauchy problem for the HCMA arises from the initial value prob-
lem for geodesics in the infinite-dimensional space

(1) Hω = {ϕ ∈ C∞(M) : ωϕ := ω +
√
−1∂∂̄ϕ > 0}

of Kähler metrics in a fixed Kähler class equipped with the weak Rie-
mannian metric
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(2) gM(ζ, η)ϕ :=

∫

M
ζη ωmϕ , ϕ ∈ Hω, ζ, η ∈ TϕHω

∼= C∞(M).

As is well known, when ϕ is regular enough, the geodesic equation is
equivalent to the homogeneous complex Monge–Ampère (HCMA) equa-
tion on the product of a Riemann surface withM [22, 31, 13]. Thus, the
initial value problem is the problem of defining the exponential map of
Hω. As observed by Semmes and Donaldson, Hω is formally an infinite
dimensional symmetric space of the type GC/G where G is the group
of Hamiltonian diffeomorphisms of (M,ω). Hence its geodesics should
be given by certain 1 PS (one-parameter subgroups) of GC. To a large
extent, the Kähler quantization method of this article is an attempt to
put these formal arguments on a rigorous basis. The quantum analytic
continuation potential gives a rigorous construction of such infinite di-
mensional 1 PS, to the extent possible, as limits of finite dimensional
1 PS. We refer to [1, 9, 11, 12, 13, 22, 24, 25, 31, 36] for further
background.

The article is organized as follows. In Section 2 we describe our ap-
proach to the IVP using an analytic continuation of Toeplitz quanti-
zation. Our main results are stated in Section 3, and in Section 4 we
recall some background. In Section 5 we construct the quantization of
the Hamiltonian flow. The results in this section hold for an arbitrary
projective Kähler manifold. In Section 6 we specialize to the setting of a
toric or Abelian variety where we construct a second quantization of the
Hamiltonian flow and compare the two quantizations and their analytic
continuations. In Section 7 we complete the proof of our main result
(Theorem 1), showing that the analytic continuations of the quantiza-
tions converge to the Legendre transform potential and hence solve the
Cauchy problem until the convex lifespan.

Acknowledgments. This work was supported in part by an NSF Post-
doctoral Research Fellowship (at Johns Hopkins University during the
academic year 2008–2009) and grants DMS-0603850, 0904252. We thank
a referee for comments improving the exposition, and J. Song for joint
work with the second author [34, 35] on convergence results related to
those in the last section of this article. The results of this article were
first presented at BICMR and MSRI in October 2008.

2. A quantum mechanical approach to Monge–Ampère

In this section we define the quantum analytic continuation potential
and state the general conjecture that it solves the IVP for geodesics
in (Hω, gM), to the extent possible, in the case of projective Kähler
manifolds. The definition is inspired by two prior constructions and is
largely aimed at reconciling them.
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The first is a heuristic analytic continuation argument due to Semmes
and Donaldson [31, 13]: Let ϕ̇0 be a smooth function on M , considered

as a tangent vector in Tϕ0
Hω. Let X

ωϕ0

ϕ̇0
≡ Xϕ̇0

denote the Hamiltonian

vector field associated to ϕ̇0 and (M,ωϕ0
) and let exp tXϕ̇0

denote the

associated Hamiltonian flow. Then let exp−
√
−1sXϕ̇0

“be” its analytic
continuation in time to the Hamiltonian flow at “imaginary” time

√
−1s.

Then “define” the classical analytic continuation potential ϕs with initial
data (ϕ0, ϕ̇0) by

(3) ((exp−
√
−1sXϕ̇0

)−1)⋆ω0 − ω0 = −
√
−1∂∂̄ϕs.

Then ϕs “is” the solution of the initial value problem. We use quotes
since there is no obvious reason why exp tXϕ̇0

, a rather arbitrary smooth
Hamiltonian flow, should admit an analytic continuation in t for any
length of time, nor why exp−

√
−1sXϕ̇0

should be invertible in case
such an analytic continuation exists. When the analytic continuation
does exist, e.g., if ωϕ0

and ϕ̇0 are real analytic, then ϕs solves the initial
value problem for the Monge–Ampère equation for s in some (usually)
small time interval [22, 31, 13, 30].

The second construction uses finite dimensional approximations de-
riving from Kähler quantization to solve the endpoint problem for geo-
desics. The idea is to approximate the space Hω by finite-dimensional
spaces of Bergman (or Fubini–Study) metrics induced by holomorphic
embeddings of M into P

N using bases of holomorphic sections s ∈
H0(M,Lk) of high powers of a polarizing line bundle. Following an orig-
inal idea of Yau and Tian, such embeddings were used in [37, 8, 40] to
approximate individual metrics. Phong–Sturm [24, 25] then introduced
a Kähler quantization method to approximate geodesic segments with
fixed endpoints by geodesics in the space of Bergman metrics. They
also used the method to define geodesic rays from test configurations.
Further work on Bergman approximations to geodesics, as well as more
general harmonic maps, is due to Berndtsson, Chen–Sun, Feng, and
others [4, 5, 10, 15, 28, 34, 35].

Our approach to the IVP combines the two as follows: we define the
analytic continuation of exp tXϕ̇0

by quantizing this Hamiltonian flow,
by analytically continuing the quantum flow, and then by taking a kind
of logarithmic classical limit of its Schwartz kernel.

Consider the Hilbert spaces of sections L2(M,LN ), N ∈ N, associ-
ated to powers of a Hermitian line bundle (L, h0) polarizing (M,ωϕ0

),
and the corresponding orthogonal projection operators ΠN ≡ ΠN,ϕ0

:
L2(M,LN ) → H0(M,LN ), onto the Hilbert subspaces H0(M,LN ) of
holomorphic sections. In order to quantize the Hamiltonian flow of Xϕ̇0

on (M,ωϕ0
), we use the method of Toeplitz quantization (see §4.1 for

background and §5 for the main construction). Namely, we consider the
self-adjoint zeroth-order Hermitian Toeplitz operators ΠN ϕ̇0ΠN , where
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ϕ̇0 denotes the operator of multiplication by ϕ̇0. Define the associated
one-parameter subgroups of unitary operators on H0(M,LN )

(4) UN (t) := ΠNe
√
−1tNΠN ϕ̇0ΠNΠN .

A key point is that UN (t) is a semi-classical Fourier integral operator
with complex phase (see [23, 20, 39] for background). For simplicity of
expression, we refer to Fourier integral operators with complex phase as
‘complex Fourier integral operators’.

A key observation is that there is no obstruction to analytically con-
tinuing the quantization: each UN (t) admits an analytic continuation in
time t and induces the imaginary time subgroup

(5) UN (−
√
−1s) : H0(M,LN ) → H0(M,LN ),

with UN (−
√
−1s) ∈ GL(H0(M,LN ),C). The main idea of this arti-

cle is that the analytic continuation of exp tXϕ̇0
can be constructed by

taking a non-standard logarithmic classical limit of the analytic con-
tinuation of its quantization. We do this by considering the Schwartz
kernel UN (−

√
−1s)(z, w) of this operator with respect to the volume

form (Nωϕ0
)n. Set

(6) ϕN (s, z) :=
1

N
logUN (−

√
−1s, z, z).

Definition 2.1. Call ϕ∞(s, z) := liml→∞(supN≥l ϕN )reg(s, z) the
quantum analytic continuation potential, where ureg denotes the upper
semicontinuous regularization of u.

The limit ϕ∞ is constructed out of the quantized potentials ϕN sim-
ilarly to the geodesic rays constructed by Phong–Sturm [25], by us-
ing upper envelopes. Note however that our construction of the ϕN for
the Cauchy problem involves a new idea, since it comes from analytic
continuation of a kernel of a dynamical Toeplitz operator. This limit
is also quite different from the semi-classical limits studied in Toeplitz
quantization, because the analytic continuation in time may destroy the
Toeplitz (i.e., complex Fourier integral operator) structure of the kernel.
Moreover, the logarithmic asymptotics of the Schwartz kernel are quite
unrelated to symbol asymptotics. One may think of it as extracting an
analytic continuation of the ‘phase function’ of the Toeplitz operator;
the ‘symbol’ of the Toeplitz operator is irrelevant.

Denote ST := [0, T ]×R. The IVP for geodesics is equivalent to the fol-
lowing Cauchy problem for the homogeneous complex Monge–Ampère
equation:

(7)
(π⋆2ω +

√
−1∂∂̄ϕ)n+1 = 0 on ST ×M,

ϕ(0, s, · ) = ϕ0( · ), ∂sϕ(0, s, · ) = ϕ̇0( · ) on {0} × R×M.

Definition 2.2. The smooth lifespan (respectively, lifespan) of the
Cauchy problem (7) is the supremum over all T ≥ 0 such that (7)
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admits a smooth (respectively π⋆2ω-psh) solution. We denote the smooth
lifespan (respectively, lifespan) for the Cauchy data (ωϕ0

, ϕ̇0) by T
∞
span ≡

T∞
span(ωϕ0

, ϕ̇0) (respectively, Tspan ≡ Tspan(ωϕ0
, ϕ̇0)).

Definition 2.3. The quantum lifespan TQspan of the Cauchy problem
(7) is the supremum over all T ≥ 0 such that ϕ∞ of Definition 2.1 solves
the HCMA (7).

We pose the following conjecture, which would give a general method
to solve the Cauchy problem for the HCMA to the extent possible.

Conjecture 2.4. The quantum analytic continuation potential ϕ∞
solves the HCMA (7) for as long as it admits a solution. In other words,

TQspan = Tspan.

2.1. HRMA and the convex lifespan. We now specialize to (M,J, ω)
with (S1)n-symmetry, where the HCMA reduces to the HRMA. In this
case, one can linearize the HRMA and define a second (well-known) po-
tential, the Legendre transform potential. We need to recall its definition
for the statement of our main result; we only give the details for toric
Kähler manifolds, but as in [15], the same methods apply to Abelian
varieties.

We recall that a toric Kähler manifold is a Kähler manifold (M,J, ω)
that admits a holomorphic action of a complex torus (C⋆)n with an open
dense orbit, and for which the Kähler form ω is toric, i.e., invariant under
the action of the real torus T := (S1)n. See §4.2 for background. We
assume that the Cauchy data (ωϕ0

, ϕ̇0) is toric, and consider the IVP
for geodesics in the space of torus-invariant Kähler metrics. Over the
open orbit Mo

∼= (C⋆)n ∼= R
n × T, the Kähler form ωϕ0

is exact and
T-invariant, and so we let ψ0 be a smooth strictly convex function on
R
n satisfying

(8) ωϕ0
|Mo

=
√
−1∂∂̄ψ0.

Here [ω] is any integral Kähler class in H2(M,Z). The initial velocity ϕ̇0

is also T-invariant, and so it induces, by restriction to the open orbit, a
smooth bounded function on R

n that we denote by ψ̇0. Analytically, the
IVP is then equivalent to studying the following HRMA for a convex
function ψ on [0, T ]× R

n,
(9)

MAψ = 0, on [0, T ]× R
n, ψ(0, · ) = ψ0( · ), ∂sψ(0, · ) = ψ̇0( · ), on R

n.

Here, MA denotes the real Monge–Ampère operator defined on convex
functions

MA f := d∂x1f ∧ · · · ∧ d∂xn+1f,

as a Borel measure, and equals det∇2f dx1∧· · ·∧dxn+1 on C2 functions
[26].
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Let P := Im∇ψ0 ⊂ R
n. Recall that on a symplectic toric manifold the

Legendre transform f 7→ f⋆ is a bijection between the set of T-invariant
Kähler potentials on the open orbit Mo

∼= (Cn)⋆ of the (complex) torus
action

H(T) := {ψ ∈ C∞(Rn) :
√
−1∂∂̄ψ = ωϕ|Mo

with ϕ ∈ Hω

and Im∇ψ = P},
and the set of symplectic potentials on the moment polytope P ⊂ R

n

(10) LH(T) := {u ∈ C∞(P \ ∂P ) ∩C0(P ) : u = ψ⋆ with ψ ∈ H(T)}.
When the latter space is equipped with the standard L2(P ) metric, this
map is in fact an isometry and transforms the IVP geodesic equation to
the linear equation

(11) ü = 0, u0 = ψ⋆0 , u̇0 = −ψ̇0 ◦ (∇ψ0)
−1,

whose solution is given by us := u0 + su̇0.

Definition 2.5. Define the convex lifespan of the Cauchy problem
(9) as

T cvx
span(ψ0, ψ̇0) := sup { s : ψ⋆0 − sψ̇0 ◦ (∇ψ0)

−1 is convex on P }.
We note that T cvx

span is independent of the choice of ψ0 satisfying (8).
At least as long as s < T cvx

span, i.e., us is strictly convex and hence
belongs to LH(T), it is well known that the IVP for geodesics has an
explicit solution,

(12) ψ(s, x) = ψs(x) := (u0 + su̇0)
⋆(x), s ∈ [0, Tspan), x ∈ R

n.

For a review of this fact and references, we refer to [29]. We call ψ the
Legendre transform potential. What is less transparent is what happens
when s > T cvx

span. Firstly, it should be pointed out that, as defined in
(12), ψs is finite for each x ∈ R

n. Hence, it is necessarily Lipschitz.
Moreover, as we show in [29], ψs is strictly convex, but not everywhere
differentiable.

Denote by H0,1(T) the closure of H(T) with respect to the C0,1-
norm (this space contains also convex functions that are not strictly
convex). The corresponding space of ω-psh (plurisubharmonic) functions

will be denoted by H0,1
ω . According to the previous paragraph, one has

ψs ∈ H0,1(T) for all s > 0. It therefore makes sense to consider ψ as an
infinite ray in the interior of H0,1(T).

3. Statement of results

The main result in this article is that the sequence of level N quantum
analytic continuation potentials ϕN defined by (6) converges uniformly
to the Legendre transform potential ψ for all time, and therefore the
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quantum analytic continuation potential ϕ∞ of Definition 2.1 solves the
HCMA for T < T cvx

span.

Theorem 1. Let ϕ := ψ−ψ0 be the one-parameter family of Lipschitz
continuous ω-psh potentials associated to the Legendre transform poten-
tial ψ given by (12), and let ϕN be the quantum analytic continuation
potentials given by (6). Then as N tends to infinity, ϕN converges to ϕ
in C2([0, T ] ×M) for T < T cvx

span, and in C0([0, T ] ×M) for T ≥ T cvx
span.

In particular, the quantum analytic continuation potential coincides with
the Legendre transform potential, i.e., ϕ∞ = ϕ ∈ H0,1

ω .

In order to prove Theorem 1, we first prove in Proposition 5.2 that
UN (t, z, w) is a Toeplitz Fourier integral operator quantizing the Hamil-
ton flow of ϕ̇0 in the sense of Boutet de Monvel–Guillemin [6]. Roughly
speaking, this means that the Schwartz kernel UN (t, z, w) has the kind
of asymptotic structure that is similar to the Bergman kernel but quan-
tizes a Hamiltonian flow rather than the identity map. This result holds
on any projective Kähler manifold and does not make use of symme-
try. The proof is based on the Toeplitz calculus developed by Boutet de
Monvel–Sjöstrand [7] and Boutet de Monvel–Guillemin [6].

However, its analytic continuation UN (−
√
−1s, z, z) may lie outside

the class of complex Fourier integral operators and, to our knowledge,
has not previously been studied. At this time, we have only succeeded in
understanding its structure in the (S1)n-invariant setting. A key step in
the analysis is to construct an approximation to UN (t, z, w) in a second
way that we denote by VN (t, z, w) (see Definition 6.1). This second con-
struction uses the symplectic potential and is only well-defined in the
(S1)n-invariant setting. In Proposition 6.5, we show that the quantum
analytic potential may be obtained from the analytic continuations of
the simpler kernels VN (t, z, w).

Once this crucial reduction is made, the logarithmic asymptotics
of UN (−

√
−1s, z, z) are reduced to the analysis of lattice point sums.

The results of [34, 41] then directly imply the C2 convergence up to
T < T cvx

span. Finally, we prove the global C0 convergence to the Legendre
transform subsolution for all times.

3.1. Prior results. While the Dirichlet problem for the HRMA has
been extensively studied (see [26, 19] and references therein), the Cauchy
problem has not been systematically investigated. In [2], uniqueness
of C3 solutions of the Cauchy problem is proved for the more gen-
eral HCMA. In [16, 17], a sufficient condition on the Cauchy data is
given for existence of a smooth short-time solution of HRMA depend-
ing on the Cauchy hypersurface, and an explicit formula is given. An
explicit formula is also derived in [38] for smooth solutions of the 2-
dimensional HRMA. For our Cauchy hypersurface, the existence of an
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explicit smooth short-time solution is not an issue, since it follows in-
dependently from the Legendre duality argument.

3.2. Further results. In the sequel, we prove that the quantum an-
alytic continuation potential ϕ ceases to solve the HCMA (7) for any
T > T cvx

span [29]. But at the same time, it does solve the equation on a
dense set, whose complement has zero Lebesgue measure. This result,
together with Theorem 1, comes close to settling Conjecture 2.4 in the
case of toric or Abelian varieties. It leaves open the possibility that there
exists an alternative method to solve the HRMA. That possibility is in-
vestigated in [30], where it is shown that the quantization produces the
unique solution whenever a weak C1 solution exists. It follows that the
directions of C1 geodesic rays in the (S1)n-symmetric case are charac-
terized as those with infinite convex lifespan, i.e., those for which u̇0
is smooth and convex. In addition, we introduce there the notion of a
leafwise subsolution, and show that the Legendre transform is an ‘op-
timal’ subsolution in this sense. The results and methods of this series
also suggest a general conjecture on the lifespan of solutions on general
Riemann surfaces, which we plan to discuss elsewhere.

4. Background

In this section, we review the definitions of Toeplitz operators in the
sense of Boutet de Monvel–Guillemin [6] and how they are related to
harmonic analysis on toric varieties in the (S1)n-invariant case [32]. This
material is crucial for the simplification of the analysis of UN (−is, z, w)
to that of the kernel VN (−is, z, w) in Definition 6.1. We do not expect
prior familiarity with the Toeplitz operators of [6].

4.1. Kähler quantization and Toeplitz operators. Our setting con-
sists of a polarized Kähler manifold (M,ω) of complex dimension n with
[ω] ∈ H2(M,Z). Under this integrality condition, there exists a positive
Hermitian holomorphic line bundle (L, h) →M .

Instead of dealing with sequences of Hilbert spaces, observables, and
unitary operators onM , it is convenient to lift them to the circle bundle
X = {λ ∈ L⋆ : ‖λ‖h−1 = 1}, where L⋆ is the dual line bundle to L, and
where h−1 is the norm on L⋆ dual to h. Let us now describe the lifted
objects.

Let ρ be the function ||λ||h−1−1 on L⋆. Associated to X is the contact
form α = −

√
−1∂ρ|X =

√
−1∂̄ρ|X and the volume form (dα)n ∧ α =

π⋆ωn∧α.We let rθw = e
√
−1θw, w ∈ X, denote the S1 action on X, and

denote its infinitesimal generator by 1√
−1

∂
∂θ . Holomorphic sections then

lift to elements of the Hardy space H2(X) ⊂ L2(X) of square-integrable
CR functions on X, i.e., functions that are annihilated by the Cauchy-
Riemann operator ∂̄b := π0,1◦d (where TX⊗RC = T 1,0X⊕T 0,1X⊕C

∂
∂θ
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and π0,1 is defined as the projection onto the second factor) and are L2

with respect to the inner product

(13) 〈F1, F2〉 =
1

2πV

∫

X
F1F2 (dα)

n ∧ α, F1, F2 ∈ L2(X).

The S1 action on X gives a representation of S1 on L2(X) with irre-
ducible pieces denoted L2

N (X). We thus have the Fourier decomposition,

(14) L2(X) =
⊕

N∈Z L
2
N (X).

We denote by D the operator on L2(X) with spectrum Z and whose

N -th eigenspace L2
N (X) consists of functions transforming by e

√
−1Nθ

under the S1 action rθ on X. Thus,

(15) D =
1√
−1

∂

∂θ
.

Since D commutes with ∂̄b, we have H2(X) =
⊕∞

N=0H
2
N (X), where

H2
N (X) := {F ∈ H2(X) : F (rθw) = e

√
−1NθF (w)} = L2

N (X) ∩ ker ∂̄b.

A section sN of LN determines an equivariant function ŝN on L⋆ by
the rule

(16) ŝN (λ) =
(
λ⊗N , sN (z)

)
, λ ∈ L⋆z, z ∈M,

where λ⊗N = λ ⊗ · · · ⊗ λ. We henceforth restrict ŝ to X and then the
equivariance property takes the form ŝN (rθw) = eiNθŝN (w). Up to a
factor of Nn the map s 7→ ŝ is a unitary equivalence betweenH0(M,LN )
and H2

N (X).
The Szegő kernel of degree N is defined as the Schwartz kernel of the

orthogonal projection Π̃N : L2(X) → H2
N (X), given by

(17) Π̃NF (w) =
1

2πV

∫

X
Π̃N (w, v)F (v) (dα)

n ∧ α (v), F ∈ L2(X).

The full Szegő kernel is then Π̃ =
∑∞

N=1 Π̃N . To simplify notation, we
will from now on omit the tilde from the lifted projection operators on
X and simply write Π,ΠN . Note also that ΠN depends on h, although
we omit that from the notation.

It was proved by Boutet de Monvel and Sjostrand [7] (see also the
Appendix to [6]) that Π is a complex Fourier integral operator (FIO)
of positive type, Π ∈ I0c (X × X, C), associated to a positive canonical
relation C. For definitions and notation concerning complex FIO, we
refer to [23, 7, 6]. The real points of C form the diagonal ∆Σ×Σ in the
square of the symplectic cone

(18) Σ :=
{(
w, rα(w)

)
: r > 0, w ∈ X

}
⊂ T ⋆X,
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where α is the connection, or contact, form [6, appendix, lemma 4.5].
Let ωT ⋆X denote the canonical symplectic form on T ⋆X, and let

(19) ωΣ := ωT ⋆X |Σ
denote its restriction to Σ, a symplectic form on Σ.

Finally, recall that a Toeplitz operator is an operator of the form
ΠAΠ whereA is a pseudo-differential operator, and a (complex) Toeplitz
Fourier integral operator is one where A is allowed to be a (complex)
Fourier integral operator. When A is a pseudo-differential operator we
denote by sA its full symbol, and by σA its principal symbol. The sym-
bol of ΠAΠ is given by σA|Σ [6]. If B is a (complex) Fourier integral
operator, we denote its symbol by σB.

4.2. Toric Kähler manifolds. We review some geometry and analysis
on toric Kähler manifolds. Fuller exposition can be found in [18, 28, 34,
32] and references therein.

We will work with coordinates on the open dense orbit of the complex
torus,

(20) z = ex/2+
√
−1θ, (x, θ) ∈ R

n × (S1)n ∼=Mo
∼= (C⋆)n.

Let ω|Mo
=

√
−1∂∂̄ψ. The work of Atiyah and Guillemin-Sternberg

implies that the image of the moment map ∇ψ is a convex polytope
P ⊂ R

n and depends only on [ω]. We further assume that this is a
lattice polytope. Being a lattice Delzant polytope means that: (i) at each
vertex meet exactly n edges, (ii) each edge is the set of points {p+tup,j :
t ≥ 0} with p ∈ Z

n a vertex, up,j ∈ Z
n and span{up,1, . . . , up,n} = Z

n.

Equivalently, there exist outward pointing normal vectors {vj}dj=1 ⊂ Z
n,

with vj normal to the j-th (n − 1)-dimensional face of P (also called
a facet), that are primitive (i.e., their components have no common
factor), and P may be written as

P = {y ∈ R
n : lj(y) := 〈y, vj〉 − λj ≥ 0, j = 1, . . . , d},

with λj = 〈p, vj〉 ∈ Z with p any vertex on the j-th facet, and y the
coordinate on R

n. Note that the main results in this article extend to
orbifold toric varieties, since we only make essential use of (i).

The Kähler form ω is the curvature (1, 1) form of a line bundle L→
M . A basis for the space H0(M,L) of holomorphic sections is given
by the monomials χα(z) = zα with α ∈ P . More generally, H0(M,L)
generates the coordinate ring ⊕∞

N=1H
0(M,LN ), and each lattice point

γ in NP corresponds to a section χγ of LN →M defined by

(21) χγ = χβ1 ⊗ · · · ⊗ χβN ,

where β1, . . . , βN ∈ P such that γ = β1 + · · ·+ βN (see [32]).
We now consider the homogenization (lift to X) of toric Kähler man-

ifolds. The lattice points in NP for each N ∈ N correspond in X to the
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‘homogenized’ lattice points N̂P ⊂ Z
n+1 of the form

α̂N = α̂ := (α1, . . . , αn, Np− |α|), α = (α1, . . . , αn) ∈ NP ∩ Z
n,

where p = maxβ∈P∩Zn |β|, and |α| := ∑
αi. For simplicity, we generally

assume henceforth that p = 1. We also define the cone ΛP :=
⋃∞
N=1 N̂P .

Rays Nα̂ in this cone define the semiclassical limit.
The monomials χα lift to the CR monomials χ̂α̂(w) ≡ χ̂α(w), w ∈ X

(see (16)), for α̂ ∈ ΛP . They are joint eigenfunctions of a quantized
torus action on X. Let ξj := ∂

∂θj
, 1 ≤ j ≤ n, denote the Hamiltonian

vector fields generating the T action on M . The horizontal lifts ξhj of
the Hamiltonian vector fields ξj are defined by

(22) π∗ξ
h
j = ξj , α(ξhj ) = 0, 1 ≤ j ≤ n.

Let ξ∗j ∈ R
n denote the element of the Lie algebra of T which acts as ξj

on M . We then define the vector fields Ξj by
(23)

Ξj := ξhj +2π
√
−1〈∇ψ◦π, ξ∗j 〉∂θ = ξhj +2π

√
−1(∇ψ◦π)j ∂θ, 1 ≤ j ≤ n.

Finally, we define the differential operators (lifted action operators),

(24) Îj := Ξj , j = 1, . . . , n, În+1 := −
√
−1∂θ −

∑n
j=1 Ξj.

The monomials χ̂α̂ are the joint CR eigenfunctions of (Î1, . . . , În+1) for

the joint eigenvalues α̂ ∈ ΛP , i.e., Îjχ̂α̂ = α̂jχ̂α̂, α̂ ∈ ΛP , ∂̄bχ̂α̂ =
0, j = 1, . . . , n + 1. For simplicity of notation, we denote by DÎ the
vector of first-order operators

(25) DÎ := −2π
√
−1

(
Î1, . . . , În

)
,

and use the same notation for the quantized torus action on H0(M,LN )
and on X.

Although we are primarily concerned with holomorphic sections over
M and their lifts as CR holomorphic functions on X, we need to con-
sider non-CR holomorphic eigenfunctions of the action operators as well.

We thus need to consider the anti-Hardy space H2
(X) of anti-CR func-

tions, i.e., solutions of ∂bf = 0. A Hilbert basis is given by the complex-
conjugate monomials χ̂α̂. Products of eigenfunctions are also eigenfunc-
tions. Hence, the orthonormal mixed monomials χ̂α̂,β̂(x) = χ̂α̂χ̂β̂ are

eigenfunctions of eigenvalue α̂ − β̂ for {Î1, . . . , În+1}. It can be shown
[32] that

(26)

L2(X) =
⊕

α̂,β̂∈ΛP

Cχ̂α̂,β̂, and Spec|L2(X) (Î1, . . . , În+1)

= ΛP − ΛP = Z
n+1.
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4.3. Symplectic potential and convex analysis. Here we define
some basic notation related to convex functions. For general background
on Legendre duality and convexity we refer the reader to [27].

A vector v ∈ (Rn)⋆ is said to be a subgradient of a function f at a
point x if f(z) ≥ f(x) + 〈v, z − x〉 for all z. The set of all subgradients
of f at x is called the subdifferential of f at x, denoted ∂f(x). The
conjugate of a continuous function f = f(x) on R

n is defined by f⋆(y) :=
supx∈Rn

(
〈x, y〉 − f(x)

)
. For simplicity, we will refer to f⋆ sometimes as

the Legendre dual, or just dual, of f . An open-orbit Kähler potential
ψ ∈ H(T) is a smooth strictly convex function on R

n in logarithmic
coordinates. Therefore its gradient ∇ψ is one-to-one onto P = Im∇ψ
and one has the following explicit expression for its Legendre dual,

(27) u(y) = ψ⋆(y) = 〈y, (∇ψ)−1(y)〉 − ψ ◦ (∇ψ)−1(y),

which is a smooth strictly convex function on P , satisfying

(28) ∇u(y) = (∇ψ)−1(y).

Following Guillemin [18], the function u is called the symplectic poten-
tial of

√
−1∂∂̄ψ. The space of all symplectic potentials is denoted by

LH(T). Put

(29) uG :=
∑d

k=1 lk log lk.

A result of Guillemin [18] states that for any symplectic potential u
the difference u − uG is a smooth function on P (that is, up to the
boundary). In other words, (10) may be rewritten as (note here that P
denotes the closed polytope)

(30) LH(T) = {u ∈ C∞(P \ ∂P ) : u = uG + F, with F ∈ C∞(P )}.

5. Quantizing the Hamiltonian flow of ϕ̇0

In this section (M,ω) is an arbitrary projective Kähler manifold. The
first step in defining the analytic continuation of exp tXϕ̇0

is to quan-
tize this Hamiltonian flow. We use the method of Toeplitz quantization
[6, 39]. We may state the result either in terms of one homogeneous
Fourier integral operator on L2(X) or as a semi-classical Fourier inte-
gral operator on each of the spaces L2

N (X) in the decomposition (14).
To quantize the classical Hamiltonian, we first quantize the Hamil-

tonian as the zeroth order Toeplitz operator Πϕ̇0Π on H2(X).

Definition 5.1. Define the one-parameter subgroup U(t) of unitary
operators on L2(X) by (cf. (15))

U(t) = Πe
√
−1tΠDϕ̇0ΠΠ.

Its Fourier components are given by UN (t) = ΠNe
√
−1tNΠN ϕ̇0ΠNΠN .
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It should be noted that the quantization we use is not unique, i.e.,
there exists more than one unitary group of Toeplitz Fourier integral
operators with underlying canonical flow equal to the Hamiltonian flow

of ϕ̇0. Indeed, for any unitary pseudo-differential operator V = e
√
−1A

obtained by exponentiating a self-adjoint pseudo-differential operator
A of degree zero, and any quantization U(t) of exp tXϕ̇0

, the operator
V ∗U(t)V is another quantization with the same principal symbol. This
lack of uniqueness will be seen below in the fact that we have more than
one version of the quantization. They are closely related and differ by
lower order terms.

We note that U(t) is not quite the same as Πe
√
−1tDϕ̇0Π, which is

manifestly the composition of complex Fourier integral operators. How-

ever, ΠN ϕ̇0ΠN is the quantization of ϕ̇0. We compose e
√
−1tNΠN ϕ̇0ΠN

with ΠN to make the operator preserve H0(M,LN ). Note that U(t) =

Πe
√
−1tΠDϕ̇0Π = e

√
−1tΠDϕ̇0ΠΠ.

We now verify that U(t) is a complex Fourier integral operator with
underlying canonical relation equal to the graph of the Hamiltonian flow
at time t of rϕ̇0 on (Σ, ωΣ), where r and (Σ, ωΣ) are defined in (18)–
(19). This is the content of saying that UN (t) is a quantization of the
Hamiltonian flow of ϕ̇0 on (M,ωϕ0

).

Proposition 5.2. U(t) is a group of complex Toeplitz Fourier inte-
gral operators on L2(X) whose underlying canonical relation is the graph
of the time t Hamiltonian flow of rϕ̇0 on the symplectic cone (Σ, ωΣ).

Proof. We first observe that U(t) is characterized as the unique solu-
tion of the ordinary differential equation

d

dt
U(t) =

(√
−1ΠDϕ̇0Π

)
U(t), U(0) = Π.

We use the following result of Boutet de Monvel–Guillemin.

Lemma 5.3. [6, proposition 2.13] Let T be a Toeplitz operator on Σ
of order p. Then there exists a pseudo-differential operator Q of order
p on X such that [Q,Π] = 0 and T = ΠQΠ.

We apply Lemma 5.3 to T = Πϕ̇0Π. Thus, there exists a zeroth order
pseudo-differential operator Q on X with σQ|Σ = ϕ̇0|Σ (see [6], theorem
2.9 and proposition 2.13, for background). Note that here we identify
ϕ̇0 with its lift to Σ ⊂ T ⋆X.

Since Πe
√
−1tΠDQΠΠ and Πe

√
−1tDQΠ satisfy the same differential

equation
d

dt
W (t) =

√
−1ΠDQΠW (t)

and have the same initial condition, we have U(t) = Πe
√
−1tΠDQΠΠ =

Πe
√
−1tDQΠ. Here, we use that Π2 = Π, hence ΠQ = ΠQΠ, and that Π

and D commute.
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Now e
√
−1tDQ is the exponential of a real principal type pseudo-

differential operator of order one on L2(X) and hence is a unitary group
of Fourier integral operators on L2(X) quantizing the Hamiltonian flow
of σDQ on T ⋆X. Since Π is a complex Fourier integral operator whose
real canonical relation is the diagonal in Σ×Σ [7], U(t) is also a complex
Fourier integral operator. To complete the proof of the proposition, it
suffices to prove that the canonical relation of U(t) is the graph of the
time t Hamiltonian flow of rϕ̇0 on (Σ, ωΣ).

Let Ψt denote the time t Hamiltonian flow of σDσQ on (T ⋆X,ωT ⋆X).
By the composition theorem for complex Fourier integral operators [23],

the operator Πe
√
−1tDQΠ is a complex Fourier integral operator whose

canonical relation is the set-theoretic composition

(31)
{(v, v) : v ∈ Σ} ◦ {(p,Ψt(p) : p ∈ T ∗X} ◦ {(q, q) : q ∈ Σ}

= {(m,Ψt(m)) : m ∈ Σ} ∩Σ× Σ.

Here we make use of the fact that the symbol of Π is nowhere vanishing

on Σ and that of e
√
−1tDQ is nowhere vanishing on the graph of Ψt. It

only remains to equate (31) with the graph of the time t Hamiltonian
flow of rϕ̇0 on (Σ, ωΣ).

Since [Π, Q] = 0, we have Πe
√
−1tDQ = Πe

√
−1tDQΠ. This implies that

the canonical relations of both sides in this equation must be equal. The
canonical relation of the left hand side is

{(v, v) : v ∈ Σ} ◦ {(p,Ψt(p) : p ∈ T ∗X} = {(q,Ψt(q) : q ∈ Σ}.

Equating this to (31), it follows that Ψt preserves Σ. Hence, the Hamil-
tonian vector field XT ∗X

σDσQ
of σDσQ with respect to ωT ∗X is tangent to

the symplectic sub-cone Σ.
We note that the Clairaut integral σD(x, ξ) = 〈ξ, ∂∂θ 〉 is the symbol

of D. Since α
(
∂
∂θ

)
= 1, it follows from (18) that σD|Σ = r. Recall also

that σQ|Σ = ϕ̇0|Σ. Thus, to complete the proof, it remains to show that
the restriction of Ψt to Σ is the Hamiltonian flow of

(32) σDσQ|Σ = rϕ̇0

on (Σ, ωΣ). Let X
Σ
rϕ̇0

be the Hamiltonian vector field of σDσQ|Σ with
respect to ωΣ. At a point of Σ, we have

ωT ∗X(X
T ∗X
σDσQ , · ) = d(σDσQ), ωΣ(X

Σ
rϕ̇0

, · ) = d(rϕ̇0).

Evaluating these 1-forms on all tangent vectors Y ∈ TΣ, and using
equations (19), (32), and that XσDσQ is tangent to Σ, we conclude that

XΣ
rϕ̇0

= XT ∗X
σDσQ |Σ. q.e.d.
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5.1. The level N quantum analytic continuation potentials in

the toric setting. In this subsection we specialize the construction
from a general projective manifold to a toric manifold. Recall from §4.2
that the toric monomials {χα(z) := zα}α∈NP∩Zn are an orthogonal basis

of H0(M,LN ) with respect to any toric-induced Hilbert space structure
on this vector space. Hence any such toric inner product is completely
determined by the L2 norms (up to Nn/V ), or “norming constants,” of
the toric monomials—

(33) QhN (α) := ||χα||2hN =

∫

(C∗)n
|zα|2e−Nψωnh .

Here we let h = e−ψ with ψ ∈ H(T), and put PhN (α, z) :=
|χα(z)|2

hN

||χα||2
hN

.

We then consider the one-parameter subgroup U(t) given by Defini-
tion 5.1 on a toric manifold. The first observation is that since ϕ̇0 is
torus-invariant, the multiplication operator ϕ̇0 preserves the block de-
composition (14). Therefore the toric monomials diagonalize the Toeplitz
operators ΠN ϕ̇0ΠN , that is, ΠN ϕ̇0ΠNχα = µN,αχα, for some real num-
bers {µN,α}α∈NP∩Zn . Since {χα}α∈NP∩Zn are orthogonal with respect

to a toric inner product, we have µN,α = 1
Q

hN
0

(α)

∫
M ϕ̇0|χα|2hN

0

ωnϕ0
. Hence

we have the following expression for the level N quantum analytic con-
tinuation potential induced by U(

√
−1s):

(34)

ϕN (s, z) = N−1 logUN (−
√
−1s, z, z)

= N−1 log
∑

α∈NP∩Zn

esNµN,α

|χα(z)|2hN
0

QhN
0
(α)

.

6. Simplification of UN (−
√
−1s, z, z) on a toric manifold

We would like to determine the asymptotics of the potentials ϕN de-
fined in (34) on a toric variety. The main problem is to determine the
eigenvalues µN,α with sufficient precision so that we can obtain asymp-
totics of lattice sums. In principle, one could evaluate the eigenvalues
directly by pushing forward the eigenvalue integral to P ,

µN,α =

∫

P
−u̇0(y)eN(u0(y)+〈 α

N
−y,∇u0(y)〉)dy/QhN

0
(α).

Integrals similar to this one are calculated asymptotically in [33] for
M = CP

1 and P = [0, 1]. However, the analysis becomes difficult and
laborious near the boundary, and for higher dimensional M,P such in-
tegrals were avoided in [34] in favor of torus averages. In this section, we
make a substantial simplification by showing that UN (t, z, w) is asymp-
totically the same as an operator with kernel VN (t, z, w) (Definition
6.1) that makes use of the quantum integrability of the toric setting,
in particular the operators of (25). These results will then be applied
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in Section 7 to complete the proof of Theorem 1. We remark that the
situation here is similar to that for the Bergman kernel itself: if one only
used lattice point sums, it would not be clear why there exists a nice
expansion around the divisor at infinity, i.e., around lattice points near
the boundary. Yet we know that one does exist using the parametrix
formula. In a generalized sense, this is how the Toeplitz calculus gets
around the complications of the boundary.

6.1. Simplification of UN (t, z, w) to VN (t, z, w). In this section, we
define the simpler kernel VN (t, x, y), whose eigenvalues are special values
of the velocity of the symplectic potential. In effect, it is an explicit
construction of the operator Q in Lemma 5.3, at least to leading order
(which is sufficient for our purposes).

Definition 6.1. Let

V (t) = Πe−
√
−1tDu̇0(DÎ

D
−1)Π

be the one-parameter subgroup of unitary operators on L2(X), with com-

ponents VN (t) = ΠNe
−
√
−1tNu̇0(N−1D

Î
)ΠN .

This is a simpler kernel because its exponent is directly defined in
terms of the commuting operators DÎ and the symplectic potential.
Below we use it to define a new sequence of potentials ϕ̃N . In order to
relate them to the quantum analytic continuation potentials, ϕN the
following fact is crucial.

Proposition 6.2. The sequence of unitary operators {VN (t)}N≥1 is
a semi-classical complex Toeplitz Fourier integral operator quantizing
the time t Hamiltonian flow of ϕ̇0 on (M,ωϕ0

).

Proof. It is convenient to lift to the circle bundle X and use the full
spectral theory of the action operators of §4.2. Observe that
Πu̇0(DÎD

−1)Π is defined by the Spectral Theorem to be the operator
on

H2
>0(X) :=

⊕

N∈N
H2
N (X),

whose eigenfunctions are the same as the joint eigenfunctions of the
quantum torus action, i.e., the lifted monomials {χ̂α̂ : α̂ ∈ ΛP}, and
whose corresponding eigenvalues are

{
u̇0(α/N) : N ∈ N, α ∈ NP ∩

Z
n
}
. However, in order to apply classical results concerning operators

of the form e
√
−1tP where P is a real first-order pseudo-differential oper-

ator of principal type, we need to replace u̇0(DÎD
−1) with an operator

defined on all of L2(X). Yet, since eventually we pre- and post-compose
with Π, we are ultimately only interested in the restriction to H2

>0(X)
of the extended operator. Hence we would like the extended operator
to coincide with u̇0(DÎD

−1) on H2
>0(X). This is the purpose of the

following lemma.
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Lemma 6.3. There exists a pseudo-differential operator R of order
zero on L2(X) such that

(35) R|H2
>0

(X) = u̇0(DÎD
−1)|H2

>0
(X).

Proof. There are two obstacles to defining u̇0(DÎD
−1) on all of L2(X).

First, according to (26) we need to define u̇0 on R
n, while originally it is

only defined on P . Second, the operator D−1 is only defined on the or-
thocomplement of the invariant functions on X for the S1 action. The
non-constant CR functions are orthogonal to the invariant functions,
so Πu̇0(DÎD

−1)Π is well-defined on H2
>0(X). But we wish to extend

u̇0(DÎD
−1) outside the Hardy space.

To deal with the first point, note that since u̇0 is smooth up to the
boundary of P , we may assume it is defined in some neighborhood of
P in R

n, and then multiply it by a smooth cutoff function η equal to 1
in a neighborhood of P and with compact support in R

n. Then ηu̇0 is a
smooth function of compact support in R

n, and therefore ηu̇0(DÎD
−1) ≡

(ηu̇0)(DÎD
−1) is well-defined on (kerD)⊥ ⊂ L2(X). As noted above,

H2
>0(X) ⊂ (kerD)⊥, and since SpecDÎD

−1|H2
>0

(X) ⊂ P, we have

(36) ηu̇0(DÎD
−1)|H2

>0
(X) = u̇0(DÎD

−1)|H2
>0

(X).

We now turn to the second point. For any ǫ > 0, we denote by
γǫ = γǫ(σÎ , σD) ∈ C∞(T ⋆X \ {0}) a homogeneous frequency cut-off,
equal to 1 in an open conic neighborhood of the set {σD = 0}:

(37)
{
(x, ξ) ∈ T ⋆X \ {0} : |σD| < ǫ

(
|σD

Î
|2 + σ2D

)1/2}
,

and vanishing on {(x, ξ) ∈ T ⋆X \ {0} : |σD| > 2ǫ
(
|σD

Î
|2 + σ2

D

)1/2}
(note that n + 1 of the vertical directions in T ⋆X are not involved).
Let β ∈ Z

n+1, and let χβ ∈ L2(X) be the associated monomial. Denote
by γǫ(DÎ ,D) the Fourier multiplier associated to γǫ, namely such that

γǫ(DÎ ,D)χβ(w) = γǫ(β)χβ(w). This defines γǫ(DÎ ,D) on L2(X) (see

(26)). Let I denote the identity operator on L2(X). Then I− γǫ(DÎ ,D)
is a pseudo-differential operator with kerD ⊂ ker(I − γǫ(DÎ ,D)), and

Rǫ := ηu̇0(DÎD
−1)(I − γǫ(DÎ ,D)) is a pseudo-differential operator of

order zero, defined on all of L2(X).
To complete the proof of the lemma, we will prove that (35) holds for

R := Rǫ, for any ǫ > 0 small enough. Let α̂ ∈ ΛP with χα ∈ H0(M,LN ),
α ∈ NP ∩ Z

n. We claim that for small enough ǫ > 0 in (37), we have
γǫ(DÎ ,D)χ̂α̂(w) = γǫ(α,N)χ̂α̂(w) = 0. For the second equality, note
that for (w, rα(w)) ∈ Σ, we have γǫ(w, rα(w)) = 0 unless

(38) r ≤ 2ǫr(|∇ψ0 ◦ π(w)|2 + 1)1/2,
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where π : X → M is the bundle projection map. For r > 0, equation
(38) cannot hold if we take ǫ such that

(39) 0 < ǫ < ǫ0 :=
(
sup
y∈P

|y|2 + 1
)−1

/2,

since ∇ψ0 ◦ π(w) ∈ P (and P is a bounded set in R
n). This proves the

claim, for ǫ ∈ (0, ǫ0) (note that in the proof of the last assertion, instead
of working in ‘homogeneous’ notation, we could have replaced r > 0 by
N ∈ N and r∇ψ0 ◦π(w) by α ∈ NP ). It follows that I = I− γǫ(DÎ ,D),

on H2
>0(X). Together with (36), this proves that for each ǫ ∈ (0, ǫ0),

u̇0(DÎD
−1)Π = ηu̇0(DÎD

−1)(I − γǫ(DÎ ,D))Π, as desired. q.e.d.

The following lemma is the concrete realization of Lemma 5.3 in our
setting.

Lemma 6.4. Let ǫ ∈ (0, ǫ0) and R := ηu̇0(DÎD
−1)(I − γǫ(DÎ ,D)),

with ǫ0 given by (39). The operator ΠRΠ is a Toeplitz operator of order
zero and its symbol is given by

σR(w, ξ) = u̇0 ◦ ∇ψ0 ◦ π(w) = −ϕ̇0 ◦ π(w), (w, ξ) ∈ Σ,

where π : X →M is the projection onto the base.

Proof. As noted in the proof of Lemma 6.3, the symbol of I−γǫ(DÎ ,D)
equals one on Σ. In addition, when restricting to Σ, the operator
u̇0(DÎD

−1) has a well-defined symbol, equal to the symbol of

ηu̇0(DÎD
−1), restricted to Σ. On Σ, the symbols of the vector fields

ξhj (see (22)) are the Clairaut integrals σξhj
(w, rα(w)) = αw(ξ

h
j ) = 0.

Hence, on Σ, the symbol of Îj , 1 ≤ j ≤ n, is that of the second term in

(23): 2π
√
−1r(∇ψ0 ◦ π)j . Thus, by (25) σD

Î
(w, rα(w)) = r∇ψ0 ◦ π(w).

Since σD−1(w, rα(w)) = 1/r (see the proof of Proposition 5.2), it fol-
lows that the symbol of u̇0(DÎD

−1), restricted to Σ, is u̇0(π
∗∇ψ0) and

thus equals the stated Hamiltonian σR. It is the lift of the Hamiltonian
H(z) = u̇0 ◦ ∇ψ0(z) to the cone Σ = Σh0 . q.e.d.

We may now conclude the proof of Proposition 6.2. Indeed, from

Lemma 6.3 we have that V (t) = Πe−
√
−1tDRΠ. Since DR is a real

principal type pseudo-differential operator of order 1, it follows that

e
√
−1tDR is a unitary Fourier integral operator whose canonical relation

is given by

C = {((w, ξ), (v, ζ)) : (w, ξ), (v, ζ) ∈ T ⋆X \ {0}, (w, ξ)
= exp tXT ⋆X

σDR
(v, ζ)}

(see, e.g., [14], theorem 1.1, or [20], theorem 29.1.1; note that ellipticity
is not essential). It follows then from Lemma 6.4 that the canonical
relation of V (t) is given by the time t flow-out of Σ under the flow of
the Hamiltonian −σDR = rπ∗ϕ̇0 with respect to (T ⋆X,ωT ⋆x). As shown
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in the proof of Proposition 5.2, this coincides with the time t flow of
Σ under the flow of the same Hamiltonian with respect to (Σ, ωΣ).
Finally, the corresponding statement for the operators VN (t) asserted
in the proposition follows by ‘de-homogenization’, since when restricting
to H0(M,LN ), N ∈ N, the operator D simply acts by multiplication by
N , and so we may replace r by the constant N , concluding the proof.
q.e.d.

6.2. The sequence of potentials ϕ̃N (s, z). We now introduce the
level N quantum analytic continuation potential induced by V (

√
−1s).

Put:

(40)

ϕ̃N (s, z) :=
1

N
log VN (−

√
−1s, z, z)

=
1

N
log

∑

α∈NP∩Zn

e−sNu̇0(α/N)|χα(z)|2hN
0

/QhN
0
(α).

These potentials are simpler than the ϕN (s, z) defined in (34) in terms
of UN , since the eigenvalues u̇(α/N) are explicitly given in terms of the
symplectic potential. The following proposition shows that the limit
quantum analytic potential can be defined in terms of them:

Proposition 6.5. There exists a constant C > 0 independent of N
or z such that

|ϕ̃N (s, z) − ϕN (s, z)| ≤ Cs logN/N.

Proof. The first step is to prove:

Lemma 6.6. We have µN,α = −u̇0(α/N) +O(1/N). More precisely,
there exists C > 0 independent of N or α ∈ NP such that

|µN,α + u̇0(α/N)| ≤ C/N.

By Lemma 6.4, ΠN ϕ̇0ΠN and −ΠN u̇0(DÎD
−1)ΠN are zeroth order

Toeplitz operators with the same principal symbols. Hence they differ
by a Toeplitz operator of order −1. Let χα ∈ H0(M,LN ). It follows
that µN,α equals

〈ΠN ϕ̇0ΠNχα, χα〉/QhN
0
(α) =− 〈ΠN u̇0(DÎD

−1)ΠNχα, χα〉/QhN
0
(α)

+O(1/N),

proving the lemma.
We now complete the proof of the proposition. By Lemma 6.6, we

have for some uniformly bounded function R(N,α) that

(41)

ϕN (s, z) =
1

N
log

∑

α

esNµN,α

|χα|2hN
0

QhN
0
(α)

=
1

N
log

∑

α

e−sNu̇0(α/N)+sR(N,α)
|χα|2hN

0

QhN
0
(α)

.
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The result now follows by comparing this with the expression (40) for
ϕ̃N (s, z). q.e.d.

Equation (41) leads to a heuristic proof of Theorem 1: According to
[34, Propositions. 3.1, 6.1],

(42) QhN
0
(α) = F (α,N)eNu0(α/N)/NC(α,n),

where C(α, n) and F (α,N) are some uniformly bounded functions. Sub-
stituting this into (41), we obtain
(43)

ϕN (s, z) = N−1 log
∑

eN(〈x,α/N〉−ψ0(x)−us(α/N))+sR(N,α) +O(logN/N).

Intuitively, the leading order logarithmic asymptotics are given by the
value of the principal part of the exponent, 〈x, α/N〉−ψ0(x)−us(α/N),
at its maximum (over α ∈ NP ∩ Z

n). But this value is u⋆s(x) − ψ0(x),
as stated in Theorem 1. In the next section we give a rigorous proof.

7. Completion of the proof of Theorem 1

We now complete the proof of Theorem 1 by an argument related
to those in [34, 35]. Let hs = e−ϕsh0. By Proposition 6.5, in order to
prove convergence of ϕN (s, z) to ϕs(z), it will be enough to consider the
difference
(44)

EN (s, z) := ϕ̃N (s, z) − ϕs(z) =
1

N
log

∑

α∈NP∩Zn

e−sNu̇0(α/N)
|χα(z)|2hNs
QhN

0
(α)

Theorem 1 will then follow from the following result.

Lemma 7.1. For every T > 0, we have

lim
N→∞

sup
s∈[0,T ]

||EN (s, z)||C0(M) = 0.

Proof. Whenever T < T cvx
span the result follows directly from (42) and

the asymptotic expansion of the Bergman kernel: applying (42) to h0,
using the explicit formula for us and then applying (42) to hs, we obtain

EN (s, z) =
1

N
log

∑

α∈NP∩Zn

|χα(z)|2hNs
QhNs

(α)
+O(logN/N),

and this is O(logN/N) by the asymptotic expansion of the Bergman
kernel [40]. Here by O(logN/N) we mean a quantity that is bounded

from above and below by ±C logN
N where C may depend on the Cauchy

data and on T .
Assume now that T ≥ T cvx

span. First, we have (recall that |z|2 = ex)

(45) e−sNu̇0(α/N)|χα(z)|2hNs /QhN
0
(α) = e−sNu̇0(α/N)e〈x,α〉−Nψs/QhN

0
(α).
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From the definition of the Legendre transform, we obtain that this is
bounded from above by e−sNu̇0(α/N)+〈x,α〉+Nus(α/N)−N〈x,α/N〉/QhN

0
(α) =

eNu0(α/N)/QhN
0
(α). Applying (42) to h0 and using the fact that the

dimension of H0(M,LN ) is polynomial in N , we obtain that

EN (s, z) ≤ O(logN/N).

We now turn to proving a lower bound for EN (s, z) when T ≥ T cvx
span.

Rewrite (45) as NCe〈x,α〉−Nψs−Nus(α/N)/F (α,N). A lower bound for
EN (s, z) will follow once we find one summand in (44) that is not de-

caying to zero too fast. More precisely, we will seek Ñ = Ñ(s, x) and

one α = α(N, s, x) ∈ NP ∩ Z
n for each N > Ñ , for which

e〈x,α〉−Nψs−Nus(α/N) ≥ e−CN
1−ǫ

, for some ǫ > 0.

Fix x ∈ R
n (recall |z|2 = ex). The Kähler potential ψs is defined on

all of Rn and

(46) ψs(x) ≥ 〈x, y〉 − us(y), ∀y ∈ P,

with equality if and only if y ∈ ∂ψs(x) (see [27]). Let y1 ∈ P satisfy
equality in (46). Such a y1 exists, for P is compact and us is bounded,
and so the supremum in ψs(x) = supy∈P [〈x, y〉 − us(y)] is necessarily
achieved and finite. Hence, by convexity of ψs we have ∂ψs(x) 6= ∅, and
one may choose y1 ∈ ∂ψs(x). Then we need to find Ñ = Ñ(s, x) and
α = α(N, s, x) such that

eN(〈x,α/N−y1〉+us(y1)−us(α/N)) ≥ e−CN
1−ǫ

, for each N > Ñ.

In fact, we will derive such an estimate where the right hand side is
e−C logN .

Claim 7.2. Let x ∈ R
n and let y1 ∈ ∂ψs(x). Then y1 ∈ P \ ∂P .

Proof. Note that by duality x ∈ ∂us(y1) (this holds even though us
need not be convex; see [21], Theorem 1.4.1, p. 47), and in particular
∂us(y1) 6= ∅. Therefore, it suffices to show that limy→∂P |∇us(y)| = ∞,
since that will imply that ∂us(y) = ∅ whenever y ∈ ∂P . Denote by
{wi} ⊂ P \∂P a sequence converging to y ∈ ∂P . Assume without loss of
generality that l1, . . . , ln provide a coordinate chart in a neighborhood of
y in P . Using Guillemin’s formula (29), in these coordinates the gradient
of us takes the form (log l1 + h1, . . . , log ln + hn), where hj belongs to
C∞(P ) for each j = 1, . . . , n. Therefore, limy→∂P |∇us(y)| = ∞, as
desired. q.e.d.

The points {α/N}NP∩Zn are C/N -dense in P , where C > 0 is some
uniform constant. Hence, for each of the 2n orthants in R

n there exists
a point α/N that is C/N -close to y1 and such that the vector α/N − y1
is contained in that orthant. Now let Ñ be chosen large enough so that
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dist(y1, ∂P ) > C/Ñ (possible by Claim 7.2). Further, let Ñ be such that

∃α1 = α1(Ñ) such that α1/Ñ ∈ P \ ∂P and

(47)

dist(α1/Ñ , ∂P ) > C/Ñ, 〈α1/Ñ − y1, x〉 ≥ 0,

and
C

2Ñ
≤ |α1/Ñ − y1| ≤

C

Ñ
.

Note that y1 depends only on s and x and so does Ñ . Further, for every
N > Ñ one may find an α1 = α1(N) satisfying the inequalities (47)

with Ñ replaced by N .
Applying the mean value theorem to the line segment between α1/N

and y1, it follows that

(48) eN(〈x,α1/N−y1〉+us(y1)−us(α1/N)) ≥ e−N |y1−α1/N ||∇us(y2)|,

where y2 ∈ P \ ∂P is some point on the line segment between α1/N
and y1. Hence, dist(y2, ∂P ) > C/N. By Guillemin’s formula (29), we
therefore have

|∇us(y2)| < C logN + s||u̇0||C1(P ) < CT logN,

for some constant CT that depends on T . It follows that

(49)
EN (s, z) ≥

1

N
log eN(〈x,α1(N)/N−y1〉+us(y1)−us(α1(N)/N))

≥ log e−CT logN/N ≥ −CT logN/N,

and this concludes the proof of Lemma 7.1. q.e.d.
Lemma 7.1 completes the proof of Theorem 1.
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