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THE PLATEAU PROBLEM IN ALEXANDROV SPACES

Chikako Mese & Patrick R. Zulkowski

Abstract

We study the Plateau Problem of finding an area minimizing
disk bounding a given Jordan curve in Alexandrov spaces with
curvature ≥ κ. These are complete metric spaces with a lower
curvature bound given in terms of triangle comparison. Imposing
an additional condition that is satisfied by all Alexandrov spaces
according to a conjecture of Perel’man, we develop a harmonic
map theory from two dimensional domains into these spaces. In
particular, we show that the solution to the Dirichlet problem from
a disk is Hölder continuous in the interior and continuous up to
the boundary. Using this theory, we solve the Plateau Problem in
this setting generalizing classical results in Euclidean space (due
to J. Douglas and T. Rado) and in Riemannian manifolds (due to
C.B. Morrey).

1. Introduction

The Plateau Problem is the problem of finding a surface minimizing
the area amongst all surfaces which are images of a map from a disk and
spanning a given Jordan curve Γ in a space X. If X is the Euclidean
space Rn, we can formulate this problem more precisely as follows. If
D is the unit disk in R2, the area of a map u : D → Rn is
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The Plateau Problem in Rn. Given a Jordan curve Γ ⊂ Rn, let

F =
{

v : D → Rn : v ∈W 1,2(D) ∩ C0(D) and

v
∣

∣

∂D
monotonically parameterizes Γ

}

.

Find u ∈ F so that A(u) ≤ A(v) for all v ∈ F .

The mathematical problem of proving the existence of an area min-
imizing surface spanning a given contour was raised by J. Lagrange in
the mid-eighteenth century, but the problem is named after the Belgian
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physicist J. Plateau who studied soap films. It was not until the 1930’s
that J. Douglas [D] and T. Rado [R1] [R2] properly formulated and
independently solved this problem. In the 1950’s, C.B. Morrey [Mo]
generalized the problem by replacing the ambient Euclidean space by a
space belonging to a very general class of Riemannian manifolds (that
includes all compact ones). Further generalization is due to I. Nikolaev
[N] who replaced the Riemannian manifold by a complete metric space
with curvature bounded from above in the sense of Alexandrov. Our
interest here is to extend the generalization to the case when the ambi-
ent space is an Alexandrov space, i.e. when the curvature is bounded
from below.

An important ingredient for the Plateau Problem (and minimal sur-
face theory in general) is the theory of harmonic maps from a domain
of dimension 2. In fact, the solution of the Plateau Problem in Eu-
clidean space and Riemannian manifolds can be given by a map that
is harmonic and conformal. With the assumption of non-positive cur-
vature, the harmonic map theory into a singular target space (with the
domain assumed to be a Riemannian domain of arbitrary dimension)
was first considered in the foundational paper of M. Gromov and R.
Schoen [GS] and further generalized by N. Korevaar and R. Schoen
[KS1], [KS2]. This theory was also developed independently by J. Jost
(see [Jo] and references therein). A generalization to the case when the
curvature is bounded from above by an arbitrary constant was given
by T. Serbinowski [Se1]. The aspect that makes the harmonic map
theory tractable in this setting is the convexity property of the energy
functional under the assumption of an upper curvature bound. The reg-
ularity theory for the Dirichlet problem (i.e. the problem of finding a
map of least energy amongst all maps with a given boundary condition)
states that the Dirichlet solution is Lipschitz continuous in the interior
[KS1] and Hölder continuous up to the boundary if given a Hölder con-
tinuous boundary condition [Se2]. Recall also that there often exists a
heavy reliance on the upper sectional curvature bound when one stud-
ies harmonic maps into Riemannian manifolds (see for example [ES]).
The harmonic map approach to the Plateau Problem in metric spaces of
curvature bounded from above is discussed by the first author in [Me1],
[Me2], [Me3]. (This differs substantially from the approach pursued in
[N].)

To tackle the Plateau Problem when the ambient space has a lower
curvature bound, we will develop the relevant harmonic map theory.
More specifically, we study the Dirichlet problem for maps into an
Alexandrov space X. The difficulty here is that we do not have the
nice convexity properties of the energy functional and cannot mimic the
techniques developed for maps into non-positively curved spaces. In
fact, the solution of the Dirichlet problem is not continuous in general,
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even for maps into Riemannian manifolds (cf. [Ha]). On the other
hand, the regularity of harmonic maps into Riemannian manifolds from
a two dimensional domain was established by [Mo], [Gu], [Sc] and [He].
We generalize this result when the target space is an Alexandrov space
X of curvature ≥ κ assuming an additional condition (that X satisfies
Perel’man’s conjecture described later in this section).

Regularity Theorem (cf. Theorem 6, Theorem 9). Let X be a com-
pact Alexandrov space satisfying Perel’man’s conjecture. A Dirichlet
solution u : D → X is Hölder continuous in the interior of D and con-
tinuous up to ∂D.

We note that this is the optimal regularity result. A two-dimensional
cone C with vertex angle < π is positively curved and a harmonic map
from a disk into C is Hölder continuous, but not Lipschitz, at a point
in the pre-image of the vertex.

Using the theorem above, we solve the Plateau Problem by using the
Dirichlet solution as a means to obtain an area minimizing disk. One
fundamental point we need to clarify is the notion of area associated
to a map into an Alexandrov space. Note that the area given by (1)
for maps into Euclidean space is obtained by integrating the area ele-
ment associated with the pull-back metric. The notion of the pull-back
metric for maps into non-positively curved metric spaces was given in
[KS1] and for metric spaces of general upper curvature bound in [Me2].
We prove that this notion also makes sense for maps into Alexandrov
spaces (cf. Theorem 11). Using the pull-back metric, we define the area
functional for maps into X and formulate the Plateau Problem analo-
gously to the statement of the Plateau problem in Euclidean space. The
proof of the existence of the solution of the Plateau Problem parallels
a well-known argument for the Euclidean case [L]. Combined with the
regularity theorem for the Dirichlet problem, this gives us:

Theorem (cf. Theorem 13 and Theorem 17). Let X be a compact
Alexandrov space satisfying Perel’man’s conjecture and Γ ⊂ X be a Jor-
dan curve. Suppose there exists a continuous map u0 : D → X of
finite energy whose restriction to ∂D monotonically parameterizes Γ.
Then there exists a continuous map u : D → X which minimizes area
amongst all other continuous maps whose restriction of ∂D monotoni-
cally parameterizes Γ. Furthermore, u is conformal, energy minimizing
and Hölder continuous in the interior of D.

We now discuss the space X in the theorems above in more detail.
Recall that an Alexandrov space with curvature bounded below by κ
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is one in which geodesic triangles are thicker than comparison trian-
gles in the two-dimensional simply connected surface of constant curva-
ture κ. This notion of curvature was developed by a Russian school of
mathematicians led by A.D. Alexandrov starting in the 1940’s. More
recently, Alexandrov spaces re-emerged into prominence as they are
the limiting spaces of a sequence of certain Riemannian manifolds un-
der the Gromov-Hausdorff convergence. Perel’man’s Stability Theorem
[P] states that if two Alexandrov spaces of the same dimension are
sufficiently close in the Gromov-Hausdorff distance, they are actually
homeomorphic. In fact, Perel’man asserts something more: the homeo-
morphism between the two spaces can be chosen to be bi-Lipschitz. The
proof of Perel’man’s claim in its full generality is not yet available to our
knowledge. For a good discussion on the Stability Theorem and related
issues, we refer to Kapovitch [Ka]. We note the following two properties
of an Alexandrov space: First, the tangent cone TPX at a point of an
n-dimensional Alexandrov space X is a cone C(ΠP ) over the space of
directions ΠP at P which is itself an (n − 1) Alexandrov space. Sec-
ond, the Hausdorff-Gromov distance between a neighborhood around
P in X and a neighborhood around the vertex of C(ΠP ) at this point
can be made arbitrarily small by taking the neighborhoods sufficiently
small. Thus, Perel’man’s claim implies that if X is an n-dimensional
Alexandrov space, then X satisfies the property that X is locally bi-
Lipschitz equivalent to a cone over a (n − 1)-dimensional Alexandrov
space. Furthermore, this (n−1)-dimensional Alexandrov space is locally
bi-Lipschitz equivalent to a cone over an (n−2)-dimensional Alexandrov
space and so forth. This motivates us to say that an Alexandrov space
X satisfies the Perel’man conjecture if it has this property.

The outline of this paper is as follows. In section 2, we give definitions
of Alexandrov spaces and other related concepts. We also recall Kore-
vaar and Schoen’s Sobolev space theory into metric spaces. Section 3
contains the two dimensional harmonic map theory. In particular, we
discuss the existence of the solution to the Dirichlet problem and prove
its interior and boundary regularity. In section 4, the solution of the
Plateau Problem is shown. This section also contains the proof of the
existence of the pull-back inner product that allows us to make sense of
the area functional (subsection 4.1).

Because the interior regularity proven in subsection 3.1 is central to
this paper and because of the technical nature of its proof, we conclude
this section by illustrating the ideas behind this argument. The main
step of the proof is to establish that, for any Dr(x0) ⊂ D, we have a
good bound on the energy of a map u

∣

∣

Dr(x0)
in terms of the energy

of u
∣

∣

∂Dr(x0)
. This in turn implies an energy decay estimate which, by

Morrey’s Energy Decay Lemma, implies the Hölder continuity. If the
image Γ0 ⊂ X of the boundary map u

∣

∣

∂Dr(x0)
is long, then its energy
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is large and thus we restrict our attention to the case when Γ0 is short.
Hence, we can assume that Γ0 is contained in a neighborhood that is bi-
Lipschitz equivalent to a neighborhood of the vertex of the cone C(ΠP )
for some P ∈ X. Since the ratio of the energy of a given map and the
energy of this map composed with a bi-Lipschitz map is bounded from
above and below by a constant depending on the bi-Lipschitz constant,
we can further assume for the sake of simplicity that u

∣

∣

Dr(x0)
maps into

this cone. We now consider the following two cases: (1) the length of
Γ0 is short relative to its distance from the vertex V of the cone and
(2) the length of Γ0 is long relative to its distance from the vertex. In
case (1), we extend the map u|∂Dr(x0) to a map ϕ defined on Dr(x0)
by setting ϕ(x0) = V and linearly mapping the radial ray from x0 to
a point ξ ∈ ∂Dr(x0) to a ray from V to u(ξ). By the construction,
the energy of ϕ is bounded in terms of the energy of u

∣

∣

∂Dr(x0)
. The

main step follows immediately since u
∣

∣

Dr(x0)
is energy minimizing and

has the same boundary values as ϕ. In case (2), Γ0 is contained in a
neighborhood U far away from the vertex and hence U is bi-Lipschitz
equivalent to product of ΠP × I for some interval I ⊂ R. We construct
a map ϕ by separately considering the Dirichlet problem in ΠP and in
I. Therefore, if we have a good energy bound for the Dirichlet problem
in ΠP , then we are done. Since the dimension of ΠP is one less than
that of X, we are able to prove the main step by an inductive argument
on the dimension of X.

2. Definitions and Background Material

2.1. Alexandrov Spaces. We begin with a discussion of Alexandrov
spaces and refer to [Sh], [BBI], [BGP], [OS] for more details.

Definition. We say a complete metric space (X, d) (or more simply
X) is an Alexandrov space of curvature bounded from below by κ if it
satisfies the following conditions:

(1) X is a length space; i.e. for any two points P,Q ∈ X, there ex-
ists a curve γPQ between P and Q with length equal to d(P,Q).

(2) Let Sκ be a simply connected surface of constant curvature κ. De-
note the distance function of Sκ by d̄ and the geodesic between P̄ , Q̄ ∈
Sκ by P̄ Q̄. Given a triple P,Q,R ∈ X with d(P,Q), d(Q,R), d(P,R) <
π√
κ
, let △(PQR) be a geodesic triangle. Then there exists a geo-

desic triangle △(P̄ Q̄R̄) in Sκ such that d(P,Q) = d̄(P̄ , Q̄), d(P,R) =
d̄(P̄ R̄), d(R,Q) = d̄(R̄, Q̄) and if we take two points S̄ ∈ P̄ Q̄ and T̄ ∈
P̄ R̄ with d(P, S) = d̄(P̄ , S̄) , d(P, T ) = d̄(P̄ , T̄ ), then d(S, T ) ≥ d̄(T̄ , S̄).
The triangle △(P̄ Q̄R̄) ⊂ Sκ will be called a comparison triangle of
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△(PQR) ⊂ X.

For simplicity, will say that X is an Alexandrov space if there exists
some κ so that X is an Alexandrov space of curvature bounded from
below by κ. In this paper, it is not important whether κ is positive, zero
or negative; we only use the fact that there exists some lower bound on
curvature. Hence, we may as well assume κ < 0.

Let α(s) : [0, a] → X and β(t) : [0, b] → X be arclength parameteri-
zations of two geodesics emanating from a point P ∈ X and let θ(t, s)

be the angle at P̄ of a comparison triangle △α(t)P̄ β(s) in Sκ. In par-
ticular, if X is an Alexandrov space of curvature bounded from below
by κ = −1 then θ(t, s) ∈ [0, π] is given by the equality

cosh d̄(ᾱ(t), β̄(s)) = cosh t cosh s− sinh t sinh s cos θ(t, s).

Condition (2) implies that t 7→ θ(t, s) and s 7→ θ(t, s) are monotone
non-increasing. The angle between geodesics α and β is defined to be

∠(α, β) = lim
t,s→0

θ(t, s).

We will need the following geometric fact:

Lemma 1. Let X be an Alexandrov space. For any ρ > 0, there
exists δ = δ(ρ) > 0 sufficiently small so that if

(i) P,R, T ∈ X with P 6= R, dPR < δ and

(2)

∣

∣

∣

∣

1

2
dPR − dPT

∣

∣

∣

∣

< δ2dPR ,

∣

∣

∣

∣

1

2
dPR − dRT

∣

∣

∣

∣

< δ2dPR,

(ii) γTR is a geodesic from T to R and R′ ∈ γTR with

(3) dRR′ = δdPR

(iii) γPR′ is a geodesic from P to R′ with T ′ as its midpoint,

then

(4) dTT ′ < ρdPR.

Remark. The idea behind Lemma 1 is as follows. One of the distin-
guishing features of a space X with a lower curvature bound is the non-
uniqueness of geodesics between two given points. Related to this non-
uniqueness statement is the following fact: given two points P,R ∈ X,
any point T whose distances to P and to R are both approximately
half of dPR as in (i) may be far away from the midpoint of a geodesic
γPR. For example, let P be the north pole and R be the south pole on
the standard 2-sphere and T be a point on the equator. There exists
a geodesic γPR from P and R whose midpoint is the antipodal point
of T . In a smooth Riemannian manifold, the point T satisfying (i) is
close to the midpoint of γPR if P and R are contained in a sufficiently
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small neighborhood, but in an Alexandrov space, such a neighborhood
does not generally exist. On the other hand, Lemma 1 says that we can
choose a point R′ close to R as in (ii) so that T is close to a midpoint
T ′ of a geodesic γPR′ .

Proof. We assume that X is an Alexandrov space of curvature
bounded from below by −1. (Given an Alexandrov space of curvature
bounded from below by κ < 0, we can rescale the distance function by
a factor of 1

|κ| to construct an Alexandrov space of curvature bounded

from below by −1. Since the assumption and the conclusion of the
lemma is scale invariant, the assumption that the curvature is bounded
from below by −1 is without a loss of generality.) Fix δ > 0 and let
P,R, T, γTR, R

′, γPR′ , T ′ satisfy (i), (ii) and (iii) above. Since

dTR′ = dTR−dRR′ , dT ′R′ =
1

2
dPR′ , dPR−dRR′ ≤ dPR′ ≤ dPR+dRR′ ,

(2) and (3) imply

(5) dTR′ , dT ′R′ =

(

1

2
+O(δ)

)

dPR.

Define α by setting

cosh dTT ′ = cosh dTR′ cosh dT ′R′ − sinh dTR′ sinh dT ′R′ cosα.

Using Taylor expansion, we obtain

d2TT ′ = d2TR′ + d2T ′R′ − 2dTR′dT ′R′ cosα+O(d3PR)

= (dTR′ − dT ′R′)2 + 2dTR′dT ′R′(1− cosα) +O(d3PR).

Furthermore, apply (5) to obtain

d2TT ′ = O(δ2)d2PR + 2

(

1

2
+O(δ)

)2

(1− cosα)d2PR +O(d3PR).

Thus, if we can show that α can be made arbitrarily small by tak-
ing δ (and therefore dPR) sufficiently small, then we obtain O(δ2) +

2
(

1
2 +O(δ)

)2
(1− cosα) < ρ2

2 for sufficiently small δ and hence

d2TT ′ ≤ ρ2

2
d2PR +O(d3PR) < ρ2d2PR

for δ sufficiently small. Thus, we are left to show that α is small if δ is
chosen to be small. To see this, we let γTR′ ⊂ γTR be a geodesic from T
to R′ and γRR′ ⊂ γTR be a geodesic from R to R′. Next, let α0 be the
angle between γPR′ and γTR′ and β0 the angle between γPR′ and γRR′ .
Lastly, let β be the angle defined by

cosh dPR = cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cos β.
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By construction, α0 + β0 = π, and by the monotonicity property of
angles in Alexandrov space, α0 ≥ α and β0 ≥ β. Hence

cosh dPR ≤ cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cos β0

= cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cosα0

≤ cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cosα.

Expanding by Taylor series, we obtain

d2PR ≤ d2PR′ + d2RR′ + 2dPR′dRR′ cosα+O(d3PR)

≤ (dPR′ + dRR′)2 + 2dPR′dRR′(cosα− 1) +O(d3PR).

By the triangle inequality along with (2), we have

dPR′ ≤ dPT + dTR′

= dPT + dTR − dRR′

≤ dPR + 2δ2dPR − dRR′ .

Furthermore, the triangle inequality and (3) gives

dPR′ ≥ dPR − dRR′ = (1− δ)dPR.

Combining the last three inequalities, we obtain

d2PR ≤ d2PR(1 +O(δ2))2 + d2PR(δ − δ2)(cosα− 1) +O(d3PR).

Dividing by d2PR and δ and rearranging terms, we get

(1− δ)(1 − cosα) ≤ 4δ + 4δ2 +O(dPQ).

Hence, we see that α is small if δ is sufficiently small. q.e.d.

Definition. The space of directions ΣP at P ∈ X is the closure of
the set of equivalence classes of geodesics emanating from P endowed
with the distance function dΣP

([α], [β]) = ∠(α, β). Here, α is said to be
equivalent to β if and only if ∠(α, β) = 0. (Since X is assumed to be an
Alexandrov space, for arclength parameterized geodesics α : [0, a] → X
and β : [0, b] → X with 0 < a ≤ b, we have that α and β are equivalent
if and only if α(s) = β(s) for all s ∈ [0, a].)

Definition. The tangent cone TP at P ∈ X is a cone over the space of
directions ΣP . More precisely, TP is defined to be the set

ΣP × [0,∞)/ ∼
where ∼ identifies all element of the form ([α], 0) along with a distance
function dTP defined by

d2TP (([γ], s), ([σ], t)) = s2 + t2 − 2st cos dΣP
([γ], [σ]).

The equivalence class of ([α], 0) will be called the vertex of TP .
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Finally, we define the notion of an Alexandrov spaces satisfying the
Perel’man conjecture given by the following inductive definition.

Definition. LetX be a compact Alexandrov space. Then the Hausdorff
dimension of X is an integer (cf. [BGP]). We say that a 1-dimensional
compact Alexandrov space is said to satisfy the Perel’man conjecture if
and only if it is a finite interval of length ≤ π or a circle of length ≤ 2π.
Assuming that we have given the definition of an (n − 1)-dimensional
compact Alexandrov space X satifying the Perel’man conjecture, we say
that an n-dimensional compact Alexandrov space satisfies the Perel’man
conjecture if every point P ∈ X has a neighborhood UP (hereafter re-
ferred to as a conic neighborhood) which is bi-Lipschitz homeomorphic
to a neighborhood of the vertex of a cone over an (n − 1)-dimensional
compact Alexandrov space of diameter ≤ π which satisfies the Perel’man
conjecture.

Let X be a n-dimensional compact Alexandrov space satisfying the
Perel’man conjecture. For each P ∈ X, let UP be a conic neighborhood
of P . Because of the assumption that X is compact, there exists a finite
set of point F ⊂ X so that {UP }P∈F is a covering of X. We will refer to
{UP } as a finite cover of X by conic neighborhoods. A number λ > 0 is
a Lebesgue number of a finite cover {UP }P∈F if A ⊂ UP for some P ∈ F
whenever the diameter of A is ≤ λ.

Perel’man’s Stability Theorem is the following:

Theorem (cf. [P], [Ka]). Let X be a compact n-dimensional Alexan-
drov space of curvature bounded from below by κ. There exists ǫ =
ǫ(X) > 0 so that if Y is an n-dimensional Alexandrov space of curvature
bounded from below by κ with the Hausdorff-Gromov distance between X
and Y less than ǫ, then there exists a homeomorphism between X and Y .

Perel’man asserts that there actually exists a bi-Lipschitz homeomor-
phism between X and Y above. A consequence of Perel’man’s claim
is that the condition that an n-dimensional Alexandrov space satisfies
Perel’man’s conjecture is actually redundant. This follows immediately
from the fact that, for any point P in a n-dimensional Alexandrov space
X, the pointed Hausdorff limit of the scaling (λX;P ) of X is isometric
to (TP (X);V ). In other words, a small neighborhood around P is close
in Hausdorff-Gromov distance to a small neighborhood around V in TP
which is a cone over a (n− 1)-dimensional space of directions.

2.2. Sobolev SpaceW 1,2(Ω,X).We summarize Korevaar and Schoen’s
Sobolev space theory of [KS1] Chapter 1. Let Ω be a compact Riemann-
ian domain and (X, d) a complete metric space. A Borel measurable
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map u : Ω → X is said to be in L2(Ω,X) if for P ∈ X,
∫

Ω
d2(u(x), P )dµ <∞.

This condition is independent of P ∈ X by the triangle inequality. For
ǫ > 0, set Ωǫ := {x ∈ Ω : dist(x, ∂Ω) > ǫ} and let S(x, ǫ) denote the
sphere of radius ǫ centered at x in Ω. Construct the ǫ-approximate
energy function eǫ(x) : Ωǫ → R by

eǫ(x) =
1

ωn

∫

S(x,ǫ)

d2(u(x), u(y))

ǫ2
dσ

ǫn−1

where ωn is the volume of the unit sphere in Rn. (This differs from the
ǫ-approximate energy function given in [KS1] (1.2ii) by a factor of ωn.)
The ǫ-approximate energy function eǫ is a L

1-function; more specifically
(cf. [KS1] (1.2iii)),

(6)

∫

Ωǫ

eǫ(x)dµ ≤ Cǫ−2.

Let ν be any Borel measure on the interval (0, 2) satisfying

(7) ν ≥ 0 , ν((0, 2)) = 1,

∫ 2

0
λ−2dν(λ) <∞.

Consider an averaged approximate energy density function defined by

(8) νeǫ(x) =







∫ 2

0
eλǫ(x)dν(λ) for x ∈ Ω2ǫ

0 for x ∈ Ω− Ω2ǫ.

By (6) and (7), we see that νeǫ ∈ L1(Ω). Thus, we can define a functional
Euǫ : Cc(Ω) → R by setting

Euǫ (f) =

∫

Ω
f(x)νeǫ(x)dµ.

We will say that u is a finite energy map or u ∈W 1,2(Ω,X) if

Eu = sup
f∈Cc(Ω),0≤f≤1

lim sup
ǫ→0

Euǫ (f) <∞.

By [KS1] Theorem 1.5.1, the above definition of finite energy map
is independent of the choice of ν satisfying (7); in other words, if u ∈
L2(Ω,X) has finite energy with respect to some measure ν1 satisfying
(7), then it has finite energy with respect to all such ν. Furthermore,
the same theorem says that if u ∈W 1,2(Ω,X), then the measures νeǫdµ
converge weakly to the same measure; in other words, there exists a
measure de such that

νeǫ(x)dµ ⇀ de, ∀ν satisfying (7).
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One of the remarkable results in [KS1] is that the notion of the energy
density function |du|2 defined in the classical case for maps between
Riemannian manifolds has an analogue in the singular setting. More
precisely, by [KS1] Theorem 1.10, the measure de is absolutely con-
tinuous with respect to the Lebesgue measure and thus there exists an
L1-function |∇u|2, called the energy density, so that

de = |∇u|2dµ.
Moreover, |∇u|2 coincides (up to a constant multiple) with the norm
squared of the gradient when X = R.

There is also a corresponding generalization for the directional energy
density function. Let Γ(TΩ) be the set of Lipschitz tangent vector fields
on Ω and V ∈ Γ(TΩ). For simplicity, we denote x+ ǫV to be the flow
along V at time ǫ with initial point x. Define the ǫ-approximate energy
density function

V eǫ(x) =
d2(u(x), u(x + ǫV ))

ǫ2

and an averaged approximate directional energy density function V
ν eǫ(x)

in the same way as (8). By [KS1] Theorems 1.8.1 and 1.9.6, if u ∈
W 1,2(Ω,X), then meaures V eǫdµ and V

ν eǫdµ converge weakly to a mea-
sure which is absolutely continuous with respect to the Lebesgue mea-
sure. Thus, there exists a function |u∗(V )|2, called the directional energy
density, so that

(9) V eǫdµ,
V
ν eǫdµ ⇀ |u∗(V )|2dµ.

The following equality is contained in Theorem 1.11 of [KS1]; for any
h ∈ C0,1(Ω), we have

(10) |u∗(hV )|2 = |h|2|u∗(V )|2.
If Ω is a Lipschitz domain and u ∈W 1,2(Ω,X), the restriction of u to

the boundary ∂Ω makes sense; more precisely, there exists a well-defined
notion of a trace of u, denoted Tr(u), which is an element of L2(∂Ω,X).
Two maps u, v ∈ W 1,2(Ω,X) have the same trace (i.e. Tr(u) = Tr(v))

if and only if d(u(x), v(x)) ∈W 1,2
0 (Ω) (cf. Theorem 1.12.2 of [KS1]).

Many standard statements in elementary calculus can be translated
for the metric space setting using the above notions. First, consider a
map γ : [a, b] ⊂ R → X ∈ W 1,2([a, b],X). From [KS1] Lemma 1.9.5,
we have

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

2

(t) = lim
ǫ→0

d2(γ(t), γ(t + ǫ))

ǫ2
, for a.e. t ∈ [a, b].

We set the notation
∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

(t) :=

√

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

2

(t).
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Thus,

(11)

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

(t) = lim
ǫ→0

d(γ(t), γ(t + ǫ))

ǫ
, for a.e. t ∈ [a, b].

Furthermore, (1.9xvi) of [KS1] says that

∫ b

a

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

(t)dt = lim
||P ||→0

k−1
∑

i=0

d(γ(ti+1), γ(ti))

for arbitrary partitions

P : a = t0 < t1 < · · · < tk = b

of [a, b]. This in turn implies, by the triangle inequality and the Cauchy-
Schwartz inequality, that
(12)

d(γ(t1), γ(t2)) ≤
∫ t2

t1

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

dt ≤
(

∫ b

a

∣

∣

∣

∣

γ∗

(

∂

∂t

)∣

∣

∣

∣

2

dt

)1/2

|t1−t2|1/2.

Now with D a unit disk, let (x, y) and (r, θ) be its Cartesian and polar
coordinates respectively. By Lemma 1.9.5 of [KS1], we have for a.e.
x ∈ (−1, 1) and a.e. y ∈ (−1, 1),

(13)
d2(u(x, y), u(x + ǫ, y))

ǫ2
=

∣

∣

∣

∣

u∗

(

∂

∂x

)
∣

∣

∣

∣

2

(x, y)

and

(14)
d2(u(x, y), u(x, y + ǫ))

ǫ2
=

∣

∣

∣

∣

u∗

(

∂

∂y

)
∣

∣

∣

∣

2

(x, y).

For a point (r, θ) ∈ D with r 6= 0, let R = (r1, r2)× (θ1, θ2) ⊂ D\{0} be
its neighborhood. By Theorem 1.11 of [KS1], if u ∈ W 1,2(D,X) (with
respect to the usual Euclidean metric on D), then u ∈ W 1,2(R,X)
(with respect to the usual Euclidean metric on the product (r1, r2) ×
(θ1, θ2)). Furthermore, inequality (1.11iii) in the same theorem implies
that u

∣

∣

Ir
∈ W 1,2(Ir,X) and u

∣

∣

lθ
∈ W 1,2(Iθ,X) for a.e. r ∈ (r1, r2) and

a.e. θ ∈ (θ1, θ2). Here, Ir and Iθ are the vertical and horizontal lines of
(r1, r2)× (θ1, θ2) respectively. Therefore, we can apply Lemma 1.9.5 to
conclude that for a.e. (r, θ) ∈ D, we have

(15)
d2(u(r, θ), u(r + ǫ, θ))

ǫ2
=

∣

∣

∣

∣

u∗

(

∂

∂r

)
∣

∣

∣

∣

2

(r, θ)

and

(16)
d2(u(r, θ), u(r, θ + ǫ))

ǫ2
=

∣

∣

∣

∣

u∗

(

∂

∂θ

)∣

∣

∣

∣

2

(r, θ).

We now assume that X is an Alexandrov space (with or without
the assumption that it satisfies Perel’man’s Conjecture). For purposes
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of expositional clarity, we record the statements (17) and (18) below
which can be justified using Theorem 11 in Section 4.1. Let (x, y) be
the standard Cartesian coordinates on the disk. Then using the fact
that the inverse of the standard Euclidean metric on D is given by
gxx = gyy = 1 and gxy = 0 in Cartesian coordinates (x, y) and grr = 1,
gθθ = 1

r2
and grθ = gθr = 0 in polar coordinates (r, θ), we can write

|∇u|2(r, θ) =

∣

∣

∣

∣

u∗

(

∂

∂x

)
∣

∣

∣

∣

2

(r, θ) +

∣

∣

∣

∣

u∗

(

∂

∂y

)
∣

∣

∣

∣

2

(x, y)

=

∣

∣

∣

∣

u∗

(

∂

∂r

)
∣

∣

∣

∣

2

(r, θ) +
1

r2

∣

∣

∣

∣

u∗

(

∂

∂θ

)
∣

∣

∣

∣

2

(r, θ),(17)

for almost every point in D. The validity of (17) follows immediately
from an application of equality (49) in Theorem 11 below combined with
the fact that in polar coordinates grr = 1, gθθ = 1

r2 and grθ = gθr = 0.
Furthermore,

(18) Eu = Eu◦ψ, ∀ conformal reparameterization ψ : D → D.

The statement (18) follows by a well-known computation in the smooth
setting which can be adapted to this setting by the change of variables
formula (48) of Theorem 49.

We will now prove some lemmas that we will need later. For nota-
tional simplicity, we set

Dǫ(Z,W ) =
d(u(x+ ǫZ), u(x+ ǫW ))

ǫ
, Z,W ∈ Γ(TΩ).

Lemma 2. Let V ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then Dǫ(0, V )
converges to |u∗(V )| pointwise almost everywhere, in L2 and in L2-
norm, i.e.

(19) D2
ǫ (0, V ) → |u∗(V )|2 a.e. x ∈ Ω,

(20)

∫

Ω
f(Dǫ(0, V )− |u∗(V )|)2 → 0

and

(21)

∫

Ω
fD2

ǫ (0, V ) →
∫

Ω
f |u∗(V )|2.

Proof. As

Dǫ(0, V ) =
d(u(x), u(x + ǫV ))

ǫ
,

the convergence of (21) follows from (9). To see the convergence of
(19), first observe that (1.9 xix) of [KS1] implies that |u∗(V )| = 0
almost everywhere on {x : V (x) = 0}. Since Dǫ(0, V ) = 0 on this
set, we only need to verify the convergence on {x : V (x) 6= 0}. After
applying a C1,1 change of coordinates from the initial coordinate chart,
we can assume that V is a coordinate direction. Thus Lemma 1.9.5 of
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[KS1] implies that D2
ǫ (0, V ) → |u∗(V )|2 almost everywhere. Now that

we have verified (21) and (19), we will show that (20) follows from those
two convergence statements. First, we write

f(Dǫ(0, V )− |u∗(V )|)2 ≤ 2fD2
ǫ (0, V ) + 2f |u∗(V )|2.

Since
∫

Ω
(2fD2

ǫ (0, V ) + 2f |u∗(V )|2) →
∫

Ω
4f |u∗(V )|2

by (21) and f(Dǫ(0, V )− |u∗(V )|2) → 0 a.e. by (19), we can apply the
Dominated Convergence Theorem to conclude (20). q.e.d.

Lemma 3. Let V,U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then as ǫ → 0,
we have

(22)

∫

Ω
f(Dǫ(0, V )−Dǫ(U,U + V ))2 → 0,

(23)

∫

Ω
fD2

ǫ (U,U + V )dµ →
∫

Ω
f |u∗(V )|2dµ

and

(24) D2
ǫ (U,U + V ) → |u∗(V )|2 a.e.

Proof. For this proof, we set

Dǫ = Dǫ(0, V ),D = |u∗(V )| and Tǫϕ(x) = ϕ(x+ ǫU)

for any function ϕ : Ω → R. To see why (22) is true, first note that
TǫDǫ = Dǫ(U,U + V ) and

√

fTǫDǫ = Tǫ(T−ǫ
√

f)TǫDǫ

= Tǫ(
√

f − (
√

f − T−ǫ
√

f))TǫDǫ

= Tǫ(
√

fDǫ)− (Tǫ
√

f −
√

f)TǫDǫ.

Thus, denoting the L2 norm by ‖ · ‖2, we obtain

‖
√

fTǫDǫ−
√

fDǫ‖2 ≤ ‖Tǫ(
√

fDǫ)−
√

fDǫ‖2+‖(Tǫ
√

f −
√

f)TǫDǫ‖2.
Furthermore, several application of the triangle inequality yields

‖
√

fTǫDǫ −
√

fDǫ‖2
≤ ‖Tǫ(

√

fDǫ)−
√

fD‖2 + ‖
√

fD −
√

fDǫ‖2
+‖(Tǫ

√

f −
√

f)TǫDǫ‖2
≤ ‖Tǫ(

√

fDǫ)− Tǫ(
√

fD)‖2 + ‖Tǫ(
√

fD)−
√

fD‖2
+‖
√

fD −
√

fDǫ‖2 + ‖(Tǫ
√

f −
√

f)TǫDǫ‖2
≤ ‖Tǫ(

√

fD)−
√

fD‖2 + 2‖
√

fD −
√

fDǫ‖2
+‖(Tǫ

√

f −
√

f)TǫDǫ‖2.
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As ǫ → 0, the first term on the right hand side converges to 0 since√
fD ∈ L2(Ω), the second term by Lemma 2 and the third term since

Tǫ
√
f → √

f uniformly. Thus, we have established (22).
To see why (23) is true, one can use the change of coordinates method

outlined in the proof of Lemma 2.3.1 of [KS1]. The convergence of (24)
follows immediately from (22) and (23). q.e.d.

Lemma 4. Let V,U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then for all

η > 0 there exists ǫ0, δ > 0 such that for all Ω̃ ⊂ Ω with µ(Ω̃) < δ and
ǫ < ǫ0, we have

(25)

∫

Ω̃
f(x)D2

ǫ (0, V )dx < η and

∫

Ω̃
f(x)D2

ǫ (U,U + V )dx < η.

Proof. We use the notation in the proof of Lemma 3. Since fD2 is
a non-negative integrable function on Ω, there exists δ > 0 such that if
µ(Ω̃) < δ then

2

∫

Ω̃
fD2 <

η

2
.

By Lemma 2, there exists ǫ0 > 0 such that if ǫ < ǫ0, then

2

∫

Ω̃
(
√

fDǫ −
√

fD)2 ≤ 2

∫

Ω
(
√

fDǫ −
√

fD)2 <
η

2
.

Thus, the first inequality of (25) follows by observing that
∫

Ω̃
fD2

ǫ =

∫

Ω̃
(
√

f(D +Dǫ −D))2 ≤ 2

∫

Ω̃
fD2 + 2

∫

Ω̃
(
√

fDǫ −
√

fD)2.

The second inequality follows from
∫

Ω̃
fDǫTǫDǫ

=

∫

Ω̃
fD2

ǫ +

∫

Ω̃
fDǫ(TǫDǫ −Dǫ)

≤
∫

Ω̃
fD2

ǫ +

(
∫

Ω̃
fD2

ǫ

)1/2(∫

Ω̃
f(TǫDǫ −Dǫ)

2

)1/2

and the observation that the second term converges to 0 as ǫ → 0 by
Lemma 3. q.e.d.

3. The Dirichlet Problem

We let D be a unit disk in the plane. The Dirichlet Problem for an
Alexandrov space X is formulated as follows:

The Dirichlet Problem. Let ψ ∈W 1,2(D,X),

W 1,2
ψ = {v ∈W 1,2(D,X) : Tr(v) = Tr(ψ)}
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and Eψ = inf{Ev : v ∈W 1,2
ψ }. Find u ∈W 1,2

ψ such that Eu = Eψ.

If u ∈W 1,2(D,X) has the property that Eu ≤ Ev for any v ∈W 1,2(D,
X) with Tr(v) = Tr(u), then u will be referred to as a Dirichlet so-
lution (for the boundary data Tr(u)). We first establish the following
existence result:

Theorem 5. Let X be a compact Alexandrov space. Given any ψ ∈
W 1,2(D,X), there exists a Dirichlet solution u ∈W 1,2

ψ (D,X).

Proof. The proof is an easy application of the results of Chapter 1 in
[KS1]. We take a sequence of maps {uk} ⊂ W 1,2

ψ (D,X) such that Euk

converges to Eψ. Since X is compact, there exists C > 0 so that
∫

D
d2(uk(x), Q)dµ(x) + Euk ≤ C.

By the precompactness theorem (Theorem 1.13 of [KS1]), there exists
a subsequence {uki} that converges in L2(D,X) to u ∈W 1,2(D,X). By
the lower semicontinuity of energy (Theorem 1.6.1 of [KS1]) and the
trace theory (Theorem 1.12.2 of [KS1]), Eu = Eψ and Tr(u) = Tr(ψ).

q.e.d.

The rest of this section is devoted to the regularity issues of the
Dirichlet solution.

3.1. The Interior Hölder Continuity. The goal of this subsection
is to prove:

Theorem 6. Let X be a compact Alexandrov space satisfying the
Perel’man conjecture. Let u ∈W 1,2(D,X) be a Dirichlet solution. Then
for each R ∈ (0, 1), there exists C and α > 0 dependent only on R,Eu

and X so that

d(u(z1), u(z2)) ≤ C|z1 − z2|α, ∀z1, z2 ∈ DR(0).

Here, DR(z0) ⊂ R2 is the disk of radius R centered at z0. In par-
ticular, D1(0) = D. Before we prove Theorem 6, we will need several
preliminary lemmas. In the following, let Π be a compact Alexandrov
space with diameter ≤ π. We define two metric spaces P(Π) and C(Π)
associated with Π. The first is the product of Π with R; more precisely,
P(Π) is the set

Π×R = {(P, t) : P ∈ X, t ∈ R}
endowed with the distance function dP defined by

d2P((P, t), (Q, s)) = d2(P,Q) + (t− s)2.

For any r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated product
space as

P(Π, r1, r2) = {(P, t) ∈ P(Π) : r1 < t < r2}.
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The second space is the cone over Π; more precisely, C(Π) is the set

Π× [0,∞)/ ∼ where (P, 0) ∼ (Q, 0)

endowed with the distance function dC defined by

d2C((P, t), (Q, s)) = t2 + s2 − 2ts cos d(P,Q).

The vertex of C(Π) (i.e. any point of the form (P, 0)) will be denoted
O. For any r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated cone
as

C(Π, r1, r2) = {(P, t) ∈ C(Π) : r1 < t < r2}.
Given a map u ∈ W 1,2(D,P(Π)) (resp. u ∈ W 1,2(D, C(Π))) we will
denote energy, energy density function and directional energy function
by EuP , |∇u|2P and |u∗(V )|2P (resp. EuC , |∇u|2C and |u∗(V )|2C) to avoid
confusion.

If 0 < r1 < r2 < ∞, then u ∈ W 1,2(D,P(Π, r1, r2)) if and only if
u ∈ W 1,2(D, C(Π, r1, r2)). Indeed, a simple computation shows that
there exists

(26) L = L(r1, r2)

so that
1√
L
dP (P,Q) ≤ dC(P,Q) ≤

√
LdP(P,Q)

and hence

(27)
1

L
EuP ≤ EuC ≤ LEuP .

The key step in proving Theorem 6 is the following lemma.

Lemma 7. Let X be a compact Alexandrov space satisfying Perel’-
man’s conjecture, {Up}p∈F be a finite cover of X by conic neighbor-
hoods and λ be its Lebesgue number. There exists κ depending only
on X so that if u ∈ W 1,2(D,X) is a Dirichlet solution, Tr(u) = γ ∈
W 1,2(∂D,X) and

(28)

∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

dθ <
λ2

2π
,

then

(29) Eu ≤ κ

∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)∣

∣

∣

∣

2

dθ.

Proof. We prove this by an induction on the dimension of X. We
first verify the inductive step. Assume Lemma 7 is true whenever the
dimension is n and suppose that the dimension of X is n + 1. By
the definition of conic neighborhoods, for each p ∈ F , there exists a
bi-Lipshitz map

ϕp : Up → ϕp(Up) ⊂ C(Πp)
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where Πp is the space of directions at p of X. Let K, η be sufficiently
large so that for all p ∈ F and P,Q ∈ Up,

(30)
1√
K
d(P,Q) ≤ dC(ϕp(P ), ϕp(Q)) ≤

√
Kd(P,Q)

and

(31)
π

η
<

1

4
.

In view of (12), assumption (28) implies that for any θ1, θ2 ∈ ∂D,

d(γ(θ1), γ(θ2)) ≤
∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)
∣

∣

∣

∣

dθ ≤
√
2π

(

∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

dθ

)1/2

≤ λ.

Therefore, the image of γ is contained in Up for some p ∈ F and we can
let

σ = ϕp ◦ γ : ∂D → ϕp(Up) ⊂ C(Πp).
We will write σ = (σ1, σ2) where σ1 : ∂D → Πp and σ2 : ∂D → R are
the natural projections to the first and second factors respectively. We
consider two cases:

Case 1. ∃θ0 ∈ ∂D such that

(32) d2C(σ(θ0),O) ≤ η

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ.

Let (r, θ) be the polar coordinates of D and define ψ = (ψ1, ψ2) : D →
C(Πp) by setting

ψ(r, θ) := (σ1(θ), rσ2(θ)).

It is clear by construction that ψ ∈ W 1,2(D, C(Πp)) and Tr(ψ) = σ.
Furthermore, we have

(33) d2C(ψ(r1, θ), ψ(r2, θ)) = |r1 − r2|2d2C(σ(θ),O)

and

(34) d2C(ψ(r, θ1), ψ(r, θ2)) = r2d2C(σ(θ1), σ(θ2))

by the definition of ψ and the definition of the distance function dC .
Dividing (33) by |r1 − r2|2 and (34) by |θ1 − θ2|2, taking the limit as
r1 → r2 and θ1 → θ2 respectively and noting (11), (15) and (16), we
conclude that

∣

∣

∣

∣

ψ∗

(

∂

∂r

)∣

∣

∣

∣

2

C
(r, θ) = d2C(σ(θ),O)

and

∣

∣

∣

∣

ψ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
(r, θ) = r2

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
(θ)(35)
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for a.e. (r, θ) ∈ D. From the triangle inequality, (32) and (12), we see
that

d2C(σ(θ),O) ≤ (dC(σ(θ0),O) + dC(σ(θ), σ(θ0)))
2

≤ 2
(

d2C(σ(θ0),O) + d2C(σ(θ), σ(θ0))
)

≤ 2

(

η

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)∣

∣

∣

∣

2

C
dθ +

(
∫ θ

θ0

∣

∣

∣

∣

σ∗

(

∂

∂θ

)∣

∣

∣

∣

C

)2
)

≤ 2(η + 2π)

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ.(36)

Therefore (17), (35) and (36) imply

EψC =

∫ 2π

0

∫ 1

0

(

∣

∣

∣

∣

ψ∗

(

∂

∂r

)
∣

∣

∣

∣

2

C
+

1

r2

∣

∣

∣

∣

ψ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C

)

rdrdθ

=

∫ 2π

0

∫ 1

0

(

d2C(σ(θ),O) +

∣

∣

∣

∣

σ∗

(

∂

∂θ

)∣

∣

∣

∣

2

C
(θ)

)

rdrdθ

≤ Λ

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)∣

∣

∣

∣

2

C
(37)

for some constant Λ dependent only on η. Finally, by the fact that u is
energy minimizing and by (30), we see that

Eu ≤ Eϕ
−1
p ◦ψ ≤ KEψC ≤ KΛ

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
≤ K2Λ

∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

.

Case 2. ∀θ ∈ ∂D,

d2C(σ(θ),O) > η

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ.

Integrating over θ ∈ ∂D, we obtain

1

2π

∫

∂D
d2C(σ,O)dθ > η

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ

or equivalently

1
1
2π

∫

∂D d
2
C(σ,O)dθ

∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ <

1

η
.

If we define σ̃ = (σ̃1, σ̃2) : ∂D → C(Πp) by

(σ̃1(θ), σ̃2(θ)) =

(

σ1(θ),
1

1
2π

∫

∂D d
2
C(σ,O)dθ

σ2(θ)

)

then we have

(38)
1

2π

∫

∂D
d2(σ̃(θ),O) = 1
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and

(39)

∫

∂D

∣

∣

∣

∣

σ̃∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ <

1

η
.

Now note that σ̃ is continuous; indeed, for any θ, θ′ ∈ ∂D,

dC(σ̃(θ), σ̃(θ
′)) ≤

∫ θ′

θ

∣

∣

∣

∣

σ̃∗

(

∂

∂θ

)∣

∣

∣

∣

C
dθ

≤
(

∫

∂D

∣

∣

∣

∣

σ̃∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ

)1/2

|θ − θ′|1/2

≤ 1√
η
|θ − θ′|1/2

by (39). Thus, (38) implies there exists θ′ ∈ ∂D so that dC(σ̃(θ′),O) = 1.
Furthermore, that fact that |θ − θ′| ≤ π implies that

dC(σ̃(θ), σ̃(θ
′)) <

√

π

η
<

1

2

by choice of η in (31). Thus,

|1− dC(σ̃(θ),O)| = |dC(σ̃(θ′),O)− dC(σ̃(θ),O)| ≤ dC(σ̃(θ), σ̃(θ
′)) <

1

2
which implies

1

2
< dC(σ̃(θ),O) ≤ 3

2
.

Let v1 : D → Πp be the Dirichlet solution with Tr(v1) = σ̃1 and v2 :
D → R be the Dirichlet solution with Tr(v2) = σ̃2. Since the dimension
of Πp is n, the inductive hypothesis implies that exists constant κ′ so
that

Ev1Πp
≤ κ′

∫

∂D

∣

∣

∣

∣

(σ̃1)∗

(

∂

∂θ

)
∣

∣

∣

∣

2

Πp

dθ

where we have used the subscript to denote quantities associated to the
metric space Πp. If we let v = (v1, v2) ∈ P(Πp), then the definition of a
product space immediately implies that there exists κ′′ > 0 such that

EvP = Ev1Πp
+

∫

D
|∇v2|2

≤ κ′
∫

∂D

∣

∣

∣

∣

(σ̃1)∗

(

∂

∂θ

)
∣

∣

∣

∣

2

Πp

dθ + κ′′
∫

∂D

∣

∣

∣

∣

(σ̃2)∗

(

∂

∂θ

)
∣

∣

∣

∣

2

P
dθ

= (κ′ + κ′′)
∫

∂D

∣

∣

∣

∣

σ̃∗

(

∂

∂θ

)
∣

∣

∣

∣

2

P
dθ.

Combined with (27), this implies that

EvC ≤ L2(κ′ + κ′′)
∫

∂D

∣

∣

∣

∣

σ̃∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ
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where L = L(12 ,
3
2) as in (26). If we define

w = (w1, w2) = (v1,

(

1

2π

∫

∂D
d2C(σ,O)dθ

)

v2),

then Tr(w) = σ and

EwC ≤ L2(κ′ + κ′′)
∫

∂D

∣

∣

∣

∣

σ∗

(

∂

∂θ

)
∣

∣

∣

∣

2

C
dθ.

Finally, by the fact that u is energy minimizing and by (30), we see that

(40) Eu ≤ Eϕ
−1
p ◦w ≤ KEwC ≤ K2L2(κ′ + κ′′)

∫

∂D

∣

∣

∣

∣

γ∗

(

∂

∂θ

)∣

∣

∣

∣

2

dθ.

Let κ = max{K2Λ,K2L2(κ′ + κ′′)}. In view of inequalities (37) and
(40), we obtain (29). This finishes the proof of the inductive step.

Now assume that the dimension of X is 2. Then the space of direction
at any point of X is either an interval or a circle and we can follow
the proof of the inductive step to prove the base case of the inductive
argument. q.e.d.

To summarize, we have demonstrated that if u is an energy minimiz-
ing map with Sobolev trace map γ that has small energy, then we have
an estimate of the energy of u in terms of its trace. We use this fact
along with the Morrey’s Energy Decay Lemma for maps into X to prove
Hölder continuity. We let DR(z0) denote the disk of radius R centered
at z0 and Eu[Dr(z0)] the energy of u in the disk Dr(z0).

Lemma 8 (Morrey). Let u ∈W 1,2(D,X) satisfy

(41) Eu[Dr(z0)] ≤ C2
Rr

2α, 0 ≤ r < 1−R

for R ∈ (0, 1) and z0 ∈ DR(0) ⊂ D where CR is a constant depending
on R. Then there exists a constant K so that for every z1, z2 ∈ DR(0),

d(u(z1), u(z2)) ≤ KCR|z1 − z2|α.
Proof. Using the Sobolev theory of maps into metric space targets

developed in Chapter 1 of [KS1], the assertion of the lemma follows
from Morrey’s argument in [Mo]. q.e.d.

Proof of Theorem 6. Fix a finite cover of X by conic neighborhood
and let λ be its Lebesgue number. Let R ∈ (0, 1) and let z0 ∈ DR.
By an argument similar to that for [KS1] Lemma 1.9.1, u restricted
to ∂Dr(z0) is absolutely continuous and W 1,2 for almost every choice
of such r ∈ (0, 1 − R); in other words, u

∣

∣

∂Dr(z0)
∈ W 1,2(∂Dr(z0),X)

for a.e. r ∈ (0, 1 − R). Furthermore, note that since |∇u|2 ∈ L2(D),
|∇u|2 restricted to ∂Dr(z0) is in L

2(∂Dr(z0)) for a.e. r ∈ (0, 1 −R) by
the Fubini’s Theorem. If s is the artlength parameter of ∂Dr(z0) and
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(r, θ) is the polar coordinates in Dr(z0) centered at z0, then we have the
equality s = rθ. Therefore, by (10) and (17), we have that
(42)
∣

∣

∣

∣

u∗

(

∂

∂s

)
∣

∣

∣

∣

2

=
1

r2

∣

∣

∣

∣

u∗

(

∂

∂θ

)
∣

∣

∣

∣

2

≤
∣

∣

∣

∣

u∗

(

∂

∂r

)
∣

∣

∣

∣

2

+
1

r2

∣

∣

∣

∣

u∗

(

∂

∂θ

)
∣

∣

∣

∣

2

= |∇u|2

for a.e. r ∈ (0, 1−R) and s ∈ ∂Dr(z0).
Let û be the composition of u with the dilation and translation of the

plane which takes D to Dr(z0). If
∫

∂Dr(z0)

∣

∣

∣

∣

u∗

(

∂

∂s

)∣

∣

∣

∣

2

ds <
λ2

2πr
,

then change of variables s = rθ gives
∫

∂D

∣

∣

∣

∣

û∗

(

∂

∂θ

)∣

∣

∣

∣

2

dθ <
λ2

2π

by (10). Therefore, we obtain

Eu[Dr(z0)] = Eû (conformal invariance of energy (18))

≤ κ

∫

∂D

∣

∣

∣

∣

û∗

(

∂

∂θ

)∣

∣

∣

∣

2

dθ (Lemma 7)

= κr

∫

∂Dr(z0)

∣

∣

∣

∣

u∗

(

∂

∂s

)∣

∣

∣

∣

2

ds (change of variables s = rθ)

≤ κr

∫

∂Dr(z0)
|∇u|2ds (by inequality (42))

= κr
d

dr
Eu[Dr(z0)],

for a.e. r ∈ (0, 1−R). If
∫

∂Dr(z0)

∣

∣

∣

∣

u∗

(

∂

∂s

)
∣

∣

∣

∣

2

ds ≥ λ2

2πr
,

then using the inclusion Dr(z0) ⊂ D, we obtain

Eu[Dr(z0)] ≤ Eu

≤ Eu
2πr

λ2

∫

∂Dr(z0)

∣

∣

∣

∣

u∗

(

∂

∂s

)
∣

∣

∣

∣

2

dθ

≤ 2πEu

λ2
r

∫

∂Dr(z0)
|∇u|2dθ

=
2πEu

λ2
r
d

dr
Eu[Dr(z0)]

for a.e. r ∈ (0, 1−R), Thus, for almost every r ∈ (0, 1 −R),

Eu[Dr(z0)] ≤ max

{

κ,
2πEu

λ2

}

r
d

dr
Eu[Dr(z0)].
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Letting C0 = max{κ, 2πEu

λ2
}, we obtain the differential inequality,

1

C0r
≤

d
drE

u[Dr(z0)]

Eu[Dr(z0)]
.

Integrating this in the interval [r, 1−R] gives us the estimate needed to
employ Lemma 8. q.e.d.

3.2. Boundary Regularity. The goal of this section is to prove:

Theorem 9. Let X be a compact Alexandrov space satisfying Perel’-
man’s conjecture. If γ ∈ C0(∂D,X) is a continuous map and u ∈
W 1,2(D,X) its Dirichlet solution, then u is continuous in D.

To prove the boundary regularity, we need the following lemma which
gives a lower bound on the energy of a harmonic map if a point is
mapped sufficiently away from the boundary values. For any measurable
set A ⊂ D and v ∈W 1,2(D,X), we let Ev [A] =

∫

A |∇v|.
Lemma 10. Let ǫ,M > 0. There exists η = η(ǫ,M) > 0 so that

for any ϕ ∈ C0(∂D,X) and its Dirichlet solution v ∈ W 1,2(D,X) with
d(v(0), ϕ(∂D)) > ǫ and Ev ≤M , we have

Ev[v−1(Bǫ(v(0)))] ≥ η.

Proof. We prove this theorem by way of contradiction. Suppose that
the statement is false. Then there exists a sequence of Dirichlet solutions
vi ∈W 1,2(D,X) with ϕi = Tr(vi) satisfying d(vi(0), ϕi(∂D)) > ǫ and

(43) Evi [v−1
i (Bǫ(vi(0)))] → 0.

Since X is compact, we may assume that vi(0) → p ∈ X by taking
a subsequence if necessary. Suppose x ∈ D has the property that
d(vi(x), p) <

ǫ
2 . The triangle inequality d(vi(x), vi(0)) ≤ d(vi(x), p) +

d(vi(0), p) implies that d(vi(x), vi(0)) < ǫ for sufficietly large i. There-
fore, v−1

i (B ǫ
2
(p)) ⊂ v−1

i (Bǫ(vi(0))) which implies

(44) Evi [v−1
i (B ǫ

2
(p))] ≤ Evi [v−1

i (Bǫ(vi(0)))].

Since Evi ≤ M for all i, we can apply the precompactness theorem
and the trace theory (cf. [KS1] Theorem 1.13 and Theorem 1.12.2
respectively) to obtain a subsequence (which we denote {vi} by an abuse
of notation) so that vi → v in L2(D,X) and ϕi = Tr(vi) → ϕ = Tr(v)
in L2(∂D,X). Fix δ ∈ (0, 1) and let D1−δ be a disk of radius 1 − δ
centered at the origin. By Theorem 6, vi

∣

∣

D1−δ
is Hölder continuous;

more specifically,

d(vi(z1), vi(z2)) ≤ C(X, δ) | z1 − z2 |α(X,δ) , ∀z1, z2 ∈ D1−δ.



338 C. MESE & P.R. ZULKOWSKI

Note that the modulus of continuity depends only on the geometry of
the target and on the arbitrary constant δ. Hence, {vi

∣

∣

D1−δ
} form an

equicontinuous family and converge uniformly to a Hölder continuous
map according to the Arzela-Ascoli Theorem. The limit map must be
the restriction of v constructed above to the smaller disk D1−δ. Conse-
quently, v(0) = p and, since δ is arbitrary, v is continuous in D. In par-
ticular, this implies v−1(B ǫ

4
(p)) is an open set. By the triangle inequal-

ity, d(vi(z), p) ≤ d(vi(z), v(z)) + d(v(z), p), and hence if z ∈ D1−δ and
d(v(z), p) < ǫ

4 then d(vi(z), p) ≤ ǫ
2 for sufficiently large i depending only

on ǫ,X and δ and not on the chosen z since the convergence of vi to v is
uniform in D1−δ . Therefore, v−1(B ǫ

4
(p)) ∩D1−δ ⊂ v−1

i (B ǫ
2
(p)) ∩D1−δ

for sufficiently large i and

∫

v−1(B ǫ
4
(p))∩D1−δ

| ∇vi |2 dµ ≤
∫

v−1

i (B ǫ
2
(p))∩D1−δ

| ∇vi |2 dµ

≤ Evi [v−1
i (B ǫ

2
(p))].

By the lower semicontinuity of the energy functional (cf. [KS1] Theo-
rem 1.6.1), (43) and (44), we conclude that

∫

v−1(B ǫ
4
(p))∩D1−δ

| ∇v |2 dµ = 0.

Therefore,

Ev[v−1(B ǫ
4
(p))] = 0

by the Lebesgue Dominated Convergence Theorem which in turn implies
that v must be constant on each connected component of v−1(B ǫ

4
(p)).

In particular, it must be identically equal to p on the component K
of v−1(B ǫ

4
(p)) containing 0. The continuity of v implies that v−1(p) is

closed and hence K is closed. Since K is both open and closed, K = D.
Therefore, v and hence ϕ is identically equal to p.

On the other hand, the triangle inequality says

d2(ϕi, p) ≤ 2d2(ϕi, ϕ) + 2d2(ϕ, p)

and hence

2πǫ ≤ 2

∫

∂D
d2(ϕi, ϕ)dθ + 2

∫

∂D
d2(ϕ, p)dθ.

Letting i→ 0, we obtain

2πǫ ≤ 2

∫

∂D
d2(ϕ, p)dθ = 0,

a contradiction. q.e.d.
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The proof of boundary regularity is an easy application of Lemma 10.

Proof of Theorem 9. Suppose a Dirichlet solution u : D → X with a
continuous trace γ : ∂D → X is not continuous at some point x0 ∈ ∂D.
There exists ǫ > 0 and xi → x0 with

(45) d(u(xi), γ(x0)) > 2ǫ.

By an easy modification of the Courant-Lebesgue lemma for our setting
and the continuity of γ, we may choose δi → 0 such that u restricted to
∂Dδi(x0) ∩D is continuous and the length of the curve

Γi := u(∂Dδi(x0) ∩D) ∪ γ(Dδi(x0) ∩ ∂D)

converges to 0 as i→ ∞. This combined with (45) implies that

(46) d(Γi, u(xi)) > ǫ

for sufficiently large i. By choosing subsequence if necessary, assume
that xi ∈ Dδi(x0)∩D. By the Riemann Mapping Theorem, there exists
a conformal map ψi from Dδi(x0) ∩D to D which sends xi to 0. Let

vi = u ◦ ψ−1
i : D → X and ϕi = Tr(vi).

Note that vi(0) = ui(xi) and the image of ϕi is Γi. Furthermore, (46)
implies that d(vi(0), ϕi(∂D)) > ǫ. Thus, Lemma 10 says there exists η >
0 such that Evi [v−1

i (Bǫ(vi(0)))] ≥ η for all i. By conformal invariance of
energy (i.e. (18)), Eu[Dδi(x0)∩D] ≥ η. However, since u ∈W 1,2(D,X)
(and hence |∇u|2 ∈ L1(D)), we see that Eu[Dδi(x0)∩D] → 0 as i→ ∞
and we arrive at our contradiction. q.e.d.

4. The Plateau Problem

4.1. The pull-back inner product. Before we can properly state the
Plateau Problem for an Alexandrov space, we must formulate a notion
of area. Our definition is analogous to the usual definition of the area
functional for a map from a surface into a Riemannian manifold; in other
words, it is obtained by integrating the area element of the pull-back
metric. Thus, we first need to generalize the notion of the pull-back
metric in this setting. This is accomplished by (47) and Theorem 11
below.

Let Ω be a Riemannian domain, X an Alexandrov space and u ∈
W 1,2(Ω,X). (Note that we do not need to assume X is finite di-
mensional or satisfies Perel’man’s conjecture in this subsection.) For
Z,W ∈ Γ(TΩ) (i.e. Z,W are Lipschitz vector fields on Ω), we define

(47) π(Z,W ) =
1

4
|u∗(Z +W )|2 − 1

4
|u∗(Z −W )|2.

If (Ω, g) has local coordinates (x1, x2, . . . , xn) and corresponding tangent
basis {∂1, ∂2, . . . , ∂n}, we write

πij = π(∂i, ∂j).
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We show in Theorem 11 below that π generalizes the notion of the
pull-back metric. The analogous result for the case when X is a NPC
(non-positively curved) space is proven in [KS1] and the case when the
curvature of X is bounded from above is proven in [Me2].

Theorem 11. Let X be an Alexandrov space and u ∈ W 1,2(Ω,X).
The operator

π : Γ(TΩ)× Γ(TΩ) → L1(Ω, R)

defined above (and referred to as the inner product associated with u)
is continuous, symmetric, bilinear, non-negative and tensorial; more
specifically

π(Z,Z) = |u∗(Z)|2
π(Z,W ) = π(W,Z)

π(Z, hV +W ) = hπ(Z, V ) + π(Z,W ) for any h ∈ C0,1(Ω).

For Z = Zi∂i and W =W i∂j , we have

π(Z,W ) = πijZ
iW j.

If ψ : Ω1 → Ω is a C1,1 map, then writing v = u ◦ ψ and πv for the
inner product associated with v, we have the formula

(48) (πv)ij = πlm
∂ψl

∂xi
∂ψm

∂xj
.

Hence in local coordinates,

(49) |∇u|2 = gijπij

where (gij) is (as usual) the inverse matrix to the Riemannian metric
matrix (gij).

Proof. Assuming Proposition 12 below, we can follow the proof of
Theorem 2.3.2 of [KS1] to prove Theorem 11. q.e.d.

Proposition 12. Let Ω be a Riemannian domain and let X be an
Alexandrov space. If u ∈ W 1,2(Ω,X), then for any Z,W ∈ Γ(TΩ) the
parallelogram identity

(50) |u∗(Z +W )|2 + |u∗(Z −W )|2 = 2|u∗(Z)|2 + 2|u∗(W )|2

holds.

Proof of Proposition 12. Recall that for any Z,W ∈ Γ(TΩ), we denote
by x+ ǫZ the flow along V with initial point x ∈ Ω at time ǫ and

Dǫ(Z,W ) :=
d(u(x+ ǫZ), u(x+ ǫW ))

ǫ
.
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Now fix f ∈ Cc(Ω), f ≥ 0 and Z,W ∈ Γ(Ω). Let

Ω+ =
{

x ∈ sptf : |u∗(Z)|2, |u∗(W )|2,
|u∗(Z +W )|2, |u∗(Z −W )|2 6= 0

}

,

ΩN =

{

x ∈ sptf :
1

2N
< |u∗(Z)|2, |u∗(W )|2,

|u∗(Z +W )|2, |u∗(Z −W )|2 < N

2

}

,

F (x, ǫ) = 2D2
ǫ

(

Z,
Z +W

2

)

+ 2D2
ǫ

(

W,
Z +W

2

)

+D2
ǫ (0, Z +W )

−D2
ǫ (0, Z)−D2

ǫ (Z,Z +W )−D2
ǫ (W,Z +W )−D2

ǫ (0,W ).

We claim the following:

Claim 1. µ(Ω+\ΩN ) → 0 as N → ∞.

Claim 2. Fix N . For any ρ > 0, let δ(ρ) be as in Lemma 1. Then there
exists a function Gρ(x, ǫ) so that if the following three inequalities:

1

N
< Dǫ(0, Z +W ),Dǫ(0, Z),Dǫ(0,W ),

Dǫ(Z,W ),Dǫ(Z,Z +W ),Dǫ(W,Z +W ) < N(51)

(52)

∣

∣

∣

∣

1

2
Dǫ(0, Z +W )−Dǫ

(

0,
Z +W

2

)∣

∣

∣

∣

< δ(ρ)2Dǫ(0, Z +W )

(53)

∣

∣

∣

∣

1

2
Dǫ(0, Z +W )−Dǫ

(

Z +W,
Z +W

2

)
∣

∣

∣

∣

< δ(ρ)2Dǫ(0, Z +W )

are satisfied for ǫ > 0 and x ∈ ΩN , then

(54) F (x, ǫ) ≥ Gρ(x, ǫ).

Furthermore, there exists a function Gρ(x) so that

(55) lim
ǫ→0

∫

ΩN

f(x)|Gρ(x, ǫ)|dµ =

∫

ΩN

f(x)|Gρ(x)|dµ +O(ρ2)

and

(56) lim
ρ→0

∫

ΩN

f(x)|Gρ(x)|dµ = 0.

Claim 3. For x ∈ Ω− Ω+, the parallelogram identity (50) holds.

Assuming the validity of the three claims, we prove the parallelogram
identity as follows. Let f ∈ Cc(Ω) be a non-negative function and fix
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η > 0. By Lemma 4, there exists ǫ0, δ > 0 so that for any Ω̃ with
µ(Ω̃) < δ and ǫ < ǫ0, we have

∫

Ω̃
fF (x, ǫ) > −η.

By Lemmas 2 and 3,

Dǫ(0, Z +W ) → |u∗(Z +W )|, Dǫ(0, Z) → |u∗(Z)|,

Dǫ(0,W ) → |u∗(W )|,Dǫ(Z,W ) → |u∗(Z −W )|,
Dǫ(Z,Z +W ) → |u∗(W )|, Dǫ(W,Z +W ) → |u∗(Z)|

pointwise almost everywhere. By Egoroff’s Theorem, there exists set
a A so that µ(A) < δ

2 and these convergences are uniform on Ω − A.

By Claim 1, there exists N sufficiently large so that µ(Ω+\ΩN ) < δ
2 .

Hence,
∫

(Ω+\ΩN )∪A
f(x)F (x, ǫ) > −η.

For ρ > 0, the uniform convergence implies that there exists ǫ0 > 0
sufficiently small so that (51), (52) and (53) hold for all ǫ < ǫ0 and all
x ∈ ΩN\A. Thus, by Claim 2 (54),

∫

Ω+

f(x)F (x, ǫ)dµ

=

∫

(Ω+\ΩN )∪A
f(x)F (x, ǫ)dµ +

∫

ΩN\A
f(x)F (x, ǫ)dµ

≥ −η +
∫

ΩN\A
f(x)Gρ(x, ǫ)dµ

≥ −η −
∫

ΩN\A
f(x)|Gρ(x, ǫ)|dµ.

Take ǫ→ 0 and apply Lemma 2, Lemma 3 and Claim 2 (55) to obtain
∫

Ω+

f
(

|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2
)

dµ

≥ −η −
∫

Ω f(x)|Gρ(x)| +O(ρ2).

Now by taking ρ → 0, applying Claim 2 (56) and noting that η can be
made arbitrarily small, we obtain
∫

Ω+

f(|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ ≥ 0.

Combined with Claim 3,
∫

Ω
f(|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ ≥ 0.
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Replacing Z and W by Z+W
2 and Z−W

2 respectively in the above argu-
ment, we obtain
∫

Ω
f(2|u∗(Z)|2 + 2|u∗(W )|2 − |u∗(Z +W )|2 − |u∗(Z −W )|2)dµ ≥ 0.

Finally, since the choice of f is arbitrary, we obtain the parallelogram
identity. q.e.d.

We are now left to prove the three claims.

Proof of Claim 1. If

Ω≤ 1

N =
{

x ∈ sptf : 0 < min{|u∗(Z)|2, |u∗(W )|2,
|u∗(Z +W )|2, |u∗(Z −W )|2} ≤ (2N)−1

}

Ω≥N =
{

x ∈ sptf : max{|u∗(Z)|2, |u∗(W )|2,
|u∗(Z +W )|2, |u∗(Z −W )|2} ≥ N/2

}

,

then Ω+\ΩN = Ω≤ 1

N ∪ Ω≥N . Since

Ω<
1

N+1 ⊂ Ω<
1

N and ∩∞
N=1 Ω

< 1

N = ∅,
we have that µ(Ω<

1

N ) → 0 as N → 0. Furthermore,

N

2
µ(Ω>N ) ≤

∫

Ω>N

|u∗(Z)|2 + |u∗(W )|2

+|u∗(Z +W )|2 + |u∗(Z −W )|2 <∞.

which implies µ(Ω>N ) → 0 as N → 0. This ends the proof of Claim 1.

Proof of Claim 2. For x ∈ Ω and ǫ > 0, assume (51), (52) and (53)
are satisfied and let
(57)

P = u(x), Q = u(x+ ǫZ) R = u(x+ ǫ(Z +W )),
S = u(x+ ǫW ), T = u

(

x+ ǫ
(

Z+W
2

))

.

The inequalities (52) and (53) imply
∣

∣

∣

∣

1

2
dPR − dPT

∣

∣

∣

∣

< δ2(ρ)dPR ,

∣

∣

∣

∣

1

2
dPR − dRT

∣

∣

∣

∣

< δ2(ρ)dPR.

Let γRT be a geodesic from R to T and R′ be a point on γRT so that

(58) dRR′ = δ(ρ)dPR.

Let γPR′ be a geodesic from P to R′ and T ′ be its midpoint. By
Lemma 1, we have

dTT ′ < ρdPR.

Define γ to be the curve which is the sum of geodesics from Q = u(x+
ǫZ) to T ′ and from T ′ to S = u(x+ ǫW ). Let d̄ be the distance function
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in the hyperbolic plane H2 and construct points P̄ , Q̄, R̄′, S̄ ∈ H2 with
the property that

(59) dPQ = d̄P̄ Q̄, dQR′ = d̄Q̄R̄′ , dR′S = d̄R̄′S̄, dSP = d̄S̄P̄ , dPR′ = d̄P̄ R̄′

and so that geodesic triangles △P̄ Q̄R̄′ and △P̄ S̄R̄′ intersect only along
the geodesic γ̄P̄ R̄′ from P̄ to R̄′. If T̄ ′ is the midpoint of γ̄P̄ R̄′ ,

(60) d̄Q̄T̄ ′ ≤ dQT ′ d̄T̄ ′S̄ ≤ dT ′S

by the property of an Alexandrov space. Hence

d̄Q̄S̄ ≤ d̄Q̄T̄ ′ + d̄T̄ ′S̄ ≤ dQT ′ + dT ′S .

Therefore, if

E(x, ǫ) := d̄2Q̄S̄ + d̄2P̄ R̄′ − d̄2P̄ Q̄ − d̄2Q̄R̄′ − d̄2R̄′S̄ − d̄2P̄ S̄ ,

then

E(x, ǫ) ≤ L2(γ) + d2(u(x), R
′

)− d2(u(x), u(x + ǫZ))

−d2(R′

, u(x+ ǫZ))− d2(R
′

, u(x+ ǫW ))

−d2(u(x), u(x + ǫW )).

Dividing by ǫ2, we obtain

E(x, ǫ)

ǫ2

≤
(

L2(γ)

ǫ2
−D2

ǫ (0, Z)−D2
ǫ (0,W )

)

+

(

d2(u(x), R
′

)

ǫ2
− d2(R

′

, u(x+ ǫW ))

ǫ2
− d2(R

′

, u(x+ ǫZ))

ǫ2

)

=: (I) + (II).(61)

Hence, by the triangle inequality, we have,

L(γ) = dQT ′ + dT ′S

≤ dQT + dTS + 2dTT ′

≤ dQT + dTS + 2ρdPR

= d

(

u(x+ ǫZ), u

(

x+ ǫ
Z +W

2

))

+d

(

u(x+ ǫW ), u

(

x+ ǫ
Z +W

2

))

+2ρd(u(x), u(x + (ǫZ +W )).

If we square this inequality, divide by ǫ2 and assume that ρ << 1, we
have



THE PLATEAU PROBLEM IN ALEXANDROV SPACES 345

L2(γ)

ǫ2
≤ D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

)

+2D2
ǫ

(

Z,
Z +W

2

)

D2
ǫ

(

W,
Z +W

2

)

+4ρDǫ(0, Z +W )

(

Dǫ

(

Z,
Z +W

2

)

+Dǫ

(

W,
Z +W

2

))

+4ρ2D2
ǫ (0, Z +W )

≤ 2D2
ǫ

(

Z,
Z +W

2

)

+ 2D2
ǫ

(

W,
Z +W

2

)

+8ρ

(

D2
ǫ (0, Z +W ) +D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

))

which immediately implies

(I) ≤ 2D2
ǫ

(

Z,
Z +W

2

)

+ 2D2
ǫ

(

W,
Z +W

2

)

−D2
ǫ (0, Z)−D2

ǫ (0,W )

+8ρ

(

D2
ǫ (0, Z +W ) +D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

))

.(62)

Furthermore, assuming ρ << 1, we also obtain

d2PR′ ≤ (dPR + dRR′)2 = (1 + δ(ρ))2d2PR ≤ (1 + 3δ(ρ))d2PR

d2QR′ ≥ (dQR − dRR′)2 = (dQR − δ(ρ)dPR)
2

≥ d2QR − 2δ(ρ)dQRdPR ≥ (1− δ(ρ))d2QR − δ(ρ)d2PR

d2SR′ ≥ (dSR − dRR′)2 = (dSR − δ(ρ)dPR)
2

≥ d2SR − 2δ(ρ)dSRdPR ≥ (1− δ(ρ))d2SR − δ(ρ)d2PR,

which immediately implies

d2(u(x), R
′

)

ǫ2
≤ (1 + 3δ(ρ))D2

ǫ (0, Z +W )

−d
2(u(x+ ǫZ), R′)

ǫ2
≤ −(1− δ(ρ))D2

ǫ (Z,Z +W )) + δ(ρ)D2
ǫ (0, Z +W )

−d
2(u(x+ ǫZ), R′)

ǫ2
≤ −(1− δ(ρ))D2

ǫ (W,Z +W )) + δ(ρ)D2
ǫ (0, Z +W ).

These combine to give

(II) ≤ D2
ǫ (0, Z +W )−D2

ǫ (Z,Z +W )−D2
ǫ (W,Z +W )

+5δ(ρ)(D2
ǫ (0, Z +W ) +D2

ǫ (Z,Z +W ) +D2
ǫ (W,Z +W )).(63)
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Combining (61), (62) and (63), we obtain

E(x, ǫ)

ǫ2

≤ 2D2
ǫ

(

Z,
Z +W

2

)

+ 2D2
ǫ

(

W,
Z +W

2

)

+D2
ǫ (0, Z +W )

−D2
ǫ (0, Z) −D2

ǫ (0,W )−D2
ǫ (Z,Z +W )−D2

ǫ (W,Z +W )

+8ρ

(

D2
ǫ (0, Z +W ) +D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

))

+5δ(ρ)(D2
ǫ (0, Z +W ) +D2

ǫ (Z,Z +W ) +D2
ǫ (W,Z +W ))

≤ F (x, ǫ)

+8ρ

(

D2
ǫ (0, Z +W ) +D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

))

+5δ(ρ)(D2
ǫ (0, Z +W ) +D2

ǫ (Z,Z +W ) +D2
ǫ (W,Z +W )).

Let

G1(x, ǫ)

:= −8ρ(D2
ǫ (0, Z +W ) +D2

ǫ

(

Z,
Z +W

2

)

+D2
ǫ

(

W,
Z +W

2

)

−5δ(ρ)(D2
ǫ (0, Z +W )−D2

ǫ (Z,Z +W )−D2
ǫ (W,Z +W ))

Inequality (51) implies that

ǫ

N
< dPQ, dQR, dRS , dPS , dPR, dQS < Nǫ.

By also using the fact that dRR′ = δ(ρ)dPR ≤ ρNǫ, we can apply
Lemma 18 of the Appendix to obtain,
∣

∣

∣

∣

E(x, ǫ)

ǫ2

∣

∣

∣

∣

≤ CN
(
∣

∣D2
ǫ (V, V +W )−D2(0,W )

∣

∣ +
∣

∣D2
ǫ (0, V )−D2(W,V +W )

∣

∣

+ |Dǫ(V, V +W )−D(0,W )|+ |Dǫ(V, V +W )−D(0,W )|)
+K1ρ

2 +K2ǫ

for some constants K1, K2 sufficiently large. Define G2(x, ǫ) to be the
right hand side of the inequality above. Thus, (54) holds if we set
Gρ(x, ǫ) = G1(x, ǫ)−G2(x, ǫ). Furthermore, set

Gρ(x) := −8ρ

(

|u∗(Z +W )|2 + 1

2
|u∗(Z −W )|

)

−5δ(ρ)
(

|u∗(Z +W )|2 + |u∗(W )|2 + |u∗(Z)|2
)

+O(ρ2).

Then (55) and (56) hold by Lemmas 2 and 3. This ends the proof of
Claim 2.
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Proof of Claim 3. Let Ω0 denote the set of all points in Ω so that
|u∗(Z +W )|2 = 0. If P,Q,R, T be as in (57). Then

d2QT − d2PQ = (dQT − dPQ)(dQT + dPQ) ≤ dPT (dQT + dPQ).

Thus, for any f ∈ Cc(Ω0) , 0 ≤ f ≤ 1,
∫

Ω0

f(D2
ǫ

(

Z,
Z +W

2

)

−D2
ǫ (0, Z))dµ

≤
∫

Ω0

fDǫ

(

0,
Z +W

2

)(

Dǫ

(

Z,
Z +W

2

)

+Dǫ(0, Z)

)

≤
(
∫

Ω0

fD2
ǫ

(

0,
Z +W

2

))1/2

×
(
∫

Ω
fD2

ǫ

(

Z,
Z +W

2

)

+

∫

Ω0

fD2
ǫ (0, Z)

)1/2

.

We take the limit as ǫ goes to 0 to obtain

∫

Ω0

f

(

∣

∣

∣

∣

u∗

(−Z +W

2

)
∣

∣

∣

∣

2

− |u∗(Z)|2
)

≤
(

∫

Ω0

f

∣

∣

∣

∣

u∗

(

Z +W

2

)
∣

∣

∣

∣

2
)1/2

×
(

∫

Ω0

f

∣

∣

∣

∣

u∗

(−Z +W

2

)
∣

∣

∣

∣

2

+ |u∗(Z +W )|2
)1/2

≤
(

1

4

∫

Ω0

f |u∗(Z +W )|2
)1/2

×
(

∫

Ω0

f

∣

∣

∣

∣

u∗

(−Z +W

2

)∣

∣

∣

∣

2

+ |u∗(Z +W )|2
)1/2

= 0.

Thus we arrive at
∣

∣

∣

∣

u∗

(

Z −W

2

)∣

∣

∣

∣

2

≤ |u∗(Z)|2 a.e. x ∈ Ω0.

Similarly, using

d2PQ − d2QT = (dPQ − dQT )(dPQ + dQT ) ≤ dPT (dPQ + dQT ),

we obtain the opposite inequality. Hence, we conclude
∣

∣

∣

∣

u∗

(

Z −W

2

)
∣

∣

∣

∣

2

= |u∗(Z)|2 a.e. x ∈ Ω0.
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Interchanging Z and W in the argument above, we also obtain
∣

∣

∣

∣

u∗

(

Z −W

2

)
∣

∣

∣

∣

2

= |u∗(W )|2 a.e. x ∈ Ω0.

Therefore,
|u∗(Z +W )|2 + |u∗(Z −W )|2

= 0 + 4

∣

∣

∣

∣

u∗

(

Z −W

2

)
∣

∣

∣

∣

2

= 2|u∗(Z)|2 + 2|u∗(W )|2

for a.e. x ∈ Ω0. Similar arguments apply when we examine points of
Ω where the other directional energy measures vanish. This ends the
proof of Claim 3.

4.2. The Plateau Problem. We can define the area functional for
u ∈W 1,2(D,X) by

A(u) =

∫

D

√
detπ dxdy =

∫

D

√

π11π22 − π212 dxdy.

where π11 = π( ∂∂x ,
∂
∂x) , π12 = π( ∂∂x ,

∂
∂y ) and π22 = π( ∂∂y ,

∂
∂y ). The

Plateau Problem for an Alexandrov space is formulated as:

The Plateau Problem Le X be an Alexandrov space, Γ a closed Jor-
dan curve in X and

FΓ = {u ∈W 1,2(D,X) ∩C0(D,X) :

u|∂D parametrizes Γ monotonically}.
Find u ∈ FΓ so that A(u) = inf{A(v) : v ∈ FΓ}.

The main result of this section is that we can solve the Plateau Prob-
lem if there exists at least one continuous finite energy map whose trace
monotonically parametrizes Γ.

Theorem 13. Let X be a compact Alexandrov space. If FΓ 6= ∅,
there exsits u ∈ FΓ so that A(u) = inf{A(v) : v ∈ FΓ}.

We separate the proof of Theorem 13 into two claims. Claim 1 is
that there exists a map which minimizes the energy functional in FΓ.
Claim 2 is that an energy minimizing map is also an area minimizer.
These claims are proved by an extending the arguments used for the
Euclidean case (cf. [L]). In order to prove the first claim, we need the
following lemma.

Lemma 14. Fix ξ1, ξ2, ξ3 ∈ ∂D and P1, P2, P3 ∈ Γ. If

F ′

Γ = {u ∈ FΓ : u(ξi) = Pi for i = 1, 2, 3 and Eu ≤ 2 inf
u∈FΓ

E(u)},

then
F = {u|∂D : u ∈ F ′

Γ , E
u ≤ 2 inf

u∈FΓ

E(u)}
forms an equicontinuous family of maps.
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Proof. This follows from the same argument given in Proposition 6
of [L]. q.e.d.

We now prove the first claim:

Claim 1. There exists u ∈ FΓ so that Eu = infv∈FΓ
Ev .

Proof. For any v ∈ FΓ, there exists a Möbius transformation ψ so
that v ◦ ψ(ξi) = Pi for i = 1, 2, 3. Furthermore, Ev◦ψ = Ev by (18).
Therefore,

inf
u∈FΓ

Eu = inf
u∈F ′

Γ

Eu.

which implies

inf
u∈FΓ

Eu = inf
φ∈F ′

Γ

Eφ.

where

Eφ = inf{Ev : v ∈W 1,2
φ (D,X)}.

Let {vm} ⊂ F ′
Γ be a sequence so that limm→∞Evm = infv∈FΓ

Ev.
By the equicontinuity of F (i.e. Lemma 14), there exists a subsequence
{vm′} so that {vm′

∣

∣

∂D
} converges uniformly to a continuous map φ :

∂D → Γ. By the uniform convergence, we are guaranteed to have
φ(pi) = qi for i = 1, 2, 3. Let um′ be the solution to the Dirichlet
Problem for boundary data vm′ . By Theorem 9, um′ ∈ W 1,2(D,X) ∩
C0(D,X) and hence um′ ∈ FΓ. From the precompactness theorem (cf.
Theorem 1.13 of [KS1]), we may choose a subsequence of um′ (which we
still denote um′ by an abuse of notation) which converges in L2(D,X) to
u ∈ W 1,2(D,X). By the lower semicontinuity of the energy functional
(cf. Theorem 1.6.1 of [KS1]),

(64) Eu ≤ lim inf
m′→∞

Eum′ ≤ lim inf
m′→∞

Evm′ = inf
v∈FΓ

Ev.

Since the trace functions converge in L2 distance (cf. Theorem 1.12.2 in
[KS1]), we have Tr(u) = φ. Moreover, (64) implies that u is a Dirichlet
solution for boundary data φ and hence u ∈W 1,2(D,X)∩C0(D,X) by

Theorem 9. Therefore u ∈ F ′

Γ ⊂ FΓ and this concludes the proof of the
claim. q.e.d.

We now claim that u obtained above not only minimizes energy in
FΓ, but also minimizes the area functional. We need the following two
lemmas.

Lemma 15. If u ∈ FΓ satisfies Eu = inf
v∈F ′

Γ

Ev, then u is weakly

conformal; in other words, u satisfies the conformality relation π11 = π22
and π12 = 0.
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Proof. This follows by adapting a well-known computation in the
smooth setting to the current situation. This can be justified by the
change of variables formula (48). q.e.d.

Lemma 16. For any v ∈ FΓ and δ > 0, there exists a continuous
map ψ0 : D → D monotonically taking ∂D to ∂D such that 1

2E
v◦ψ0 ≤

A(v) + δ.

Proof. Let C be the complex plane and let X×C be the metric space
equipped with the distance function

d((P, z), (Q,w)) =
√

d2(P,Q) + |z − w|2

for P,Q ∈ X and z, w ∈ C. For v ∈ FΓ, consider vσ : D → X × C

defined by

vσ(z) = (v(z), σz).

By (19), we see that

|(vσ)∗(V )|2 = lim
ǫ→0

d
2
(vσ(z), vσ(z + ǫV ))

ǫ2

= lim
ǫ→0

d2(v(z), v(z + ǫV )) + |σz − σ(z + ǫV )|2
ǫ2

= |v∗(V )|2 + σ2|V |2

for V ∈ Γ(TD) and a.e. z ∈ D. Hence,

(65) (πvσ )ij = (πv)ij +
σ2

4
δij

where πvσ and πv are the pull-back inner products associated with vσ
and v respectively and δ = (δij) is the standard Euclidean metric on D.
In particular, we have

(πvσ)11(πvσ )22 − (πvσ)
2
12 = (πv)11(πv)22 − (πv)

2
12 +

σ4

16
≥ σ4

16
> 0

and A(vσ) ≤ A(v) + δ for σ > 0 sufficiently small.
We now fix σ0 such that

A(vσ0) ≤ A(v) + δ

and let π = (πij) be the pull-back inner product associated with vσ0 .

Define the π-energy πEψ for a W 1,2-map ψ : D → D by setting
∫

D
πij(ψ(x, y))

(

∂ψi

∂x

∂ψj

∂x
+
∂ψi

∂y

∂ψj

∂y

)

dxdy.

Also let δEψ be the standard Dirichlet energy of ψ, i.e. the δ-energy
defined analogously to the π-energy. Then by (65),

(66)
σ20
4

δEψ ≤ πEψ.
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Let D be the class of all diffeomorphisms ψ : D → D satisfying
ψ(ξi) = ξi for i = 1, 2, 3 (with ξi defined as in Lemma 14) and D be
the closure of D with respect to the uniform convergence. A π-energy
minimizing sequence in D has uniformly bounded δ-energy by (66) and
hence is an equicontinuous family. Thus there exists a subsequence
converging uniformly to a map ψ0 : D → D. In particular, the uniform
convergence implies ψ0 maps ∂D monotonically onto ∂D and the lower
semicontinuity of the π-energy implies πEψ0 = inf{πEψ : ψ ∈ D}. Let
ηt : D → D be a family of diffeomorphisms depending smoothly on t
with η0 = identity. The minimizing property of ψ0 implies that

d

dt
πEψ0◦ηt ∣

∣

t=0
= 0

since the three point condition can be achieved by a Möbius transfor-
mation without changing energy. This then implies the conformality
relations

πij
∂ψi0
∂x

∂ψj0
∂x

= πij
∂ψi0
∂y

∂ψj0
∂y

and πij
∂ψi0
∂x

∂ψj0
∂y

= 0

almost everywhere. Thus

πEψ0 =

∫

D
πij(ψ0(x, y))

(

∂ψi0
∂x

∂ψj0
∂x

+
∂ψi0
∂y

∂ψj0
∂y

)

dxdy

= 2

∫

D

(

πij(ψ0(x, y))
∂ψi0
∂x

∂ψj0
∂x

πij(ψ0(x, y))
∂ψi0
∂y

∂ψj0
∂y

−πij(ψ0(x, y))
∂ψi0
∂x

∂ψj0
∂y

πij(ψ0(x, y))
∂ψi0
∂x

∂ψj0
∂y

)1/2

dxdy

= 2

∫

D

√

π11π22 − π212 dudv

= 2A(vσ0).

For almost every y ∈ (−1, 1), ψ0

∣

∣

Iy
is in W 1,2 ∩ C0, 1

2 where Iy ⊂ D

is the horizontal line at y. Let X = ∂
∂x . Since ǫ 7→ ψ0(x + ǫ, y) is the

flow starting at ψ0(x, y) along the (almost everywhere defined) vector
field (ψ0)∗X at time ǫ, the ǫ-energy density functions of vǫ0 ◦ψ0 and vǫ0
satisfy the equality

X
ν eǫ(x, y) =

(ψ0)∗X
ν eǫ(ψ0(x, y)).

The same equality is true with X replaced by Y = ∂
∂y . Thus, as in the

proof of [KS1] Theorem 2.3.2 formula (2.3v), we see that

(πvσ◦ψ0
)ij = πlm

∂ψl0
∂xi

∂ψm0
∂xj
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where πvσ◦ψ0
is the pull-back inner product associated with vσ◦ψ0. This

immediately implies Evσ0◦ψ0 = πEψ0 . Therefore, we have

Ev◦ψ0 ≤ Evσ0◦ψ0 = πEψ0 = 2A(vσ0) ≤ 2(A(v) + δ).

q.e.d.

We now prove our second claim.

Claim 2. If u ∈ FΓ satisfies Eu = infv∈FΓ
Ev, then A(u) = inf{A(v) :

v ∈ FΓ}.

Proof. By the Cauchy-Schwarz lemma,
√

π11π22 − (π12)2 ≤
√
π11π22 ≤

1

2
(π11 + π22)

with
√

π11π22 − (π12)2 =
1

2
(π11 + π22) ⇐⇒ π11 = π22 and π12 = 0.

Since u satisfies the conformality equations by Lemma 15, we deduce
that A(u) = 1

2E
u. Given v ∈ FΓ and δ > 0, let ψ0 be as in Lemma 16.

Then v ◦ ψ0 ∈ FΓ and

A(u) =
1

2
Eu ≤ 1

2
Ev◦ψ0 ≤ A(u) + δ.

Since δ can be chosen arbitrarily small, we are done. q.e.d.

In establishing the above claims, we have also shown:

Theorem 17. Let X be an Alexandrov space. There exists a solu-
tion u of the Plateau Problem that is conformal and energy minimizing.
Therefore, if X is compact Alexandrov space satisfying Perel’man’s con-
jecture, then there exists a solution u of the Plateau Problem that is
Hölder continuous in the interior of D and continuous up to ∂D.

5. Appendix

We establish the following fact about quadrilaterals in hyperbolic
plane. The purpose is to estimate the difference between the sum of the
lengths of the diagonals and the sum of the lengths of the sides.

Lemma 18. If P̄ , Q̄, R̄′, S̄ ∈ H2 so that
ǫ

N
≤ d̄P̄ Q̄, d̄Q̄R̄′ , d̄R̄′S̄ , d̄P̄ S̄ , d̄P̄ R̄′ , d̄Q̄S̄ ≤ Nǫ,

then

|d̄2Q̄S̄ + d̄2P̄ R̄′ − d̄2P̄ Q̄ − d̄2Q̄R̄′ − d̄2R̄′S̄ − d̄2P̄ S̄|

≤ CN

(

|d̄2Q̄R̄′ − d̄2P̄ S̄ |+ |d̄2P̄ Q̄ − d̄2R̄′S̄|+ ǫ(|d̄Q̄R̄′ − d̄P̄ S̄ |+ |d̄P̄ Q̄ − d̄R̄′S̄ |)
)

+O(ǫ3)
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where CN is a constant dependent on N and O(ǫ3) has the property that
O(ǫ3)
ǫ2

→ 0 as ǫ→ 0 .

Proof. Let

E = d̄2Q̄S̄ + d̄2P̄ R̄′ − d̄2P̄ Q̄ − d̄2Q̄R̄′ − d̄2R̄′S̄ − d̄2P̄ S̄ .

Define λ, δ ∈ [0, π] by

cosh d̄P̄ R̄′ = cosh d̄Q̄R̄′ cosh d̄P̄ Q̄ − sinh d̄Q̄R̄′ sinh d̄P̄ Q̄ cos λ

cosh d̄Q̄S̄ = cosh d̄Q̄R̄′ cosh d̄R̄′S̄ − sinh d̄Q̄R̄′ sinh d̄R̄′S̄ cos δ.

By Taylor series expansion, we obtain

d̄2P̄ R̄′ = d̄2Q̄R̄′ + d̄2P̄ Q̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cos λ+O(ǫ3)

d̄2Q̄S̄ = d̄2Q̄R̄′ + d̄2R̄′S̄ − 2d̄Q̄R̄′ d̄R̄′S̄ cos δ +O(ǫ3).

We have then

E = d̄2Q̄R̄′ − d̄2P̄ S̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cos λ− 2d̄Q̄R̄′ d̄R̄′S̄ cos δ +O(ǫ3)

= d̄2Q̄R̄′ − d̄2P̄ S̄ − 2d̄Q̄R̄′

(

(d̄R̄′S̄ − d̄P̄ Q̄) cos δ + d̄P̄ Q̄(cos δ + cosλ)
)

+O(ǫ3),

and hence

E ≤ |d̄2Q̄R̄′ − d̄2P̄ S̄ |+ 2Nǫ|d̄R̄′S̄ − d̄Q̄P̄ |+ 2N2ǫ2| cos δ + cos λ|+O(ǫ3)

≤ CN (|d̄2Q̄R̄′ − d̄2P̄ S̄|+ ǫ|d̄R̄′S̄ − d̄Q̄P̄ |+ ǫ2| cos δ + cos λ|)
+O(ǫ3).(67)

We now estimate | cos δ + cosλ|. Let A be the area of △R̄′Q̄P̄ . Since
the perimeter of △R̄′Q̄P̄ is bounded by some constant times Nǫ, we
have A = O(ǫ2). Define α, β ∈ [0, π] by

cosh d̄Q̄R̄′ = cosh d̄P̄ R̄′ cosh d̄P̄ Q̄ − sinh d̄P̄ R̄′ sinh d̄P̄ Q̄ cosα

cosh d̄P̄ S̄ = cosh d̄P̄ R̄′ cosh d̄R̄′S̄ − sinh d̄P̄ R̄′ sinh d̄R̄′S̄ cos β.(68)

The interior angles of the triangle △R̄′Q̄P̄ are α, λ and δ − β. Since
A = π − α− λ− (δ − β), we see that

| cos δ+cos λ| ≤ | cos δ−cos(δ+(A+α−β))| ≤ A+|α−β| = |α−β|+O(ǫ2),

where we used the Mean Value Theorem in the second inequality. The
fact that the ratios of any two pairwise distances of P̄ , Q̄, R̄′ and S̄ are
bounded from below by 1

N2 and from above by N2 implies that α and
β are bounded away from 0 and π. Thus, |α− β| ≤ L| cosα− cos β| for
some constant dependent on N . Therefore, we obtain

| cos δ + cos λ| ≤ L| cosα− cos β|+O(ǫ2)

which combined with (67) gives

(69) E ≤ |d̄2Q̄R̄′−d̄2P̄ S̄|+2Nǫ|d̄R̄′S̄−d̄Q̄P̄ |+2LN2ǫ2| cosα−cos β|+O(ǫ3).
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By (68), we also have

sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄)| cosα− cos β|
=

∣

∣ sinh(d̄P̄ Q̄)(− cosh(d̄P̄ S̄) + cosh(d̄P̄ R̄′) cosh(d̄R̄′S̄))

− sinh(d̄R̄′S̄)(− cosh(d̄Q̄R̄′) + cosh(d̄P̄ R̄′) cosh(d̄P̄ Q̄))
∣

∣.

The right hand side can be estimated as
∣

∣

∣
d̄R̄′S̄

(

d̄2P̄ Q̄ + d̄2P̄ R̄′ − d̄2Q̄R̄′

)

− d̄P̄ Q̄
(

d̄2P̄ R̄′ + d̄2R̄′S̄ − d̄2P̄ S̄
)

∣

∣

∣
+O(ǫ5)

≤ d̄2P̄ Q̄
∣

∣d̄R̄′S̄ − d̄P̄ Q̄
∣

∣+ d̄P̄ Q̄

(

d̄2P̄ Q̄ − d̄2R̄′S̄

)

+ d̄2P̄ R̄′

∣

∣d̄R̄′S̄ − d̄P̄ Q̄
∣

∣

+d̄P̄ Q̄

(

d̄2P̄ S̄ − d̄2Q̄R̄′

)

+ d̄2R̄′S̄

∣

∣d̄P̄ Q̄ − d̄R̄′S̄

∣

∣+O(ǫ5).

Furthermore,

ǫ3

N3
≤ d̄P̄ R̄′ d̄R̄′S̄ d̄P̄ Q̄ ≤ sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄).

Therefore, we obtain

| cosα− cos β| ≤ CN
ǫ2

(

ǫ|d̄R̄′S̄ − d̄P̄ Q̄|+ (d̄2P̄ Q̄ − d̄2R̄′S̄) + (d̄2P̄ S̄ − d̄2Q̄R̄′)
)

.

Combining this with (69), we obtain the desired inequality. q.e.d.

References

[BBI] D. Burago, Y. Burago & S. Ivanov, A course in metric geometry. Graduate
Studies in Mathematics, 33. American Mathematical Society, Providence, RI,
2001. xiv+415 pp., MR 1835418, Zbl 0981.51016.

[BGP] Y. Burago, M. Gromov & G. Perel’man, A. D. Aleksandrov spaces with cur-

vatures bounded below, Russian Math. Surveys 47 (1992) 1–58, MR 1185284,
Zbl 0802.53018.

[D] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33
(1931) 263–321, MR 1501590, Zbl 0001.14102.

[ES] J. Eells & J. Sampson, Harmonic mappings of Riemannian Manifolds, Amer.
J. Math. 86 (1964) 109–160, MR 0164306, Zbl 0122.40102.

[GS] M. Gromov & R. Schoen, Harmonic maps into singular spaces and p-adic

superrigidity for lattices in groups of rank 1, Inst. Hautes tudes Sci. Publ.
Math. 76 (1992) 165–246, MR 1215595, Zbl 0896.58024.
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