
j. differential geometry

83 (2009) 313-335

A PROOF OF THE FABER INTERSECTION NUMBER

CONJECTURE

Kefeng Liu & Hao Xu

Abstract

We prove the famous Faber intersection number conjecture and
other more general results by using a recursion formula of n-point
functions for intersection numbers on moduli spaces of curves. We
also present some vanishing properties of Gromov-Witten invari-
ants.

1. Introduction

Starting from the work of Mumford, one fundamental problem in
algebraic geometry is the study of intersection theory on moduli spaces
of stable curves. Through the work of Witten and Kontsevich we learned
that the intersection theory of moduli spaces also has striking connection
to string theory and two dimensional gravity. Denote by Mg,n the
moduli space of stable n-pointed genus g complex algebraic curves. We
have the morphism that forgets the last marked point

π : Mg,n+1 −→ Mg,n.

Denote by σ1, . . . , σn the canonical sections of π, and by D1, . . . ,Dn

the corresponding divisors in Mg,n+1. Let ωπ be the relative dualizing
sheaf, we have the following tautological classes on moduli spaces of
curves.

ψi = c1(σ
∗
i (ωπ))

κi = π∗

(

c1

(

ωπ

(

∑

Di

))i+1
)

λk = ck(E), 1 ≤ k ≤ g,

where E = π∗(ωπ) is the Hodge bundle.
Intuitively, ψi is the first Chern class of the line bundle corresponding

to the cotangent space of the universal curve at the i-th marked point
and the fiber of E is the space of holomorphic one forms on the algebraic
curve.

The classes κi were first introduced by Mumford [22] on Mg, their

generalization to Mg,n here is due to Arbarello-Cornalba [1].
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We use Witten’s notation

〈τd1 · · · τdn
κa1 · · · κam | λk1

1 · · ·λ
kg
g 〉

,

∫

Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κamλ
k1
1 · · ·λ

kg
g .

These intersection numbers are called the Hodge integrals. They are
rational numbers because the moduli space of curves are orbifolds (with
quotient singularities) except in genus zero. Their degrees should add
up to dimMg,n = 3g − 3 + n.

Intersection numbers of pure ψ classes 〈τd1 · · · τdn
〉 are often called in-

tersection indices or descendant integrals. Faber’s algorithm [3] reduces
the calculation of general Hodge integrals to intersection indices, based
on Mumford’s Chern character formula [22]

ch2g−1(E) =
B2g

(2g)!

[

κ2g−1 −
n
∑

i=1

ψ2g−1
i

+
1

2

∑

ξ∈∆

lξ∗

(

2g−2
∑

i=0

ψi
n+1(−ψn+2)

2g−2−i

)]

,

where ∆ enumerates all boundary divisors and lξ∗ is the push-forward
map under the natural inclusion.

The celebrated Witten-Kontsevich theorem [13, 25] asserts that the
generating function of intersection indices

F (t0, t1, . . .) =
∑

g

∑

n

〈
∞
∏

i=0

τni

i 〉g

∞
∏

i=0

tni

i

ni!

is governed by the KdV hierarchy, which provides a recursive way to
compute all these intersection numbers.

The tautological ring R∗(Mg) is defined to be the smallest Q-subalge-
bra of the Chow ring A∗(Mg) generated by the tautological classes κi

and λi. Mumford [22] proved that the ring R∗(Mg) is in fact generated
by the g − 2 classes κ1, . . . , κg−2.

It is a theorem of Looijenga [19] that dimRk(Mg) = 0, k > g−2 and
dimRg−2(Mg) ≤ 1. Later Faber proved that actually dimRg−2(Mg) =
1.

Faber’s conjecture. Around 1993, Faber [2] proposed three remark-
able conjectures about the structure of the tautological ring R∗(Mg)
which we briefly state as follows:

i) For 0 ≤ k ≤ g − 2, the natural product

Rk(Mg) ×Rg−2−k(Mg) → Rg−2(Mg) ∼= Q

is a perfect pairing.
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ii) The [g/3] classes κ1, . . . , κ[g/3] generate the ring R∗(Mg), with no
relations in degrees ≤ [g/3].

iii) Let
∑n

j=1 dj = g − 2 and dj ≥ 0. Then

(1) π∗(ψ
d1+1
1 . . . ψdn+1

n ) =
∑

σ∈Sn

κσ =
(2g − 3 + n)!

(2g − 2)!!
∏n

j=1(2dj + 1)!!
κg−2,

where κσ is defined as follows: write the permutation σ as a prod-
uct of ν(σ) disjoint cycles σ = β1 · · · βν(σ), where we think of the
symmetric group Sn as acting on the n-tuple (d1, . . . , dn). De-
note by |β| the sum of the elements of a cycle β. Then κσ =
κ|β1|κ|β2| . . . κ|βν(σ)|.

Part (i) is called Faber’s perfect pairing conjecture, which is still open.
Faber has verified it for g ≤ 23.

Part (ii) has been proved independently by Morita [21] and Ionel
[12] with very different methods. As pointed out by Faber [2], Harer’s
stability result implies that there is no relation in degrees ≤ [g/3].

Part (iii) of Faber’s conjectures is the intersection number conjecture,
whose importance lies in that it computes all top intersections in the
tautological ring R∗(Mg) and determines its ring structure if we assume
Faber’s perfect pairing conjecture. Theoretically it gives the dimension
of tautological rings by computing the rank of intersection matrices
which we will discuss in a subsequent work.

Faber’s conjecture is a fundamental question mentioned in mono-
graphs such as [6, 11] that many algebraic geometers have worked on.
In this paper, we prove the Faber intersection number conjecture com-
pletely. First we recall two equivalent formulations.

The Faber intersection number conjecture is equivalent to

(2)

∫

Mg,n

ψd1
1 . . . ψdn

n λgλg−1 =
(2g − 3 + n)!|B2g|

22g−1(2g)!
∏n

j=1(2dj − 1)!!
,

where B2g denotes the 2g-th Bernoulli number. By Mumford’s for-
mula for the Chern character of the Hodge bundle, the above identity
is equivalent to

(3)
(2g − 3 + n)!

22g−1(2g − 1)!
∏n

j=1(2dj − 1)!!
=

〈τ2g

n
∏

j=1

τdj
〉g −

n
∑

j=1

〈τdj+2g−1

∏

i6=j

τdi
〉g +

1

2

2g−2
∑

j=0

(−1)j〈τ2g−2−jτj

n
∏

i=1

τdi
〉g−1

+
1

2

∑

n=I
‘

J

2g−2
∑

j=0

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τ2g−2−j

∏

i∈J

τdi
〉g−g′ ,
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where dj ≥ 1,
∑n

j=1 dj = g + n− 2. We refer to [2, 17] for discussions
of the above equivalences.

The following interesting relation is observed by Faber and proved by
Zagier using the Faber intersection number conjecture (see [2])

κg−2
1 =

1

g − 1
22g−5((g − 2)!)2κg−2.

In fact, from (1), the above relation is equivalent to a combinatorial
identity

g
∑

k=1







(−1)k

k!
(2g + 1 + k)

∑

g=m1+···+mk
mi>0

(

2g + k

2m1 + 1, . . . , 2mk + 1

)







= (−1)g22g(g!)2.

We learned of an elegant proof from Jian Zhou using the residue theo-
rem.

Faber [2] proved identity (3) when n = 1 using explicit formulae of up
to three-point functions. The identity (2) was shown to follow from the
degree 0 Virasoro conjecture for P2 by Getzler and Pandharipande [8].
In 2001 Givental [9] has announced a proof of Virasoro conjecture for Pn.
Y.-P. Lee and R. Pandharipande are writing a book [16] giving details.
Recently Teleman [23] announced a proof of the Virasoro conjecture
for manifolds with semi-simple quantum cohomology. His argument
depends crucially on the Mumford conjecture about the stable rational
cohomology rings of the moduli spaces proved by Madsen and Weiss
[20].

Goulden, Jackson and Vakil [10] recently give an enlightening proof of
identity (1) for up to three points. Their remarkable proof uses relative
virtual localization and a combinatorialization of the Hodge integrals,
establishing connections to double Hurwitz numbers.

Our alternative approach is quite direct, we prove identity (3) for all
g and n by using a recursive formula of n-point functions. Actually,
the n-point function formula has far-reaching applications. Recently
Zhou [28] used our results on n-point functions in his computation of
Hurwitz-Hodge integrals, which leads to a proof of the crepant resolution
conjecture of type A surface singularities for all genera.

Acknowledgements. The authors would like to thank Professors
Sergei Lando, Jun Li, Chiu-Chu Melissa Liu, Ravi Vakil and Jian Zhou
for helpful communications.
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2. The n-point functions

Definition 2.1. We call the following generating function

F (x1, . . . , xn) =

∞
∑

g=0

Fg(x1, . . . , xn)

=
∞
∑

g=0

∑

P

dj=3g−3+n

〈τd1 · · · τdn
〉g

n
∏

j=1

x
dj

j

the n-point functions.

Consider the following “normalized” n-point function

G(x1, . . . , xn) = exp

(

−
∑n

j=1 x
3
j

24

)

F (x1, . . . , xn).

We will let Gg(x1, . . . , xn) denote the degree 3g − 3 + n homogenous
component of G(x1, . . . , xn).

In contrast with the original n-point function, its normalization has
some distinct properties (see [18]). For example, the coefficient of

zk
∏n

j=1 x
dj

j in Gg(z, x1, . . . , xn) is zero whenever k > 2g − 2 + n.
It’s well-known that

F0(x1, . . . , xn) = G0(x1, . . . , xn) = (x1 + · · · + xn)n−3.

There are explicit formulae for one and two-point functions due to
Witten [25] and Dijkgraaf (see [2]) respectively

G(x) =
1

x2
, G(x, y) =

1

x+ y

∑

k≥0

k!

(2k + 1)!

(

1

2
xy(x+ y)

)k

.

In an unpublished note [27] (kindly sent to us by Faber), Zagier obtained
a marvelous formula of the three-point function (see [18]).

We proved in [18] the following recursion formula for general normal-
ized n-point function.

Proposition 2.2. [18] For n ≥ 2,

G(x1, . . . , xn) =
∑

r,s≥0

(2r + n− 3)!!

4s(2r + 2s+ n− 1)!!
Pr(x1, . . . , xn)∆(x1, . . . , xn)s,

where Pr and ∆ are homogeneous symmetric polynomials defined by

∆(x1, . . . , xn) =

(

∑n
j=1 xj

)3
−
∑n

j=1 x
3
j

3
,

Pr(x1, . . . , xn) =
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1

2
∑n

j=1 xj

∑

n=I
‘

J

(

∑

i∈I

xi

)2(∑

i∈J

xi

)2
G(xI)G(xJ )





3r+n−3

=
1

2
∑n

j=1 xj

∑

n=I
‘

J

(

∑

i∈I

xi

)2(∑

i∈J

xi

)2
r
∑

r′=0

Gr′(xI)Gr−r′(xJ),

where I, J 6= ∅, n = {1, 2, . . . , n} and Gg(xI) denotes the degree 3g +
|I| − 3 homogeneous component of the normalized |I|-point function

G(xk1 , . . . , xk|I|
), where kj ∈ I.

The proof amounts to check that G(x1, . . . , xn), as recursively defined
in Proposition 2.2, satisfies the following Witten-Kontsevich differential
equation (see [18]),

y
∂

∂y





(

y +
n
∑

j=1

xj

)2
Gg(y, x1, . . . , xn)



 =

y

8

(

y+

n
∑

j=1

xj

)4
Gg−1(y, x1, . . . , xn)−

y3

8

(

y+

n
∑

j=1

xj

)2
Gg−1(y, x1, . . . , xn)

+
y

2

∑

n=I
‘

J





(

y +
∑

i∈I

xi

)(

∑

i∈J

xi

)3

+ 2

(

y +
∑

i∈I

xi

)2(
∑

i∈J

xi

)2




×Gg′(y, xI)Gg−g′(xJ)

−
1

2



y +
n
∑

j=1

xj









n
∑

j=1

xj



Gg(y, x1, . . . , xn).

The verification is tedious but straightforward. It will be included in a
updated version of the paper [18].

Recall the well-known string equation

〈τ0

n
∏

i=1

τki
〉g =

n
∑

j=1

〈τkj−1

∏

i6=j

τki
〉g

and the dilaton equation

〈τ1

n
∏

i=1

τki
〉g = (2g − 2 + n)〈

n
∏

i=1

τki
〉g.

Note that the string equation can be equivalently written as

F (x1, . . . , xn, 0) =
(

n
∑

j=1

xj

)

F (x1, . . . , xn).
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Proposition 2.3. Let n ≥ 2. We have the following recursive for-

mula of n-point functions.

(2g + n− 1)Fg(x1, . . . , xn) =

(

∑n
j=1 xj

)3

12
Fg−1(x1, . . . , xn)

+
1

2
(

∑n
j=1 xj

)

g
∑

g′=0

∑

n=I
‘

J

(

∑

i∈I

xi

)2(
∑

i∈J

xi

)2

Fg′(xI)Fg−g′(xJ).

Proof. From Proposition 2.2, we have

Gg(x1, . . . , xn)

=
∑

r+s=g

(2r + n− 3)!!

4s(2g + n− 1)!!
Pr(x1, . . . , xn)∆(x1, . . . , xn)s

=
1

2g + n− 1
Pg(x1, . . . , xn)

+
∑

r+s=g−1

(2r + n− 3)!!

4s+1(2g + n− 1)!!
Pr(x1, . . . , xn)∆(x1, . . . , xn)s+1

=
1

(2g + n− 1)
Pg(x1, . . . , xn) +

∆(x1, . . . , xn)

4(2g + n− 1)
Gg−1(x1, . . . , xn).

We define

H = exp

(∑n
i=1 x

3
i

24

)

, H−1 = exp

(

−
∑n

i=1 x
3
i

24

)

,

Hd =
1

d!

(∑n
i=1 x

3
i

24

)d

, H−1
d =

1

d!

(

−
∑n

i=1 x
3
i

24

)d

.

Note that
∑d

i=0HiH
−1
d−i = 0 if d > 0.

Let LHS and RHS denote the left and right hand side of the recursion
in the lemma. We have

H−1·RHS =

∞
∑

g=0





1

12

(

n
∑

i=1

xi

)3

Gg−1(x1, . . . , xn) + Pg(x1, . . . , xn)





=

∞
∑

g=0

(

(2g + n− 1)Gg(x1, . . . , xn) +
1

12

(

n
∑

i=1

x3
i

)

Gg−1(x1, . . . , xn)

)
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H−1 · LHS =
∞
∑

g=0

∑

a+b+c=g

(2a+ 2b+ n− 1)Ga(x1, . . . , xn)HbH
−1
c

=
∞
∑

g=0

g
∑

a=0

(2a+ n− 1)Ga(x1, . . . , xn)
∑

b+c=g−a

HbH
−1
c

+

∞
∑

g=0

∑

a+b+c=g

Ga(x1, . . . , xn)2bHbH
−1
c

=

∞
∑

g=0

(2g+n−1)Gg(x1, . . . , xn)+

∞
∑

g=0

1

12

(

n
∑

i=1

x3
i

)

Gg−1(x1, . . . , xn).

q.e.d.

Only very recently, we realize that Proposition 2.3 has already been
embodied in the first KdV equation of the Witten-Kontsevich theorem.

The KdV hierarchy is the following hierarchy of differential equations
for n ≥ 1,

∂U

∂tn
=

∂

∂t0
Rn+1,

where Rn are Gelfand-Dikii differential polynomials in U, ∂U/∂t0,
∂2U/∂t20, . . . , defined recursively by

R1 = U,
∂Rn+1

∂t0
=

1

2n+ 1

(

∂U

∂t0
Rn + 2U

∂Rn

∂t0
+

1

4

∂3

∂t30
Rn

)

.

It is easy to see that

R2 =
1

2
U2 +

1

12

∂2U

∂t20
,

R3 =
1

6
U3 +

U

12

∂3U

∂t30
+

1

24

(∂U

∂t0

)2
+

1

240

∂4U

∂t40
,

...

The Witten-Kontsevich theorem states that the generating function

F (t0, t1, . . .) =
∑

g

∑

n

〈
∞
∏

i=0

τni

i 〉g

∞
∏

i=0

tni

i

ni!

is a τ -function for the KdV hierarchy, i.e. ∂2F/∂t20 obeys all equations
in the KdV hierarchy. The first equation in the KdV hierarchy is the
classical KdV equation

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
.
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By the Witten-Kontsevich theorem, we have

∂3F

∂t1∂t
2
0

=
∂F

∂t20

∂F

∂t30
+

1

12

∂5F

∂t50
.

Integrating each side with respect to t0 and putting 〈〈τk1 · · · τkn
〉〉:=

∂nF/∂tk1 · · · ∂tkn
, we get

〈〈τ0τ1〉〉 =
1

12
〈〈τ4

0 〉〉 +
1

2
〈〈τ2

0 〉〉〈〈τ
2
0 〉〉.

Then Proposition 2.3 follows by applying the dilaton equation.

3. The Faber intersection number conjecture

Now we explain our approach to prove identity (3), hence the Faber
intersection number conjecture. We establish its relationship with n-
point functions.

For the sake of brevity, we introduce the following notations

La,b
g (y, x1 . . . , xn)

=

g
∑

g′=0

∑

n=I
‘

J

(

y +
∑

i∈I

xi

)a(

− y +
∑

i∈J

xi

)b
Fg′(y, xI)Fg−g′(−y, xJ),

where a, b ∈ Z. We regard La,b
g (y, x1 . . . , xn) as a formal series in

Q[x1, . . . , xn][[y, y−1]] with deg y <∞.
We now prove that the Faber intersection number conjecture can be

reduced to three statements about the coefficients of the above func-
tions.

Proposition 3.1. We have

i)
[

L0,0
g (y, x1 . . . , xn)

]

y2g−2 = 0;

ii) For k > 2g,
[

L2,2
g (y, x1 . . . , xn)

]

yk = 0;

iii) For dj ≥ 1 and
∑n

j=1 dj = g + n,

[

L2,2
g (y, x1 . . . , xn)

]

y2g
Qn

j=1 x
dj
j

=
(2g + n+ 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
.

In fact, Proposition 3.1 is a special case of more general results proved
in the next section. Clearly identities (i) and (ii) of the following corol-
lary add up to the desired identity (3).

Corollary 3.2. We have
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i) Let dj ≥ 0 and
∑n

j=1 dj = g + n− 2. Then

〈
n
∏

j=1

τdj
τ2g〉g =

n
∑

j=1

〈τdj+2g−1

∏

i6=j

τdi
〉g

−
1

2

∑

n=I
‘

J

2g−2
∑

j=0

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τ2g−2−j

∏

i∈J

τdi
〉g−g′ ;

ii) Let dj ≥ 1 and
∑n

j=1(dj − 1) = g − 1. Then

2g
∑

j=0

(−1)j〈τ2g−jτj

n
∏

i=1

τdi
〉g =

(2g + n− 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
;

iii) Let k > g, dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2k − 2. Then

2k
∑

j=0

(−1)j〈τ2k−jτj

n
∏

i=1

τdi
〉g = 0.

Proof. Since one and two-point functions in genus 0 are

F0(x) =
1

x2
, F0(x, y) =

1

x+ y
=

∞
∑

k=0

(−1)k
xk

yk+1
,

it is consistent to define

〈τ−2〉0 = 1, 〈τkτ−1−k〉0 = (−1)k, k ≥ 0.

By allowing the index to run over all integers, we have

1

2

∑

n=I
‘

J

2g−2
∑

j=0

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τ2g−2−j

∏

i∈J

τdi
〉g−g′

+ 〈
n
∏

j=1

τdj
τ2g〉g −

n
∑

j=1

〈τdj+2g−1

∏

i6=j

τdi
〉g

=
1

2

∑

n=I
‘

J

∑

j∈Z

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τ2g−2−j

∏

i∈J

τdi
〉g−g′

=





g
∑

g′=0

∑

n=I
‘

J

Fg′(y, xI)Fg−g′(−y, xJ)





y2g−2
Qn

i=1 x
di
i

=
[

L0,0
g (y, x1, . . . , xn)

]

y2g−2
Qn

i=1 x
di
i

= 0.
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From Proposition 2.3, we have

1

2





n
∑

j=1

xj



Fg(x1, . . . , xn) =

(

∑n
j=1 xj

)4

24(2g + n− 1)
Fg−1(x1, . . . , xn)

+
1

2(2g + n− 1)



L2,2
g (y, xn) +

g
∑

g′=0

∑

n=I
‘

J

(

∑

i∈I

xi

)2(
∑

i∈J

xi

)2

× Fg′(y,−y, xI)Fg−g′(xJ)

)

.

By Proposition 3.1(ii)-(iii), we can use Proposition 2.3 to inductively
prove

2k
∑

j=0

(−1)j〈τ2k−jτj

n
∏

i=1

τdi
〉g = [Fg(y,−y, x1, . . . , xn)]y2k = 0, for k > g

and we have

2g
∑

j=0

(−1)j〈τ2g−jτjτ0

n
∏

i=1

τdi
〉g =

(2g + n)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
,

which, from the string equation and induction on the maximum index
(say d1) among {di}, implies (by the dilaton equation, we may assume
di ≥ 2)

2g
∑

j=0

(−1)j〈τ2g−jτj

n
∏

i=1

τdi
〉g

=

2g
∑

j=0

(−1)j〈τ0τ2g−jτjτd1+1

n
∏

i=2

τdi
〉g

−
n
∑

k=2

2g
∑

j=0

(−1)j〈τ2g−jτjτd1+1τdk−1

∏

i6=1,k

τdi
〉g

=
(2g + n)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!(2d1 + 1)

−
n
∑

k=2

(2g + n− 1)!(2dk − 1)

4g(2g + 1)!
∏n

j=1(2dj − 1)!!(2d1 + 1)

=
(2g + n− 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
.

q.e.d.
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So in order to prove the Faber intersection number conjecture, we only
need to prove the three statements (i)-(iii) in Proposition 3.1 about n-
point functions. Actually we will prove more general results which are
stated as main theorems, Theorems 4.4 and 4.5 in the next section.
Proposition 3.1, therefore the Faber intersection number conjecture, is
a special case of these theorems.

4. Proof of main theorems

The binomial coefficients
(

p
k

)

, for k ≥ 0, p ∈ Z are given by

(

p

k

)

=











0, k < 0,

1, k = 0,
p(p−1)···(p−k+1)

k! , k ≥ 1.

Lemma 4.1. Let a, b ∈ Z and n ≥ 0. Then

n
∑

i=0

(

i+ a

i

)(

n− i+ b

n− i

)

=

(

n+ a+ b+ 1

n

)

.

Proof. Note that
(

p

k

)

=

(

p− 1

k

)

+

(

p− 1

k − 1

)

.

By denoting the left-hand side of the above equation by An(a, b), we
have

An(a, b) = An(a− 1, b) +An−1(a, b).

First we argue by induction on n and |b| to prove

An(0, b) =

(

n+ b+ 1

n

)

.

Then we argue by induction on n and |a| to prove

An(a, b) =

(

n+ a+ b+ 1

n

)

.

q.e.d.

We now prove two lemmas that will serve as base cases for our in-
ductive arguments.

Lemma 4.2. Let a, b ∈ Z and k ≥ 2g − 3 + a+ b. Then

i)
[

La,b
g (y, x)

]

yk
= 0,
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ii)
[

La,b
g (y, x)

]

y2g−4+a+bxg+1
=

(−1)b(2g − 2 + a+ b)

4g(2g + 1)!!
.

Proof. Here we recall the definition of normalized n-point functions

G(x1, . . . , xn) = exp

(

−
∑n

j=1 x
3
j

24

)

· F (x1, . . . , xn).

In particular, we have

G(x) =
1

x2
, G(x, y) =

1

x+ y

∑

k≥0

k!

(2k + 1)!

(

1

2
xy(x+ y)

)k

.

By definition
∑

g≥0

La,b
g (y, x1 . . . , xn) =

exp

(

∑n
j=1 x

3
j

24

)

∑

n=I
‘

J

(

y+
∑

i∈I

xi

)a(

−y+
∑

i∈J

xi

)b
G(y, xI)G(−y, xJ ),

So for statements (i) and (ii), it is not difficult to see that we only
need to prove that for k ≥ 2g − 3 + a+ b,

[

ya−2(−y + x)bGg(−y, x) + (−y)b−2(y + x)aGg(y, x)
]

yk
= 0

and
[

ya−2(−y + x)bGg(−y, x) + (−y)b−2(y + x)aGg(y, x)
]

y2g−4+a+bxg+1

=
(−1)b(2g − 2 + a+ b)

4g(2g + 1)!!
.

Both follow easily from the explicit formula of G(y, x). q.e.d.

Lemma 4.3. Let a, b ∈ Z and k ≥ a+ b− 3. Then

i)
[

La,b
0 (y, x1, . . . , xn)

]

yk
= 0,

ii)
[

La,b
0 (y, x1, . . . , xn)

]

ya+b−4
Qn

j=1 xj

=
(−1)b(a+ b+ n− 3)!

(a+ b− 3)!
.

Proof. Since

F0(x1, . . . , xn) = (x1 + · · · + xn)n−3,

we have by definition

La,b
0 (y, x1 . . . , xn) =

∑

n=I
‘

J

(

y +
∑

i∈I

xi

)|I|−2+a(

− y +
∑

i∈J

xi

)|J |−2+b
.
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For any monomial yk
∏n

j=1 x
dj

j in La,b
0 (y, x1 . . . , xn), if k ≥ a + b − 3,

then there must be some dj = 0. We may assume dn = 0, then

La,b
0 (y, x1 . . . , xn−1, 0)

=
∑

{1,...,n−1}=I
‘

J

(

(

y +
∑

i∈I

xi

)|I|−1+a(

− y +
∑

i∈J

xi

)|J |−2+b

+
(

y +
∑

i∈I

xi

)|I|−2+a(

− y +
∑

i∈J

xi

)|J |−1+b
)

=





n−1
∑

j=1

xj





∑

{1,...,n−1}=I
‘

J

(

x1 +
∑

i∈I

xi

)|I|−2+a(

− x1 +
∑

i∈J

xi

)|J |−2+b

=





n−1
∑

j=1

xj



La,b
0 (y, x1 . . . , xn−1).

So (i) follows by induction on n. By applying Lemma 4.1 we have

[

La,b
0 (y, x1, . . . , xn)

]

ya+b−4
Qn

j=1 xj

= (−1)b
n
∑

|I|=0

(

|I| − 2 + a

|I|

)

|I|!

(

|j| − 2 + b

|J |

)

|J |!

(

n

|I|

)

= (−1)bn!
n
∑

i=0

(

i− 2 + a

i

)(

n− i− 2 + b

n− i

)

= (−1)bn!

(

a+ b+ n− 3

n

)

=
(−1)b(a+ b+ n− 3)!

(a+ b− 3)!
.

So we have proved (ii). q.e.d.

Theorem 4.4. Let a, b ∈ Z and k ≥ 2g − 3 + a+ b. Then

[

La,b
g (y, x1 . . . , xn)

]

yk
= 0.
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Proof. We will argue by induction on g and n, since the theorem holds
for g = 0 or n = 1 as proved in the above lemmas. We have

(2g + n)La,b
g (y, x1 . . . , xn)

=

g
∑

g′=0

∑

n=I
‘

J

(

y +
∑

i∈I

xi

)a(

− y +
∑

i∈J

xi

)b

(2g′ + |I|)Fg′(y, xI)Fg−g′(−y, xJ )

+

g
∑

g′=0

∑

n=I
‘

J

(

y +
∑

i∈I

xi

)a(

− y +
∑

i∈J

xi

)b

Fg′(y, xI)(2g − 2g′ + |J |)Fg−g′(−y, xJ).

Substituting Fg′(y, xI) by Propostion 2.3,





g
∑

g′=0

∑

n=I
‘

J

(

y +
∑

i∈I

xi

)a(

− y +
∑

i∈J

xi

)b
(2g′ + |I|)

× Fg′(y, xI)Fg−g′(−y, xJ)

]

yk

=
1

12

[

La+3,b
g−1 (y, x1, . . . , xn)

]

yk

+





g
∑

g′=0

∑

s≥0

(

a− 1

s

)

∑

n=I
‘

J

Fg′(xI)
(

∑

i∈I

xi

)s+2
La+1−s,b

g−g′ (y, xJ)





yk

.

Note that in the last term of the above equation, |J | < n. So by
induction, for k ≥ 2g− 3 + a+ b, the sums vanish except for g′ = 0 and
s = 0, namely the term





∑

n=I
‘

J

(

∑

i∈I

xi

)|I|−1
La+1,b

g (y, xJ )





yk

.

Let dj ≥ 1 for 1 ≤ j ≤ n. By induction, it is not difficult to see from
the above that

(2g + n)
[

La,b
g (y, x1 . . . , xn)

]

yk
Qn

j=1 x
dj
j

=
1

12

[

La+3,b
g−1 (y, x1, . . . , xn) + La,b+3

g−1 (y, x1, . . . , xn)
]

yk
Qn

j=1 x
dj
j

.
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By induction, we have

0 =





n
∑

j=1

xj





[

La+1,b+1
g−1 (y, x1, . . . , xn)

]

yk
for k ≥ 2g − 3 + a+ b

=
[

La+2,b+1
g−1 (y, x1, . . . , xn) + La+1,b+2

g−1 (y, x1, . . . , xn)
]

yk

and

0 =





n
∑

j=1

xj





3
[

La,b
g−1(y, x1, . . . , xn)

]

yk
for k ≥ 2g − 5 + a+ b

=
[

La+3,b
g−1 (y, x1, . . . , xn) + La,b+3

g−1 (y, x1, . . . , xn)
]

yk

+ 3
[

La+2,b+1
g−1 (y, x1, . . . , xn) + La+1,b+2

g−1 (y, x1, . . . , xn)
]

yk

=
[

La+3,b
g−1 (y, x1, . . . , xn) + La,b+3

g−1 (y, x1, . . . , xn)
]

yk
.

So we have proved that

[

La,b
g (y, x1 . . . , xn)

]

yk
Qn

j=1 x
dj
j

= 0, for dj ≥ 1.

If some dj is zero, the above identity still holds by applying the string
equation

La,b
g (y, x1 . . . , xn, 0) =





n
∑

j=1

xj



La,b
g (y, x1 . . . , xn).

So we proved the theorem. q.e.d.

Theorem 4.5. Let a, b ∈ Z, dj ≥ 1 and
∑

j dj = g + n. Then

[

La,b
g (y, x1 . . . , xn)

]

y2g−4+a+b
Qn

j=1 x
dj
j

=
(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 3 + a+ b)!
∏n

j=1(2dj − 1)!!
.
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Proof. By the dilaton equation, we may assume dj ≥ 2. As in the
proof of the above theorem, we have

(2g + n)
[

La,b
g (y, x1 . . . , xn)

]

y2g−4+a+b
Qn

j=1 x
dj
j

=
1

12

[

La+3,b
g−1 (y, xn) + La,b+3

g−1 (y, xn)
]

y2g−4+a+b
Qn

j=1 x
dj
j

= −
1

4

[

La+2,b+1
g−1 (y, xn) + La+1,b+2

g−1 (y, xn)
]

y2g−4+a+b
Qn

j=1 x
dj
j

= −
1

4

[(

n
∑

i=1

xi

)

La+1,b+1
g−1 (y, xn)

]

y2g−4+a+b
Qn

j=1 x
dj
j

= −
1

4

n
∑

j=1

[

La+1,b+1
g−1 (y, xn)

]

y2g−4+a+bx
dj−1

j

Q

i6=j x
di
i

=
(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 3 + a+ b)!
∏n

j=1(2dj − 1)!!

n
∑

j=1

(2dj − 1)

= (2g + n)
(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 3 + a+ b)!
∏n

j=1(2dj − 1)!!
.

So we have proved the theorem. q.e.d.

All the three statements in Proposition 3.1 are particular cases of
Theorems 2.4 and 2.5. We thus conclude the proof of the Faber inter-
section number conjecture.

The following corollaries ware stated as conjectures in our previous
paper [17].

Corollary 4.6. Let dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

(2g − 3 + n)!

22g+1(2g − 3)!
∏n

j=1(2dj − 1)!!

= 〈τ2g−2

n
∏

j=1

τdj
〉g −

n
∑

j=1

〈τdj+2g−3

∏

i6=j

τdi
〉g

+
1

2

∑

n=I
‘

J

2g−4
∑

j=0

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τ2g−4−j

∏

i∈J

τdi
〉g−g′ .

Proof. Since the right hand side is just

1

2

[

L0,0
g (y, x1 . . . , xn)

]

y2g−4
Qn

j=1 x
dj
j

,

the result follows from Theorem 4.5. q.e.d.
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Corollary 4.7. Let g ≥ 2, dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

−
(2g − 2)!

|B2g−2|

∫

Mg,n

ψd1
1 · · ·ψdn

n ch2g−3(E)

=
2g − 2

|B2g−2|

(

∫

Mg,n

ψd1
1 · · ·ψdn

n λg−1λg−2 − 3

∫

Mg,n

ψd1
1 · · ·ψdn

n λg−3λg

)

=
1

2

2g−4
∑

j=0

(−1)j〈τ2g−4−jτjτd1 · · · τdn
〉g−1

+
(2g − 3 + n)!

22g+1(2g − 3)!
·

1
∏n

j=1(2dj − 1)!!
.

Proof. We apply Mumford’s formulae [22]

(2g − 3)! · ch2g−3(E) = (−1)g−1(3λg−3λg − λg−1λg−2),

ch2g−3(E) =
B2g−2

(2g − 2)!

[

κ2g−3 −
n
∑

i=1

ψ2g−3
i

+
1

2

∑

ξ∈∆

lξ∗

(

2g−4
∑

i=0

ψi
n+1(−ψn+2)

2g−4−i

)]

.

So the identity follows from Corollary 4.6. q.e.d.

Both Theorems 4.4 and 4.5 can be extended without difficulty.
Let us use the notation

Lg(y, za, wb, xn)

=

g
∑

g′=0

∑

n=I
‘

J

Fg′(y, z1, . . . , za, xI)Fg−g′(−y,w1, . . . , wb, xJ).

Theorem 4.8. Let a ≥ 0, b ≥ 0, n ≥ 1. We have

i) For k ≥ 2g − 3 + a+ b,
[

Lg(y, za, wb, xn)
]

yk = 0.

ii) For rj ≥ 0, sj ≥ 0, dj ≥ 1 and
∑

rj +
∑

sj +
∑

dj = g + n,

[

Lg(y, za, wb, xn)
]

y2g−4+a+b
Qa

j=1 z
rj
j

Qb
j=1 w

sj
j

Qn
j=1 x

dj
j

=
1

∏a
j=1(2rj + 1)!!

∏b
j=1(2sj + 1)!!

·
(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 3 + a+ b)!
∏n

j=1(2dj − 1)!!
.
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iii) For rj ≥ 0, sj ≥ 0, dj ≥ 1,
∑

rj +
∑

sj +
∑

dj = g + n + 1 and

u , #{rj = 0}, v , #{sj = 0}, w , #{dj = 1},

[

Lg(y, za, wb, xn)
]

y2g−5+a+b
Qa

j=1 z
rj
j

Qb
j=1 w

sj
j

Qn
j=1 x

dj
j

=

C
∏a

j=1(2rj + 1)!!
∏b

j=1(2sj + 1)!!
·

(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 4 + a+ b)!
∏n

j=1(2dj − 1)!!
,

where the constant C is given by

C ,

a
∑

j=1

rj −
b
∑

j=1

sj +
a− b

2
+

(5 − u)u− (5 − v)v

2(2g + n+ a+ b− 3 − w)
.

Proof. When g = 0, the proof is an easy verification. Let p, q ∈ Z.

Lp,q
g (y, za, wb, xn)

=

g
∑

g′=0

∑

n=I
‘

J

(y +

a
∑

i=1

zi +
∑

i∈I

xi)
p(−y +

b
∑

i=1

wi +
∑

i∈J

xi)
q

× Fg′(y, z1, . . . , za, xI)Fg−g′(−y,w1, . . . , wb, xJ).

Exactly the same argument of Theorem 4.4 will prove that for k ≥
2g − 3 + p+ q + a+ b,

[Lp,q
g (y, za, wb, xn)]yk = 0.

Statements (ii) and (iii) can also be proved similarly as Theorem 4.5.
q.e.d.

Theorem 4.8 proves all conjectures in Section 3 of [17]. We may
write down the coefficients of Lg(y, za, wb, xn) explicitly to get a lot
of interesting identities of intersection numbers. For example, when
a = 1, b = 0,

[

Lg(y, z, xn)
]

ykzr
Qn

j=1 x
dj
j

=
∑

n=I
‘

J

k
∑

j=0

(−1)j〈τj
∏

i∈I

τdi
〉g′〈τk−jτr

∏

i∈J

τdi
〉g−g′

+ 〈τk+2τr

n
∏

j=1

τdj
〉g − (−1)k〈τk+r+1

n
∏

j=1

τdj
〉g −

n
∑

j=1

〈τrτdj+k+1

∏

i6=j

τdi
〉g.
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When a = b = 1,
[

Lg(y, z, w, xn)
]

ykzrws
Qn

j=1 x
dj
j

=
∑

n=I
‘

J

k
∑

j=0

(−1)j〈τjτs
∏

i∈I

τdi
〉g′〈τk−jτr

∏

i∈J

τdi
〉g−g′

− 〈τk+s+1τr

n
∏

j=1

τdj
〉g − (−1)k〈τk+r+1τs

n
∏

j=1

τdj
〉g.

5. Gromov-Witten invariants

We will generalize vanishing identities in previous sections to Gromov-
Witten invariants.

Let X be a smooth projective variety and Mg,n(X,β) denote the
moduli stack of stable maps of genus g and degree β ∈ H2(X,Z) with
n marked points. There are several canonical morphisms:

i) Let ev : Mg,n(X,β) → Xn be the evaluation maps at the marked
points:

ev : (f : C → X,x1, . . . , xn) 7→
(

f(x1), . . . , f(xn)
)

∈ Xn.

ii) Let π : Mg,n+1(X,β) → Mg,n(X,β) be the map of forgetting the
last marked point xn+1 and stabilizing the resulting curve.

The forgetful morphism π has n canonical sections

σi : Mg,n(X,β) → Mg,n+1(X,β),

corresponding to the n marked points. Let

ω = ωMg,n+1(V,β)/Mg,n(X,β)

be the relative dualizing sheaf and Ψi the cohomology class c1(σ
∗
i ω).

If γ1, . . . , γn ∈ H∗(X,Q), the Gromov-Witten invariants are defined
by

〈τd1(γ1) . . . τdn
(γn)〉Vg,β =

∫

[Mg,n(V,β)]virt

Ψd1
1 · · ·Ψdn

n ∪ ev∗(γ1 ⊠ · · · ⊠ γn).

Given a basis {Ta} for H∗(X,Q), we may use gab =
∫

X Ta ∪ Tb and

its inverse gab to lower and raise indices. We denote by T a = gabTb and
apply the Einstein summation convention.

The genus g Gromov-Witten potential of X is defined by

〈〈τd1(γ1) · · · τdn
(γn)τ〉〉g

=
∑

β

〈

τd1(γ1) · · · τdn
(γn) exp

(

∑

m,a

tamτm(Ta)

)〉X

g,β

qβ.
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Very readable expositions of Gromov-Witten invariants can be found in
[7, 24].

We adopt Gathmann’s convention [5] in the following which will sim-
plify the notation, namely we define

〈τ−2(pt)〉
X
0,0 = 1,

〈τm(γ1)τ−1−m(γ2)〉
X
0,0 = (−1)max(m,−1−m)

∫

X
γ1 · γ2, m ∈ Z.

All other Gromov-Witten invariants that contain a negative power of a
cotangent line are defined to be zero.

Motivated by our previous results, we conjecture the following rela-
tions for Gromov-Witten invariants, which we have checked in various
cases. We deem they are interesting constraints on Gromov-Witten
invariants.

Conjecture 5.1. Let xi, yi ∈ H∗(X) and k ≥ 2g − 3 + r + s. Then

g
∑

g′=0

∑

j∈Z

(−1)j〈〈τj(Ta)

r
∏

i=1

τpi
(xi)〉〉g′〈〈τk−j(T

a)

s
∏

i=1

τqi
(yi)〉〉g−g′ = 0.

Note that j runs over all integers.

Conjecture 5.1 is a direct generalization of Theorem 4.8(i) in the point
case. For example, when r = s = 0, Conjecture 5.1 becomes

〈〈τ2k(1)〉〉g −
∑

m,a

tam〈〈τm+2k−1(Ta)〉〉g

+
1

2

g
∑

g′=0

2k−2
∑

j=0

(−1)j〈〈τj(Ta)〉〉g′〈〈τ2k−2−j(T
a)〉〉g−g′ = 0

for k ≥ g.

Conjecture 5.2. Let k > g. Then

(4)

2k
∑

j=0

(−1)j〈〈τj(Ta)τ2k−j(T
a)〉〉Xg = 0.

We also have

(5)
1

2

2g−2
∑

j=0

(−1)j〈〈τj(Ta)τ2g−2−j(T
a)〉〉g−1 =

(2g)!

B2g
〈〈ch2g−1(E)〉〉g.

Similar vanishing conjectures 5.1 and 5.2 can also be made about
Witten’s r-spin intersection numbers [26]. Thus these vanishing identi-
ties should be regarded as some universal topological recursion relations
(TRR) valid in all genera.

Note that by the Chern character formula of Faber and Pandhari-
pande [4] and the fact chk(E) = 0, k > 2g, we have the equivalence
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Conjecture 5.1 (r = s = 0) ⇐⇒ identities (4) and (5)

Recently, X. Liu and R. Pandharipande [15] give a proof of the above
Conjectures 5.1 and 5.2. Their proof uses virtual localization to get
topological recursion relations in the tautological ring of moduli spaces
of curves, which are translated into universal equations for Gromov-
Witten invariants by the splitting axiom and cotangent line comparison
equations.

Earlier, X. Liu [14] proves the case r = s = 0 of Conjecture 5.1 and
Conjecture 5.2 (4) both for g ≤ 2 using topological recursion relations
in low genus, which is tour de force, since the number of terms in TRR
increase very rapidly with g. For example, Getzler’s TRR in g = 2
contains 15 terms.
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