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Abstract

In this paper, we study the behavior of Ricci-flat Kähler met-
rics on Calabi–Yau manifolds under algebraic geometric surgeries:
extremal transitions or flops. We prove a version of Candelas and
de la Ossa’s conjecture: Ricci-flat Calabi–Yau manifolds related
by extremal transitions and flops can be connected by a path con-
sisting of continuous families of Ricci-flat Calabi–Yau manifolds
and a compact metric space in the Gromov–Hausdorff topology.
In an essential step of the proof of our main result, the conver-
gence of Ricci-flat Kähler metrics on Calabi–Yau manifolds along
a smoothing is established, which can be of independent interest.

1. Introduction

A Calabi–Yau manifold M is a simply connected projective manifold
with trivial canonical bundle KM

∼= OM . In the 1970s, S.T. Yau proved
Calabi’s conjecture in [61], which says that, for any Kähler class α ∈
H1,1(M,R), there exists a unique Ricci-flat Kähler metric g on M with
Kähler form ω ∈ α. The study of Calabi–Yau manifolds became very
interesting in the last three decades (cf. [63]). The convergence of
Ricci-flat Calabi–Yau manifolds was studied from various perspectives
(cf. [2], [8], [9], [13], [30], [37], [41], [56], [57], [58], [49], [60], [64]).
The goal of the present paper is to study the metric behavior of Calabi–
Yau manifolds under some algebraic geometric surgeries.

Let M0 be a singular projective normal variety with singular set S.
Usually there are two types of desingularizations: one is a resolution
(M̄, π̄), i.e., M̄ is a projective manifold, and π̄ is a morphism such that
π̄ : M̄\π̄−1(S) → M0\S is bi-holomorphic. The other is a smoothing
(M, π) over the unit disc ∆ ⊂ C, i.e., M is an (n + 1)-dimensional
variety, π is a proper flat morphism, M0 = π−1(0), and Mt = π−1(t)
is a smooth projective n-dimensional manifold for any t ∈ ∆\{0}. If
M0 admits a resolution (M̄ , π̄) and a smoothing (M, π), the process of
going from M̄ to Mt, t 6= 0, is called an extremal transition, denoted by
M̄ → M0  Mt. We call this process a conifold transition if M0 is a
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conifold, which is a normal variety M0 with only finite ordinary double
points as singularities, i.e., any singular point is locally given by

z20 + · · · + z2n = 0, where dimCM0 = n.

If M0 admits two different resolutions (M̄1, π̄1) and (M̄2, π̄2) with both
exceptional subvarieties of codimension at least 2, the process of going
from M̄1 to M̄2 is called a flop, denoted by M̄1 →M0 99K M̄2.

Extremal transitions and flops are algebraic geometric surgeries pro-
viding ways to connect two topologically distinct projective manifolds,
which are interesting in both mathematics and physics. In the minimal
model program, all smooth minimal models of dimension 3 in a bira-
tional equivalence class are connected by a sequence of flops (cf. [38],
[39], [35]). The famous Reid’s fantasy conjectures that all Calabi–Yau
threefolds are connected to each other by extremal transitions, possibly
including non-Kähler Calabi–Yau threefolds, so as to form a huge con-
nected web (cf. [46], [48]). There is also a projective version of this
conjecture, the connectedness conjecture for moduli spaces for Calabi–
Yau threefolds (cf. [28], [29], [48]). Furthermore, in physics, flops
and extremal transitions are related to the topological change of the
space-time in string theory (cf. [7], [16], [27], [24], [48]). Readers are
referred to the survey article [48] for topology, algebraic geometry, and
even physics properties of extremal transitions.

In [6], physicists P. Candelas and X.C. de la Ossa conjectured that ex-
tremal transitions and flops should be “continuous in the space of Ricci-
flat Kähler metrics,” even though these processes involve topologically
distinct Calabi–Yau manifolds. This conjecture was verified in [6] for the
non-compact quadric cone M0 = {(z0, · · · , z3) ∈ C4|z20 + · · · + z23 = 0}.

In the 1980s, Gromov introduced the notion of Gromov–Hausdorff
distance dGH on the space X of isometric classes of all compact metric
spaces (cf. [22]), such that (X, dGH) is a complete metric space (cf.
[22] and Appendix A). This notion provides a framework to study the
continuity of a family of compact metric spaces with possibly different
topologies. The Gromov–Hausdorff topology provides a natural mathe-
matical formulation of Candelas and de la Ossa’s conjecture as follows:

i) If M̄ → M0  Mt, t ∈ ∆\{0} ⊂ C, is an extremal transition
among Calabi–Yau manifolds, then there exists a family of Ricci-
flat Kähler metrics ḡs, s ∈ (0, 1), on M̄ , and a family of Ricci-flat
Kähler metrics g̃t on Mt satisfying that {(M̄ , ḡs)} and {(Mt, g̃t)}
converge to a single compact metric space (X, dX ) in the Gromov–
Hausdorff topology,

(Mt, g̃t)
dGH−→ (X, dX )

dGH←− (M̄, ḡs), s→ 0, t→ 0.

ii) If M̄1 →M0 99K M̄2 is a flop between two Calabi–Yau manifolds,
then there are families of Ricci-flat Kähler metrics ḡi,s, s ∈ (0, 1)
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on M̄i (i = 1, 2) such that

(M̄1, ḡ1,s)
dGH−→ (X, dX)

dGH←− (M̄2, ḡ2,s), s→ 0,

for a single compact metric space (X, dX).

Furthermore, in both cases X is homeomorphic to M0 and dX is in-
duced by a Ricci-flat Kähler metric on M0\S. In the present paper, we
shall prove i) and ii) of the above version of Candelas and de la Ossa’s
conjecture.

LetM0 be a projective normal Cohen-Macaulay n-dimensional variety
with singular set S, and let KM0

be the canonical sheaf of M0 ([33]).
In this paper, all varieties are assumed to be Cohen-Macaulay. We call
M0 Gorenstein if KM0

is a rank one locally free sheaf. Assume that
M0 has only canonical singularities, i.e., M0 is Gorenstein, and for any
resolution (M̄, π̄),

KM̄ = π̄∗KM0
+
∑

aEE, aE ≥ 0,

where E are effective exceptional divisors. Consider a resolution (M̄, π̄)
of M0. If α is an ample class in the Picard group of M0, π̄

∗α belongs
to the boundary of the Kähler cone of M̄ . A resolution (M̄ , π̄) of M0

is called a crepant resolution if KM̄ = π̄∗KM0
and is called a small

resolution if the exceptional subvariety π̄−1(S) satisfies dimC π̄
−1(S) ≤

n− 2. It is obvious that (M̄ , π̄) is crepant if it is a small resolution. If
M0 admits a smoothing (M, π) over a unit disc ∆ ⊂ C with an ample
line bundle L onM, then there is an embeddingM →֒ CPN ×∆ such
that Lm = O∆(1)|M for some m ≥ 1, π is a proper surjection given
by the restriction of the projection from CPN ×∆ to ∆, and the rank
of π∗ is 1 on M\S. This implies that Mt, t ∈ ∆\{0}, have the same

underlying differential manifold M̃ . Moreover, if L is a line bundle on
M such that the restriction of L on M0 is ample, then by proposition
1.41 in [39], L is ample on π−1(∆′) where ∆′ ⊆ ∆ is a neighborhood of
0.

A Calabi–Yau variety is a simply connected projective normal variety
M0 with trivial canonical sheaf KM0

∼= OM0
and only canonical singu-

larities. If a Calabi–Yau variety M0 admits a crepant resolution (M̄ , π̄),
then M̄ is a Calabi–Yau manifold. Our first result proves i) in the above
version of Candelas and de la Ossa’s conjecture.

Theorem 1.1. Let M0 be a Calabi–Yau n-variety with singular set
S. Assume that

i) M0 admits a smoothing π :M→ ∆ over the unit disc ∆ ⊂ C such
that the relative canonical bundle KM/∆ is trivial, i.e., KM/∆

∼=
OM and M admits an ample line bundle L. For any t ∈ ∆\{0},
let g̃t be the unique Ricci-flat Kähler metric on Mt = π−1(t) with
Kähler form ω̃t ∈ c1(L)|Mt .
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ii) M0 admits a crepant resolution (M̄, π̄). Let {ḡs} (s ∈ (0, 1]) be a
family of Ricci-flat Kähler metrics with Kähler classes lim

s→0
[ω̄s] =

π̄∗c1(L)|M0
in H1,1(M̄ ,R), where ω̄s denotes the corresponding

Kähler form of ḡs.

Then there exists a compact length metric space (X, dX ) such that

lim
t→0

dGH((Mt, g̃t), (X, dX )) = lim
s→0

dGH((M̄, ḡs), (X, dX )) = 0.

Furthermore, (X, dX ) is isometric to the metric completion (M0\S, dg)
where g is a Ricci-flat Kähler metric on M0\S, and dg is the Rieman-
nian distance function of g.

The following is a simple example from [27] for which Theorem 1.1
can apply. Let M̄ be the complete intersection in CP4 × CP1 given by

y0g(z0, . . . , z4) + y1h(z0, . . . , z4) = 0, y0z4 − y1z3 = 0,

where z0, . . . , z4 are homogeneous coordinates of CP4, y0, y1 are ho-
mogeneous coordinates of CP1, and g and h are generic homogeneous
polynomials of degree 4. Then M̄ is a crepant resolution of the quintic
conifold M0 given by

z3g(z0, . . . , z4) + z4h(z0, . . . , z4) = 0

(cf. [48]). Hence there is a conifold transition M̄ → M0  M̃ for any

smooth quintic M̃ in CP4. Theorem 1.1 implies that there is a family of
Ricci-flat Kähler metrics ḡs (s ∈ (0, 1]) on M̄ and a family of Ricci-flat

smooth quintic (Mt, g̃t) (t ∈ ∆\{0}) such that M1 = M̃ , and

(Mt, g̃t)
dGH−→ (X, dX )

dGH←− (M̄ , ḡs),

for a compact metric space (X, dX).
Our second result proves ii) in the above version of Candelas and de

la Ossa’s conjecture.

Theorem 1.2. Let M0 be an n-dimensional Calabi–Yau variety with
singular set S, and L be an ample line bundle. Assume that M0 admits
two crepant resolutions (M̄1, π̄1) and (M̄2, π̄2). Let {ḡ1,s} (resp. {ḡ2,s}
s ∈ (0, 1]) be a family of Ricci-flat Kähler metrics on M̄1 (resp. M̄2)
with Kähler classes lim

s→0
[ω̄α,s] = π̄∗αc1(L), α = 1, 2. Then there exists a

compact length metric space (X, dX ) such that

lim
s→0

dGH((M̄1, ḡ1,s), (X, dX )) = lim
s→0

dGH((M̄2, ḡ2,s), (X, dX )) = 0.

Furthermore, (X, dX ) is isometric to the metric completion (M0\S, dg)
where g is a Ricci-flat Kähler metric on M0\S, and dg is the Riemann-
ian distance function of g.
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Remark 1.3. The present arguments are inadequate to prove that X
is homeomorphic to M0 in both Theorem 1.1 and Theorem 1.2. Addi-
tional work is required. However, if M0 has only orbifold singularities,
and c1(L) can be represented by an orbifold Kähler metric on M0, then
X is homeomorphic to M0 by corollary 1.1 in [49].

We now begin to describe our approach to Theorem 1.1 and Theorem
1.2. Let M0 be a normal n-dimensional projective variety with singular
set S. For any p ∈ S and a small neighborhood Up ⊂ M0 of p, a
pluri-subharmonic function v (resp. strongly pluri-subharmonic, and
pluri-harmonic) on Up is an upper semi-continuous function with value
in R ∪ {−∞} (v is not locally −∞) such that v extends to a pluri-
subharmonic function ṽ (resp. strongly pluri-subharmonic, and pluri-
harmonic) on a neighborhood of the image of some local embedding
Up →֒ Cm. We call v smooth if ṽ is smooth. A form ω on M0 is
called a Kähler form, if ω is a smooth Kähler form in the usual sense on
M0\S and, for any p ∈ S, there is a neighborhood Up and a continuous

strongly pluri-subharmonic function v on Up such that ω =
√
−1∂∂v

on Up
⋂
(M0\S). We call ω smooth if v is smooth in the above sense.

Otherwise, we call ω a singular Kähler form. If PHM0
denotes the sheaf

of pluri-harmonic functions on M0, then any Kähler form ω represents
a class [ω] in H1(M0,PHM0

) (cf. section 5.2 in [18]). We also have
an analogue of Chern-Weil theory for line bundles on M0 (see [18] for
details). If L0 is an ample line bundle onM0, then there is an embedding
M0 →֒ CPN such that Lm0 = O(1)|M0

, and the first Chern class c1(L0)
can be presented by a smooth Kähler form: c1(L0) = 1

m [ωFS|M0
] ∈

H1(M0,PHM0
), where ωFS denotes the standard Fubini-Study Kähler

form on CPN .
In [18] (see also [66]), a generalized Calabi–Yau theorem was ob-

tained, which says that if M0 is a Calabi–Yau variety, then for any am-
ple line bundle L0 there is a unique Ricci-flat Kähler form ω ∈ c1(L0).
We denote by g the corresponding Kähler metric of ω on M0\S. If M0

admits a crepant resolution (M̄, π̄), and αs ∈ H1,1(M̄,R), s ∈ (0, 1), is
a family of Kähler classes with lim

s→0
αs = π̄∗c1(L0), [56] proved that

ḡs −→ π̄∗g, ω̄s −→ π̄∗ω, when s→ 0

in the C∞-sense on any compact subset K of M̄\π̄−1(S), where ḡs is
the unique Ricci-flat Kähler metric with Kähler form ω̄s ∈ αs. Assume
that M0 is a Calabi–Yau conifold and M0 admits a smoothing (M, π)
satisfying that the relative canonical bundleKM/∆ is trivial and thatM
admits an ample line bundle L such that L|M0

= L0. For any t ∈ ∆\{0},
if g̃t denotes the unique Ricci-flat Kähler metric on Mt = π−1(t) with
Kähler form ω̃t ∈ c1(L)|Mt , [49] proved that

F ∗
t g̃t −→ g, F ∗

t ω̃t −→ ω, when t→ 0,
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in the C∞-sense on any compact subsetK ⊂M0\S, where Ft :M0\S −→
Mt is a family of embeddings. If M0 is a Calabi–Yau variety (not nec-
essarily a conifold) and M is smooth, then a subsequence-C∞ conver-
gence theorem for the Ricci-flat Kähler metric g̃t on Mt was obtained
in [49], i.e., there is a sequence tk ∈ ∆\{0} such that tk → 0, and
F ∗
tk
g̃tk converges to g (k →∞) in the C∞-sense on any compact subset

K ⊂M0\S.
In the proof of Theorem 1.1, the following generalization of the con-

vergence results in [49] plays a significant role.

Theorem 1.4. Let M0 be a Calabi–Yau n-variety (n ≥ 2) with sin-
gular set S. Assume that M0 admits a smoothing π :M→ ∆ such that
M admits an ample line bundle L and the relative canonical bundle is
trivial, i.e., KM/∆

∼= OM. If g̃t denotes the unique Ricci-flat Kähler

metric with Kähler form ω̃t ∈ c1(L)|Mt ∈ H1,1(Mt,R) (t ∈ ∆\{0}),
and ω denotes the unique singular Ricci-flat Kähler form on M0 with
ω ∈ c1(L)|M0

∈ H1(M0,PHM0
), then

F ∗
t g̃t −→ g, F ∗

t ω̃t −→ ω, when t→ 0,

in the C∞-sense on any compact subsetK ⊂M0\S, where Ft :M0\S −→
Mt is a smooth family of embeddings and g is the corresponding Kähler
metric of ω on M0\S. Furthermore, the diameter of (Mt, g̃t) (t ∈
∆\{0}) satisfies

diamg̃t(Mt) ≤ D,
where D > 0 is a constant independent of t.

Our proof of Theorem 1.1 is to show that (M0\S, g) has a metric
completion (X, dX ) satisfying the property that both {(M, ḡs)} and
{(Mt, g̃t)} converge to (X, dX ) in the Gromov–Hausdorff topology when
s→ 0 and t→ 0. The same method also proves Theorem 1.2.

As an application of Theorem 1.1 and Theorem 1.2, we shall ex-
plore the path connectedness properties of a certain class of Ricci-flat
Calabi–Yau threefolds. Inspired by string theory in physics, some physi-
cists made a projective version of Reid’s fantasy (cf. [7], [24], and [48]),
the so-called connectedness conjecture, which is formulated more pre-
cisely in [28] (see also [29]). This conjecture says that there is a huge
connected web Γ such that nodes of Γ consist of all deformation classes
of Calabi–Yau threefolds, and two nodes are connected D1 −D2 if D1

and D2 are related by an extremal transition, i.e., there is a Calabi–Yau
3-variety M0 that admits a crepant resolution M̄ ∈ D1 and a smoothing
(M, π) satisfying π−1(t) =Mt ∈ D2 for any t ∈ ∆\{0}. It was shown in
[24], [16], [5], and [28] that many Calabi–Yau threefolds are connected
to each other in the above sense. By combining the connectedness con-
jecture and Theorem 1.1 and Theorem 1.2, we reach a metric version
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of connectedness conjecture as follows: if CY3 denotes the set of Ricci-
flat Calabi–Yau threefolds (M,g) with volume 1, then the closure CY3

of CY3 in (X, dGH ) is path connected, i.e., for any two points p1 and
p2 ∈ CY3, there is a path

γ : [0, 1] −→ CY3 ⊂ (X, dGH )

such that p1 = γ(0) and p2 = γ(1).
Given a class of Calabi–Yau 3-manifolds known to be connected by

extremal transitions and flops in algebraic geometry, Theorem 1.1 and
Theorem 1.2 can be used to show that the closure of the class of Calabi–
Yau 3-manifolds is path connected in (X, dGH). In the minimal model
program, it was proved that for any two Calabi–Yau 3-manifoldsM and
M ′ birational to each other, there is a sequence of flops connecting M
and M ′ (cf. [38], [39], [35]). In [24], it was shown that all complete
intersection Calabi–Yau manifolds (CICY) of dimension 3 in products
of projective spaces are connected by conifold transitions. Furthermore,
in [5] and [16] a large number of complete intersection Calabi–Yau 3-
manifolds in toric varieties were verified to be connected by extremal
transitions, which include Calabi–Yau hypersurfaces in all toric mani-
folds obtained by resolving weighted projective 4-spaces. As a corollary
of Theorem 1.1 and Theorem 1.2, we obtain the following result.

Corollary 1.5. For any Calabi–Yau manifold M , let

MM = {(M,g) ∈ X| g is a Ricci f lat Kähler metric on M
with Volg(M) = 1}.

i) If M is a three-dimensional Calabi–Yau manifold, and

BMM =
⋃

all Calabi−Y au manifolds M ′ birational to M

MM ′ ,

then the closure BMM of BMM in (X, dGH) is path connected.
ii) Let

CP =
⋃

all CICY 3−manifolds M ′ in products of projective spaces

MM ′ .

Then the closure CP of CP in (X, dGH) is path connected.
iii) There is a path connected component CT of CY3 ⊂ (X, dGH ) such

that CP ⊂ CT, and CT contains all (M,g), where M is a Calabi–
Yau hypersurface in a toric 4-manifold obtained by resolving a
weighted projective 4-space, and g is a Ricci-flat Kähler metric of
volume 1 on M .

The study of metric behaviors under some algebraic geometric surg-
eries also arises from other perspectives, such as Kähler-Ricci flow (cf.
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[51] [52] [53] and [54]) and balanced metrics on non-Kähler Calabi–Yau
threefolds (cf. [20]).

The rest of the paper is organized as follows: In Section 2, we bound
from above the diameters of Ricci-flat Calabi–Yau manifolds along a
smoothing. In Section 3, we prove Theorem 1.4. In Section 4, we estab-
lish a link between point-wise C∞-convergence of Riemannian metrics
on a ‘big’ open subset and global Gromov–Hausdorff convergence. In
Section 5, we prove Theorem 1.1, Theorem 1.2, and Corollary 1.5. In
Appendix A, we supply basic properties on Gromov–Hausdorff conver-
gence used in Section 4. In Appendix B (written by Mark Gross), some
bounds for volumes of Calabi–Yau manifolds along a smoothing are
provided which are used in the proof of Theorem 1.4.
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2. A Priori Estimate

In this section, we obtain an estimate for diameters of Ricci-flat
Calabi–Yau manifolds along a smoothing, which plays a key role in
our C0-estimate in the proof of Theorem 1.4.

Theorem 2.1. Let M0 be a projective n-dimensional variety with
singular set S. Assume that M0 admits a smoothing π :M→ ∆ over
the unit disc ∆ ⊂ C such that M admits an ample line bundle L, and
the relative canonical bundle is trivial, i.e., KM/∆

∼= OM. Let Ωt be
a relative holomorphic volume form, i.e., a nowhere vanishing section
of KM/∆, and let g̃t be the unique Ricci-flat Kähler metric with Kähler

form ω̃t ∈ c1(L)|Mt ∈ H1,1(Mt,R), for t ∈ ∆\{0}. Then the diameter
of (Mt, g̃t) satisfies that

diamg̃t(Mt) ≤ 2 +D(−1)n2

2

∫

Mt

Ωt ∧ Ω̄t,

where D is a constant independent of t.
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Proof. Recall that M is an (n + 1)-dimensional variety with an em-
beddingM →֒ CPN×∆ such that Lm = O∆(1)|M for anm ≥ 1, π is the
restriction toM of the projection from CPN×∆ to ∆, which is a proper
surjection such that the rank of π∗ is 1 onM\S. Then Mt = π−1(t) is
a smooth Calabi–Yau manifold for any t ∈ ∆\{0}. Denote

ωt =
1

m
ωFS|Mt ,

where ωFS is the standard Fubini-Study metric on CPN , and gt is the
corresponding Kähler metric of ωt. Note that ω̃t satisfies the Monge-
Ampère equation
(2.1)

ω̃n
t = (−1)n2

2 eσtΩt ∧ Ωt, where eσt = V

(
(−1)n2

2

∫

Mt

Ωt ∧ Ωt

)−1

,

where V = n!Volgt(Mt) is a constant independent of t.
For p ∈ M0\S, there are coordinates z0, . . . , zn on a neighborhood

U of p in M such that t = π(z0, . . . , zn) = z0, p = (0, . . . , 0), and
the closure U of U is a compact subset of M\S. There is an r0 > 0
such that ∆1 × ∆n ⊂ U , where ∆1 = {|t| < r0} ⊂ ∆, ∆n = {|zj | <
r0, j = 1, . . . , n} ⊂ Cn, and {t} × ∆n ⊂ Mt. Note that locally ωt and
ω̃t are families of Kähler forms on ∆n ⊂ Cn, and there is a constant C1

independent of t such that

(2.2) C−1
1 ωE ≤ ωt ≤ C1ωE ,

where ωE =
√
−1∂∂̄

n∑
i=1
|zi|2 is the standard Euclidean Kähler form on

∆n, and gE denotes the corresponding Euclidean Kähler metric. We
need the following fact, which is a simplified version of lemma 1.3 in
[17]. For completeness, we shall sketch a proof.

Lemma 2.2 (lemma 1.3 in [17]). For any δ > 0, and any t ∈ ∆1\{0},
there is an open subset Ut,δ of ∆n such that

Volgt(Ut,δ) ≥ Volgt(∆
n)− δ, diamg̃t(Ut,δ) ≤ Ĉδ−

1
2 ,

where Ĉ is a constant independent of t.

Proof. Let dvE = (−1)n
2 dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn be the standard

Euclidean volume form on ∆n and for any x1, x2 ∈ ∆n, let [x1, x2] ⊂ ∆n
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be the segment connecting x1 and x2. By Fubini’s Theorem, the Cauchy-
Schwarz inequality, and (2.2), we have

∫

∆n×∆n

lengthg̃t([x1, x2])
2dvE(x1)dvE(x2)

≤ ‖x2 − x1‖2E
∫ 1

0
ds

∫

∆n×∆n

trωE
ω̃t((1− s)x1 + sx2)dvE(x1)dvE(x2)

≤ 22ndiam2
gE (∆

n)VolgE(∆
n)

∫

∆n

ω̃t ∧ ωn−1
E

≤ C2

∫

∆n

ω̃t ∧ ωn−1
t

≤ C2

∫

Mt

ω̃t ∧ ωn−1
t = C̄,

where C̄ is a constant independent of t. The second inequality is ob-
tained by integrating first with respect to y = (1 − s)x1 when s ≤ 1

2 ,

then with respect to y = sx2 when s ≥ 1
2 , since dvE(xi) ≤ 22ndvE(y). If

St = {(x1, x2) ∈ ∆n ×∆n|length2g̃t([x1, x2]) > C̄δ−1},
then VolgE×gE (St) < δ. Let St(x1) = {x2 ∈ ∆n| (x1, x2) ∈ St}, and let
Qt = {x1 ∈ ∆n| VolgE (St(x1)) ≥ 1

2VolgE(∆
n)}. By Fubini’s Theorem,

VolgE (Qt) < 2δVol−1
gE (∆

n), VolgE (St(xj)) <
1

2
VolgE(∆

n),

for any x1, x2 ∈ ∆n\Qt. Thus (∆
n\St(x1))

⋂
(∆n\St(x2)) is not empty.

If y ∈ (∆n\St(x1)) ∩ (∆n\St(x2)), then (x1, y), (x2, y) ∈ (∆n ×∆n)\St,
and

length2g̃t([x1, y] ∪ [y, x2]) ≤ 2C̄δ−1,

and therefore
diam2

g̃t(∆
n\Qt) ≤ 2C̄δ−1.

If we denote Ut,δ = ∆n\Qt, then by (2.2) we derive

Volgt(∆
n\Ut,δ) = Volgt(Qt) ≤ C3VolgE (Qt) < 2C3Vol

−1
gE

(∆n)δ,

where C3 > 0 is a constant independent of t. By replacing δ with
(2C3)

−1VolgE (∆
n)δ, we obtain the desired conclusion. q.e.d.

We return to the proof of Theorem 2.1. Let δt =
1
2Volgt(∆

n), and let
pt ∈ Ut,δt . By (2.2), we get

δt ≥
C4

2
VolgE(∆

n) = δ̄

and thus Ut,δt ⊂ Bg̃t(pt, r), where r = max{1, 2Ĉ δ̄− 1
2 } and Ĉ is the

constant in Lemma 2.2. Since U ⊂ M\S, there is a constant κU > 0
such that

(−1)n2

2 Ωt ∧ Ωt ≥ κUωn
t
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on U ∩Mt. Note that ∆1 × ∆n ⊂ U , and {t} × ∆n ⊂ U ∩Mt. Since
Ut,δt ⊂ {t} ×∆n, we have Ut,δt ⊂ U ∩Mt. By (2.1), we derive

Volg̃t(Bg̃t(pt, r)) ≥ Volg̃t(Ut,δt) =
(−1)n2

2

n!
eσt

∫

Ut,δt

Ωt ∧ Ωt

≥ κUe
σt

n!

∫

Ut,δt

ωn
t

= κUe
σtVolgt(Ut,δt)

≥ κUe
σt

2
Volgt(∆

n)

≥ C5e
σtVolgE (∆

n) = C6e
σt ,

where C6 is a constant independent of t. By Bishop-Gromov relative
volume comparison, we obtain

Volg̃t(Bg̃t(pt, 1)) ≥
1

r2n
Volg̃t(Bg̃t(pt, r)) ≥

C6

r2n
eσt .

In the rest of the proof, we need the following lemma.

Lemma 2.3 (theorem 4.1 of chapter 1 in [50] and lemma 2.3 in
[44]). Let (M,g) be a 2n-dimensional compact Riemannian manifold
with nonnegative Ricci curvature. Then for any p ∈ M and any 1 <
R < diamg(M), we have

Volg(Bg(p, 2R+ 2))

Volg(Bg(p, 1))
≥ R− 1

2n
.

By letting R = 1
2diamg̃t(Mt), we obtain

diamg̃t(Mt) ≤ 2 + 8n
Volg̃t(Mt)

Volg̃t(Bg̃t(pt, 1))
≤ 2 +De−σt ,

where D is a constant independent of t. We conclude the proof by (2.1).
q.e.d.

The following is a consequence of Theorem 2.1 and Theorem B.1.

Corollary 2.4. Let M0, M, L, Ωt, and g̃t be as in Theorem 2.1.
If in addition we assume that M0 is a Calabi–Yau n-variety, then the
diameter of (Mt, g̃t) has a uniform bound

diamg̃t(Mt) ≤ D,

where D is a constant independent of t.
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3. Proof of Theorem 1.4

Let M0 be an n-dimensional Calabi–Yau variety with singular set S.
Assume that M0 admits a smoothing π : M → ∆ over the unit disc
∆ ⊂ C such that M admits an ample line bundle L, and the relative
canonical bundle is trivial, i.e., KM/∆

∼= OM. Following the discussion
at the beginning of the proof of Theorem 2.1, let

ωt = ωh|Mt =
1

m
ωFS|Mt , and ωh =

√
−1∂∂̄|t|2 + 1

m
ωFS,

for any t ∈ ∆, where ωFS is the standard Fubini-Study metric on CPN ,
and gt is the corresponding Kähler metric of ωt. Let Ωt be a relative
holomorphic volume form, i.e., a nowhere vanishing section of KM/∆.
Yau’s proof of Calabi’s conjecture ([61]) asserts that there is a unique
Ricci-flat Kähler metric g̃t with Kähler form ω̃t ∈ [ωt] = c1(L)|Mt ∈
H1,1(Mt,R) for t ∈ ∆\{0}, i.e., there is a unique function ϕt on Mt

satisfying that ω̃t = ωt +
√
−1∂∂ϕt, and

(3.1) (ωt +
√
−1∂∂ϕt)

n = (−1)n2

2 eσtΩt ∧ Ωt, with sup
Mt

ϕt = 0

where

σt = log

(
n!V ((−1)n2

2

∫

Mt

Ωt ∧ Ωt)
−1

)

and V = Volg̃t(Mt).
By Theorem B.1, on Mt we have

(3.2) (−1)n2

2 Ωt ∧ Ωt ≥ κωn
t ,

and

(3.3)

∫

Mt

(−1)n2

2 Ωt ∧ Ωt ≤ Λ,

where κ > 0 and Λ > 0 are constants independent of t ∈ ∆\{0}. Thus
there is a constant C1 > 0 independent of t such that

(3.4) −C1 ≤ σt ≤ C1.

Note that (Mt, g̃t) satisfies that

Ricg̃t ≡ 0, Volg̃t(Mt) ≡ V, and diamg̃t(Mt) ≤ D,
where the upper bound of diameters is from Corollary 2.4. By [15],
[21], and [40], (Mt, g̃t) has uniform Sobolev constants, i.e., constants
C̄S,1 > 0 and C̄S,2 > 0 independent of t such that for any t 6= 0 and any
smooth function χ on Mt,

(3.5) ‖χ‖2
L

4n
2n−2 (g̃t)

≤ C̄S,1(‖dχ‖2L2(g̃t)
+ ‖χ‖2L2(g̃t)

),
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and if
∫
Mt
χdvg̃t = 0,

(3.6) ‖χ‖2
L

4n
2n−2 (g̃t)

≤ C̄S,2‖dχ‖2L2(g̃t)
.

Now following the standard Moser iteration argument in [61] with a
trick inspired by [56], we are able to get a uniform C0-estimate of the
potential function ϕt.

Lemma 3.1. There is a constant C > 0 independent of t ∈ ∆\{0}
such that

‖ϕt‖C0(Mt) ≤ C.

Proof. Let

ft = log


(−1)n2

2 eσtΩt ∧ Ωt

ωn
t


 , ϕ̃t =

∫

Mt

ϕtdvg̃t − ϕt.

Then (3.1) shows that

ωn
t = e−ftω̃n

t = (ω̃t +
√
−1∂∂ϕ̃t)

n, with

∫

Mt

ϕ̃tdvg̃t = 0.

By (3.2) and (3.4), there is a constant C2 > 0 independent of t such
that

e−ft =


(−1)n2

2 eσtΩt ∧Ωt

ωn
t




−1

≤ C2.

Now we follow the standard Moser iteration argument in [61] (cf. [4]).
A direct calculation shows that

(3.7)∫

Mt

|d|ϕ̃t|
p
2 |2dvg̃t ≤

np2

4(p − 1)

∫

Mt

|1−e−ft ||ϕ̃t|p−1dvg̃t ≤ Ap
∫

Mt

|ϕ̃t|p−1dvg̃t ,

for any p ≥ 2 (cf. (15) in chapter 7 of [4]), where A > 0 is a constant
independent of t. For p = 2, by (3.6), (3.7), and Hölder’s inequality we
see that

‖ϕ̃t‖2
L

4n
2n−2 (g̃t)

≤ C̄S,2‖dϕ̃t‖2L2(g̃t)

≤ 2AC̄S,2

∫

Mt

|ϕ̃t|dvg̃t

≤ 2AC̄S,2V
2n+2

4n ‖ϕ̃t‖
L

4n
2n−2 (g̃t)

,

and thus

‖ϕ̃t‖
L

4n
2n−2 (g̃t)

≤ Ĉ,
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where Ĉ is a constant independent of t. For p > 2, by (3.5), (3.7), and
Hölder’s inequality we see that

‖ϕ̃t‖p
L

2np
2n−2 (g̃t)

= ‖|ϕ̃t|
p
2 ‖2

L
4n

2n−2 (g̃t)

≤ C̄S,1(‖d|ϕ̃t|
p
2 ‖2L2(g̃t)

+ ‖|ϕ̃t|
p
2 ‖2L2(g̃t)

)

≤ C̄S,1(pAV
1
p + ‖ϕ̃t‖Lp(g̃t))‖ϕ̃t‖p−1

Lp(g̃t)
.

Let p0 = 4n
2n−2 , pk+1 = 2n

2n−2pk (k ≥ 0), let Ĉ0 = Ĉ and let Ĉk+1 =

C̄
1
pk

S,1(pkAV
1

pk +1)
1

pk Ĉk if Ĉk > 1. Otherwise, let Ĉk+1 = C̄
1
pk

S,1(pkAV
1

pk +

1)
1
pk . Then ‖ϕ̃t‖Lpk (g̃t) ≤ Ĉk < C3, a constant C3 > 0 independent of k

and t. By letting k →∞, we have

‖ϕ̃t‖C0(Mt) ≤ C3.

Since there is a pt ∈Mt such that ϕt(pt) = 0, we have
∣∣∣∣
∫

Mt

ϕtdvg̃t

∣∣∣∣ ≤ C3, and ‖ϕt‖C0(Mt) ≤ C,

where C > 0 is a constant independent of t. q.e.d.

The C2-estimate for ϕt is obtained by the same arguments as in the
proof of lemma 5.2 in [49]. For completeness, we present it here.

Lemma 3.2. For any compact subset K ⊂M\S, there exists a con-
stant CK > 0 independent of t such that on K ∩Mt,

Cωt ≤ ω̃t ≤ CKωt,

where C > 0 is a constant independent of t and K.

Proof. Let ψt : (Mt, ω̃t) −→ (CPN , 1
mωFS) be the inclusion map in-

duced byM⊂ CPN ×∆. The Chern-Lu inequality says

∆ω̃t log |∂ψt|2 ≥
Ricω̃t(∂ψt, ∂ψt)

|∂ψt|2
− Sec(∂ψt, ∂ψt, ∂ψt, ∂ψt)

|∂ψt|2
,

where Sec denotes the holomorphic bi-sectional curvature of 1
mωFS (cf.

[62]). Note that 1
mψ

∗
t ωFS = ωt, |∂ψt|2 = 1

m trω̃tψ
∗
tωFS = trω̃tωt =

n−∆ω̃tϕt and Ricω̃t = 0. Thus we have that

∆ω̃t(log trω̃tωt − 2Rϕt) ≥ −2Rn+Rtrω̃tωt.

where R is a constant depending only on the upper bound of Sec. By
the maximum principle and Lemma 3.1, there is an x ∈ Mt such that
trω̃tωt(x) ≤ 2n,

trω̃tωt ≤ 2ne2R(ϕt−ϕt(x)) ≤ C and ωt ≤ Cω̃t,
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where C > 0 is a constant independent of t. Note that for any compact
subset K ⊂ M\S, by (3.4) and the compactness of K there exists a
constant C ′

K > 0 independent of t such that on K ∩Mt

ω̃n
t = eσt(−1)n2

2 Ωt ∧ Ωt ≤ C ′
Kω

n
t .

Then we obtain that

Cωt ≤ ω̃t ≤ CKωt.

q.e.d.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. In [18], it is proved that there is a unique bounded
function ϕ̂0 on M0 such that ϕ̂0 is smooth on M0\S and satisfies

(3.8) (ω0 +
√
−1∂∂ϕ̂0)

n = (−1)n2

2 eσ̂0Ω0 ∧ Ω0, sup
M0

ϕ̂0 = 0,

in the distribution sense, where σ̂0 is a constant. Note that ω = ω0 +√
−1∂∂ϕ̂0 is the unique singular Ricci-flat Kähler form with ‖ϕ̂0‖L∞ ≤

C. Let F : (M0\S) × ∆ −→ M be a smooth embedding such that
F ((M0\S) × {t}) ⊂ Mt and F |(M0\S)×{0} : M0\S −→ M0\S is the
identity map. Let K1 ⊂ · · · ⊂ Ki ⊂ · · · ⊂ M0\S be a sequence of
compact subsets such thatM0\S =

⋃
i
Ki. On a fixedKi, the embedding

map

FKi,t = F |Ki×{t} : Ki −→Mt

satisfies that F ∗
Ki,t

ωt C
∞-converges to ω0, and dF−1

Ki,t
JtdFKi,t C

∞-con

verges to J0, where Jt (resp. J0) is the complex structure on Mt (resp.
M0).

For a fixedKi, letK be a compact subset ofM\S such that FKi,tk(Ki)
⊂ K for |tk| ≪ 1. By (3.4), Lemma 3.1, and Lemma 3.2, there exist
constants C > 0 and CK > 0 independent of t such that C−1 ≤ σt ≤ C,
‖ϕt‖C0(Mt) ≤ C, and C−1ωt ≤ ωt +

√
−1∂∂ϕt ≤ CKωt on K. By the-

orem 17.14 in [31], we have that ‖ϕt‖C2,α(Mt∩K) ≤ C ′′
K for a constant

C ′′
K > 0. Furthermore, by the standard bootstrapping argument we

have that for any l > 0, ‖ϕt‖Cl,α(Mt∩K) ≤ CK,l for constants CK,l > 0
independent of t. By the standard diagonal arguments and passing to a
subsequence, we see that F ∗

Kik
,tk
ϕtk C

∞-converges to a smooth function

ϕ0 on M0\S with ‖ϕ0‖L∞ < C and that σtk converges to a σ0, which
satisfies

(ω0 +
√
−1∂∂ϕ0)

n = (−1)n2

2 eσ0Ω0 ∧ Ω0.

Hence ω̃0 = ω0 +
√
−1∂∂ϕ0 is a Ricci-flat Kähler form on M0\S with

‖ϕ0‖L∞ < C. By the uniqueness of the solution of (3.8), ϕ0 = ϕ̂0 and
σ0 = σ̂0. The uniqueness of ω and the standard compactness argument
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imply that F |∗M0\S×{t}ω̃t (resp. F |∗M0\S×{t}g̃t) C
∞-converges to ω (resp.

g) when t→ 0.
The diameter estimate is obtained by Corollary 2.4. q.e.d.

4. An Almost Gauge Fixing Theorem

Let M be a compact n-manifold, and let gk be a sequence of Rie-
mannian metrics on M . Assume that the Ricci curvature, volume, and
diameter of gk satisfy
i) |Ric(gk)| ≤ 1,Volgk(M) ≥ V > 0 and diamgk(M) ≤ D.

By the Gromov’s pre-compactness theorem, we may assume

ii) (M,gk)
dGH−→ (X, dX ), where (X, dX ) is a compact metric space.

Suppose, in addition,
iii) E is a closed subset of Hausdorff dimension ≤ n− 2, and there is a
(non-complete) Riemannian metric g∞ on M\E such that gk converges
to g∞ in the C∞-sense on any compact subset K ⊂M\E.

BecauseM\E is path connected, g∞ induces the Riemannian distance
structure defined by

dg∞(x, y) = inf
γ continuous

{lengthg∞(γ), γ : [0, 1]→M\E, γ(0)

= x, γ(1) = y}.
Let (M\E, g∞) denote the metric completion of (M\E, dg∞). Let SX ⊂
X denote the subset consisting of points x ∈ X such that there is a
sequence xk ∈ E ⊂ (M,gk) and xk → x (see comments at the end of
Appendix A). It is clear that SX ⊂ X is a closed subset and thus SX is
compact.

The main effort of this section is to prove the following result.

Theorem 4.1. Let M , gk, g∞, dg∞, E, (X, dX), and SX be as above.

Then there is a continuous surjection f : (M\E, dg∞) → (X, dX ) such
that f : (M\E, dg∞) → (X\SX , dX) is a homeomorphism and a local
isometry, i.e., for any x ∈ M\E, there is an open neighborhood of x,
U ⊂M\E, such that f : (U, dg∞ |U )→ (f(U), dX |f(U)) is an isometry.

Proof. We first construct a dense subset A ⊆ X\SX and define a
local isometric embedding h : (A, dX ) → (M\E, dg∞) such that f(A)
is dense. Then we will show that f = h−1 : h(A) → X\SX extends

uniquely to a continuous surjection f : (M\E, g∞)→ (X, dX ) such that
f is a homeomorphism and a local isometric embedding on (M\E, dg∞).

Without loss of generality, we may assume that for all k ≥ j, dGH

((M,gk), (M,gj)) < 2−j . Let φj : (M,gj+1) → (M,gj) denote an 2−j-

Gromov–Hausdorff approximation. Then φj+s
j = φj ◦ · · · ◦ φj+s−1 :

(M,gj+s) → (M,gj+s−1) → · · · → (M,gj) is an 2−j+1-Gromov–
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Hausdorff approximation. Recall that there is an admissible metric dZ

on the disjoint union Z = (
∞∐
k=1

(M,gk))
∐
(X, dX ) such that (M,gk)

dZ,H−→
(X, dX ) (see Appendix A, Proposition A.1).

Let ǫj = j−1, j = 1, 2, . . . . For ǫ1 and each gk, take a finite ǫ1-net

{xki1} ⊂ (M\E, gk) such that

(4.1) |{xki1}| ≤ c′1, and

dgk({xki1}, E) ≥ ǫ1
2
, where dgk({xki1}, E) = min{dgk(xkj , y),

xkj ∈ {xki1}, y ∈ E}.(4.2)

We may assume, passing to a subsequence if necessary, that {xki1}
dH,Z−→

{xi1}c1i1=1 ⊂ (X, dX ), where c1 = |{xi1}|. Then by (4.2), {xi1}c1i1=1 ⊂
X\SX . We claim that there is k̄1 > 0 such that for all k ≥ k̄1,
{φk

k̄1
(xki1)} ⊂ K1 =M\Bgk̄1

(E, ǫ14 ), a compact subset. Here Bgk̄1
(E, ǫ14 )

= {y ∈M |dgk̄1 (y,E) < ǫ1
4 }. Assuming the claim, by iii) we may assume

that passing to a subsequence {φk
k̄1
(xki1)} → {yi1}

c1
i1=1 ⊂ (M\E, g∞)

point-wise, and we denote the corresponding subsequence by {gk1} ⊂
{gk}.

To verify the claim, we may assume k̄1 large so that for all k ≥ k̄1,
dZ,H({xki1}, {xi1}) <

ǫ1
9
, 2−k̄1 ≪ ǫ1.

For the sake of distinction, let E0 = E ⊂ (M,gk̄1). Then

dgk̄1
({φkk̄1(x

k
i1)}, E0) = dZ,H({φkk̄1(x

k
i1)}, E0)

≥ dZ,H({xk̄1i1 }, E0)− dZ,H({xk̄1i1 }, {φ
k
k̄1
(xki1)})

≥ ǫ1
2
− [dZ,H({xk̄1i1 }, {xi1}) + dZ,H({φkk̄1(x

k
i1)}, {xi1})]

≥ ǫ1
2
−
[ǫ1
9

+ dZ,H({φkk̄1(x
k
i1)}, {xki1}) + dZ,H({xki1}, {xi1})

]

≥ ǫ1
2
−
(ǫ1
9

+
ǫ1
9

+ 2−k̄1
)
≥ ǫ1

4
.

For ǫ2 and each gk1 , extend {xk1i1 } to an ǫ2-dense subset of (M\E, gk1),
{xk1i1 } ⊂ {x

k1
i2
}, such that for all gk1 ,

(4.3) dgk1 (x
k1
i2
, xk1

i′2
) ≥ ǫ2

4
, |{xk1i2 }| ≤ c

′
2, and

(4.4) dgk1 ({x
k1
i2
}, E) ≥ ǫ2

2
.

Similarly, by (4.3) and (4.4), passing to a subsequence we may as-

sume that {xk1i2 }
dH,Z−→ {xi2} ⊂ (X\SX , dX). Clearly, {xi1} ⊂ {xi2}c2i2=1,
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where c2 = |{xi2}|. By the argument as in the above, we may as-
sume large k̄2 > k̄1 such that for all k ≥ k̄2, {φkk̄2(x

k
i2
)} ⊂ K2 =

(M\Bgk1
(E, ǫ24 )). By the compactness of K2 and iii), we may as-

sume that {φk
k̄2
(xki2)} → {yi2}c1i2=1 ⊂ (M\E, dg∞) point-wise. The

natural identification φk
k̄1
(xki1) ↔ φk

k̄2
(xki1) induces an injective map,

{yi1} →֒ {yi2}.
Repeating this process and together with a standard diagonal argu-

ment, we obtain a sequence of finite subsets of (X\SX , dX):

{xi1}c1i1=1 ⊂ · · · ⊂ {xis}csis=1 ⊂ · · · ,
and a sequence of finite subsets of (M\E, g∞):

(4.5) {yi1}c1i1=1 →֒ · · · →֒ {yis}csis=1 →֒ · · · .

Let A =
∞⋃
s=1
{xis}csis=1, and Akl =

∞⋃
s=1
{xklis}

cs
is=1. Since Akl is dense in

(M\E, gkl) for all kl, A ⊂ (X\SX , dX) is a dense subset. Let Y denote
the direct limit of (4.5). Then Y ⊆ M − E. We now define a map,
f : A→ (M\E, g∞), by

f(xis) = [yis ] = {yis → · · · → · · · }.
It is clear that f is injective since f is injective on each {xis}csis=1, and
f(A) is dense in (M\E, g∞). From the construction of f , we see that f
is a local isometric embedding: for x ∈ A we may assume that x = xis .
Since xis /∈ SX which is a compact subset of X, there is an r > 0 such
that B̄dX (xis , r) ∩ SX = ∅. Recall that we may assume k̄v large and

φkl
k̄v
(xklis ) ⊂ K and φkl

k̄v
(xklis )→ yis point-wise with respect to dg∞ , where

K ⊂M is compact such that K ∩E = ∅. Clearly, we may assume that
r small and a compact subset K ′ ⊇ K such that Bg∞([yis ], r) ⊂ K ′ and
K ′ ∩E = ∅. By iii), (K ′, gkl)→ (K ′, g∞) in the C∞-sense. Observe the
following two facts:

(4.5) For z, z′ ∈ Bg∞([yis ],
r
2), any g∞-minimal geodesic from z to z′ is

contained in Bg∞([yis ], r).
(4.6) dg∞ |Bg∞ ([yis ],

r
2
) (resp. dX |B(x, r

2
)) is determined by the lengths of

curves in Bg∞([yis ], r) (resp. BdX (xis , r)). The two length struc-
tures coincide, because (K ′, gk) → (K ′, g∞) in the C∞ sense. As
a consequence of (4.5) and (4.6), we conclude that

f :
(
BdX

(
xis ,

r

2

)
, dX |BdX (xis ,

r
2)

)
→
(
Bg∞

(
[yis ],

r

2

)
, dg∞ |Bdg∞ ([yis ], r2)

)

is an isometry.

To uniquely extend f : A → (M\E, g∞) to a continuous surjection

f : (X, dX ) → (M\E, dg∞), one needs to show that {xj}, {yj} ⊂ A
such that dX(xj , yj) → 0 implies that dg∞(f(xj), f(yj)) → 0, which
may require that SX ⊂ X has codimension at least 2. Because we do
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not know whether dimH(SX) ≤ dimH(X) − 2, we will instead extend

f−1 : f(A) → A to a continuous map, f−1 : (M\E, dg∞) → (X, dX).
So, we may assume that {xj}, {yj} ⊂ f(A) such that dg∞(xj , yj) → 0.
Since dg∞ is a length metric, there is a path γi ⊂ M\E from xj to yj
such that lengthdg∞ (γi) = dg∞(xj , yj) + δj and δj → 0. Since f−1 :

(M\E, dg∞)→ (X\SX , dX) is a local isometric embedding,

dX(f−1(xj), f
−1(yj)) ≤ lengthdX (f(γi)) = lengthdg∞ (γi)

= dg∞(xj , yj) + δj → 0.

q.e.d.

5. Proofs of Theorem 1.1, Theorem 1.2, and Corollary 1.5

Let M0 be a Calabi–Yau n-variety with singular set S that admits
a crepant resolution (M̄, π̄), and let L0 be an ample line bundle on
M0. Note that there is an embedding M0 →֒ CPN such that Lm0 =
O(1)|M0

for an m ≥ 1, and that the restriction of the Fubini-Study
metric ωFS|M0

represents mc1(L0) in H1(M0,PHM0
). By theorem 7.5

of [18], there is a unique Ricci-flat Kähler metric g on M0 with Kähler
form ω ∈ c1(L0). Let {ḡs} (s ∈ (0, 1]) be a family of Ricci-flat Kähler
metrics with Kähler classes lim

s→0
[ω̄s] = π̄∗c1(L0) in H1,1(M̄,R), where

ω̄s denotes the corresponding Kähler form of ḡs. Then

(5.1) lim
s→0

Volḡs(M̄ ) =
1

n!
cn1 (L0) =

1

mnn!

∫

M0

ωn
FS > 0.

Furthermore, it is proved in [56] that

ḡs −→ π̄∗g, and ω̄s −→ π̄∗ω, when s→ 0,

in the C∞-sense on any compact subset K ⊂⊂ M̄\π̄−1(S). By [49] and
[56], the diameter of (M̄, ḡs) has a uniform bound, i.e.,

(5.2) diamḡs(M̄ ) ≤ C
where C is a constant independent of s. By the Bishop-Gromov relative
volume comparison and (5.1), (M̄, ḡs) is non-collapsed, i.e., there is a
constant κ > 0 independent of s such that

(5.3) Volḡs(Bḡs(p, r)) ≥ κr2n,
for any metric ball Bḡs(p, r) ⊂ (M, ḡs). Gromov’s pre-compactness the-
orem (cf. [22]) implies that, for any sequence sk → 0, a subsequence
of (M̄ , ḡsk) converges to a compact length metric space (X, dX ) in the
Gromov–Hausdorff topology. First, we explore some metric properties
of (X, dX).

Lemma 5.1. Let (X, dX ) be as in the above. Then the following
properties hold:
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i) There is a closed subset SX ⊂ X of Hausdorff dimension dimH SX ≤
2n − 4, and (X\SX , dX |X\SX

) is a path metric space, i.e., for
any δ > 0 and any two points x1, x2 ∈ X\SX , there is a cure
γδ ⊂ X\SX connecting x1 and x2 satisfying

lengthdX (γδ) ≤ dX(x1, x2) + δ.

ii) There is a homeomorphic local isometry f : (X\SX , dX)→ (M0\S, dg),
i.e., for x ∈ X\SX , there is an open subset Ux ⊂⊂ X\SX such
that for any x1, x2 ∈ Ux, dX(x1, x2) = dg(f(x1), f(x2)).

iii) (X, dX ) is isometric to the metric completion (M0\S, dg).
Proof. Applying general theorems in [10], [13], and [12] to our situ-

ation, i.e., (M̄ , ḡsk)
dGH−→ (X, dX ), we see the following properties:

a) There is a closed subset S′ ⊂ X of Hausdorff dimension dimH S′ ≤
2n− 4 such that for any x ∈ S′, there is a tangent cone TxX that
is not isometric to R2n.

b) X\S′ is a smooth open complex manifold, and dX |X\S′ is induced
by a Ricci-flat Kähler metric g∞ on X\S′.

From section 3 of [11], we see that for any x1, x2 ∈ X\S′, and any δ > 0,
there is a curve γδ connecting x1 and x2 in X\S′ such that

lengthdX (γδ) ≤ δ + dX(x1, x2).

Note that π̄−1(S) is a finite disjoint union of complex subvarieties
Ei, i.e., π̄−1(S) =

∐
Ei. If SX ⊂ X denotes the subset consisting

of points x ∈ X such that for each k there is an x̄k in the smooth
part of π̄−1(S) ⊂ (M̄ , ḡsk) and x̄k → x under the Gromov–Hausdorff
convergence of {(M̄ , ḡsk)} to (X, dX ), then by Theorem 4.1 there is a
homeomorphic local isometry f : (X\SX , dX) → (M0\S, g). Thus, for
any x ∈ X\SX , the tangent cone TxX is unique and isometric to R2n,
which implies that X\SX ⊆ X\S′, i.e., S′ ⊆ SX .

We claim that SX = S′. If false, there is an x ∈ SX\S′ and there is
a σ > 0 such that the metric ball Bg∞(x, σ) ⊂ X\S′. By the volume
convergence theorem due to Cheeger and Colding (cf. [9], [10]) and
from x̄k → x, we derive that for any 0 < ρ ≤ σ,

lim
k→∞

Volḡsk (Bḡsk
(x̄k, ρ)) = Volg∞(Bg∞(x, ρ)).

Since g∞ is a smooth metric, lim
ρ→0
|Volg∞ (Bg∞ (x,ρ))

̟2nρ2n
− 1| = 0, where ̟2n

denotes the volume of the metric 1-ball in the Euclidean space R2n.
Thus for any ε > 0 we can find a ρ ≪ 1 and a k(ρ) ≫ 1 such that for
any k ≥ k(ρ) we have

∣∣∣∣
Volḡsk (Bḡsk

(x̄k, ρ))

̟2nρ2n
− 1

∣∣∣∣ ≤ ε.
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By the proof of theorem 3.2 in [3], we see that there is a uniform lower
bound 0 < ρh < ρ (independent of sk) for the harmonic radius of ḡsk at
x̄k, i.e., there are harmonic coordinates h1, . . . , h2n on Bḡsk

(x̄k, ρh) such

that ḡsk =
∑
ij
ḡsk,ijdh

idhj ,

2−1(δij) ≤ (ḡsk ,ij) ≤ 2(δij), ρ1+α‖ḡsk ,ij‖C1,α ≤ 2,

where α ∈ (0, 1). Furthermore, by Ricci flatness there are constants
Cl > 0 independent of k such that

‖ḡsk,ij‖Cl ≤ Cl

on Bḡsk
(x̄k,

ρh
2 ) (cf. section 4 in [1]). Hence the sectional curvature

Secḡsk of ḡsk on Bḡsk
(x̄k,

ρh
2 ) and the injectivity radius iḡsk (x̄k) have

uniform bounds,

sup
Bḡsk

(x̄k,
ρh
2
)

|Secḡsk | ≤ Λ, iḡsk (x̄k) > ι,

where Λ and ι are two constants independent of k.
In the rest of the proof of Lemma 5.1, we need the following theorem.

Theorem 5.2. Let (M,g, ω) be a complete Kähler n-manifold, and
p ∈M . Assume that the sectional curvature Secg satisfies

sup
Bg(p,

2π√
Λ
)

Secg ≤ Λ, Λ > 0,

and there is a complex subvariety E of dimension m ≤ n such that p
belongs to the regular part of E. Then

Volg(Bg(p, r) ∩ E) ≥ ̟r2m,
for any r ≤ min{ig(p), π

2
√
Λ
}, where ig(p) denotes the injectivity radius

of g at p, and ̟ = ̟(m,Λ) is a constant depending only on m and Λ.

Note that similar volume comparison results were obtained for smooth
minimal submanifolds in [42] and [23], for complex subvarieties of Cn

in [25], and for minimal currents in Rn (cf. [43]). Since the authors
could not find a proof of Theorem 5.2 in the literature, we shall present
a proof at the end of this section.

By Theorem 5.2 and taking r = min{ι, π
2
√
Λ
, ρh2 }, we obtain

Volḡsk (π̄
−1(S)) ≥ Volḡsk (π̄

−1(S) ∩Bḡsk
(x̄k, r)) > C,

where C > 0 is a constant independent of k. On the other hand, since
lim
s→0

[ω̄s] = π̄∗c1(L)|M0
in H1,1(M,R), we have

lim
k→∞

Volḡsk (π̄
−1(S)) =

∑

i

lim
k→∞

1

dimCEi!

∫

Ei

ω̄dimC Ei
sk

= 0,

which is a contradiction.
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Note that by i) (X\SX , dX) coincides with the length metric structure
(X\SX , ddX ), i.e., for any two points x1, x2 ∈ X\SX ,

dX(x1, x2) = inf{lengthdX (γ)| all curves γ
⊂ X\SX connecting x1 and x2}.

Consequently, f : (X\SX , dX)→ (M0\S, dg) is an isometry, and (X, dX )
is the unique metric completion of (X\SX , dX) since X\SX is dense in
(X, dX ). We obtain iii). q.e.d.

Lemma 5.3. Let (X, dX ) be as in Lemma 5.1, and let (Mk, gk, ωk)
be any family of Ricci-flat Kähler n-dimensional manifolds satisfying

i)

lim
k→∞

Volgk(Mk) =
1

n!
cn1 (L0).

ii) There is a family of embeddings Fk :M0\S →Mk such that

F ∗
k gk → g, and F ∗

kωk → ω, when k →∞,
in the C∞-sense on any compact subset K ⊂⊂M0\S.

Then

(Mk, gk)
dGH−→ (X, dX )

dGH←− (M̄ , ḡsk).

Proof. By Lemma 5.1, there is a homeomorphic local isometry f :
(X\SX , dX) → (M0\S, g). For an x ∈ X\SX , ii) of Lemma 5.3 implies
that Volgk(Bgk(Fk(f(x)), 1)) ≥ υ for a constant υ > 0 independent of
k. For any 1 < R < diamgk(Mk), Lemma 2.3 (lemma 2.3 in [44]) shows
that

R ≤ 1 + 2n
Volgk(Bgk(Fk(f(x)), 2R + 2))

Volgk(Bgk(Fk(f(x)), 1))
.

By taking R = 1
2diamgk(Mk), we obtain that

diamgk(Mk) < 2 + 4nυ−1 1

n!
cn1 (L0).

By the Bishop-Gromov relative volume comparison, (Mk, gk) is non-
collapsed, i.e., there is a constant κ > 0 independent of k such that for
any metric ball Bgk(p, r) ⊂Mk,

(5.4) Volgk(Bgk(p, r)) ≥ κr2n.
Gromov’s pre-compactness theorem implies that a subsequence of
{(Mk, gk)} dGH -converges to a compact length metric space (Y, dY ).
Following the proof of theorem 4.1 in [49] with a minor modification
will prove that (Y, dY ) is isometric to (X, dX ). Because of this, we only
present a sketch of the proof. (There is an analog proof for the case of
Ricci-solitons in [67].)

First, the same arguments as in the proof of lemma 4.1 in [49] imply
that there exists an embedding ψ′ : (M0\S, g) → (Y, dY ) which is a
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local isometry. Hence ψ = ψ′ ◦ f : (X\SX , dX) → (Y, dY ) is a local
isometric embedding. Thus, if γ is a geodesic in (X\SX , dX), then
ψ(γ) is a geodesic in (ψ(X\SX ), dY ). For any x1, x2 ∈ X, and two
sequences {x1,j}, {x2,j} ⊂ X\SX converging to x1 and x2 respectively,
there are curves γj connecting x1,j and x2,j in X\SX with lengthg(γj) ≤
dX(x1,j, x2,j) +

1
j by Lemma 5.1, which implies

dY (ψ(x1,j), ψ(x2,j)) ≤ lengthdY (ψ(γj)) = lengthg(γj)(5.5)

≤ dX(x1,j , x2,j) +
1

j
.

If x1 = x2 = x, both {ψ(xj)} and {ψ(x′j)} are Cauchy sequences, and

converge to the same limit y in Y . By defining ψ̃(x) = y, ψ extends to

a continuous map ψ̃ : X −→ Y such that ψ̃(X) ⊆ Y is closed.

If ψ̃(X) ( Y , then there is a metric ball BdY (y, δ) ⊂⊂ Y \ψ̃(X) for
a δ > 0. By (5.1), (5.4), and the volume convergence theorem due to
Cheeger and Colding (cf. [9], [10]), we derive

H2n(Y ) = H2n(X) = Volg(X\SX ) and H2n(BdY (y, δ)) ≥ κδ2n,
where H2n denotes the 2n-dimensional Hausdorff measure. Thus

H2n(Y ) ≥ H2n(ψ(X\SX )) +H2n(BdY (y, δ)) ≥ Volg(X\SX)

+ κδ2n > H2n(Y ),

a contradiction.
To show that ψ̃ is an isometry, we first check that ψ̃ is 1-Lipschitz. For

any x1 6= x2 ∈ X, there are sequences of points {xi,j} ⊂ X\SX , i = 1, 2,

such that dX(xi,j, xi) → 0 when j → ∞. Thus dY (ψ(xi,j), ψ̃(xj)) → 0,
i = 1, 2, when j →∞. By (5.5) and letting j →∞, we obtain that

(5.6) dY (ψ̃(x1), ψ̃(x2)) ≤ dX(x1, x2)

i.e., ψ̃ is a 1-Lipschitz map.
Because ψ̃(SX)

⋃
ψ(X\SX ) = Y , ψ̃(SX) ⊇ Y \ψ(X\SX ). Since

dimH SX ≤ 2n − 2,

H2n−1(Y \ψ(X\SX )) ≤ H2n−1(ψ̃(SX)) ≤ H2n−1(SX) = 0.

If there is a j such that ̺ = dX(x1,j , x2,j) − dY (ψ(x1,j), ψ(x2,j)) > 0,
then by section 3 of [11] we see that there is a curve γ̄ connecting
ψ(x1,j), ψ(x2,j) in ψ(X\SX ) and

dX(x1,j , x2,j) ≤ lengthdX (ψ
−1(γ̄)) = lengthdY (γ̄)

≤ dY (ψ(x1,j), ψ(x2,j)) +
1

2
̺,

a contradiction. Then dX(x1,j, x2,j) = dY (ψ(x1,j), ψ(x2,j)) and thus by
letting j →∞, we obtain that

dY (ψ̃(x1), ψ̃(x2)) = dX(x1, x2).
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By now, we have proved that ψ̃ : (X, dX ) −→ (Y, dY ) is an isometry.
q.e.d.

After the above preparation, we are ready to prove Theorem 1.1,
Theorem 1.2 and Corollary 1.5.

Proof of Theorem 1.1. Let M0, π : M → ∆, KM/∆, L, Mt, g̃t, ω̃t,

(M̄, π̄), ḡs, ω̄s be as in Theorem 1.1.
Note that

lim
s→0

Volḡs(M̄ ) =
1

n!
cn1 (L)|M0

≡ 1

n!
cn1 (L)|Mt = Volg̃t(Mt).

By [56],

ḡs −→ π̄∗g, and ω̄s −→ π̄∗ω, when s→ 0,

in the C∞-sense on any compact subsetK ⊂⊂ M̄\π̄−1(S). By (5.2) and
Ricci flatness, we apply Gromov’s compactness theorem to conclude that
for any sequence sk → 0, a subsequence of (M̄, ḡsk) dGH -converges to
a compact path metric space (X, dX ), which satisfies the conclusion of
Lemma 5.1. By Lemma 5.3, for any other sequence s′k → 0, (M̄, ḡs′

k
)

dGH -converges to (X, dX ) too. Thus

lim
s→0

dGH((M̄ , ḡs), (X, dX )) = 0.

By Theorem 1.4,

F ∗
t g̃t → g, and F ∗

t ω̃t → ω, when t→ 0,

in the C∞-sense on any compact subset K ⊂⊂ M0\S, where Ft :
M0\S → Mt is a family of embeddings. By Lemma 5.3 and the fact
that the limit is independent of convergent subsequences, we obtain the
conclusion,

lim
t→0

dGH((Mt, g̃t), (X, dX )) = 0.

q.e.d.

The same argument in the proof of Theorem 1.1 also gives a proof of
Theorem 1.2.

Proof of Corollary 1.5. Let M be a Calabi–Yau manifold, and let ωs

(s ∈ [0, 1]) be a family of Ricci-flat Kähler forms. It is clear that ωs

converges to ω0 when s → 0 in the C∞-sense, which implies that MM

is path connected in (X, dGH ). Let π′ : M̄ → ∆ be a smooth family
of Calabi–Yau manifolds over the unit disc ∆ ⊂ C with an ample line
bundle L on M̄, and let ω̃t be the unique Ricci-flat Kähler form on
π′−1(t) = Mt with ω̃t ∈ c1(L)|Mt . It is standard that F ∗

t ω̃t converges
to ω̃0 in the C∞-sense, when t → 0, where Ft : M0 → Mt is a smooth
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family of diffeomorphisms. Thus, if π′ : M̄ → D is a smooth family of
Calabi–Yau manifolds over connected complex manifold D, then

⋃

Mt=π′−1(t),t∈D
MMt ⊂ (X, dGH )

is path connected.
Note that Calabi–Yau manifolds are minimal models. If M and M ′

are two birationally equivalent three-dimensional Calabi–Yau manifolds,
then M and M ′ are related by a sequence of flops (cf. [38] [39] [35]),
i.e., there is a sequence of varieties M1, . . . ,Mk such that M = M1,
M ′ =Mk, andMj+1 is obtained by a flop fromMj . Consequently, there
are normal projective varieties M0,1, . . . ,M0,k−1, and small resolutions

π̄j : Mj → M0,j and π̄+j : Mj → M0,j−1. By [38], Mj has the same
singularities as M , and thus Mj is smooth. Since the exceptional loci
of π̄j and π̄+j are of co-dimension at least 2, M0,j has only canonical

singularities, and the canonical bundle of M0,j is trivial (cf. corollary
1.5 in [34]). Therefore M0,j is a three-dimensional Calabi–Yau variety,
and Mj is a three-dimensional Calabi–Yau manifold. By Theorem 1.2,
for any j > 0,

MMj

⋃
MMj+1

is path connected, where MMj
denotes the closure of MMj

⊂ (X, dGH).
By now we have proved i) of Corollary 1.5.

LetM0 be a three-dimensional complete intersection Calabi–Yau coni-
fold in CPm1×· · ·×CPml , and M̄ be a small resolution of M0, which is
a three-dimensional complete intersection Calabi–Yau (CICY) manifold
in products of projective spaces. By Theorem 1.1, we see that

⋃

M̃∈D(M0)

MM̃

⋃
MM̄ ⊂ (X, dGH )

is path connected, where D(M0) denotes the set of three-dimensional
CICY manifolds in CPm1 ×· · ·×CPml obtained by a smoothing of M0.
If M and M ′ are two three-dimensional CICY manifolds in products
of projective spaces, then by [24] M and M ′ are related by a sequence
of conifold transitions, or inverse conifold transitions. Precisely, there
is a sequence of three-dimensional CICY manifolds M1, . . . ,Mk with
M = M1 and M ′ = Mk such that for any 1 ≤ j ≤ k, there is a three-
dimensional CICY conifold M0,j in some CPm1 × · · · × CPml , Mj is a
small resolution of M0,j and Mj+1 ∈ D(M0,j), or vice versa Mj+1 is a
small resolution of M0,j and Mj ∈ D(M0,j). Thus ii) of Corollary 1.5 is

followed, i.e., CP is path connected.
In [5] and [16], many complete intersection Calabi–Yau 3-manifolds

in toric varieties were verified to be connected by extremal transitions,
which include Calabi–Yau hypersurfaces in all toric 4-manifolds ob-
tained by resolving weighted projective 4-spaces. Let CT0 be the set



258 X. RONG & Y. ZHANG

of the above Calabi–Yau 3-manifolds with Ricci-flat Kähler metrics of
volume 1. By Theorem 1.1, the closure CT0 is path connected. Note
that a quintic in CP4 with Ricci-flat Kähler metric of volume 1 is in
CT0

⋂
CP. Thus iii) of Corollary 1.5 is obtained. q.e.d.

Now we give a proof of Theorem 5.2, which can be viewed as a com-
bination of the proof of theorem 2.0.1 in [23] and the proof of theorem
9.3 in [43].

Proof of Theorem 5.2. For any r ≤ min{ig(p), π
2
√
Λ
}, there are normal

coordinates such that g = dρ2+gρ on Bg(p, r) where gρ is a Riemannian
metric on ∂Bg(p, ρ), 0 < ρ ≤ r. Let f(q, ρ) = expp

ρ
r (exp

−1
p q) for

any q ∈ ∂Bg(p, r). Then f : ∂Bg(p, r) × (0, r] → Bg(p, r)\{p} is a
diffeomorphism. For any w ∈ Tq(∂Bg(p, r)), it is clear that J(ρ) =
df |(ρ,q)w is a normal Jacobi field along the geodesic γ(ρ) = f(q, ρ) with
J(0) = 0 and J(r) = w. A standard Rauch comparison argument shows
that

|J(ρ)|gρ ≤
sin
√
Λρ

sin
√
Λr
|J(r)|gr =

sin
√
Λρ

sin
√
Λr
|w|gr

(cf. lemma 2.0.1 in [23]). Thus the norm of the differential df |∂Bg(p,r)×{ρ}
corresponding to the metric gr on ∂Bg(p, r) × {ρ} and gρ on ∂Bg(p, ρ)
satisfies

|df |∂Bg(p,r)×{ρ}| ≤
sin
√
Λρ

sin
√
Λr
,

which implies

(5.7) gρ ≤
sin2
√
Λρ

sin2
√
Λr
gr.

Denote
Θ(r) = Volg(Bg(p, r) ∩ E).

Since Θ(r) is monotonically increasing, Θ′(r) exists for almost all r. By
4.11(3) in [43], we have

H2m−1
gr (∂Bg(p, r) ∩ E) ≤ Θ′(r).

Let C = (∂Bg(p, r) ∩ E)× (0, r] ⊂ ∂Bg(p, r)× (0, r] = Bg(p, r)\{p}. By
Fubini’s Theorem and (5.7), we see that

H2m
g (C) =

∫ r

0
H2m−1

gρ (∂Bg(p, r) ∩ E)dρ

≤ H2m−1
gr (∂Bg(p, r) ∩ E)

∫ r

0

sin2m−1
√
Λρ

sin2m−1
√
Λr
dρ.

Since E is a complex subvariety, E is a volume minimizer and thus

Θ(r) ≤ H2m
g (C) ≤

∫ r
0 sin2m−1

√
Λρdρ

sin2m−1
√
Λr

Θ′(r).
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Therefore
d

dr

(
Θ(r)∫ r

0 sin2m−1
√
Λρdρ

)
≥ 0.

Since p is a smooth point of E,

lim
r̄→0

Θ(r̄)∫ r̄
0 sin2m−1

√
Λρdρ

= C,

where C is a constant depending only on Λ and m. Thus

Θ(r) ≥ C
∫ r

0
sin2m−1

√
Λρdρ ≥ ̟r2m.

q.e.d.

Appendix A. Gromov–Hausdorff Convergence of Compact

Metric Spaces

In the proof of Theorem 4.1, we freely used some basic properties of
the Gromov–Hausdorff convergence of compact metric spaces. For the
convenience of readers, we will briefly recall related notions and proofs
of these properties (cf. [47]).

Let (Z, d) be a metric space, and let CZ denote the set of all compact
subsets of Z. For A,B ∈ CZ , the Hausdorff distance of A and B is

dH(A,B) = inf{ǫ, Uǫ(A) ⊇ B,Uǫ(B) ⊇ A},
where Uǫ(S) denotes the ǫ-neighborhood of S. Then (CZ , dH) is a com-
plete metric space. The Gromov–Hausdorff distance can be viewed as
an abstract extension of dH on X: the space of isometry classes of all
compact metric spaces. For X,Y ∈ X, the Gromov–Hausdorff distance
of X and Y is

dGH(X,Y ) = inf
Z
{dZH(X,Y ),

∃ isometric embeddings, X,Y →֒ Z, a metric space}.
In the above definition, one can consider the disjoint union that Z =
X
∐
Y with an admissible metric d, i.e., a metric on Z such that the

restriction on X (resp. Y ) is the metric on X (resp. Y ).
It is not hard to check that dGH(X,Y ) = 0 if and only ifX is isometric

to Y and dGH satisfies the triangle inequality. Hence, (X, dGH) is a
metric space.

In the proof of Theorem 4.1, the following proposition is used.

Proposition A.1. Given {Xi} in X such that dGH(Xi,Xi+k) < 2−i

for all i and k, let Y =
∐
i
Xi.

i) There is a metric dY on Y such that the restriction of dY on each
Xi is the metric on Xi and {Xi} is a Cauchy sequence with respect to
dY,H .
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ii) Let X be the collection of equivalent Cauchy sequences, {{xi}, xi ∈
Xi}, equipped with the metric d̂({xi}, {yi}) = lim

i→∞
dY (xi, yi). Then

Y
∐
X has an admissible metric defined by d(x, {xi}) = lim

i→∞
d(x, xi).

iii) For all ǫ > 0, X has a finite ǫ-dense subset (thus the completion of
X is compact).
iv) dH(Xi,X)→ 0 as i→∞.

Proof. i) We first take, for each i, an admissible metric di,i+1 on
Xi
∐
Xi+1 such that di,i+1(Xi,Xi+1) < dGH(Xi,Xi+1) + 2−i < 2−i+1.

We then extend {di,i+1} to an admissible metric on Y by defining, for
each pair (i, j), an admissible metric di,i+j on Xi

∐
Xi+j, as follows:

dY (xi, xi+j) = inf
xi+k∈Xi+k

{
j−1∑

k=0

di+k,i+k+1(xi+k, xi+k+1)}.

It is straightforward to check that dY satisfies the triangle inequality.
Then {Xi} is a Cauchy sequence with respect to dY,H , because for all j,

dY,H(Xi,Xi+j) ≤ dY,H(Xi,Xi+1) + · · · + dY,H(Xi+j−1,Xi+j)

≤ 2−i+1 + 2−i + · · · + 2−i−j+2

≤ 2−i+2.

Note that (Y, dY ) may not be complete, and if not, the unique limit
point is the desired limit space X.

ii) Consider a subset of Cauchy sequences in Y ,

X̂ = {{xi} : xi ∈ Xi is a Cauchy sequence in Y },
and define a pseudo-metric on X̂,

d̂({xi}, {yi}) = lim
i→∞

dY (xi, yi),

where the existence of the limit is from

|dY (xi, yi)− dY (xj , yj)| ≤ dY (xi, xj) + dY (yi, yj)→ 0 as i, j →∞.
Then d̂ yields a metric on the quotient space X = X̂/ ∼, where

{xi} ∼ {yi} iff d̂({xi}, {yi}) = 0.

We now define an admissible metric on X
∐
Y by declaring

d({xi}, y) = lim
i→∞

dY (xi, y).

(Because |dY (xi, y) − dY (xj , y)| ≤ dY (xi, xj), dY (xi, y) is a Cauchy se-
quence.) Since d({xi}, y) ≥ dY (xk, y) for some xk ∈ {xi}, d is indeed a
metric (because dY (xk+j, y) > dY (xk, y) > 0).

iii) Given ǫ > 0, we will construct a finite ǫ-dense subset of X
as follows: choose i so that 2−i < ǫ

5 . Because Xi is compact, we

may assume a finite ǫ
5 -net, {x1i , . . . , xℓi}, of Xi. Let x1i+1, . . . , x

ℓ
i+1 ∈
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Xi+1 such that d(xji , x
j
i+1) < 2−i. Let x1i+2, . . . , x

ℓ
i+2 ∈ Xi+2 such

that d(xji+1, x
j
i+2) < 2−i−1. Repeating this, we obtain, for each k,

x1i+k, . . . , x
ℓ
i+k ∈ Xi+k such that d(xji+k−1, x

j
i+k) < 2−i−k+1. For each

1 ≤ j ≤ ℓ, it is clear that {xji+k}∞k=1 is a Cauchy sequence, that is,

{xji+k}∞k=1 ∈ X. Moreover, for each 1 ≤ k < ∞, x1i+k, . . . , x
ℓ
i+k is 3ǫ

5 -

dense in Xi+k. This is because for any x ∈ Xi+k, we can choose x′ ∈ Xi

such that d(x, x′) < 2−i, and let xji ∈ {x
j
i} such that d(x′, xji ) <

ǫ
5 .

Then d(x, xji+k) ≤ d(x, x′) + d(x′, xji ) + d(xji , x
j
i+k) <

ǫ
5 + 2 · 2−i < 3ǫ

5 .

Finally, we check that {{x1i+k}∞k=1, . . . , {xℓi+k}∞k=1} is an ǫ-dense sub-
set in X. Given any {yk} ∈ X, we may assume that for a large k,
d(yk, yk+j) <

ǫ
5 . Since {x1k, . . . , xℓk} is a 3ǫ

5 -net for Xk, we may assume

that d(yk, x
s
k) <

3ǫ
5 . Then

d(yk+j, x
s
k+j) ≤ d(yk, yk+j) + d(yk, x

s
k) + d(xsk, x

s
k+j) <

ǫ

5
+

3ǫ

5
+
ǫ

5
= ǫ,

and thus d({yk}, {xsk}) < ǫ.
iv) We shall show that for any ǫ > 0, Bǫ(X) ⊇ Xi and Bǫ(Xi) ⊇ X

for all large i.
For any ǫ > 0, let 2−i+1 < ǫ. For xi ∈ Xi, from the condition

that di,i+j,H(Xi,Xi+j) < 2−i+1, we define a sequence yk ∈ Xk such that

d(yk, yk+j) < 2−k+1 and yi = xi (we can choose y1, . . . , yi−1 arbitrarily).
Clearly, {yk} is a Cauchy sequence and d(xi, {yk}) < 2−i+1 < ǫ. This
shows that Xi ⊆ Bǫ(X) for i ≥ − ln ǫ

ln 2 + 1.
For any {xi} ∈ X, for i large, we can assume that d(xi, {xj}) < ǫ.

Note that this does not give Bǫ(Xi) ⊇ X, because how large i is may
depend on {xi} in X. To overcome this trouble, by iii), we can assume
a finite ǫ

4 -dense subset, {y1i }∞i=1, . . . , {yℓi}∞i=1, for X. For each 1 ≤ j ≤ ℓ,
we may assume some Nj such that for i ≥ Nj , d(y

j
i , {y

j
i }) < ǫ

4 and

2−i+1 < ǫ
4 . Let N = max{N1, . . . , Nℓ}. For any {xi} ∈ X, we may

assume some 1 ≤ j ≤ ℓ such that d({xi}, {yji }) < ǫ
4 . From the above,

for each i ≥ N ,

d(yji , {xi}) ≤ d(y
j
i , {y

j
i }) + d({yji }, {xi}) < ǫ,

and thus X ⊆ Bǫ(Xi). q.e.d.

A direct consequence of Proposition A.1 is that (X, dGH ) is a complete
metric space.

A by-product of the above proof is that an abstract convergent se-

quence, Xi
dGH−→ X, can be realized as a concrete Hausdorff convergence,

dH(Xi,X)→ 0, in
∐
Xi
∐
X with an admissible metric d. In particular,

it makes sense to say that xi ∈ Xi, xi → x ∈ X because d(x, xi)→ 0.
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Appendix B. Estimates for Volume Forms

by MARK GROSS1

Theorem B.1. Let π : M → ∆ be a flat projective family of n-
dimensional Calabi–Yau varieties, with Mt = π−1(t) non-singular for
t 6= 0 and M0 = π−1(0) a variety with canonical singularities. After
embedding the family M in CPN × ∆, let ωt denote the restriction of
the Fubini-Study metric on CPN toMt. Furthermore, let Ω be a nowhere
vanishing holomorphic section of the relative canonical bundle KM/∆,
and set Ωt = Ω|Mt. Then

i) There is a κ independent of t such that

(−1)n2

2 Ωt ∧ Ω̄t > κωn
t .

ii) There is a constant Λ independent of t such that

(−1)n2

2

∫

Mt

Ωt ∧ Ω̄t < Λ.

Proof. For i), we use an argument similar to that in [18], lemma
6.4. Let Msm denote the set of points of M where π is smooth, i.e.,
the set of points where M is non-singular and π∗ is surjective. Let
p ∈ M be a point, and consider an open neighborhood Up of p which
embeds into CN+1 via ι : Up → CN+1, with coordinates t, z1, . . . , zN .

The Fubini-Study form is comparable to ω =
√
−1

N∑
i=1

dzi ∧ dz̄i, so we

can assume that locally ωt is the restriction of ω to Up ∩ Mt. Now

ωn = n!(−1)n
2

∑
I
dzI ∧ dz̄I , where the sum is over all index sets I ⊆

{1, . . . , N} with #I = n. Now as ι∗(dzI) is a relative holomorphic n-
form on Up ∩ Msm, there is a holomorphic function fI on Up ∩ Msm

such that ι∗(dzI) = fIΩ. Note that sinceM is necessarily normal and
M\Msm is codimension ≥ 2, we can apply Hartogs’ theorem for normal
analytic spaces to extend fI to a holomorphic function on Up. Thus

ι∗ωn = C(−1)n2

2

(
∑

I

|fI |2
)
Ω ∧ Ω̄.

On an open neighborhood Vp ⊂⊂ Up of p, |fI | is bounded. This gives
the desired result.

For ii), we need to apply some standard results from Hodge theory.
After making a base-change ∆ → ∆ given by t 7→ tk for some k, we
can assume that the monodromy operator T about the origin acting on

1Supported by NSF Grant DMS-0805328 and DMS-0854987.
Address: Mathematics Department, University of California, San Diego, 9500 Gilman
Drive, La Jolla, CA 92093-0112, USA. E-mail address: mgross@math.ucsd.edu
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Hn(Mt0 ,C) is unipotent, i.e., (T −I)m = 0 for some m. Here t0 ∈ ∆∗ =
∆ \ {0} is a fixed basepoint. Let

N = log(T − I);
this makes sense via the power series expansion. By the stable reduction
theorem [36], one has a diagram

M̃ η
//

π̃
""E

E

E

E

E

E

E

E

E

M
π

��

∆

in which η is an isomorphism outside the central fibre and π̃ is normal

crossings, i.e., locally around points of M̃0 = π̃−1(0) there are coordi-

nates z1, . . . , zn+1 on M̃ such that t = z1 · · · zp for some p ≤ n + 1.

One has the sheaf Ω1
M̃(log M̃0) of logarithmic differentials on M̃ lo-

cally generated by dz1
z1
, . . . ,

dzp
zp
, dzp+1, . . . , dzn+1, and the sheaf of rel-

ative logarithmic differentials Ω1
M̃/∆

(log M̃0) is obtained by dividing

out by the relation dt
t = 0. It is standard (see for example the book

[45] for the full background used here) that Ω1
M̃/∆

(log M̃0) is a rank

n vector bundle, and if X is an irreducible component of M̃0, then

Ω1
M̃/∆

(log M̃0)|X = Ω1
X(log ∂X), where ∂X = X ∩ S̃, and S̃ is the sin-

gular set of M̃0. One then obtains the logarithmic de Rham complex

Ω•
M̃/∆

(log M̃0), with Ωp

M̃/∆
(log M̃0) the p-th exterior power of the sheaf

of relative log differentials, and the differential d is the ordinary exterior

derivative. In particular, we have the line bundle Ωn
M̃/∆

(log M̃0).

By [55], theorem 2.11, π̃∗Ωn
M̃/∆

(log M̃0) is a vector bundle whose

fibre over t 6= 0 is H0(Mt,KMt). Hence this is a line bundle. On the
other hand, by assumption onM, KM/∆

∼= OM and so π∗KM/∆ is also

a line bundle. LetMo be the largest open set so that η−1(Mo)→Mo

is an isomorphism, and let i : Mo → M be the inclusion. Then the
codimension of M \Mo in M is at least two. Since M \Msm has
codimension at least two, M \ (Msm ∩Mo) has codimension at least
two. We have a composition of canonical sheaf homomorphisms

η∗Ω
n
M̃/∆

(log M̃0)→ i∗i
∗η∗Ω

n
M̃/∆

(log M̃0) ∼= KM/∆,

the latter isomorphism by Hartogs’ theorem and the fact that the iso-
morphism holds overMsm ∩Mo. Applying π∗ then gives a map

(B.1) π̃∗Ω
n
M̃/∆

(log M̃0)→ π∗KM/∆.
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This map is an isomorphism over ∆∗, and hence is necessarily an in-
clusion of sheaves. To show it is in fact an isomorphism, we need to
show that any section of KM/∆|M0

= KM0
comes from a section of

Ωn
M̃/∆

(log M̃0)|M̃0
. To see this, let X0 be the proper transform of M0 in

M̃0. Then η0 : X0 → M0 is a resolution of singularities, and since M0

has canonical singularities, we have

KX0
= η∗0KM0

+
∑

E

aEE,

where the sum is over all exceptional divisors E of η0 and aE ≥ 0.
(Note aE is an integer since M0 is Gorenstein.) On the other hand,
Ωn
X0

(log ∂X0) is KX0
+
∑
E
E, where the sum is again over all exceptional

divisors of η0. So η
∗
0Ω0, viewed as a section of Ωn

X0
(log ∂X0), has a zero

of order at least 1 along each exceptional divisor E. Thus η∗0Ω0 extends

by zero to a section of Ωn
M̃/∆

(log M̃0)|M̃0
. Thus (B.1) is surjective, hence

an isomorphism.
We now recall some standard material concerning the limiting mixed

Hodge structure and the nilpotent orbit theorem. Denote by Hn the

vector bundle Rnπ̃∗Ω•
M̃/∆

(log M̃0). The fibre of this bundle at t is iso-

morphic to Hn(Mt,C). This bundle comes along with the Gauss-Manin
connection, which is flat with a regular singular point at 0 ∈ ∆.

Let j : H → ∆∗ be the universal cover, with H the upper half-
plane, with coordinate w = 1

2π
√
−1

log t. Then j∗Hn is now canon-

ically identified with the trivial bundle H × Hn(Mt0 ,C) via parallel
transport by the Gauss-Manin connection. If e ∈ Hn(Mt0 ,C), one ob-
tains a constant section σe of j∗Hn by parallel transport, and then
e−wNσe descends to a single-valued section of Hn over ∆∗. The bun-
dle Hn is then the canonical extension of Hn|∆∗ , i.e., the extension in
which, for a basis e1, . . . , es of Hn(Mt0 ,C), e

−wNσe1 , . . . e
−wNσen form

a holomorphic frame. In particular, there is an isomorphism of the fibre

Hn
0 = Hn(M̃0,Ω

•
M̃/∆

(log M̃0)|M̃0
) with Hn(Mt0 ,C), isomorphic to the

space of flat sections of j∗Hn.
We also have an inclusion

Fn := π̃∗Ω
n
M̃/∆

(log M̃0) →֒ Hn.

The fibre of Fn over 0 ∈ ∆ is Fn
lim ⊆ Hn(Mt0 ,C) under the above

isomorphism, a piece of the limiting mixed Hodge structure. In partic-
ular, the value of the holomorphic section Ω of π∗KM/∆ at 0 under the
isomorphism (B.1) defines a class Ωlim ∈ Fn

lim.
We now apply the nilpotent orbit theorem (see e.g., [26], chapter

IV, for an exposition of this material). Let φ : H → P(Hn(Mt0 ,C))
be the period map, with, for w ∈ H, φ(w) being the one-dimensional



EXTREMAL TRANSITIONS FOR CALABI–YAU MANIFOLDS 265

subspace (j∗Fn)w ⊆ (j∗Hn)w ∼= Hn(Mt0 ,C), the latter identification
via the Gauss-Manin connection. Then e−wNφ : H → P(Hn(Mt0 ,C))
descends to a map ψ : ∆∗ → P(Hn(Mt0 ,C)) which in turn extends
across the origin, with ψ(0) = [Ωlim]. The nilpotent orbit is the map
φnil : H → P(Hn(Mt0 ,C)) given by

φnil(w) = ewNψ(0) = ewN [Ωlim].

The nilpotent orbit theorem states that φnil is a good approximation
to φ, i.e., with a suitable metric on P(Hn(Mt0 ,C)) inducing a distance
function ρ, we have constants A and B such that for Imw ≥ A > 0,

ρ(φ(w), φnil(w)) ≤ (Imw)Be−2πImw.

This implies that
∫
Mt

Ωt ∧ Ω̄t is bounded independently of t near 0

provided that
∫
Mt0

ewNΩlim ∧ ewNΩlim is bounded for Imw ≥ A.
Now we apply the argument of proposition 2.3 and theorem 2.1 of

[59]. The argument of proposition 2.3 tells us that M̃0 has an irreducible
component (in fact X0) with H

n,0(X0,C) 6= 0. Thus, by the first line of
the proof of theorem 2.1, NFn

∞ = 0. So in particular, ewNΩlim = Ωlim,
giving the desired boundedness. q.e.d.
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