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QUASI-CONFORMAL HARMONIC
DIFFEOMORPHISM AND THE UNIVERSAL

TEICHMULLER SPACE

LUEN-FAI TAM & TOM Y. H. WAN

0. Introduction

The classical theory of Teichmύller spaces uses extensively the theory
of quasi-conformal mappings. However, since the development of the
basic results of Eells and Sampson [11], Hartman [15] (see also [3]),
Schoen and Yau [27] and Sampson [25], one can now use harmonic
maps to study Teichmϋller spaces. See for example [10], [30] and [34].
Some important results in this direction were obtained by Wolf [34].
A starting point in the theory of [34] is the following. Using the fact
that the Hopf differential of a harmonic map between two Riemann
surfaces is holomorphic, it was proved [34] that the Teichmϋller space
Tg of a compact surface of genus g > 1 is homeomorphic to the space of
holomorphic quadratic differentials of a fixed compact Riemann surface
of the same genus. Then using the space of holomorphic quadratic
differentials as the coordinate chart for the Teichmuller space T^, one
can study many important properties of T^, see for example [34, 18].
Note that in the proof of the result of [34] mentioned above, the fact
that the Teichmϋller space Tg is of (6g — 6)-dimensions was used. Later
in [18], Jost gave another proof without using this fact.

The result in [34] can be put into a more general setting. In study-
ing the relations between harmonic diffeomorphisms on the hyperbolic
space HP of dimension 2 and constant mean curvature cuts in the
Minkowski 3-space, the second author [31, 32] was able to construct
a map B (see §1 for definition) from the space BQD(Ώ) of holomor-
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QUASI-CONFORMAL HARMONIC DIFFEOMORPHISM 369

phic quadratic differentials on the unit disc in M2, which are bounded
with respect to the Poincare metric, to the universal Teichmύller space
T. In order to construct such a map, the second author proved that
a harmonic diffeomorphism on HP is quasi-conformal if and only if its
Hopf differential is uniformly bounded. In [32], it was also showed that
the map B is continuous with respect to the norm on BQD(D) and the
Teichmύller metric on T. However, in order to have applications, we
have to know more about this map B. One of the basic question, of
course, is whether B is bijective. In fact, it was conjectured by Schoen
[26] that the answer should be affirmative. Another basic question is
whether B is a diffeomorphism. The injectivity part of Schoen's conjec-
ture was proved by Li and the first author in [22] but the surjectivity
part of the conjecture is still open.

In this paper, we will first prove the following results:
The map βoB: BQD(B) -> T(l) is real analytic, where Γ(l) is the

image of the Bers imbedding β.
The image of βoB is open in Γ(l) and βoB maps BQD(B) analyt-

ically and diffeomorphically onto its image.
The well-known Bers imbedding β imbeds the universal Teichmύller

space T as a bounded subset of the space of holomorphic quadratic
differentials on D* which are bounded with respect to the Poincare
metric, where D* is the exterior of D in the Riemann sphere. Therefore,
if B is surjective, then it will be a diffeomorphism onto the universal
Teichmuller space. Later, we will say more on the image of B.

Using our results and the results in [27] and [23], one can show that
the map B descends to a map from the space of holomorphic quadratic
differentials on a compact Riemann surface of genus g > 1 onto Tg.
This gives another proof of the Teichmύller theorem which states that
Tg is of finite dimension and is diffeomorphic to R6g~6. It is not hard to
see that the descended map is in fact the inverse of the map introduced
in [34]. Hence our result also gives another proof of Wolf's theorem
without assuming the fact that Tg is of (6g — 6)-dimension.

In order to prove that β o B is real analytic, first we have to study
more carefully about the Bochner formula satisfied by the d-energy
density of a harmonic map on HP. Then we apply the implicit function
theorem to conclude the result. The method of proof is similar to that
of [34]. However, since the Poincare disk is noncompact, and since
BQD(D) is of infinite dimension, the argument is much more involved.
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In order to prove that β o B is a diffeomorphism, we will compute
the differential of β o B. The differential is rather simple at the origin
and looks almost like an identity map there. However, it is relatively
more complicated elsewhere. It is rather difficult to see that the differ-
ential is surjective and has a bounded inverse. So, at a general point in
BQD(Ώ), we will estimate the norm of the tension field of the composi-
tion of two quasi-conformal harmonic diffeomorphisms in terms of their
Hopf differentials, and the norm of the difference of the Hopf differen-
tials of two quasi-conformal harmonic diffeomorphisms in terms of their
Teichmύller distance. Using these estimates, one can then prove that
the image of B is open and the differential of β o B has a bounded in-
verse. The estimates themselves are also interesting in their own right.
They may possibly be generalized to higher dimensions.

Using those estimates on the composition of two quasi-conformal
harmonic diffeomorphisms, we will study more details on the structure
of universal Teichmuller space via the map B. Until now, the major
works which have been done so far on the surjectivity of B are due to Li
and the first author [21, 22, 23]. They proved, among other things, that
if the normalized quasi-symmetric function on the ideal boundary is C1

with non-vanishing energy density, then it has a unique quasi-conformal
harmonic diffeomorphic extension to the Poincare disc. Hence, those
points in the universal Teichmuller space represented by this kind of
normalized quasi-symmetric functions are in the image of B. Akuta-
gawa proved [2] independently the same result with stronger regularity
(C4) assumption of the boundary data. The examples of harmonic dif-
feomorphisms on HP constructed in [9] turn out to be quasi-conformal.
The boundary data of some of these examples are only Holder at two
isolated points. Using these examples and the method in [23], Wang
[33] is able to obtain more quasi-conformal harmonic diffeomorphisms
whose boundary data might not be smooth at finitely many points. We
have some results in this direction. Let N be the subset of the universal
Teichmuller space consisting of those equivalent classes such that the
corresponding boundary data is a C1 diffeomorphism on dD. We will
prove that:

There is a constant δ0 > 0 such that if [μ] G AT, then [v] lies in
the image of B for all [v] such that λ([i/],[μ]) < ίOϊ where λ is the
Teichmuller metric. In particular, N is also in the image of B.

The result is not a direct consequence of the inverse function theo-



QUASI-CONFORMAL HARMONIC DIFFEOMORPHISM 371

rem. In fact, using the estimates mentioned above, one can show that
if a quasi-symmetric function / can be decomposed as fλ o /2 such that
/i has a quasi-conformal harmonic (diffeomorphic) extension to the
Poincare disc and f2 is C1 with non-vanishing energy density, then /
has a quasi-conformal harmonic (diffeomorphic) extension to Poincare
disc. This phenomenon may also be true for harmonic maps between
hyperbolic spaces in higher dimensions. We will discuss this elsewhere.

In [21, 22, 23], the boundary behaviors of proper harmonic maps
between hyperbolic spaces in any dimension have been studied. In
this paper, we will use these results and the results on quasi-conformal
mappings to study the relationship between the boundary regularity of
a quasi-conformal harmonic diffeomorphism of the Poincare disc onto
itself and the decay rate of its Hopf differential in an explicit way. In
fact, the second author first learned from R. Schoen that M. Wolf had
told him that there should be some relation between the boundary
regularity of harmonic self-map of the Poincare disc and the decays
of its Hopf differential. We will show that the norm of a holomorphic
bounded quadratic differential decays faster at infinity if and only if
it is more regular near the boundary when considered as a map from
D onto D. For example, we will also show that for a fixed a > 0, the
inverse image under B of the set in the universal Teichmύller space
which corresponds to the set of C1 > a diffeomorphisms on dD is a linear
subspace in BQD(Ό). Using those results, it is easy to see that the
set of C1 diffeomorphisms on 3D is nowhere dense in the universal
Teichmύller space with respect to the Teichmϋller metric.

The organization of this paper is as follows. We will set the notations,
and state the preliminary results in §1. In §2, we will prove that β o B
is real analytic. We will also compute the derivative of β o B and show
that β o B is a diffeomorphism near the origin. The basic estimates on
composition of two maps will be developed in §3 and will be used to
prove the main results in §4. As an application, we will give another
proof of the Teichmϋller theorem. In §5, we will study the relationship
between the boundary regularity and the decays of Hopf differential.
More applications will also be given.

The authors would like to thank Thomas K. K. Au, S.Y. Cheng, K.
S. Chou, P. Li, and R. Schoen for valuable discussions, and J.-P. Wang
for his interest in the work. The research is done while the first author
is visiting the Chinese University of Hong Kong. He would like to
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1. Preliminary Results

Let Bι be the open unit ball of the Banach space JL°°(D) of essentially
bounded measurable (complex-valued) functions on the unit disc in C
with sup-norm strictly less than one. In this paper, we will denote the
universal Teichmύller space B\/ ~ by T, where the equivalent relation
is defined as follows: Let μ, v E Bλ and /μ, /„ be the quasi-conformal
homeomorphisms on C with complex dilatations equal μ and v respec-
tively in D, conformal outside D, and fixing the points 1, i, and —1.
Then μ ~ v if and only if

/μ|βD = ΛlflDj

or equivalently

fμ |D>* — Ju | D J

where D* = {z eC\\z\ > 1}.
Let BQD(Ώ) be the vector space of holomorphic quadratic differen-

tials on the unit disc which are bounded with respect to the Poincare
metric. The space BQD{β) is a Banach space, known as Bers space,
under the norm

| |Φ| | Q Z ) = sup||Φ||,
D

for Φ = φ{z)dz2 E BQD(Ώ), where ||Φ||(s) = p-2{z)\φ(z)\ and
p2(z)\dz\2 is the Poincare metric on D. Sometimes we write ||</>||QD

and ll̂ ll instead, if there will not cause any confusion.
In [32] the second author constructed a map B from BQD(β) to T

as follows: Let Φ = φ(z)dz2 G BQD(Ώ). One solves uniquely a smooth
function w satisfying

f Δpw =

(1.1) complete on

where άs2

p is the Poincare metric on D and Δ p is the corresponding
Laplacian. Let us denote this correspondence by tυ(Φ). Then the
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mapping B : BQD(Ώ>) ->• T is given by

(1.2) B(Φ) =

which is the equivalent class in T represented by

μ = p-2φe-2»W

for Φ = φ(z)dz2 e BQD(Ό). The existence of tυ(Φ) and the fact that

11 μ I |oo < 1 is proved in [32] using constant mean curvature spacelike

surfaces in Minkowski 3-space; reproved and generalized in [29] re-

cently using only techniques in partial differential equations and quasi-

conformal maps. Let 0 < a < 1 be fixed and let Y be the Banach

space of all functions u in C^(Ώi) such that |ιx|5fαjD

 < °° Here for a

bounded domain Ω C C, and u £ CΊo'"(Ω), we define

M2,α,Ω = S U P Ω M + supxeΩdx\Vou\(x)+supxeΩd2

x\V2u\(x)

J_ α,,n j2+a\Vθ'U>{X)-VθU(y)\
i sup α x . , ,

xϊyen x'y \x-y\a

where dx is the Euclidean distance from x to 9Ω, dXiV = mm{dx,dy},

and Vo is the Euclidean gradient of Ω. We define |tx|ϊfβ |Ω and |ii|Sια,Ω

similarly. We will also need the following norm

(1-3) | « | £ P = snPdl\u(x)\ + sup

In Lemma 2.1, we will prove that tυ(Φ) is in fact in Y for Φ G BQD{β).
There is yet another important description of the universal Teichmϋl-

ler space T. Let BQD(D*) be the space of bounded holomorphic
quadratic differentials on D* with respect to the Poincare metric. Con-
sider the map S : Bλ -> BQDiJT) defined as follows: for μ E Bu

let fμ be the quasi-conformal homeomorphism as before, then S(μ) is
the Schwarzian derivative of fμ restricted to ID* which is an element
in BQD(W), see [19]. It is easy to see that S descends down to a
map β from Γ into BQD(D*). The mapping β is known as the Bers
imbedding. It is well-known that the image of β is an open set and T
is homeomorphic to its image with respect to the Teichmύller metric
on Γ. Hence we may consider the image T(l) of β to be the universal
Teichmύller space. For more details of Bers imbedding, see [5, 19].
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In this paper, we are interested in the map β o B : BQD(Ώ>) —>
Γ(l) C BQD(B*). Note that βoβ = SoPo (tυ,id), where tυ, S
are defined above, (tυ,id) : BQD(B) -» Y x BφD(B)) is defined as
(no,td)(Φ) = (tυ(Φ),Φ), and P : #Q£>(D) x 7 4 L°°(D) is defined by
P(w, Φ) = p-2φe~2w, if Φ = </>d;z2.

We also need another formulation of the universal Teichmuller space
to study effectively about the map #, namely, the space of quasi-
symmetric functions. For any μ G Bλ C L°°, by the Riemann mapping
theorem, there is a biholomorphic map g which maps fμ(β) onto D fix-
ing 1, i and —1, where fμ is the quasi-conformal map described at the
beginning of this section. Let Fμ = gofμ. Then Fμ is a quasi-conformal
map on D with complex dilatation μ. It is well-known that Fμ extends
to a self-map of D and by [6] the boundary map

hμ = Fμ\dD:dB-+dΏ)

is a quasi-symmetric self-map of dD fixing 1, i, — 1. By [6] under this
correspondence, T and the space T of normalized, (that is, fixing 1, i,
-1), quasi-symmetric self-maps of dΌ are homeomorphic with respect
to the Teichmuller metrics [19]. Note that T is a group, but not a
topological group, under composition. In particular, for μ and v in β 1 ?

[μ] o [v] is equal to the equivalent class of the complex dilatation of
FμoFv. We have

Proposition 1.1. Let h eT be a normalized quasi-symmetric self-
map of dΌ, and [μ] be the element in T corresponding to h under the
correspondence described above. Then [μ] is in the image of B if and
only if h has a normalized quasi-conformal harmonic (diffeomorphic)
extension from D to D with respect to the Poincare metric.

Proof. If h has a normalized quasi-conformal harmonic extension
u : D -> D, then it is proved in [32] that the Hopf differential Φ of u
lies in BQDip) and that β(Φ) = [μ]. Conversely, if [μ] G B(BQD(B)),
then there exist Φ = φ(z)dz2 e BQD(Ώ) such that

It is proved in [32], see also [29], that there exists a normalized quasi-
conformal harmonic diffeomorphism u from D onto D such that its
complex dilatation is given by
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Then by the uniqueness of normalized quasi-conformal self-maps of D
with given complex dilatation, we see that

U = Fp.2φe-2W(Φ)'

Hence, u\dΏ) = Λ, which completes the proof of the proposition.
By the proposition, we see that B is surjective if and only if there

exists a quasi-conformal harmonic (diίfeomorphic) extension for any
prescribed (normalized) quasi-symmetric self-maps of dΏ at the ideal
boundary of the Poincare disc. We also remark such an extension is
unique for any given quasi-symmetric boundary data on dD by [23]. In
fact, if there are two distinct normalized quasi-conformal harmonic (dif-
feomorphic) extensions for a given normalized quasi-symmetric bound-
ary value, then the Hopf differentials of these two maps are distinct but
have same image under B.

2. Analyticity of β o B

In this section, we are going to show that β o B defined in §1 is real
analytic and it maps a neighborhood of 0 in BQD(D) analytically and
diffeomorphically onto a neighborhood of 0 in BQD(D*). First of all,
we need the following generalization of the result in [32]. Recall that Y
is the Banach space of all complex-valued functions u G Cfo'"(D) such
that |u|5 ι α ί D is finite, where 0 < a < 1 is a fixed constant.

Lemma 2.1. Let Φ = φdz2 € BQD(Ώ>) and w be the unique real

solution of

\ Apw = e2w -

(2.1)

p

2e-2w

e2wds2 complete on D,
p

>JJ < 1 .

Then w E Y.

Proof. The fact that w E C°°(D) and that supp \w\ < oo are proved
in [32]. Note that Δ o = (4/(1 - \z\2)2) Δp, where Δ o is the Euclidean
Laplacian. Since supp \\φ\\ < oo, we have
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where dz is the Euclidean distance from z to 3D. So, by (4.45) in p.70
of [12] and the fact that w is bounded,

supdz\Vow\(z) < oo.
D

Then, the interpolation inequalities in [12] implies that

(2-2) M S f β | D < oo.

Also, it is not hard to prove that h(z) = (1 — \z\2)~ satisfies

(2-3) l / i g p < oo,

where the norm is defined as in (1.3). Hence by (6.11) in [12], the
functions f±(z) = 4(1 - \z\2)~2e±2w^ satisfy

(2.4) l/±β^<oo.

Let g(z) = {l-\z\2)2φ(z). Using the fact that S U P D \{l-\z\2)2φ(z)\ <
oo and that φ is holomorphic, together with the gradient estimates for
harmonic functions [12], it is easy to see that supzeΌdz\Vog\(z) < oo.
As before, we have |̂ |S,αjD < °° Therefore, combining this with (2.2),
(2.4) and using (6.11) in [12] again, we have

where the norm is defined as in (1.3). Finally, by Theorem 4.8 in [12],
we see that w G Y.

By the lemma, we see that tυ maps BQD(Ώ>) into Y. Therefore
S o P o (tυ,id) in §1 is well-defined. We note that S is analytic on
Bι C L°°(D) [13] and it is easy to see that P is real analytic. Hence,
recalling that βoβ = SoPo (tυ,id), to show that βoB is real analytic,
it is sufficient to show that tυ is real analytic. That is, we need to show
that tυ : BQD(B) -> Y has Prechet's derivatives tυ ( n ) of all orders and
that for any Φ E BQD(Ώ>) there is a δ > 0 such that

n=0 n !

It turns out much easier to see the real-analyticity of tυ by extending
it to a complex analytic map between complex Banach spaces. Let
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be the complex Banach space with complex scalar multiplication de-
fined by

r(Φ, Φ) = (rΦ, rΦ), r G C

and with norm

Let
Z = {fe C£C(D) I / complex-valued, |/ |S f β J > < oo}.

Then Z is also a complex Banach space.
Def ine F:X xY ^Zby

F(p, w) = Apw - e2w + (Φ, Φ)pe"2™ + 1,

for p = (Φ, Φ) G X, w G y, where Δ p and ( , -)p are the Laplacian and
pointwise inner product with respect to the Poincare metric respec-
tively. That is (Φ,Φ)P = ρ~4φψ, if Φ = φdz2 and Φ = ψdz2. Recall
that p2 |dz|2 is the Poincare metric on D.

Lemma 2.2. F : X xY -> Z is well-defined. That is, F{p,w) G Z
/or αnί/ p = (Φ, Φ) G X and w eY.

Proof. Since I ^ I ^ J D < °°7 ^pii; is bounded. To estimate |Δpiϋ|5 ϊttίD,
we take any x, y G D. Without lost of generality, we may assume that
dx = 1 — \x\ < 1 — \y\ = dy. Let da.̂  = min(dx,d2/). Then

| ( l - | a ; | 2 ) 2 Δ o ω ( χ ) - ( l - M 2 ) 2 Δ o « ; ( y ) |

< |(1 - |x|2)2 - (1 - |y | 2) 2 | |Δo«;(y)| + (1 - \x\2)2 \Aow(x) - Aow(y)\

< 4 (||χ| - |y|| |2 - \x\2 - \y\2\ \Aow(y)\ + d2

x>y \^w(x) - Aow(y)\)

< 16|« - y|

Using the assumption that dx <dy, i.e. dX)2/ = dx, we have

i-d
y|P y|
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Therefore

By interpolation inequalities in [12], we see that |e2™|3a)D) and \e 2w\o)0cp
are also finite. As in the proof of Lemma 2.1 and using the fact that

\f9\θ,aϊ> — l/lθ,αJ>lflflθ,α,D

for /, g E Z, one can prove that |(Φ, Φ) P |S, α ^ < °° a n d hence
| (Φ,Φ) p e- 2 υ Ί* α J D ) < oo. Therefore, F(p,w) G Z, i.e., F is well-defined.

Lemma 2.3. F : X x Y -> Z is complex analytic with derivative
given by

DF(po,wo)(p,w) = Δpw -2(e2wo + (Φo^o)Pe-2wo)w

for any (p0, Wo), (p,w) e X xY with p0 = (Φo, Φo) and p = (Φ, Φ).
Proo/. By Theorem 2.3.3 in [4], it is sufficient to show that F is

Gateaux differentiate. Let p 0 = (Φo, Φo)> p = (Φ, Φ) E X and w, w0 G
Y. Then for any r G C, by noticing that p 0 + rp = (Φo + rΦ, Φ o + rΦ),
we have

Since

+ rp, w0 + rtϋ) - F(p 0 , w0)

= τApw - e2w° (e2™ - 1) + (Φo, Φo) P e- 2 - 0 {e~2τw

+ r ((Φo, Φ) p + (Φ, Φ0)p + r(Φ, Φ)p)

, ± 2 a τ

n = l n > n=2

and

for some absolute constant C, we have

e±2τw _ i
e

r-)>0
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in Z. Similarly,

τ-X) '

in Z. From these, it is easy to see that F is Gateaux differentiable with
the desired derivative. This completes the proof of the lemma.

Lemma 2.4. Letp0 = (Φo,Φo) andw0 = tt)(Φ0) be as in Lemma 2.1.
Then there exists a neighborhood N of p 0 in X and a complex analytic
mapping w = ib(p) from N to Y with w0 = tτ>(p0) such that

Moreover, w = tυ(p) is the unique solution ofF(p,w) = 0 near (po,^o)
Proof. By Lemma 2.1, w0 G Y and F(po,wo) = 0. Lemmas 2.2 and

2.3 show that F is a complex analytic map from X x Y to Z. Moreover,
the derivative of F with respect to the variable w E Y at (po,Wo) is
given by

DFw(p0,w0)(υ) = Δpv-2 {e2w* + ||Φ0||
2e-2™0) v, Vv € y.

We claim that J9Fω(p0, two) has a bounded inverse from Z toY. Firstly,
let υ G y such that

Apv - 2 (e2™0 + HΦollV2™0) v = 0.

Since the coefficients are real-valued, v is bounded as a consequence
of v G y , and w0 is bounded by [32], we can apply the generalized
maximum principle of Cheng and Yau [8] to conclude that v = 0.
Therefore DFw(p0,w0) is one-to-one.

Next we would like to show that DFw(p0, w0) is onto. Let / G Z and
consider the linear equation

(2.5) Apv - 2 {e2wo + ||Φ0||
2e-2™0) v = f.

Since / G Z, f is bounded. Note that | |Φ 0 | | and w0 are also bounded.

Hence, one can use the method of sub- and super-solutions [32] to

find a bounded solution υ of (2.5) and a constant CΊ depending only

on po such that |U|O,D ^ Ci|/|oα> As in the proof of Lemma 2.1, by

using the fact that / G Z and the definition of | \o^ap as in (1.3), the

I igVp norms of the functions (1 - | z | 2 ) " 2 {e2wo + ||Φ0||
2e-2™0) (z) and
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(1 — \z\2)~2f (z) are bounded. Then, the interior Schauder estimate,
Theorem 6.2 in [12], implies that

for some constants C2 and C3 depending only on p 0, wθi a n d OL. There-
fore, v EY and DFw(p0,w0) is onto. The above arguments also show
that the inverse of DFw(p0, w0) is bounded. Now the conclusion of the
lemma follows immediately from the analytic implicit function theo-
rem (3.3.2) in [4].

T h e o r e m 2.5. The map βo B : BQD(Ώ) -> Γ(l) is real analytic,
where T(l) is the image of the Bers imbedding β.

Proof. We have observed that, in order to prove the theorem,
it is sufficient to prove that lυ is real analytic. Let Φo G BQD(B),
Po = (Φo>Φo) G X, and w0 = tυ(po) Then, by Lemma 2.4, there is a
neighborhood N of p 0 in X and a complex analytic map tυ : N —> Y,
such that F(p,tΐ>(p)) = 0, for p G JV, where F is the map defined in
Lemma 2.3. Moreover, w(p) is the only solution of F(p,w) = 0 near
(po,wΌ). Let Φ e BQD(Iή and w = lυ(Φ). We would like to show that
if ||Φ — Φ 0 | | Q D is small then \w — Wol^ap ι s a l s o small. It is proved in
[32] that

s u p | w - w o | -> 0 as | | Φ - ΦO||QD -> 0.
D

Letting η = w — w0, we have

e-2w°Apη = e2" - \μo\
2e-^ -

where |μ| = | |Φ||e~ 2 w ; and |μ o | = | |Φo||e~2 u ; o. Since w0 is bounded and

η -> 0 as ||Φ - ΦO||QD -> 0, (4.45) in [12] implies that

sup4|V07?|(2) -»0 as | | Φ - Φ 0 | | Q D ^ 0 .
D

and hence |τ7|S>α)D —> 0. Putting it back to the equation, as in the proof
of Lemma 2.1, we conclude that \w — Wo|2,α,p -^ 0 as ||Φ — ΦO||QD —>• 0.
Therefore, if Φ is close to Φo, then w = tυ(Φ) is close to w0 in Y. So
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(p, w) is close to (p0, WQ) in X x F . Since F(p, w) = 0 by the definition
of w, where p = (Φ,Φ), we have tυ(Φ) = tυ(p) provided Φ is close to
Φo in BQD(Ώ>). Therefore, by the definition of X, tυ is real analytic
near Φo. As Φo is an arbitrary element in BQD(Ό), the proof of the
theorem is completed.

Theorem 2.6. The differential of the analytic map βo& : BQD(Ώ>)
-» Γ(l) at 0 is given by

1
(2.6) J D ( / ? O B ) ( 0 ) ( Φ ) = --z-Aψ(z-ι)dz2 e BQD(W),

where Φ = ψ(z)dz2 e BQD{β). Therefore, β o B is an analytic diffeo-

morphism in a neighborhood o/OG BQD(Ό). In particular, there exists

a unique quasi-conformal harmonic (diffeomorphic) extension with re-

spect to the Poincare metric of any quasi-symmetric boundary data at

the ideal boundary of H2 provided its dilatation is small enough.

Proof. Let us denote μ(Φ) = P(tυ(Φ), Φ) G Bx. Then βo B = So μ

as we have seen in §1. We also note that B(Φ) = [μ(Φ)] Now for

Φ = φ{z)dz2 and Φ - ψ{z)dz2 in BQD(B),

Taking Φ = 0, we have tυ(0) Ξ O and

By the variational formula of S in [1], see also [5], we have

D{βoB){0)(V)(z)dz2= 1-^

Therefore,

r 7 ϊ~9 T
Vz ED.

Then using the reproducing formula [5], see also [16], we conclude that

-2z~AD{β o BXOXΦX*-1) = φ(z) V ^ G D ,

which is equivalent to (2.6).
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It is easy to see from (2.6) that D(β o B)(0) is an isomorphism.
Therefore, by the inverse function theorem, β o B is an analytic diffeo-
morphism in a neighborhood of 0 G BQD(Ό). By the definition of the
map, we see that if / is a normalized quasi-symmetric function on the
ideal boundary of HP with small dilatation, then / can be extended
to a quasi-conformal harmonic diffeomorphism. This map is not only
unique in a neighborhood of the class of the identity map in the uni-
versal Teichmύller space, but it is also globally unique by the result of
Li-Tam [23]. This completes the proof of the theorem.

Remark 2.1. Similar to the proof of the theorem, one can use the
formula for the variation of the Bers embedding at an arbitrary point
[16] to find D(βoB) (Φ) for arbitrary Φ E BQD(Ώ>). In fact, for any
variation Φ E BQD(B), we have

L πJΌ (/μ(C)-/μW) J

where tυ(Φ) as in §1, μ = μ(Φ) = p~2φe~2tΌ^φ\ fμ is the quasi-conformal
homeomorphism on C corresponding to μ defined in §1 ,

and Dtυ(Φ)(Φ) is the unique bounded solution of

Apυ = 2 (e2m(φ) + | |Φ| | 2 e- 2 m ( φ ) ) υ - 2Re(Φ, Φ)pe-2l0<φ).

We will see later that D (β o B)φ is bijective for any Φ G BQD(D) and
hence βoβ is an analytic diffeomorphism from BQD(B) onto it image.

3. Estimates on Composition of Two Maps

In this section, we will give some estimates on the composition of
two maps on HP which will be used later. Let it; be a quasi-conformal
harmonic diffeomorphism from HP onto itself. Then its Hopf differential
Φ = φάz2 is holomorphic and | |Φ| |QD is finite by the work of [32]. We
begin with the following lemma:

Lemma 3.1. Let w be a quasi-conformal harmonic diffeomorphism
onΈti?. Let Φ = φάz2 be the Hopf differential of w. Then

|V (log Hau ll) I <
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for some absolute constant C\, where V is the gradient in HP and \\dw\\
is the d-energy density of w.

Proof. Let ψ = log||diu|| and a = | |Φ||QΓ>. We use the upper
half space model for HP and write z = x + iy in the domain, u + iv
in the target, with y > 0 and υ > 0. Since w is a quasi-conformal
diffeomorphism, \\dw\\ > 0 everywhere and hence φ is well-defined and
smooth in HP. By [32]

(3.1)

Using the fact that w is quasi-conformal and that Φ is the Hopf differ-
ential of tϋ, we have

(3.2) supe-^ll^ll < 1.
D

The Bochner formula in [27], see also [25], implies that

where Δ o is the Euclidean Laplacian. Hence, by (3.1) and (3.2), we

have

(3.3) y2 |ΔoVΊ < a.

Let z0 = XQ + iyo G HP. Applying the estimate in p.70 in [12] to

D\ = DZQ(\y0) and D2 — DZo(^yo), where DZo(r) is the Euclidean disc

of radius r with center z0, and using (3.3), we see that there is an

absolute constant C2 such that

D2

Combining this with (3.1) and using the fact that log(l + t) < t for

t > 0, the lemma follows. Recall that, given a C2 map w from the

hyperbolic plane into itself, and if we use the upper half space models,

then the norm of the tension field of w is given by

\\τ(w)\\(z) = -j-

where z = x + iy and w = f + ig.

%
+ -wzx

9
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Lemma 3.2. Let h and w be quasi-conformal harmonic diffeomor-

phisms on H 2 . Then the norm of the tension field \\τ(h o w)\\ of the

composition map how satisfies

for some absolute constant C 3 ; where Φ = φdz2 and Φ = φdw2 are the
Hopf differentials of w and h respectively.

Proof. We use again the upper half space model for H 2 . Let
z = x + iy, w = u + iv, and h — f + ig. The norm of the tension field
of h o w at a point z = x + iy is given by

(3.4) | |τ(Λou;)| | = — \A\,

where

A = (h o w)zz + -(h o w)z(h o w)z.
9

Since

(h o w)z = hwwz + h^wz,

(h o w)~ = hwwz 4- hyjWz^

and

(/ι o w)z_ = hwwwzwzΛ-hw^wzwz+hwwzzΛ-h^wwzwzΛ-hiύyjW

we have

A = (/ι o u;)2_ + - ( / ι o w)2 (h o w)_

(3.5) = (ho w)z- + - (hwwz + hwwz) (hwwz + hwwz)

= hwwwzwz + hwiύwzwz + hwwzz

i ""ww'Wz'Wz ~r Γl"ww'UJzWz ~r i^w^zz

+ - (h^WzWz + hwhyj (wzwz + wzwz) + h^WzWz) .
9

As w and h are harmonic,

(3.6) wzz + -wzwz — 0,
v
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(3.7) hwiύ + -hyjhyj = 0.

9

By (3.5)-(3.7), we have

A = hw I wzz + -hwwzwz) +hiL [ wzz + -hϋjWzWz J
V 9 ) \ 9 /

(3.8) + hwwwzwz + hΰwWzWz

= wzwz ihww + ihw ί h — ^ J J

4- WZWZ [ hyjyj + ihyj [ ~ ^ ~ ) J .

V \v g J J
Since \\dh\\ > 0 everywhere, direct computations show that

(3.9) hww + ihw (-- + ^λ=hw (log \\dh\\2)w .

Similarly, at the points where \\dh\\ > 0, we have

(3.10) ΛM + ih* ί- + ^λ= h* (log \\dhf) .

Using the fact that φ = g~2hwhw is holomorphic, we have, at those

points where \\dh\\ > 0,

(log \\dh\\2 + log \\dh\\2) _ = h* (log ll^ll2

Combining this with (3.10), we then have

h» + iK [I + ~ ) = K ί f + ±ψ- - (log

(3.H)
\Φ)
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at those points where \\dh\\ > 0. Since hw is never 0, φ and hence dh
is either identically zero or having isolated zeros. Therefore, it is easy
to see that (3.11) is true at all points. Since φ is holomorphic, gradient
estimate for harmonic functions implies that

\voΦ\\w) ^ — S UP \Φ\

(3-12) < % | Φ | | Q D ,

at a point w = u + iυ, where Vo is the Euclidean gradient and C4, C5

are absolute constants. By the results in [32],

(3.13) 1 < \\dh\\2 <

Combining (3.4), (3.8), (3.9), (3.11), (3.12), (3.13), Lemma 3.1, and
the fact that φ = v~2wzw2, we have

||r(Λou;)||

92(φ)
+ wzw-z I ^ ^ + - φ ^ - Λβ

y2φ --K-V (log \\dh\\2)w + y2φ Ui -hw + ^ ^

I

for some absolute constant C. This completes the proof of the lemma.
Remark 3.1. In Lemma 3.1, we may relax the condition that w

is quasi-conformal. If we assume that w has bounded energy density,
then the gradient of log \\dw\\ is still bounded by a constant depending
on the upper bound of the energy density provided \\dw\\ > C > 0 for
some constant C. Also the estimate is local in nature. Similarly, in
Lemma 3.2, | |Φ| |QD can be replaced by a constant depending only on
the lower and upper bounds of the energy density of Λ, as long as the
lower bound is large than 0. The esitmate is also local.
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Lemma 3.3. Let h and w be two quasi-conformal harmonic diffeo-
morphism on HP. Let Φ and Φ be the Hopf differentials of w and h
respectively. Then, in the upper space model for HP with z = x + iy,
w — u + iVj and h = / + ig, we have, at any point z E HP,

Proof. Using the fact that ||dιo|| > ||du;|| and the result in [32] that

(3.14) 1 <

and

(3.15) 1 <

at the point z

< < 1 +

V2

 (ί - ..Λ fτrτ-n\ V2

(g o w)'
how) ~wzwz

/ z V2

— (wzwz (hwhw + hwhw) + hwhw(wz)
2

wzw2
V2

y2wwzwz fv2 γ

v2 \g2

2 \ 2

(3.16) Λ-^KK - 1) + V— (hwhw(w2)
2 + hj

92 ) 9
< \\Φ\\(z) (\\dh\\2(w(z)) + \\dh\\2(w(z)) -
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W

If | | Φ | | Q J D < 1 , thenby (3.14)

and

If | | Φ | | Q Z ) > 1 , then by (3.14)

Hence

Combining these with (3.16) and (3.15), the lemma follows.
In the following lemma, we still use the upper space model for HP in

the domian and the target. We write z = x + iy in the domain, and a
map from HP into itself is given by w with Im(w) > 0.

L e m m a 3.4. Let w — u + iv and w = ύ + iϋ be two quasi-confomal
diffeomorphisms of HP. Suppose w is harmonic and w has uniformly
bounded energy density. Let a = supjp | |τ(ώ)| | < oo; where | |τ(ώ) | | is
the norm of the tension field of w. Suppose \w — w\ < 6min{ίi, v}
for some constant 0 < b < 1, where \w — w\ is the Euclidean distance
between w and w. Then

sup < a + Cφ,

for some constant C 5 depending only on the upper bounds of the energy

density of w and w, where Vo is the Euclidean gradient.

Proof. Let k = supz G H P | | V o ώ — ̂ Vow|. By [32], w has uniformly

bounded energy density. Therefore, together with the assumption on

ώ, we see that k is finite.

Let m = supjp {e(w) + e(w)). Note that \w — w\ < 6min{{;, v},

which implies that 11 — 11 < 6, we have

v v

(3.17)

< - |V o ώ|
V

<cβb,
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for some constant C6 depending only on m. Since w is a harmonic map,

2

— Δou;
v

y2 ~ ~ y2

—wzwz - —wzwz

V2 V2
V2

< a + * \wzv
-w- - -x
v z v

»- • \w,\
V

y ~ y
--wz

V

for some absolute constant Cγ and some constant C8 depending only
on m. Hence, using \w — w\ < bmin{v, v} and the harmonicity of w
again, we have

— (Δoώ -
V

^Δow - —Δow
V V

<C8(a

If---)
(v Λ y2

- - 1 -^wzwz\υ J v2

Δow

for some constant C9 depending only on m. Therefore, (3.17) and the
assumption that \w — w\ < 6min{ί, υ} for some b < 1 imply that

|Δ 0 (y2(w - w))\ = \y2Δ0(w -w) + 2(V0(y2), V0(ώ - w))
+{w-w)A0{y2)\

< C9(a + b + k)v + 4(k + C6b)v + 2bv

for some constant C10 depending only on m. Using (3.17) again and
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the fact that w is harmonic, we have

Δn r-(w-

±A0 (y2(w - w)) + 2(V o φ, Vo (y2(w - w)))

(y2(w-w))A0(-)

v

— w)
-2—-(Vov,Voy)

JL(vot,,Vo(ii;-«;)>

for some constant Cn depending only on m. Now for any 2:0 = ̂ 0 +

iy0 E HP, let A = DZo(\yo) and JD2 = Z?2 o(|yo), where £>Zo(r) is the

Euclidean disc of radius r with center z0. By [12 (p.70, (3.18))] and

the assumption that \w — w\ < 6min{ί), v}, for a fixed 0 < a < 1,

\y Γ (
— (w -w)\ < C12 sup V

where C i 2 depends only on a and CΊ3 depends only on a and ra. There-

fore, the interpolation inequality Lemma 6.32 in [12] implies that, for

any e > 0,

(z)\

< Cub(y0)
2 k){yo)\

where dz is the Euclidean distance from z to 3Dλ and C14 is a constant
depending only on a and e. Evaluate at z0, we have
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at every point z = x + iy E HP, where C15 depends only on a and e
and C 1 6 depends only on m and a. Hence, by \w — w\ < bmin{ϋ, υ}
again, we have

for some constant C\Ί depending only on m, a and e. Combine this
with (3.17), we have

(3.19)

for some constant CΊ8 depending only on m, α, and e. Taking supre-
mum over HP, we have

Fix α, say a = | , then one can choose e small enough so that C i 6 e = | .
Noticing that CΊ6 depends only on m and α, the lemma follows.

4. Local Diffeomorphic Property of β o β

In this section, we will prove that β o B has an open image and is
an analytic diffeomorphism onto its image. Note that by the result of
[23], B is injective. It is well-known that β is also injective, therefore
β o B is injective. We will continue to use the upper half-plane model
for the Hyperbolic 2-space HP in order to simplify calculations.

Theorem 4.1. The image of β o B is open in T(l) and β o B maps
BQD(Ό) analytically and diffeomorphically onto its image.

Proof. First, let us prove that the image of β o B is open. Let
Φo be an element in the image of β o B and Φo E BQD{β) such that
(β o B) (Φo) = Φo Let w0 be the quasi-conformal harmonic diffeomor-
phism of HP fixing 0, 1, and oo, such that its Hopf differential is Φo

The existence and uniqueness of w0 is proved in [32]. Let μ0 be the
complex dilatation of w0, then [μ0] = B(Φ0) and β([μo\) = Φo By
[19], there exists δ0 > 0 and a constant Co > 0 depending only on Φ 0 )

such that if ||Φ — ΦO||QD <! ô> then Φ lies in the image of β\ and if
β{[μ}) = Φ, then

(4.1) , [μ0]) < C 0 | |Φ - Φ 0 | | Q D ,
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where [u] G T is the equivalent class represented by v G Bx and λ is

the Teichmύller metric. Since B(0) = 0 and β(0) = 0, by Theorem 2.6

and (4.1) applying to the case that Φo = 0, there are constants δ > 0

and Cι > 0, such that if λ([ι/],0) < 5, then there exists a unique

Φ G BQD(Ό) such that B(Φ) = [u] and

(4.2) CΓΊIΦIIQ^ < λ(M,0) < CiHΦH^.

Now given Φo in the image of β o B and Φo G BQD(Ό) such that

(β o B)(Φ0) — Φo We may choose δ0 in (4.1) small enough, such that

Co^o < δ. Hence, by (4.1), if ||Φ — Φ o | | < δOi then there exists a unique

[μ] G T such that β([μ\) = Φ, and

(4.3)

Fix a Φ which satisfies (4.3) and let μ G Bλ such that β([μ]) = Φ. We

would like to show that [μ] can be represented by a complex dilatation

of a quasi-conformal harmonic diίfeomorphism. Let us denote by [μ] o

[μo]"1 the class in T represented by fμ\dw o / μ o | ^ 2 , where fμ and fμo

are the quasi-conformal homeomorphisms defined in §1 corresponding

to μ and μ0 respectively. Then, λ([μ] o [μo]" 1^) = λ([μ],[μo]) < δ.

Therefore, by (4.3) and the choice of 5, there exists a unique Φi G

BQD(Ώ>) such that β(Φ x) = [μ] o [μo]"1. By (4.2) and (4.3) again, we

have

||Φi||<3Z><Ci λ ( [ μ ] c φ o ] - \ 0 )

= C1-λ([μ],[μo})

(4.4) ^ C O C J I I Φ - Φ

Using the definition of β, we can find a unique quasi-conformal har-

monic diffeomorphism h on HP fixing 0, 1, oo, such that its Hopf dif-

ferential is Φχ Let μh be the complex dilatation of h. Then the fact
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that 1 < ||dfc|| (see [32]), and (4.4), we have

I M h | \\dh\\

_ HΦill
\\dh\\*

(4-5) < I |

< COCISQ.

If we choose δ0 even smaller, we have ||/^||oo < | . Note that the choice
of δ0 depends only on Φ o , Φo, Co, CΊ, and δ. Since w0 is a quasi-
conformal diffeomorphism, we have

(4.6) ||μΛou,olloo<c,

for some 1 > e > 0, depending only on the complex dilatation of WQ

which in turns depending only on Φo by the result of [32], where μhoWQ

is the complex dilatation of h o w0. Using again the result of [32],

and

2

Let e(h o w0) be the energy density of the map ho w0. Then, together

with (4.4) and (4.6), there is a constant C2 > 0 depending only on Φo,

Co, Ci, and δ0, such that

(4.7) C"1 <e(hoWo) <C 2 ,

provided that | |Φ - Φ 0 | | Q D < <V
We claim that there exists a quasi-conformal harmonic diffeomor-

phism with the same boundary data as h o w0. In fact, let q be a
fixed point in target H2 and Bq(R) be the geodesic ball of radius R
centered at q. Let Ω,R = (ho wo)~ι (BP(R)). Then {ΩR} is a compact
exhaustion of H2 with smooth boundary. For each i?, by [14], there is
a harmonic map wR on ΩΛ, such that wR = h o w0 on dΩR. Let dR(z)
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be the hyperbolic distance between wR(z) and how0(z), then using the

computations in [22], (4.6) and (4.7), we have

(4.8)ΔdΛ > -||r(Λ o .0)11 + 2C? (l + g ± £ ) " ^ j j ^ Λ

in BP(R) in the sense of distribution, where \\τ(h o wo)\\ is the norm of

the tension field of how0. By Lemma 3.2 and (4.4),

lk(Λ o
(4.9) < C 4 | | Φ - Φ 0 | | Q Z > ,

where C3 is an absolute constant and C4 is a constant depending only

on Φo, Co, Cι and £0 Hence there exists 0 < 6χ < δ0, depending only

on Φo, Co, Ci, and J O J such that if ||Φ — ΦOIIQD ^ ^i5 then

By (4.8), (4.9) and the maximum principle, if we let d*R = supΩR dR,

we have
cosh dR — l l

smhd*R ~ 2

In particular,

(4.10) d*R < C 5 ,

for some absolute constant C5, for all R. We also have

(4.11) < £ < C β | | Φ -

for some constant C6 depending only on Φo, Co, Cλ and ί0? provided
IIΦ — ΦO||QD ^ 1̂? where we have used the fact that
t < C(cosht — l)/sinhί for some absolute constant C, for 0 < t < C5.
Let x e H2, R > 0 large enough so that Bx(ΐ) C ΩR, for all y e Bx(l),

dw {wR(x),wR(y)) < dfp (wR(x), (h o wo)(x))

+dw ((h o wo){x), (h o wo)(y))

+dm (wR(y),(how0)(y))

< 2C5
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where we have used (4.7) and (4.10). Using the energy density estimate
of Cheng [7], there exists a constant C7 depending only on Φo, Co, CΊ,
and 5Oj such that

(4.12) e(wR)(x) < C7

provided Bx(l) C ftR. Arguing as in [22] and [23], after passing to a

subsequence, wR converges uniformly on compact subsets to a proper

harmonic map w of HP. By (4.10), it is easy to see that sup^p dm(w, h o

Wo) < Cδ Hence w is continuous as a map from D to D. Since w\dΌ =

h o wo|dD which is a homeomorphisms, w is globally one-to-one by the

degree theory of maps and the fact that J(w) > 0 everywhere. By

(4.12), the energy density of w is uniformly bounded. In particular, w

is quasi-conformal by the results in [32], which completes the proof of

the claim. Note that, by (4.11), we have

(4.13) <Γ = supdw(w,how0) < C 6 | |Φ - Φ 0 | | Q D
HP

To conclude the first half of the theorem, let Φ be the Hopf differ-

ential of w, then Φ G BQD(D) as w has uniformly bounded energy

density. Since w and h o w0 have the same boundary data, the complex

dilatation of w is equivalent to that of how0. Moreover, the complex di-

latation of h is in [μ] o [μo]"1 and the complex dilatation of w0 is in [μo]5

therefore, by the definition of #, we have B(Φ) = ([μ] o [μo]"1) o [μ0]

which is [μ]. Since β([μ\) = Φ, β o B(Φ) = Φ. So Φ is in the image of

β o B provided ||Φ — ΦOIIQD < <&i This proves that the image ofβoβ

is open.

To prove the second half of the theorem, we observe that, by Theo-

rem 2.5, β o B is real analytic. So, in order to prove that β o B is an

analytic diffeomorphism onto its image, it is sufficient to prove that the

differential D (β o B) is bijective at every point of BQD(D) and apply

the inverse function theorem. Let Φ o , Φo as before and | |Φ - Φ o | | < ί i ,

where δι is the constant in the above proof. Then by the above, there

exists Φ G BQD(Ώ>) such that (β o B)(Φ) = Φ. Let w and h be the

harmonic maps described above in the construction of Φ. We would

like to show that there exist constants Cg > 0 and 0 < δ2 < 5i, such

that if | |Φ - ΦO||QD < <S2, then

(4.14) | | Φ -
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Using the above notations and the upper space model for H 2 , we write
w0 = u0 + iυ0, w = u + iv and h o w0 = u + iv. By comparing the
Euclidean distance and the hyperbolic distance, we see that

\h o w0 — w\ < d* max{ί, v}.

where d* = sup^p d^ (w,h o wo) By (4.13), if we choose 0 < δ2 < δλ

small enough, then for | |Φ — ΦOIIQD < δ2, we have d* < | . Hence we
have max{{i,v} < 2min{ίi,v}. By (4.13) again, we have

(4.15) \h o w0 - w\ < {;, υ},

provided ||Φ — ΦO||QD < #2, where C9 is a constant depending only on
Φo, Co, Ci and δ0. We may assume that Cgδ2 < 1. By Lemma 3.3
and (4.4), there is a constant Ci 0 depending only on Φo, Co, Cλ and δ0,
such that

(4.16)
2

wo) - ^

On the other hand, by Lemma 3.4 and (4.15), we have

| j (h ° wo)z
- |jj (w)z (w)

(%ihow) yw\\
\v z υ )\ + -y-Wz

v

where a = sup^p \\r(h o wo)\\, b = C 9 | |Φ — ΦO||QL>> and Cn depends
only on the upper bounds of the energy densities of h o wQ and w. The
quantity a can be estimated by (4.9), and the energy density of h is
bounded by a constant depending only on Co, CΊ and δ0 by (4.4) and
the results in [32]. The energy density of w0 is bounded by a constant
depending only on Φo by the result of [32] and the energy density of w
is bounded by C7 which is the constant in (4.12). Hence we can find a
constant Cί2 depending only on Φo, Co, C\ and Jo, such that

(4.17)
2

{howo)z - ̂  M* <σ 1 2 | |Φ-Φ 0 |U,
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provided that | |Φ - Φ 0 | | Q D < δ2. By (4.16), (4.17) and the definition
of Hopf differential of a harmonic map, we have

for some constant C independent of Φ, provided | |Φ — ΦOIIQD < #2-
This completes the proof of (4.14). In particular, we have proved that
β o B maps homeomorphically onto its image which is open, by noting
that β o B is one-to-one.

Finally, the fact that the differential D(βoB)(Φ0) is bijective follows
from the following lemma, Lemma 4.2, (4.14), and the fact that βoB
is a real analytic homeomorphism from BQD(Ώ) onto its image which
is open in BQD(W).

L e m m a 4.2. Let 95i and 252 be two Banach spaces with norms
|| ||i and || | |2 respectively. Let U C 051 and V C 052 be open and
T : U ->V be a C1 map which is also a homeomorphism from U onto
V. Let x £ U. Suppose there are constants r > 0 and C > 0 such that
\W — %\\ι < r implies

(4.18) llx'-xll^CIITi^-T^lla.

Then DTX is a bisection.

Proof. Since T is differentiate, for any v G 95i, such that | | Ϊ ; | | I = 1,

we have

\\T{x + tυ) - T(x) - DTx(tv)\\2 = o(

as t —> 0. By (4.18), we conclude that

\\DTx(tv)\\2 > i | ,

for \t\ small enough, which implies, for all υ G

(4.19) *t;)||a > .

Prom this, it is easy to see that DTX is one-to-one (and has bounded

inverse from its image).

To prove that DTX is onto, let y = T(x), and let w G 052 with

||u;||2 = 1. Since V is open and T~ι exists and continuous, we have, if

|t | is small, then T~ι(y + tw) is well defined, and if
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then ||υ(ί)||i < r, for |ί| small. Since T'^y) = x, by (4.18)

Hί)lli<C||i/ + ίti;-i/||2

= C\t\.

Therefore, if \t\ is small, then

= y + DTx{v{t))+o{\t\),

as \t\ -> 0, i.e.,

(4.20) w

as t -> 0. Hence, together with (4.19)

as ti and t2 -> 0. That is, ^ is a Cauchy sequence in 93i- Since 55i is

complete, there exists v E 5Bi such that

hm —— = v.
t

Letting t -> 0 in (4.20) and using the fact that DTX is continuous, we
have DTx(υ) = iy. Since w is arbitrary, we see that DTX is a bijection.
This completes the proof of the lemma.

As an application of the theorem, we give another proof of the Te-
ichmϋller theorem for compact surfaces with genus greater than 1. Let
S be a smooth compact oriented surface without boundary of genus
g > 1. We pick a particular metric dθ2 of constant curvature —1. Let
G be the fundamental group of (S,ds2) such that HP/G = (S,ds 2).
Then the Teichmύller space of genus g can be identified with T(G)
which consists of [μ] 6 T such that there is a representative μ in the
class [μ] satisfying
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in D for all 7 G G. Note that the smooth structure of Tg can be
identified with the smooth structure of the image of T(G) under the
Bers imbedding. Let BQDG(Ό) be the space of bounded quadratic
differentials Φ = φdz2 such that φ(z) == φ(j(z)) (^'(z))2 inD for all 7 G
G. Then, BQDG{O) can be identified with the space of holomorphic
quadratic differentials of (5, as2). By the Riemann-Roch theorem, it
is isomorphic to C3*"3. It is proved in [31] that B(Φ) G T(G) if Φ G
BQDG{O). On the other hand, every [μ] G T(G) has a representative
μ and a Riemann surface S' such that μ is the complex dilatation of
the lifting of a quasi-conformal map h : S -> S". Equipping S" with a
conformal metric of constant curvature —1 and using the result of [27],
we can deform ft to a quasi-conformal harmonic diffeomorphism. Let
w be the lifting to H2 —> HP of such a harmonic diffeomorphism and let
Φ be the Hopf differential of u>, then it is easy to see that B(Φ) — [μ\.
Hence B maps BQDG{&) onto T(G). By Theorem 4.1, we have given
another proof of

Theorem 4.3. [Teichmϋller Theorem] Let Tg be the Teichmύller
space of genus g > 1. Then Tg is analytically diffeomorphic to R69~6.
In particular, Tg is finite dimensional.

Note that B when restricted to BQDG(Ό) is the inverse of the map
considered by Wolf [34], where he proved that this restriction is a home-
omorphism under the assumption that Tg is of (6g — 6)-dimensions.
Later, Jost [18] was able to prove this without using the fact that di-
mension of Tg is finite.

We will give more applications in the next section.

5. Decay of Hopf Differentials and Boundary Regularity

In this section, we will discuss the relationship between the decay
of the Hopf differential at the ideal boundary of the hyperbolic disc
and the boundary regularity of the quasi-conformal harmonic diffeo-
morphism regarded as a map from D onto D. We will also give more
applications to Theorem 4.1. First, let us introduce some subspaces of
BQD(Ό). For a G (0,2], we denote

BQDa(Ό) = j φ = φ{z)dz2 G BQD{B) \ sup (p(z))~2+a \φ\(z) < 00} ,

which is a (not closed) subspace of BQD(Ό), where p[z) = μ L .
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Note that if Φ E BQDa(Ό), then ||Φ||(z) -> 0 as z -> SB. In fact, if
we denote

BQD0(Ώ>) = | φ = φ(z)dz2 E BQD(B) \ }i

then we have

Propos i t ion 5.1. BQDa(Ώ) = BQD0(D) for all a E (0,2], where
the closure is taken with respect to the norm in BQD(Ώ).

Proof. It is easy to see that BQD0(β) is closed and contains
BQDa(B) for all α E (0,2]. Let Φ = φdz2 E BQD0(Ώ>). For all
0 < R < 1, let Φ Λ = ΦR(IZ2, where ^ ( 2 ) = φ(Rz). It is obvious
that ΦR E JBQJD

α(D) for any 0 < a < 2. We want to show that
| | Φ Λ - ®\\QD -> 0 as R -> 1. Since Φ E 5QZ>0(10), for any e > 0,
there exists 1 > RQ > 0 such that if \z\ > iϊo, then /p~2(;z)|</>(;z)| < e.
Therefore, if \z\ > (1 + i2o)/2, and if 1 > β > (2Λo)/(l + i?o), then
p~2(Rz)\φ(Rz)\ < e, which implies that p~2(z)\φ(Rz)\ < e. It is also
easy to see that | |ΦΛ(Z) — Φ(^)|| —> 0 uniformly on \z\ < (1 + Ro)/2 as
R —> 1. So, if 1 > i? > 0 is large enough,

D

< sup p-1(\φ(Rz)\ + \φ(z)\)+ sup
\z\>Ri \z\<Ri

< 3 e

where i2i = (2i2o)/(l + Ro). Hence | | Φ Λ - Φ\\QD -> 0 as R -> 1. This
completes the proof of the proposition.

We need the following simple lemma.
L e m m a 5.2. Let f be a smooth function defined on a bounded

domain Ω with smooth boundary. If f satisfies the following decay at
diϊ:

\f\ = O(d°), and

for a E (0,1]. Then f E C 0 '"(Ω).

Proof. Choose a finite open covering of dΩ. Then for each open
neighborhood in the covering, we can straighten the part of dΩ which
lies in the neighborhood by a smooth diffeomorphism. So it is sufficient
to show the lemma near a boundary portion of the upper half-plane. Let
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dx be the distance from x to the boundary of dΩ and dx^y = min(dx,dy).
We may assume that dx,y — dx. If \x — y\ < dx, we have, for some θ on
the line segment joining x and y and a constant C > 0,

<Cdβ1+a\x-y\

<Cd-1+a\x-y\

<C\x-y\-1+a\x-y\

= C\x-y\a.

If \x — y\ > dx, then dy < dx + \x — y\ < 2\x — y\. Hence

< c (da

x + dζ

<2Cda

y

<2C2a\x-y\a

Therefore, we have / G C0 > α(Ω). This completes the proof of the
lemma.

As before, for any Φ G BQD(Ώ>), we denote by ro(Φ) the solution of
(1.1). Then we have the following

Lemma 5.3. Suppose that Φ = φdz2 € BQDa{B). Then μ =
p-2φe-

2m{φ) satisfies

Proof. Let w = tυ(Φ). Prom Lemma 2.1, we know that IH^αjD < °°
In particular, using the fact that p(z) ~ d j 1 , we have

(5.1) |Vo«;| = O(p),

\V2w\ =
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Similarly, by the gradient estimates for harmonic functions and the fact

that φ is holomorphic, we have

s\φDp'3+a\φF\<oo,

where φ' — φz and φ" = φzz. By (5.1) and the assumption on φ, we

have |μ| = O(p~a). Direct computations show that

μz = -μ (2wz + zp),

μz = - μ (2wΓ + zp) + p~2We~2w,

μzz= μ( -z2p2 + 4zpwz + 4w2

z - 2wzz ) ,

μ»z = ~μ [(2wz + zp) (2wz + zp)+p+ \z\2p2 + 2wzz]
+p-2φ'e~2w (2wz 4- zp),

and

μ zz = -μ (4tί;| + 2zpwτz
2p2 -2™^ + p-2~ψe~2w {2wz + zp)

+p-iψe-
2w.

Therefore, by (5.1), (5.2), the fact that \μ\(z) = O(d^), and that p(z) ~

d"1, we have the desired results.

Using Lemma 5.2, we conclude the following

Lemma 5.4. Let μ = p-2φe~2^φ\ where Φ = φdz2 E BQDa(B)

with a G (0,2]. Then the function

„ ί μ , zeΌ
μ~ | 0 , z(£Ό

is in C°'«(C) ifae (0,1] and is in Cλ>β{C) if a = 1 + β G (1,2].
Proof. This is a direct consequence of Lemmas 5.3 and 5.2 and the

observation that for a = 1 + β G (1,2], μ G Cλ(Ώ) which is also a easy
consequence of Lemma 5.3.

Now we can prove the following boundary regularity of quasi-confor-
mal harmonic diffeomorphisms.

Theorem 5.5. Let u : H2 -> HP be a quasi-conformal harmonic dif-
feomorphism fixing 1, i, —1 in the Poincarέ disc model for HP. Suppose
that the Hopf differential Φ of u is in BQDa(Ό) for some a G (0,2],
then
1. ueC^β) ifae (0,1),
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2. u G C^fβ) for all 7 < 1 if a = 1,

3. ueCP'Pfβ) ifa= 1 + β 6(1,2), and

4. ue C2'7(D) for oZZ 7 < 1 </ α = 2.
Moreover, u has non-vanishing energy density when restricted on 3D.

Proof. Let μ = p~2φe~2tΌ^, where φ is the coefficient of Φ. Then by
Lemma 5.4, the function μ (defined as in the Lemma 5.4.) is in C°'a(C)
if a G (0,1] and is in Cliβ(C) if a = 1+β e (1,2]. Then regularity
theory of quasi-conformal maps, see [20], [19], and [28], implies that the
quasi-conformal homeomorphism / μ , constructed as in §1, from C onto
itself is in C^a(C) if α G (0,1] and is in C2^(C) if a = 1 + β G (1,2].
Moreover, J(fμ) > 0 for all z E C, where J(fμ) is the Jacobian of fμ.
In particular, fμ(dD) is a Jordan curve of class C1 > α if α G (0,1] and
of class C2)/3 if a = 1 + β G (1,2]. Let ft : /μ(D) -> D be the Riemann
map normalized so that Ίl o fμ fixes 1, i, and —1. Then u and TZo fμ

are equal, since they have the same complex dilatation μ and fixing 1,
i, and —1. The Kellogg-Warschawski theorem (Theorem 3.6 in [24])
implies that Ίl~ι is

1. in C^OD) i fαG (0,1),

2. in C^(D) for all 7 < 1 if a = 1

3. in C ^ D ) if a = 1 + β G (1,2), and

4. in C2'7(D) for all 7 < l_if α = 2.

Moreover, T^"1 extends to D with non-vanishing derivative up to dD.

Therefore, we conclude that 7£, by expressing the derivatives of Έ, in

terms of derivatives of T^"1, and hence u is

1. i n ^ ' ^ D ) i fαG (0,1),

2. in Cλ"(β) for all 7 < 1 if a = 1

3. in C2^(D) if α = 1 + β G (1,2), and

4. in C2'7(D) for all 7 < 1 if a = 2;
and has non-vanishing energy density up to 3D. This completes the
proof of the theorem.

Examining the proof of the above theorem, one expects that the
Schwarzian derivative of g = fμ\jy will have the "same" decay as Φ. In
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order to state it clearly, we denote

BQDa(W) = {φ = ψ(z)dz2 e BQD(W) |

(z))'2+a \t/>\{z) < oo},

where p^ = 4/(|;εrj2 — I ) 2 is the density of the Poincare metric on D*.
Then we have the following

Theorem 5.6. Let β o B be the map in Theorem 4-1- Then the
image of BQDa(B) under β o B is in BQDa(Ό*) if a E (0,1) U (1,2),
is in BQDΊ(B*) for all 7 < 1 if a = 1, and is in BQDΊ(W) for all
7<2i/α = 2.

Proof. Let Φ = φdz2 e BQDa(Ώ>) and μ = p~2φe-2tΌ(φl As in the
proof of the Theorem 5.5, we have fμ is in C l ί t t (C) if a G (0,1] and
is in C2>β(C) i f α = l + / 3 e ( l , 2 ] . Therefore, the univalent function

9 = /μ|o* is _

1. mC^a(Ό) Ίfae (0,1),

2. in Cli7(JO) for all 7 < 1 if a = 1

3. in C2'^(D) if a = 1 + β G (1,2), and

4. in C 2 ' 7(D) for all 7 < 1 if a = 2.

Moreover, #' 7̂  0 up to boundary. Using the Cauchy integral formula,
we conclude, for a e (0,1), that g" = O(dj 1 + α ) and ff

//; - O{d~2+a) as

|z| -> 1. So the Schwarzian derivative Sg = *£- - | ( ^ ) = O(d j 2 + α )

since ^' continuous and g' φ 0 up to boundary. The other cases are

similar. This completes the proof of the theorem.

We have seen that the decay of the Hopf differential implies the
boundary regularity of the quasi-conformal harmonic diffeomorphism.
Conversely, if we have boundary regularity of harmonic map, we also
have decay of its Hopf differential. Let u — f + ig be a quasi-conformal
diffeomorphism from HP onto HP. Let Φ = <^dz2 be the Hopf differential
of u.

Lemma 5.7. Suppose that u is C2 up to the boundary and that the
boundary data has non-vanishing energy density. If we use the upper
half space model for HP then V0u2 = 0 at y = 0.

Proof. Let w = w(z) with z = x + iy. Then we have

(5.3)
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and

gAog + (Vo/, Vo/> - (VOff, Vo#) = 0.

By the result in [22], we have

(5.4) fx=gy, and fy =-gx,

at y = 0. Differentiate (5.3) with respect to y,

(5.5) gyAog + gAfy - 2 (fxygx + fxgxy + fyygy + fygyy) = 0.

Let p be a point in the boundary. Then by [22], there is a constant

Cγ > 0, such that in a neighborhood of p,

(5.6) C[ly <g<ClV

Since fy G C 1 up to the boundary, by Lemma 1.2 in [22], there is a

sequence ^ = (xi^yi) —> p such that

(5.7) lim yAofyiqi) = 0.
t—>-00

Evaluating (5.5) at <ft and letting i -» oo, then by using (5.4), (5.6),

(5.7), the fact that g = 0 at y = 0, and the fact that / is C2 up to the

boundary, we have

gy(p)Aof{p) = 0.

By (5.4) and the assumption that fx φ 0 at y = 0, we have

(5.8) Δ o / - 0,

at y = 0. Using similar argument, one can also show that

Δ 0 £ - 0,

at y = 0. Now 2u2 = (fx - gy) + i(fy + gx).

Ίu-zx = (fxx - gyx) + i{fyx + gxx)

at y = 0, where we have used the fact that w is C2 up to the boundary

and (5.4). Also, by (5.4), (5.7), (5.8), and the fact that w is C2 up to

the boundary,

2u*y = {fxy ~ 9yy) + i(fyy + 9xy)

= -Aog + iAof

= 0
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at y = 0. Hence Vow^ = 0 at y = 0. This completes the proof of the
lemma.

Theorem 5.8. Letu be a quasi-conformal harmonic diffeomorphism
on H2 such that the boundary map is C1 with non-vanishing energy
density. Let Φ — φdz2 be the Hopf differential of u. If we use the
Poincare disc model for HP, i.e., HP = (D, ds2

p) where ds2

p = p2\dz\2 is
the Poincare metric on Ό, then Φ G BQD0(Ώ>). Moreover,
(i) if u is C 1 > α up to the boundary for some 0 < α < 1, then

s u p p / T 2 ^ ! < oo, i.e., Φ E BQDa(Ό);

(ii) if u is C2 'α up to the boundary for some 0 < α < 1, then
suppp" 1 ^!^! < oo, i.e., Φ G BQD1+a(β). In particular, if u
is C2 '1 up to the boundary, then φ is bounded.

Proof. Using the upper half space model as in Lemma 5.7, then
φ = \wzwz. By (5.6) and the fact that u is at least C1 up to the
boundary, we have

near y = 0. If u is C1 up to the boundary, then us = 0 at y = 0 by [22],
and near a point (xθ5θ) at y = 0, C" 1 < y/g < C for some positive
constant C. These imply that Φ E BQD0{Ώ>). If u is C1 '" up to the
boundary, then \uz\ — O (ya) near y = 0. Hence, by using (5.9), (i) is
true. If u £ C2'a up to the boundary, then we also have Vow = 0 at
y — 0 by Lemma 5.7. Hence, using (5.9) again, it is easy to see that
(ii) is also true.

Remark 5.1. It is easy to see that the results in Theorem 5.8 is
purely local.

Using the Theorem 5.5, 5.8 and the results in §4, we can say a little
more on the image of the map B defined in §1. By Theorem 4.1, we
know that if [μ] is in the image of /?, then there is a δ > 0 such that the
ball in the universal Teichmuller space of radius δ with center [μ] is also
in the image. Here the radius δ may depend on [μ\. On the other hand,
it was proved in [21, 22, 23], if the normalized quasi-symmetric function
on dΏ) corresponding to [μ] is C1 with non-vanishing energy density,
then [μ] is in the image. Now, let N be the subset of the universal
Teichmuller space T consisting of those [μ] such that the corresponding
normalized quasi-symmetric function on dD is C1 with non-vanishing
energy density. By Theorem 5.8, if [μ] G N, then Φ G BQD0(B),
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where B(Φ) = [μ\. Therefore, if [v] is also in the image of B, then by
Lemma 3.2 and the proof of Theorem 4.1, we see that [u] o [μ] is also
in the image. Hence, using Theorem 2.6, we have

Proposition 5.9. There is a constant δ0 > 0 such that if [μ] E N,
then [v] lies in the image of B for all [v] such that λ([i/], [μ]) < δ0, where
λ is the Teichmύller metric. In particular, N is also in the image of
B.

We should emphasis that in this case, the number δ0 does not depend
on [μ] as long as [μ] E N. By the proposition, B would be onto if N were
dense in T. Unfortunately, this is not the case. In fact, let Na, a E
[0,2], be the subset of the universal Teichmuller space corresponding to
the set of quasi-symmetric functions on dD with non-vanishing energy
density which is C1'", if a E [0,1] and is C2'^, if α = 1 + β E (1,2].
Note that N° = N. Then, we have the following corollary of Theorem
5.5 and Theorem 5.8.

Corollary 5.10. We have the following subset relations in T.

B(BQD0(
B (BQDa{B)) = N* fora E (0,1) U (1,2)

In particular N is not dense in the image of B, hence, not dense in the
universal Teichmύller space.

Proof. The subset relations in T follow from the fact that BQD0(Ώ>)
is closed, Theorem 5.5, Theorem 5.8, and the results in [22, 23]. To
prove that N is not dense in T, we observe that there is a Φ E BQD(p)
such that there is a sequence of point Zi -> dD and a positive number
e > 0 such that

(5.10) ||Φ||(4) > e.

For example, one can choose Φ φ 0 which comes from a holomorphic
quadratic differential on a compact Riemann surface of genus g > 2.
Therefore, BQD0(B) is not dense in BQD(Ό). Since B maps BQD(B)
homeomorphically onto its image, the rest of the corollary follows.

Remark 5.2. Using the proof of Theorem 4.1 and Remark 5.1,
it might be possible to construct harmonic maps (in two or higher
dimensions) with more general boundary data than those considered
in [21, 22, 23, 33].
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