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Abstract

A real projective surface is a differentiable surface with an atlas of charts
to real projective plane RP 2 such that transition functions are restric-
tions of projective automorphisms of RP 2 . Let Σ be an orientable
compact real projective surface with convex boundary and negative Eu-
ler characteristic. Then Σ uniquely decomposes along mutually disjoint
imbedded closed projective geodesies into compact subsurfaces that are
maximal annuli, trivial annuli, or maximal purely convex real projec-
tive surfaces. This is a positive answer to a question by Thurston and
Goldman raised around 1977.

We assume that surfaces in this paper are orientable always. Let S be a
real projective surface with convex boundary. We say that S is the sum of
subsurfaces Sx, , Sn if S is the union of Sχ, , Sn , and if S( Π S
is the union of imbedded closed geodesies disjoint from one another or
the empty set whenever i and j are integers satisfying 1 < i < j < n
(compare with §3.1 of [14]). If S is the sum of Sx, , Sn, then we
say that S decomposes into S{, , Sn (along closed geodesies) and that
{S1, •• , Sn} is a decomposition collection of S. (See Appendix B of
[16], and [26] for examples of this summation process.) This definition is
slightly different from the one by Goldman [14] since we do not have the
principal boundary conditions.

Let D be an arbitrary compact simply convex domain in a 2-dimen-
sional sphere S 2 such that there is a segment a and a compact smooth
arc β with two common endpoints p and q such that the boundary of D
δD is a U β . The quotient projective surface of D - {p, q} by a properly
discontinuous and free action of (ϋ) for a hyperbolic or quasi-hyperbolic
projective automorphism ϋ is called a primitive trivial annulus. (See [5]
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for the definitions of simple convexity and quotient projective surfaces.)
It is a compact annulus with convex boundary. One of its boundary com-
ponents is not geodesic, and the other is geodesic. A trivial annulus in S
is a primitive trivial annulus A included in S such that the nongeodesic
component of δA is a component of δS. (Clearly, a trivial annulus does
not include two components of δS if the Euler characteristic of S is neg-
ative.) For example, given a hyperbolic projective surface R with convex
boundary and an imbedded closed geodesic a in the interior R° of R
freely homotopic to a component β of δR, the annulus with boundary
aUβ is a trivial annulus. In general, a compact convex projective surface
with geodesic boundary can be extended to a compact projective surface
with convex boundary. In this case, the difference between the extended
surface and the original surface is often given by trivial annuli.

A maximal annulus in S is a compact annulus with geodesic boundary
that is not a proper subset of a compact annulus with geodesic boundary
in S.

A purely convex surface is a convex compact surface A with negative
Euler characteristic that does not include a compact annulus with geodesic
boundary freely homotopic to a component of δA or include a trivial
annulus. A maximal purely convex surface in S is a purely convex surface
in S that is not a proper subset of a purely convex surface in S.

We call trivial annuli, maximal annuli, and maximal purely convex sur-
faces in S admissible subsurfaces in S. We put the admissible subsurfaces
of S into three different categories: (1) trivial annuli, (2) maximal annuli,
(3) maximal purely convex surfaces. If S decomposes into admissible
subsurfaces of S, then the decomposition collection is said to be admis-
sible.

In this paper, we prove the admissible decomposition theorem using
the main theorem of our previous paper [5]. We will use the notation and
results of the paper [5].

Admissible Decomposition Theorem. Let Σ be an orientable compact
real projective surface with convex boundary and negative Euler character-
istic. Then Σ admits a unique admissible decomposition collection.

As we said in [5], this answers a question of Thurston and Goldman
raised in 1977. A similar theorem is true when Σ is not orientable [7].
It is also claimed that if Σ is closed, then Σ decomposes into convex
compact surfaces [6] (for some consequences, see [8]).

Let us outline the contents of this paper. In § 1 we classify projective
automorphisms of S2 according to action and identify hyperbolic, quasi-
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hyperbolic, and planar automorphisms. We classify elementary annuli,
building blocks of annuli.

We next discuss three important geometric objects: tight curves, π-
annuli, and convex surfaces. A tight curve is a closed geodesic in 5 ,
which lifts to a convex open line in the universal covering S. In §2, we
show that tight curves have similar properties to those of closed geodesies
in hyperbolic surfaces.

In §3, we discuss π-annuli, important objects in the article [5]. We
classify π-annuli in terms of elementary annuli, and show that given a π-
annulus with a projective map to S, the map is a finite covering map onto
an imbedded π-annulus. Finally, we discuss the intersection properties of
maximal annuli that include imbedded π-annuli.

In §4, we discuss properties of convex compact surfaces generalizing
results of Kuiper [20]. First we show that the holonomy of each essential
closed curve in S is hyperbolic or quasi-hyperbolic. Next, given an es-
sential simple closed curve, we show that S includes an imbedded tight
curve freely homotopic to it and that this is the unique one unless it is
freely homotopic to a component of δS. We show that a convex compact
surface decomposes into subsurfaces that are elementary annuli, trivial an-
nuli, or purely convex surfaces. We end with discussing the intersection
property of purely convex surfaces, annuli with geodesic boundary, and
trivial annuli.

In §5, we give the proof of the admissible decomposition theorem. The
idea of the proof is to collect all imbedded π-annuli in Σ and find maximal
annuli that include them. We subtract these maximal annuli and trivial
annuli from Σ. The main theorem of [5] implies by §3 that the closure of
each component of the complement in Σ is a purely convex surface.

In Appendix A, we present various standard facts about curves in sur-
faces. Since we prove these by using hyperbolic structures, we separate
this material out from the main text (see Casson and Bleiler [3]). We will
follow the standard terminology of hyperbolic geometry in this section (see
Maskit [21]).

In Appendix B, for our purposes in this paper, we present a proof of a
version of the annulus decomposition theorem of Goldman [14].

I thank W. M. Goldman for many discussions and particularly helpful
correspondence. I thank R. Bishop, Y. Carriere, P. Doyle, N. Hitchin, M.
Kapovich, J. Mather, C. McMullen, J. R. Parker, and P. Tondeur for many
helpful discussions. I thank my doctoral thesis advisor W. P. Thurston for
introducing me to this subject and for many discussions and inspirations;
without his guidance and help, I would have found only few of the results
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in this paper. I thank Professors E. Calabi, H. Gluck, C. T. Yang, and W.
Ziller for introducing me to geometry and topology and their relationships.
It is my pleasure to thank the members of the Departments of Mathemat-
ics of both the University of Illinois at Urbana and Kyungpook National
University for their warm hospitality during the time when this paper was
written.

1. Projective automorphisms and elementary annuli

1.1. The one-dimensional sphere S1 has a one-dimensional real pro-
jective structure induced from its double covering map to the one-dimen-
sional real projective space R P 1 . (An antipodal pair in S1 or S2 is a pair
of points antipodal to each other.) A projective automorphism of S1 is
induced by a unique element of the group SL±(2, R) of linear automor-
phisms of R2 of determinant ± 1. Hence, the action of (ϋ) where ϋ is a
projective automorphism of S1 preserving orientation and corresponding
to a matrix with nonnegative eigenvalues can be described as one of the
following:

(1) ϋ has four fixed points composing two antipodal pairs. One pair
consists of attractors, and the other pair consists of repellers. The action
is said to be hyperbolic.

(2) ϋ has an antipodal pair of fixed points, ϋ restricted to each compo-
nent of the complement is a nontrivial affine translation if the component
is given the natural affine structure. The action is said to be parabolic.

(3) ϋ has no fixed points, is an isometry of S1 equipped with the
standard metric, and is not the identity or the antipode map. The action
is said to be elliptic.

(4) ϋ is the identity.
1.2. A projective automorphism of S2 is induced by a unique element

of the group SL±(3, R) of linear automorphisms of R3 of determinant

± 1 . Hence, the projective automorphism group Aut(S2) is isomorphic to
SL±(3, R). Note that a projective automorphism is orientation preserving
if and only if it corresponds to a matrix in SL(3, R) (see [5]).

Let us classify projective automorphisms of S2 . An element of SL(3, R)
is conjugate to exactly one of the following matrices where λχ, λ2, and
λ3 are mutually distinct real numbers in R - {0} :

~λ{ 0 0

(1) 0 λ2 0
0 0

2 3 ~~ '



(2)

(3)

(4)

(5)

(6)

(7)
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0 A, 0

0 0 A,

Aj 0 0

0 A, 0

0 0 A,

A,A2 = 1, A,, A 2 e R - { 1 , 0 , - 1 } ;

A , A 2 = 1 , A ^ e R - { 1 , 0 , - 1 } ;

u
0
0

u
0
0

1
u
0

0
u
0

"1
0

.0

0'
0
1

0"
0
1

1
1
0

>

5

0
1
1

rcos(θ) -rsin(θ) 0
rsin(0) rcos(θ) 0

0 0 - 2
r > 0 , 0 < θ <2π, θφn.

We say that a matrix in SL(3, R) is of type (i) if it is conjugate to a

matrix (i) above, i = (1), (2), ••• , (7). An orientation-preserving pro-

jective automorphism corresponding to a matrix of type (1) with positive

eigenvalues is said to be hyperbolic (or positive hyperbolic). A projective

automorphism corresponding to a matrix of type (2) with positive eigen-

values is said to be quasi-hyperbolic. A projective automorphism corre-

sponding to a matrix of type (3) with positive eigenvalues is said to be

planar. (Compare to Goldman [14], [16].)

1.3. Let us describe the fixed points and invariant great circles of

orientation-preserving projective automorphisms corresponding to the

above matrices when eigenvalues are nonnegative. (For each case, there

are no other fixed points or invariant great circles other than what are

described.)

(1) There are six fixed points, which compose three antipodal pairs.

There is an antipodal pair of attractors, an antipodal pair of repellers,

and an antipodal pair of points that are not attractors or repellers. Each

great circle containing two fixed points not antipodal to each other is an
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invariant great circle. There are three invariant great circles. The action
on each of the great circles is hyperbolic.

(2) There are four fixed points which compose two antipodal pairs.
There is an invariant great circle including only one of the pairs, the action
on which is parabolic. The antipodal pair not in the great circle consists
of attractors unless it consists of repellers. The only other invariant great
circle passes through all fixed points. The action on it is hyperbolic.

(3) There is a great circle S1 consisting of fixed points and an antipodal
pair of fixed points not on S . The antipodal pair consists of attractors
unless it consists of repellers. Except for S 1 , a great circle is invariant if
and only if it passes through the antipodal pair and an antipodal pair in
S 1 . The action on each of the great circles is hyperbolic.

(4) There is an antipodal pair of fixed points and a unique invariant
great circle, which includes the pair. The action on the great circle is
parabolic.

(5) The set of fixed points composes a great circle S 1 . It includes an
antipodal pair of points such that a great circle passes through them if and
only if it is invariant. The action on each invariant great circle is parabolic
whenever the great circle does not equal S 1 .

(6) The action is that of the identity map.
(7) The action has an invariant great circle and an antipodal pair of fixed

points not on the great circle. The action on the great circle is elliptic. The
pair consists of attractors if r < 1 and consists of repellers if r > 1. If
r = 1, then each point of the pair is neither an attractor nor a repeller.

Let us state a convenient criterion to determine the type of a projective
automorphism.

Lemma. Let ϋ be an orientation-preserving projective automorphism
of S 2 . Suppose that ϋ has two fixed points not antipodal to each other
and that the action of (ϋ) on the segment connecting the two points is not
trivial. Then ϋ is hyperbolic, quasi-hyperbolic, or planar.

Proof. Since there are two fixed points, at least two eigenvalues are pos-
itive; all eigenvalues are thus positive, ϋ does not correspond to a matrix
of type (4) or (7) since the two fixed points of ϋ are not antipodal. If ϋ
corresponds to a matrix of type (5) or (6), then the great circle containing
the two fixed points is the set of fixed points. Hence, ϋ corresponds to a
matrix of type (1), (2), or (3), and the lemma is proved.

1.4. We introduce the notion of elementary annuli (compare with §3
of [14] and [4]).

Let ϋ be an arbitrary hyperbolic projective automorphism. Then there
are three noncollinear fixed points s, m , and w . The respective antipo-
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FIGURE 1. ELEMENTARY ANNULI.

dal points -s, -m, and -w are also fixed. We assume that the respec-
tive eigenvalues of s, m, and w are strictly decreasing. Then there is
an invariant closed triangle A(smw). The quotient projective surface of
A(smw)0 under (ϋ) is called an open elementary annulus of type I.

We may make this into compact annuli with geodesic boundary. The
quotient surface of A(smw)° Wsw° \Jlm° under the action of (ϋ) and the
quotient surface of A(smw)° U Jw° U mw° under the action of (ϋ) are
called elementary annuli of type I. Projective annuli projectively homeo-
morphic to these are also called elementary annuli of type I. A boundary
component of an elementary annulus of type I is said to be strong if it
corresponds to ~sw° , and weak otherwise. See Figure 1.

As an aside, let us note that the respective interiors of the above two
annuli are projectively homeomorphic but that they are not projectively
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homeomorphic by an orientation preserving map. In general, they are not
projectively homeomorphic by any map unless one of the eigenvalues of
ϋ equals 1.

Let ϋ be a quasi-hyperbolic projective automorphism, ϋ has two fixed
points s and w, where their respective antipodal points -s and -w
are also fixed. Assume that the respective eigenvalues of s and w are
strictly decreasing. Let S1 be the great circle on which the action of ϋ is
parabolic. Then either w or s belongs to S 1 . Suppose that ί e S 1 . The
great circle S1 includes an invariant segment a+ with endpoints s and
-s such that the sequence {ϋn(x)}, n = 1, 2, , converges to s for
each point x of the open line α + ' α . Let B be the lune bounded by α + ,
sw , and ZIsw . The quotient of B° by the action of (ϋ) is called an open
elementary annulus of type II (Figure 1).

Let us consider the quotient surface of B0\JJw°\J-sw0 under the action
of (ϋ). This is a compact projective annulus with geodesic boundary (a
π-annulus in this case). We call it and a projective annulus projectively
homeomorphic to it elementary annuli of type Ha.

The next is the quotient surface of 5 ° U α + ' ° U 'sw° under the action
of (ϋ). This is again a compact projective annulus with geodesic bound-
ary. We call it and a projective annulus projectively homeomorphic to it
elementary annuli of type lib. A boundary component of an elementary
annulus of type Πa or lib is said to be strong if the component corresponds
to Iw° or sw° , and weak otherwise.

We remark that there is no projective homeomorphism between an el-
ementary annulus of type I and an elementary annulus of type Πa or lib.
An elementary annulus of type Ha and an elementary annulus of type
lib are not projectively homeomorphic although their respective manifold
interiors are.

2. Tight curves

Let S be a real projective surface with convex boundary. Let (dev, h)
be the development pair of S, and let S be its universal cover with the
covering map pr. A closed geodesic α^S 1 -> 5 , where S1 is a circle, is
called a tight curve in S if its lift to S is a geodesic imbedding onto a
convex open line. For example, geodesies realizing boundary component
curves of elementary annuli are tight curves. A closed curve in a convex
projective surface of negative Euler characteristic is a geodesic if and only
if it is a tight curve. This may be verified by Lemma 1.5 of [5] .
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Given a closed curve α in S, it corresponds to an element [a] of
the fundamental group πχ(S) of S. If h([a]) is hyperbolic (resp. quasi-
hyperbolic, planar), then a is said to be hyperbolic (resp. quasi-hyperbolic,
planar). This is well-defined, independently of the choices of the homotopy
classes and development pairs of S. A principal closed geodesic in [16] is
an example of a hyperbolic closed curve. See §4 for further examples of
these curves. (For topological aspects of closed curves, refer to Appendix
A.)

The main aim of this section is to show that tight curves in S behave
almost like closed geodesies in hyperbolic surfaces (see [10]). We show that
a tight curve freely homotopic to a simple closed curve is an imbedding
onto an imbedded closed curve, that two imbedded tight curves intersect
minimally, and that given a hyperbolic or quasi-hyperbolic closed curve, at
most finitely many tight curves are freely homotopic to it. Next, we show
that tight curves are not planar. Lastly, we discuss characterizing properties
of elementary annuli and trivial annuli and show that S includes only
finitely many trivial annuli.

2.1. Let us list a few basic properties of tight curves. Let a: S1 —• S
be a tight curve. Then its lift a: R —• S is injective. Thus a is essential.
Next, Lemma 3.4 of [5] implies that if a passes through a point of δS,
then a is a covering map onto an imbedded tight curve that is a component
of δS. In other words, either a maps into S° or a is a covering map
onto a component of δS. If β is an imbedded tight curve in S, then it
follows that β is either a subset of S° or a component of δS.

2.2. We assume that S is homeomorphic to a compact annulus or a
cover of a compact surface with negative Euler characteristic. We will be
using a generic hyperbolic metric d on S obtained as in Appendix A. The
induced metric on an arbitrary cover of S will also be denoted by d.

Proposition. Let a and β be tight curves in S freely homotopic to
simple closed curves.

(1) Suppose that γ: S1 —• S is a tight curve freely homotopic to a finite
covering map of an imbedded closed curve. Then γ is a finite covering map
of an imbedded tight curve.

(2) a is an imbedding onto a one-dimensional submanifold of S; so is

β.
(3) The respective image submanifolds aχ and βx of a and β either

are identical or have minimal intersection.
(4) If a and β intersect at a point and intersect trivially in homotopy,

then a{ and βχ are identical.
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(5) Suppose that a and β intersect trivially in homotopy. Then aχ and
βχ are disjoint if aχ is not freely homotopic to βλ, and are disjoint or
equal otherwise.

(6) Let γ: S1 —> S be a tight curve. Then there is a finite cover S' of S

such that γ lifts to a simple tight curve γ : S1 -» Sf.
(7) Assume that S is compact. Let γ: S1 —> S be a hyperbolic or quasi-

hyperbolic closed curve. Then there are only finitely many tight curves in S
freely homotopic to γ, whose images are distinct from one another.

Proof. (1) Suppose that two simply convex segments in S share two
endpoints, and are respectively realized by maps homotopy equivalent with
endpoints fixed. Then it is clear that they are identical.

Let γ: R —• S be a lift of γ, which is a geodesic in S and whose image
is a convex maximal line, say /. A deck transformation ϋ corresponding
to γ and γ satisfies ϋ(l) = /. Let φ be an arbitrary deck transforma-
tion. Suppose that φ(l) Φ I. Then φ(l) and / are transversal. The first
paragraph implies that / and φ(l) may not meet at more than two points.
Lemma 3 of Appendix A shows that I Πφ(l) = 0 . Therefore, we have
either I = φ(l) or lnφ(l) = 0 for each deck transformation φ . It follows
that γ is a finite covering map onto an imbedded tight curve.

(2) By (1), a is a finite covering map onto an imbedded closed curve.
Since S is orientable, a is an imbedding onto an imbedded closed curve.

(3) Suppose that aχ Φ βχ. Then aχ and βχ intersect transversally.
The first paragraph of the proof of (1) and the definition of minimal in-
tersection (see Casson and Bleiler [3]) imply that aχ and βχ intersect
minimally. Hence, aχ and βχ either are identical or intersect minimally.

(4) By (3), aχ and βχ either are identical or have minimal intersection.
Since the latter is not true, it follows that aχ = βχ.

(5) This follows from (4).
(6) There is a finite cover Sf of S such that γ lifts to a closed curve

/ : S1 -» S' such that y is freely homotopic to a simple closed curve (see
Scott [23], [24]). (2) implies the conclusion.

(7) Suppose not. We may assume without loss of generality that γ is
a simple closed curve by lifting to a finite cover of S. Let {γ.\i e N} be
a countable collection of tight curves freely homotopic to γ such that y.
and yk are maps with distinct images whenever j φk. Parts (2) and (5)
imply that γ. for each / is a simple tight curve and that the images of yt

are imbedded tight curves disjoint from one another.
Let ϋ be the deck transformation of S corresponding to γ. Let S' be

the cover of S corresponding to ϋ that is, it is the quotient space of S
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by the action of the group of deck transformations generated by ϋ. Then
γ lifts to a simple closed curve / in Sf. Hence, each γ. lifts to a tight
curve γ'. in Sf freely homotopic to γ . By (2), y\ is simple. For each
i, let γ! denote the image submanifold of y\. Since every γ'. is freely
homotopic to γ in S', (5) implies that γ" and γ" are disjoint whenever

iφj.
Let pr": S' —> S be the covering map induced from the universal cover-

ing map pr: S —> S. pr" is a local isometry. Since S'° is homeomorphic

to an open annulus, γ" and γ! for each /, / > 1, bound a unique annulus

in S'. Let us denote it by A1.. The above two paragraphs and a result

of §6 of Appendix A show that pr" \Af

( is an imbedding and, hence, that

{ύf-area (A^)}, i > 1, is a bounded sequence.

If the number of elements of {γ"} intersecting each compact subset of

S' is finite, then
{rf-area (A^)} —• oo as / —• oo.

Hence, {γ' } is not locally finite.

This implies that S* contains a point p that is an accumulation point
of U γ' and is not a point of it. Let l{ denote the inverse image of γ"
under the covering map from S to S1 for each /. Let p denote a point
of S corresponding to p, and let B(β) be a tiny disk of p (see §1.11 in
[5]). Let us list obvious properties of /.:

(i) Each I. is an open d-invariant convex line.
(ii) Infinitely many elements of {I.} intersect the interior of B(p).

(iii) I. and /. are disjoint whenever / Φ j .
The above properties of l{ yield the following properties of dev(//).

(i) For each /, dev(//) is an A(τ?)-invariant convex line, where h is
the holonomy homomorphism.

(ii) Since άe\\B(p) is an imbedding, dev(/z) is distinct from άev(lj)
whenever l( and l intersect B(p) with iφ j .

These contradict the fact that S2 includes only finitely many h(ϋ)-
invariant convex lines and proves (7).

2.3. We will now prove the following important property.
Proposition. Suppose that S is compact and that χ(S)<0.Ifa:Sι-+

S is a tight curve in S, then a is not planar.
Proof. Suppose that a is planar. We may assume without loss of gen-

erality that a is simple by lifting to a finite cover of S by Proposition
2.2(6). Let S' be the cover of S corresponding to a that is, S' is the
quotient of S by the action of the group generated J)y a deck transfor-
mation ϋ corresponding to a and its lift a: R —• S. Let pr : S —• S
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denote the covering map, and a. : S1 —> S' a lift of α. By Proposition
2.2(2), a imbeds onto an imbedded tight curve a" in S'.

Let A be the subset of points of S' through which a tight curve freely
homotopic to a passes. We claim that A is an open subset of S1. Let
x e A. Then x belongs to an imbedded tight curve aχ freely homotopic
to a . Let άχ be the image of a lift of aχ to S corresponding to ϋ.
We have either άχ c S° or άχ c δS by §2.1. In the first case, an open
neighborhood ^ of άχ satisfies the following conditions:

• pr' \fί is a covering map onto an annulus, an open neighborhood of

• dev|^ is injective (thus, it is an imbedding).
The image dev(^) includes an A(#)-invariant open triangle T including
dev(άj (see §1.3). Let T1 = (aev\&)~1 (T). The set Tf is a tf-invariant
open neighborhood of άχ. Since h(ϋ) is planar, Tf is foliated by ϋ-
invariant convex lines. Thus, ρr ' |Γ ' is a covering map onto an open
annulus that is an open neighborhood of aχ and is foliated by imbedded
tight curves freely homotopic to aχ . If we have άχcδS 9 then a similar
argument shows that an open neighborhood of aχ is foliated by imbedded
tight curves freely homotopic to aχ . Thus, A is open.

Let pr": S' —> S be the covering map induced from the universal cov-
ering map pr: S —• S. We claim that pr" \A is injective. Let x and y be
two distinct points of A. Let aΎ and av be the imbedded tight curves
freely homotopic to a" containing x and y respectively. Proposition
2.2(2) implies that pr" \aχ and pr" \a are injective maps onto imbed-
ded tight curves. Thus, if aχ = ay, then pr"(x) Φ pr"(>>). Suppose that
aχψ ay. By Lemma 5 of Appendix A, the respective images are distinct
from each other. From Proposition 2.2(5) it follows that the respective
images are disjoint, so that pr"(x) Φ pr"(y). Thus, pr" \A is injective.

The injectivity of pr" \A yields that the rf-area of A is finite. Let A1 be
the component of A including a". Clearly, A1 is an annulus foliated by
imbedded tight curves freely homotopic to a" . We may assume without
loss of generality that a" is geodesic with respect to d (see Appendix A).
Let us consider for each point x of a" the maximal ύ?-geodesic λχ in A'
perpendicular to a" at x. Since the rf-area of A1 is finite, α" contains a
point x such that the rf-length of the component μχ of λxΓ\Af containing
x is finite. There is a monotone sequence of points {/?J on a component
of μχ-{x} converging to the endpoint p of μχ that is not x and satisfies
p $ A. Then for each /, p. is an element of an imbedded tight curve
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a. freely homotopic to a" . Let us denote by A. the annulus bounded by
αz and a for each i. Clearly, A{ c A1. Let μχ . be the closure of the
component of μχ Π A° containing x for each /. Let q{ for each i be
the endpoint of the d-geodesic segment μχ . that is not x. (See Figure
2.) Note that a" nμχJ = {x} , ai Πμχi = \q.) , and μ V c A] hold for
each /.

We have the following possibilities:
(i) {d-length (a.)} is a bounded sequence.

(ii) {rf-length(α )} is an unbounded sequence.
We will show below that each of these possibilities are contradictions. This
will complete the proof.

(i) Assume without loss of generality that each ai is parametrized by
rf-length. Then each at lies in a compact subset K of S', at is a distance
decreasing map, and, hence, { α j is bounded and uniformly continuous.
Thus by the Ascoli-Arzela theorem, a subsequence of { α j converges to a
continuous closed curve a^: S1 —• S' passing through p . It is straight-
forward to show by a local argument that a^ is a tight curve and that
a^ is freely homotopic to a . Hence p e A , and this is a contradiction.

(ii) First, we cut open the annulus At along μχ . and lift it to S: To

begin, we lift a. Let a* be the image of the lift ά of α t o S . Recall that
ϋ corresponds to a* and a. Let x* be a point of ά* corresponding to
x. Then ά* includes a compact arc α* with endpoints JC* and ϋ(x*).
Here pr' \a* maps onto a" and is injective in the complement of the set
of the endpoints of α*. Now, we lift λχ to a maximal df-geodesic λχ

that is ^-perpendicular to α* at x*. A maximal rf-geodesic ϋ(λχ) is d-
perpendicular to a* at ϋ(x*). The rf-geodesic A* includes a compact arc
μ* . with endpoints x* and q[, the point on λχ corresponding to q..
Note that pr' \μχ . is an embedding onto μχ . and that so is pr' \&(μ*x t ) .
There is also an arc α* with endpoints q* and ^(^*) such that pr' \a*
is onto αz and is injective in the complement of the set of the endpoints.
Since we have

a

the surface 5 includes a compact disk Λ* bounded by four arcs a*, μχ .f,

α*, and #(μ* £.). It is clear that pr' |Λ* maps onto A( and is injective in

the complement of μχ . U ϋ(μ*χ .) (see Figure 2, next page).
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A'

FIGURE 2

Let Br denote the compact rf-ball of radius r, r > 0, with center x*.
There are two possibilities:

(a) There exists a positive constant r such that α* c Br for every /.
(β) {a*} is unbounded.

We will derive contradictions for these two cases. This will show that (ii)
is a contradiction also.

(α) Cover Br by a finite collection of open rf-balls of radius cs/2
where cs is the constant of §2.4. Let N be the number of rf-balls in the
collection. For each i, let us choose N+1 points rχ._ .., j = 1, , N+1,
on α* so that the following properties hold:

• r / f l = i ; , a n d ritN+ι=ϋ(q*).
• Let βt j for each 7 , 7 = 1, , TV, be the arc in α* with endpoints

rz j and r( j+ι. Then /?? . does not contain rf. Λ for any fc.
• The rf-length of βt . is independent of 7 .

We will now state two consequences that contradict each other: First,
since {rf-length(ά.)} is unbounded, it follows that {{/-length^. .)} for



DECOMPOSITIONS OF REAL PROJECTIVE SURFACES 253

each fixed j is unbounded. Second, let us fix /. The so-called pigeon-

hole principle implies that there are at least two elements of {r. j\j =

1, , TV + 1} in one of the covering rf-balls. Let us say that they are

r. k and rt { where k < I. Then by Lemma 2.4, the ύ?-length of the arc on

a* connecting τi k and ri ι is less than c's. Hence, rf-length^ k) < c's.

This means that rf-length(/?/>7.) < cs for every j . Since this inequality

holds for every i, we have a contradiction.

(β) Since μχ . c μx for every /, it follows that the ^/-distance from

every point of μ* . or ϋ(μ*χ .) to x* is bounded above by a constant C

independent of i. Let R be an arbitrary fixed real number greater than

C let us choose an arbitrary fixed integer / for R such that α* is not a

subset of B3R.

Let / be a function on S, that measures <ί-distances from x*. For

each r, r > C, we can divide Λ* into three sets: A*(r)i + , -4*(r)|. 0

and i4*(r)f. _ consisting of points whose values under / are greater than,

equal to, and less than r respectively. For a regular value r, r > C, of

f\a*)0 , A*(r)i 0 is a one-dimensional submanifold in Λ*, each compo-

nent of which is a compact arc intersecting α*'° precisely at the set of

endpoints. Thus, we have constructed our first object: A*(r)i 0 on the

level set f~\r).

Let

δR = inf{έ/-length(y4*(r).>0)|Λ <r<2R,

r is a regular value of f\a*'°},

and let

εR = max{δR, rf-area(^)/i?}.

Clearly, εR > 0 . Let r be a regular value of /|α*'° with R <r <2R

such that the rf-length of A*(r). 0 is less than 2εR. Let JC* denote a

point of α* - B3R . Clearly, x* G Άm{r)i!f + , and x* e ^*(r')/ _ . There is

a component arc £z of A*(r')iQ that separates x* from JC* i.e., every

path from x* to x* in A* intersects ζ.. Let ni and mf. denote the

endpoints of Cz in α*> < ?; let γ. be the arc on a* sharing endpoints ni

and mi with j f . . Then y. 3 x*. Thus, we have constructed our second

and last objects for R: ζ. and γt.

Since ζ. is a subset of A*(r)0 t, the rf-length of ζ. is less than 2εR .

Since n{, m/ e f~ι{r), and x* ^ 5 3 Λ , the ^/-length of yi is greater than
2R.
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Hyperbolic geometry and the Sard theorem imply that the d-area of A*
is greater than or equal to δRR. From the facts that ί/-area(^4) is finite,
Aχf c A, and pr' is a local isometry, it follows that δR < d-area(A)/R.
This means that εR —> 0 as R —• oo, so that rf(n., mz) -> 0 and
έ/-length(y|.) -> oo as i? —> oo, which contradict Lemma 2.4, since γ.
is a convex segment.

2.4. In a real projective surface, a ίi/iy rfisfc is a compact disk sim-
ply convex with respect to the real projective structure (see §1.11 in [5]).
Choose a covering of S by interiors of tiny disks and choose a finite sub-
covering. The finite subcovering corresponds to a locally finite covering
(9 of S by tiny disks. It follows that there is a positive constant cs such
that for every point p of S, the covering (9 contains a tiny disk B of p
such that </(/? ,bdB) > cs.

Lemma. Suppose that p and q are points of S connected by a convex
segment a. Then there is a positive constant c's independent of p and q
such that if d{p, q) <cs, then rf-length(α:) < cs.

Proof Let B be a tiny disk belonging to (9. Given the Hausdorff
metric associated with d, the collection of compact subsets of B forms
a compact metric space. All segments and point sets in B form a closed
subset of this metric space. (A subset is called a point set if it is the set
consisting of a single point.) Let us call the subspace 3S. If we assign
the rf-length of every point subset to be zero, then the real-valued func-
tion defined on 38 assigning each element to its ^-length is a continuous
function. Hence, there is the supremum of the set of values of this func-
tion. The facts that for tiny disks mapping onto each other under deck
transformations, the respective supremum are equal to each other and the
covering (9 is locally finite imply that there exists an upper bound of the
collection of these supremums for tiny disks in (9. Let c's be this upper
bound multiplied by two. This satisfies the conclusion of the lemma.

2.5. For the remainder of this section, let us discuss about facts on
trivial annuli and elementary annuli. We call a compact annulus with con-
vex boundary a hyperbolic (resp. quasi-hyperbolic) annulus if the boundary
components are hyperbolic (resp. quasi-hyperbolic). Let us state a crite-
rion for an annulus to be an elementary or trivial annulus.

Lemma. Let A be a hyperbolic or quasi-hyperbolic annulus in S.
(1) Suppose that δA is a geodesic. Then A includes exactly two imbed-

ded tight curves if and only if A is an elementary annulus.
(2) Suppose that the nongeodesic boundary components of δA are com-

ponents of δS. Then a boundary component of δA is a unique imbedded



DECOMPOSITIONS OF REAL PROJECTIVE SURFACES 255

tight curve in A if and only if A is a trivial annulus.
(3) An elementary or trivial annulus in S is not a proper subset of another

elementary or trivial annulus in S.
Proof (1), (2) These are straightforward consequences of §1 and the

annulus decomposition theorem of Appendix B.
(3) This follows from (1) and (2).
2.6. Let us discuss trivial annuli in S. Let Tχ and T2 be trivial annuli

in S. Then their respective geodesic components aχ and a2 of δTχ and
δT2 are imbedded tight curves. Since aχ and α 2 are freely homotopic to
components of δS, by Proposition 2.2, either aχ and a2 are disjoint or
aχ = a2 . The facts that a trivial annulus is the closure of a component of
the complement of an imbedded tight curve, its geodesic boundary com-
ponent, in S and χ(S) < 0 and the above lemma imply that Tx = T2 or
TχΓ\T2 = 0. As a consequence, for each nongeodesic component of δS,
there is at most one trivial annulus including the component. Therefore,
S includes finitely many trivial annuli, which are mutually disjoint.

3. π-Annuli

3.1. Let M be a projective surface, and let M be its universal cover.
Let D: M —> S2 be a developing map for M, and let H be the holon-
omy homomorphism associated with D. A strong tight curve in ¥ is a
hyperbolic or^quasi-hyperbolic tight curve α: S1 —• M such that for its
lift a: R —• M, the map Doά is an imbedding onto a convex line con-
necting a fixed point of the largest eigenvalue with a fixed point of the
smallest eigenvalue of H(ϋ) where ϋ is the deck transformation of M
corresponding to a and a. A weak tight curve is a tight curve in M that
is not strong. For boundary components of elementary annuli, the defi-
nitions given in §1.4 agree with those given here. The geodesic boundary
component of a trivial annulus is a strong tight curve. A component of
δM is a principal closed geodesic if and only if it is a strong hyperbolic
tight curve (see [16]).

These notions are invariant under projective maps and covering maps.
Lemma. Let a: S1 —> M be a closed curve, and let f\%-+ Mf be a

projective map defined on a neighborhood % of the image of a mapping
to a projective surface Mf. Let β be a closed curve in M1, and let cx and
c2 be finite covering maps from S1 to S 1 . Suppose that fo a o cχ is a
reparametrization of β o c2. Then a is a strong tight curve if and only if
β is a strong tight curve.
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Proof. Straightforward.

3.2. Let B be a great disk or a lune in S 2 . Let η{ and η2 be two
great segments with common endpoints forming an antipodal pair and with
η{ U η2 = δB. The quotient projective surface A of (B° U ^ ) - {x} for
a point x of η°χ under the action of (ϋ) for a projective automorphism
ϋ in Aut(S2) is a π-annulus (see [5]).

The projective automorphism ϋ has two invariant segments η{ and η2

and a fixed point x . Since ϋ is orientation-preserving, the endpoints of
η{ and τ/2 are also fixed points. Lemma 1.3 implies that ϋ is hyperbolic,
quasi-hyperbolic, or planar.

Suppose that S is compact, and that there is a projective map / : A —>
5 . Then f\a for a component a of Ĵ 4 is a tight curve in 5 . Thus A
must be hyperbolic or quasi-hyperbolic by Proposition 2.3.

Suppose that A is hyperbolic. It is clear that B is the union of two
invariant triangles. It follows that A is the sum of two elementary annuli
of type I. Suppose that A is quasi-hyperbolic. Then B is either an in-
variant lune or the union of two invariant lunes. In the first case, A is an
elementary annulus of type Ha; in the second case, A is the sum of two
elementary annuli of type lib.

Let us observe that if A is a hyperbolic π-annulus, then the components
of δA are either both strong or both weak. Moreover, A0 includes a
unique imbedded tight curve, which is weak if the components of δA are
strong and is strong otherwise. If A is a π-annulus that is an elementary
annulus of type Ha, then the components of δA are strong. In this case,
A0 includes no imbedded tight curve. If A is a π-annulus that is the
sum of two elementary annuli of type lib, then the components of δA are
strong. Moreover, A0 includes a unique tight curve, which is weak.

3.3. The aim of this section is to prove the following proposition:
Proposition. Let f: A —> S be a projective map. Then S includes

an imbedded π-annulus F such that f = iF ° cA for an inclusion map
iF: F —> S and a finite covering map cA: A —• F that is, the following
diagram is commutative:

3.4. A consequence of Proposition 3.3 and the main theorem in [5] is
as follows (this was claimed in the introduction in [5]).
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Theorem. S is convex if and only if S does not include an imbedded
π-annulus.

Proof Suppose that S is not convex. Then there is a π-annulus with a
projective map to S by the main theorem [5]. Thus the above proposition
shows that S includes an imbedded π-annulus. The converse portion is
a consequence of the following lemma.

3.5. Lemma. Let M be a real projective surface. Suppose that M
includes a π-annulus E. Then M is not convex.

Proof Suppose that M is convex. Let (D, H) be a development pair
of M. Since M is tame, D is an imbedding onto a convex domain Ω
in S2 by §1.4 in [5]. Let p: M —> M be the universal cover, and let E
be a component of p~~ (E). There exists a deck transformation φ of M
acting on E, and D\E is an imbedding onto (K° U ζ°) - {y} for a lune
or great disk K, a convex segment ζ in δK, and a point y of ζ° . Since
Ω is convex, and (K° U ζ°) - {y} c Ω, it follows that y e Ω. However,
y is a fixed point of H(φ). Since the action of the holonomy group on Ω
is free, this is a contradiction. Thus, M is not convex.

3.6. We need some preliminary material before proving Proposition
3.3. Let M be a compact real projective surface with convex boundary. A
geodesic complex K in M is a compact subset with the following property:
for each point p of K, the surface M includes an open neighborhood
% of p such that

holds where each lt, / = 1, , n, is a maximal line in ^ passing
through p. For example, the union of finitely many imbedded closed
geodesies and maximal geodesic segments in M is a geodesic complex.
Also, the image of every closed geodesic in M is a geodesic complex.

Let AT be a geodesic complex. A regular point of AT is a point of K
with a neighborhood in K that is a line, a vertex oϊ K is a point of K that
is not regular, and a regular arc of K is a component arc of K removed
the set of vertices. Regular arcs of K are imbedded geodesies.

Let us state properties of K. (Let d! denote a complete metric on
M). First, it is easy to see that there are finitely many vertices and
regular arcs in K. Second, let γ: [a, b] -> K, a < b, be a ^'-length
parametrized geodesic where y(<z) or y(fr) does not belong to <JΛf. Then
the local condition of K implies that there is a rf'-length parametrized
geodesic / : /' —• K, where /' is an interval including [a, b] properly,
and γ'\[a9 b] = γ; that is, a ^'-length parametrized geodesic / extends
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Lastly, we claim that one of the following holds for each point p of
KnM°:

• There is a closed geodesic in Kn M° passing through p.
• There is a geodesic path γ: I -> K for a compact interval / such

that γ(δl) c δM, and γ passes through p .
Let us prove this. Choose a rf'-length parametrized geodesic η: J —> K

for an interval / passing through p. Let η': f —• K for an interval
/ ' be a maximal geodesic extending η that is, we assume that η is a
af'-length parametrized geodesic, that / is a subset of / ' , that η\J = η,
and that there is no ^'-length parametrized geodesic extending η . The
interval / ' either is unbounded or is compact. If / ' is unbounded, then
the compactness of K implies that there exists a point of a regular arc
that η passes and then passes again in the direction of the previous visit.
This implies that η passes p and then passes p again in the direction of
the previous visit. Hence, η corresponds to a closed geodesic η" passing
through p . Since η" passes p, it follows that the image of η" is a subset
of M° by Lemma 34 in [5]. If f is compact, then η\δf) c δM.
Otherwise, η is not maximal by the above paragraph. Thus the claim is
proved.

3.7. We now begin the proof of Proposition 3.3. Let a and β be
components of δA. As a first step, we will prove that f\a is a covering
map onto an imbedded tight curve in 5 . If f(a) intersects δS, then
f(a) is a component of δS by §2.1. Hence, the claim is true in this case.

Suppose that f(a) c S° . Then the image f(a) is a geodesic complex.
Since for each point of A, there is a neighborhood such that / restricted
to it is a diffeomorphism onto a simply convex open disk or a disk projec-
tively homeomorphic to a simply convex open disk in S2 intersected with
a closed hemisphere, f~ι(f(a)) is a geodesic complex in A.

Let L = f~\f(a)). By §3.6, there are the following possibilities:
(1) There is a closed geodesic in LΓ\A°.
(2) There is a geodesic γ: / —> A for an interval / passing through a

point of A0 such that γ(δl) c δA .
(3) LcδA.
In case (1), Proposition 2.2(1) implies that the closed geodesic is a cov-

ering map onto an imbedded tight curve η in A0 . Let η : S1 —> A0 be a
simple tight curve realizing η, and let a: S1 -> A be a tight curve realiz-
ing a. Since η is a closed geodesic, the image of / o η is f(a). This
implies that foηoc is a reparametrization of foaoc for finite covering
maps c and c \ S1 -» S 1 . Thus, if a is strong, then η is also strong by
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Lemma 3.1. However, this contradicts §3.2. If a is weak, then η is also
weak; this is also a contradiction.

In case (2), the geodesic corresponds to a path in (B° U η°) - {x} con-
necting two points of η° - {x} and passing through a point of B° (see
§3.2). Such a path cannot be geodesic, and this is a contradiction.

Since cases (1) and (2) do not occur, LcδA. In this case, L is either
a component of δA or δA itself, and every point of L is regular. Thus
f(a) is an imbedded tight curve, and f\a is a finite covering map onto
f(a), which we claimed. Similarly, it follows that f\β is a finite covering
map onto an imbedded tight curve f(β).

Let S' be the cover of S corresponding to f(a). The map / lifts to
a projective map f \ A —• S'. Proposition 2.2 implies that f\a and f\β
are finite covering maps onto the imbedded tight curves /(a) and f(β)
respectively.

Let H be the continuous function defined on S' that measures d-
distances from /(a). Since f is an immersion, Ho/ achieves the
maximum value at points of δA . This implies that f{a)φf(β). Since
/(a) Π f{β) = 0 by Proposition 2.2, /(a) and f{β) bound a unique
compact annulus, say Af, in Sf. Using H, we can show similarly that
the image of f lies in A! . In fact, f{A°) c A10 .

Since /(a) φ /'(/?), Lemma 5 of Appendix A implies that f(a) Φ
f(β). Proposition 2.2 implies that f(a) Π f(β) = 0 . Hence, f(a) and
f(β) bound a unique compact annulus F . Section 6 of Appendix A shows
that the covering map from Sf to S restricted to Af is an imbedding onto
F. Hence, the image of / lies in F. Let cA: A —> F be the immersion
such that / = ipθ cA for the inclusion map iF: F —> S. Each of cA\a or
cA\β is a covering map onto an appropriate boundary component of F .
Since A is compact, the inverse image of each point of F under cA is a
finite set. It is clear that cA(x) e δF if and only if x e δA . These imply
that cA is a covering map. By the definition of π-annuli, an orientable
quotient projective surface of a π-annulus is a π-annulus. Thus, F is a
π-annulus. This completes the proof of Proposition 3.3.

3.8. Let us now discuss imbedded π-annuli and maximal annuli in-
cluding them. We need the following lemma.

Lemma. Let A be an imbedded π-annulus in S. Let a: S1 —• S be a
tight curve. Then a intersects trivially in homotopy with every closed curve
realizing a component of δA. Moreover, if a is simple, then we have either
a{ = β or a{nβ = 0 for an arbitrary component β of δA and the image
aχ of a.
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Proof. Suppose that a intersects essentially with a component β of
δA. By §3.6, a{ is a geodesic complex. Since aχ Π A0 Φ 0 and δA is
geodesic, aχ Π A is a geodesic complex in A. Since no regular arc of aχ

is tangent to β and α^ Π β Φ 0 , a regular arc of aχ n A ends at a point
of β transversally. Let p be a point of 4̂° on the regular arc. Section
3.6 implies that there is a geodesic γ: I -> A passing through p such that
γ(δl) c <M . This is a contradiction as in the case (2) of §3.7. The rest of
the conclusion follows from Proposition 2.2.

3.9. We claim that S can include only finitely many π-annuli. Propo-
sition 2.2(7) and the fact that an imbedded π-annulus is the closure of a
component of the complement of two imbedded tight curves imply that
there are only finitely many imbedded π-annuli freely homotopic to a
given simple closed curve. If two π-annuli A and B are not freely ho-
motopic to each other, then each component of δA is disjoint from the
components of δB by the above lemma, and it follows that A and B
are disjoint. Since given a compact surface, every collection of imbedded
essential closed curves disjoint from one another and not freely homotopic
to one another has finitely many elements, S includes only finitely many
imbedded π-annuli.

3.10. We now discuss maximal annuli. Given an arbitrary hyperbolic
or quasi-hyperbolic annulus A with geodesic boundary, it is a subset of a
unique maximal annulus by Proposition 2.2(7) and the annulus decompo-
sition theorem of Appendix B. We restrict our study to a particular class
of maximal annuli. We denote by M(S) the collection of maximal annuli
that are either freely homotopic to imbedded π-annuli or freely homo-
topic to the components of δS that have hyperbolic or quasi-hyperbolic
holonomy. Note that if the above A is freely homotopic to a component
of δS, then A is a subset of an element of M(S). By Proposition 2.2
and Lemma 3.8, we obtain the next lemma.

Lemma. Each imbedded π-annulus is a subset of an element of M(S),
for every distinct elements a and a of M(S), the annuli a and a! are
not freely homotopic and satisfy and = 0, and M(S) is finite.

4. Convex surfaces

4.1. Suppose that S is convex and compact. Then S is projectively

homeomorphic to the quotient projective surface Ω/Γ for a convex do-

main Ω of S and a projective automorphism group Γ acting properly

discontinuously and freely on Ω by Lemma 1.5 of [5]. Moreover, C1(Ω)
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is a simply convex disk in S 2 , including no antipodal pair. Let us identify
Ω with S in this section; this identifies Γ with the deck transformation
group of S. (For examples of convex surfaces, see Goldman [16].)

It is well known that C1(Ω) is not a triangle, a simply convex disk
bounded by the union of three segments (see [1], [15], [17], [25]). Suppose
not. Then there is a homomorphism from Γ to the permutation group of
the three vertices of the triangle, and the kernel of this homomorphism is
abelian since the vertices are fixed under the action of the kernel. Since
π{(S) is not virtually abelian, this is a contradiction.

4.2. Suppose that ϋ is a hyperbolic automorphism in Γ. Then C1(Ω)
contains a unique attractor and a unique repeller. Let us denote the points
by s and w respectively. C1(Ω) contains at most one fixed point that
is not an attractor or a repeller. Let us denote by m the third fixed
point if it exists. Hence, sw is a unique invariant segment in C1(Ω)
if m does not exist, 'sw, sm, and Tnw are all the invariant segments
in C1(Ω) if m exists. They bound a unique invariant triangle A(smw)
in C1(Ω). Suppose that φ is a quasi-hyperbolic element of Γ. Then,
similarly, C1(Ω) contains a unique fixed point of the largest eigenvalue
and a unique fixed point of the smallest eigenvalue. Let us denote them
by h and / respectively. Then the unique p-invariant segment in C1(Ω)
is M.

We will need the following preliminary lemma, on the properties of
invariant segments. Note that the proof of (3) differs from that of Kuiper
[20]. However, the lemma itself may be proved along Kuiper's argument.

Lemma. (1) If m exists, then Im, rnw c bdΩ.
(2) A/cbdΩ.
(3) Each nontrίvial element yofY does not correspond to a matrix of

type (4).
(4) ~sw° c Ω.
(5) If m exists, then one of Jnf and mw° is a subset of Ω, and the

other is disjoint from Ω.
(6) Ή° c Ω .
Proof (1) Suppose that Im° Π Ω° φ 0 . Let p be a point of this

intersection. Let S1 be the d-invariant great circle including Jin. Let U
be an open disk in Ω containing p such that J7-S1 has two components.
Choose a point x from a component of U - S 1 , and choose a point y
from the other component. Then {ϋ~n(x)} converges to a repeller of
ϋ, and {ϋ~n(y)} converges to the antipodal point of the repeller. These
points are in C1(Ω). This contradicts the fact that Ω is simply convex.
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FIGURE 3. THE ACTION ON Ω OF A PROJECTIVE AUTO-

MORPHISM CORRESPONDING TO A MATRIX OF TYPE (4).

Hence, Im c bdΩ. It follows similarly that rnw c bdΩ.
(2) A similar argument also shows that hi c bdΩ.
(3) By lifting to a finite cover of S, if necessary, we may assume without

loss of generality that γ corresponds to an imbedded closed curve a in
S° . Then S includes a simple component arc a of the inverse image of
a that is y-invariant.

Suppose that γ corresponds to a matrix of type (4). The automorphism

γ has an invariant great circle S* and two fixed points, which are on

S , antipodal to each other. Since C1(Ω) is y-invariant, it follows that
bd Ω contains a fixed point x of γ hence, the fixed points of γ are
x and -x. The component of S 2 - S* including Ω° is such that for
each compact subset A of it, the sequence {γn(A)} converges to {JC} as
n —• oo. Moreover, {γ~n(A)} also converges to {x} as n —• oo (see
Figure 3). Hence, a is a simple curve starting and ending at x such that
a U {x} is an imbedded closed curve (not necessarily differentiable).

It follows that Ω includes the unique open disk Ωy that is a component

of Ω - a and whose topological boundary set in S 2 equals a U {JC} . By
Lemma 4 of Appendix A, Γ includes an element τ that sends a point
a into Ω and does not commute with γ. Since a is simple, τ(ά) is
disjoint from a and, hence, is a subset of Ω y. The curve τ(ά) is a simple
curve starting and ending at τ(x). Since τ(ά) is infinitely long under the
metric d of S (see §2.2 and Appendix A), τ(ά) must end at x also.
Thus τ(x) = x. Thus, T o y o Γ 1 fixes x and corresponds to a matrix of
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type (4). S* is the unique supporting great circle of C1(Ω) at x. Since

τ(Sy) is also a supporting great circle of C1(Ω) at x, we have S* = τ(Sι).

This means that γ and r o y o f 1 commute since they are both of type
(4) and share an invariant great circle and a fixed point. This contradicts
the fact that γ and τ do not commute (see §2 of Appendix A).

(4) The segment sw is a subset of C1(Ω). If sw° n Ω° Φ 0 , then
Mΰ° c Ω° . Suppose that sw c bdΩ and that ra7 c C1(Ω) - Ω. As in (3),
we assume without loss of generality that ϋ corresponds to an imbedded
closed curve a. Let a be the simple component arc of the inverse image of
a in A , which is ^-invariant. A description of the action of (#) implies
that a is a simple arc with endpoints s and w and that a Wsw is the
topological boundary in S2 of an open disk Ω^ that is a component of
Ω - a. As before, we obtain a deck transformation τ that maps a point of
a into Ωϋ and that does not commute with ϋ. Now an argument similar
to one in (3) shows that this is a contradiction. Hence, M Π Ω / 0 . Let
β be a component of ~sw° n Ω. Since each component of ~sw° Π Ω is the
image of a lift of a component curve of δS, it follows that β is invariant
under an element of Γ. Call it τ . Then the action of (τ) on ~sw cannot
be nontrivial unless β = Jw° (see §7.1 of [5]). Hence, ~sw° c Ω.

(5) Similarly to the proof of (4), it follows that (snf U Jϊvw0) ΠΩ is
not empty. Assume without loss of generality that Im° n Ω is not empty.
Then similarly to the proof of (4), Jm° c Ω. Since the action of (ϋ)
on Ω is properly discontinuous, mw° is disjoint from Ω. Hence (5) is
proved.

(6) This can be proved similarly to (4).
4.3. We present the proof of the following generalization of the work

of Kuiper [20].
Lemma. Let γ be an essential closed curve in S. Then γ is hyperbolic

or quasi-hyperbolic.
Proof. Let ϋ be an element of Γ corresponding to γ. Since ϋ is ori-

entation preserving, ϋ corresponds to a matrix T belonging to SL(3, R).
Suppose that T is of type (1), (2), or (3) and that the eigenvalues of T
are positive. Then Proposition 2.3 implies that ϋ is hyperbolic or quasi-
hyperbolic.

We will show that no other possibility for T can happen. From the
simple convexity of C1(Ω) it follows easily that T is not of type (1), (2),
or (3) with negative eigenvalues.

The Brouwer fixed-point theorem implies that C1(Ω) contains at least
one fixed point of ϋ in bdΩ. Let us choose one, which we denote by p.
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Let G be the set of supporting great circles at p. It is clear that G forms
a topological space homeomorphic to a segment or is the set consisting
of one element. The action of (ϋ) induces an action on G. Hence, an
element of G is fixed under ϋ by the Brouwer fixed-point theorem. The
corresponding supporting great circle is ^-invariant. If T is of type (7),
then no great circle passing through the fixed points of ϋ is ^-invariant.
Hence, T is not of type (7).

Since Γ is isomorphic to πχ(S), it contains no elements of order two.

If T is of type (6), then T2 = Id. Hence, T is not of type (6).
Suppose that T is of type (5). Let η be an arbitrary segment with

endpoints p and -p passing through a point r of Ω°. Then η n C1(Ω)
is a simply convex segment with two endpoints, one of which is p. The
other endpoint is not -p. Let it be called q. Then q is a fixed point of
ϋ2 since η is a #2-invariant segment. Since q is fixed, every point of η
is a fixed point of ϋ2 . Hence, r is fixed. This contradicts the fact that
(ϋ2) acts freely on Ω.

By Lemma 4.2, T is not of type (4). The proof is completed.
4.4. A purely convex surface is a convex compact surface M with neg-

ative Euler characteristic that does not include a compact annulus with
geodesic boundary freely homotopic to a component of δM or include a
trivial annulus. Since every principal closed geodesic is an imbedded strong
tight curve, Proposition 4.5(8) implies that convex compact surfaces with
principal geodesic boundary are examples of purely convex surfaces (see
Goldman [16]).

Many convex surfaces are not purely convex. By a summation method
described in §3.7 of Goldman [16], we may obtain a compact surface Mχ

with geodesic boundary, which decomposes into a convex compact surface
with principal geodesic boundary and an elementary annulus of type I. Mχ

is convex by Lemma 5.4.
Note that one can obtain a convex surface with a boundary component

that is a quasi-hyperbolic tight curve using Goldman's techniques [16].
There is a convex real projective structure on a compact pair-of-pants such
that one of the boundary invariants equals (λ, τ) for every real numbers
λ and τ satisfying 0 < λ < 1, τ = 2/y/λ. This can be obtained by a
slight extension of Theorem 4.1 of [16]. (The proof of the remark is to
be supplied in another paper.) Since the boundary invariant is as above,
the boundary component is not hyperbolic but quasi-hyperbolic by Lemma
4.3.

4.5. A boundary elementary annulus in S is an elementary annulus
including a component of δS. The following proposition is a generaliza-
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tion of the results of Kuiper [20] that every essential simple closed curve
in a closed convex surface with negative Euler characteristic is freely ho-
motopic to a closed geodesic.

Proposition. Let a be an imbedded essential closed curve in S, and let
ϋ be an element of Γ corresponding to a.

(l)//*bdΩ includes a ϋ-invariant segment, then a is freely homotopic
to a tight-curve component of δS, which corresponds to a ϋ-invariant open
line in δ Ω.

(2) If a is hyperbolic and is freely homotopic to no component of δS,
then S° includes a unique imbedded tight curve freely homotopic to a,
which is strong.

(3) If a is hyperbolic and is freely homotopic to a component of δS,
then S either

(i) includes a unique imbedded tight curve freely homotopic to a, which
is strong, or

(ii) includes two imbedded tight curves freely homotopic to a, where one
is strong and lies in S° {the other is weak and is a component of δS).

(4) If a is quasi-hyperbolic, then S includes a unique imbedded tight
curve freely homotopic to a, which is strong and is a component of δS.

(5) a is hyperbolic if a is not freely homotopic to a component of δS.
(6) S includes a unique imbedded strong tight curve freely homotopic to

a and at most one imbedded weak tight curve freely homotopic to a, which
must be a component of δS.

(7) If S is purely convex, then S includes a unique imbedded tight curve
freely homotopic to a, which is strong.

(8) Every component of δS is an imbedded strong tight curve if and only
if S is purely convex.

(9) S is the sum of a purely convex surface and subsurfaces that are
trivial annuli or boundary elementary annuli. Every two distinct elements
of the collection of the trivial annuli and the boundary elementary annuli
are disjoint Each component β of δS is a strong tight curve if and only
if β is a boundary component of the purely convex surface but is not that
of the trivial annuli or the boundary elementary annuli.

Proof (1) Let us denote the endpoints of the invariant segment by p
and q which are fixed points of ϋ. Suppose that ϋ is hyperbolic and that
one of p or q is not an attractor or a repeller of ϋ. We assume without
loss of generality that p is a repeller and that q is not an attractor. Then
C1(Ω) includes an attractor r. Lemma 4.2(1) implies that two invariant
segments ~pq and ~qr are subsets of bd Ω. The interior η of one of these
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segments is a subset of Ω by Lemma 4.2(5). Since η is Φ-invariant, under
the quotient map from Ω, the open line η corresponds to an imbedded
tight curve that is a component of δS and to which a is freely homotopic.

Suppose now that ϋ is hyperbolic and that each of p and q is an
attractor or a repeller of ϋ. Then similarly to above, Lemma 4.2(4) implies
that pq° is a subset of Ω and corresponds to a tight curve that is a
component of δS and to which a is freely homotopic. If ϋ is quasi-
hyperbolic, then the desired conclusion follows similarly.

(2) Since ϋ is hyperbolic, bdΩ contains an attractor and a repeller of
(ϋ). Let them be denoted by p and q respectively. Since α is not freely
homotopic to a boundary component, ~pq is not a subset of bdΩ by (1).
Hence, pq° c Ω°. This line corresponds to an imbedded strong tight
curve in S° freely homotopic to α by Proposition 2.2. Suppose that S
includes another tight curve freely homotopic to a. Then it corresponds
to a ^-invariant open line in Ω, which does not connect p and q. By
Lemma 4.2(1), the open line should be a subset of bdΩ. Since (1) gives
the contradiction that a is freely homotopic to a component of δS, the
uniqueness follows.

(3) Let p and q denote the attractor and the repeller of ϋ in Ω re-
spectively. Suppose that no other fixed point of ϋ belongs to C1(Ω).
Similarly to (2), Lemma 4.2(4) and Proposition 2.2 imply that S includes
a unique imbedded tight curve, which is strong. Suppose that a fixed point
other than p or q belongs to C1(Ω). Let it be denoted by r. It follows
that d-invariant segments in C1(Ω) are 'pq, ~pr, and ~qr. By Lemma
4.2(1), pr and ~qr are subsets of bdΩ. Since Ω is not a triangle, we
have pq° c Ω° . This line corresponds to an imbedded strong tight curve
freely homotopic to a by Proposition 2.2. Exactly one of ~pf and qf°
is a subset of Ω by Lemma 4.2(5); it corresponds to a component of δS,
which is a weak tight curve and is freely homotopic to a. Since ~pq°,
pf° , and qr° are the only ^-invariant open lines in Ω, there is no other
imbedded tight curve freely homotopic to a.

(4) It follows similarly to (3) that S includes a unique imbedded tight
curve freely homotopic to a. By Lemma 4.2(2), the tight curve is a com-
ponent of δS.

(5) This follows from (4).
(6) This follows from (2), (3), and (4).
(7) This follows from (6).
(8) Suppose that one of the components of δS is not a strong tight

curve. Then S° includes a unique imbedded strong tight curve β freely
homotopic to the component by (6). Let E be the compact annulus
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bounded by β and the component of δS. By Lemma 2.5 and (6), E
is a trivial annulus or a boundary elementary annulus. Hence, S is not
purely convex.

The converse result follows from (6).
(9) For each component of δS, there is a unique imbedded strong tight

curve freely homotopic to it. Hence, either each component of δS is
strong or S is the sum of So and Aχ, , An, where So is a surface
such that components of δS0 are strong tight curves, and At for each
i is a compact annulus with convex boundary. In the former case, S is
purely convex by (8), and we are done. Let us assume that we have the
second case. Since S includes no imbedded π-annulus by Theorem 3.4,
So includes no imbedded π-annulus. Hence, So is a convex surface by
Theorem 3.4. By (8), So is purely convex. Lemma 2.5 and (6) imply
that each Ai is a boundary elementary annulus or a trivial annulus. The
conclusions of (9) follow easily.

4.6. Let us end this section with the following corollary to Proposition
4.5. Let us assume now that S is not necessarily convex. Suppose that
A, T, and P respectively are a compact annulus with geodesic boundary,
a trivial annulus, and a purely convex surface in S. Since T and P are
convex, every closed curve in T and P is a geodesic if and only if it
is a tight curve (see §2). Notice also that if A is hyperbolic or quasi-
hyperbolic, then the components of δA are imbedded tight curves by the
annulus decomposition theorem in Appendix B.

Corollary. (1) Each component of δP or δA is not a subset of T° .
(2) Each component of δA or δT is not a subset of P° .
(3) Each component of δT or δP is not a subset of A0 .
Proof (1) Suppose that a component of δA is a subset of T° . Then

A is hyperbolic or quasi-hyperbolic. Since components of δA are tight
curves, Lemma 2.5(2) imply contradiction. Similarly, no component of
δP is a subset of T° .

(2) Let a and β be components of δA. Suppose that a c P°. Then
A is hyperbolic or quasi-hyperbolic. We now deduce properties of A Π P,
which is nonempty. By Proposition 2.2, the set of boundary points of AnP
with respect to the relative topology of A is the union of tight curves that
are components of δP or is the empty set. Hence, a component JF of
A Π P including a can be one of the following:

(a) a tight curve that is a common component of δA and δP
(b) a compact annulus B bounded by tight curves in A where one

component of δB is a component of δP, and the other component of
δB is a component of δA or



268 SUHYOUNG CHOI

(c) A itself.
Since a c P°, (a) is not possible. Since Proposition 4.5(7) implies that

a is not freely homotopic in P to a component of δP, (b) is not possible.
Proposition 4.5(7) also implies that A is not a subset of P. Thus, (c) is
also not possible. Therefore, no component of δA is a subset of P° .

A similar argument shows that a component of δT is not a subset of
•P°.

(3) Suppose that γ is a component of δT in A0 . Thus, A is hyperbolic
or quasi-hyperbolic, and T° n A0 Φ 0 . Then (1) and Proposition 2.2
imply that the components a and β of δA are disjoint from T° . Hence
Γ σ n ^ = T°ΠA . Since ΓVlΛ is thus a relatively open and closed subset
of T°, we have T° ΠA = T° and Γ ° c ^ . Since T cannot be a subset
of A, this is a contradiction.

Suppose that γ is a component of δP in ^4°. Thus, P° Π A0 Φ 0.
Then (2) and Proposition 2.2 imply similarly to the above paragraph that
a and β are disjoint from P°. Similarly to the above, a contradiction
follows. Thus the desired conclusion follows.

Let us remark about a consequence of the above corollary: given arbi-
trary two surfaces S{ and S2 among A, T, and P, if components of
δS{ and δS2 intersect trivially in homotopy with one another, and A is
hyperbolic or quasi-hyperbolic, then Sχ Π S2 is either empty or the union
of common components of δSι and δS2 .

5. The proof of the admissible decomposition theorem

In this section, we prove the admissible decomposition theorem. Let Σ
be a compact real projective surface with convex boundary and negative
Euler characteristic.

5.1. Let us denote the collection of trivial annuli in Σ by Γ(Σ), and
let ^ ( Σ ) denote the union of its elements. Recall from §3.10 that M(Σ)
denotes the collection of maximal annuli freely homotopic to π-annuli or
hyperbolic or quasi-hyperbolic components of δΣ, and let Jί^Σ) denote
the union of its elements. Let us denote by C(Σ) the collection of the
closures in Σ of components of Σ - Jt(Σ) - ^ ( Σ ) .

We claim the existence of an admissible decomposition collection: Σ
is the sum of all subsurfaces that are elements of T(Σ), M(Σ) , or C(Σ).
The elements of C(Σ) are maximal purely convex surfaces.

Let us begin the proof. Consider two arbitrary elements of Γ(Σ) or
M(Σ). Then they either are disjoint or intersect precisely at the union of
their common boundary components by §§2.6 and 4.6 and Lemma 3.10.
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Hence, ^ ( Σ ) U Jί(Σ) is the union of compact annuli disjoint from one
another. The topological boundary of the set is the union of imbedded
tight curves in Σ° disjoint from one another. Thus, each element of C(Σ)
is a compact surface with convex boundary.

Let S be an element of C(Σ). Suppose that S is an annulus. Since
χ(Σ) < 0, a component of δA for a maximal annulus A, an element of
M(Σ), equals a component of δS. The annulus decomposition theorem
of Appendix B implies that S is the sum of elementary annuli and trivial
annuli in S. Since a trivial annulus in S is a trivial annulus in Σ, it
follows that S is the sum of elementary annuli. But this gives a contra-
diction that A is not maximal. Hence, χ(S) < 0. Since every imbedded
π-annulus in Σ is a subset of an element of M(Σ), the surface S is convex
by Theorem 3.4.

By construction, each component of δS either is a component of δΣ
or is a boundary tight-curve component of a maximal annulus in M(Σ) or
a trivial annulus in T(Σ) in Σ° . Let us state two consequences of this:

(1) Each component of δS is a strong tight curve.
(2) Corollary 4.6 implies that S is not a proper subset of a purely convex

surface.
Let us prove (1): Let a be an arbitrary component of δS.
(i) Suppose that a is a component of δΣ. If a trivial annulus or a

boundary elementary annulus A in S includes a, then A is a trivial
annulus in Σ or a boundary elementary annulus in Σ. A boundary ele-
mentary annulus in Σ is a subset of an element of M(Σ) by §3.10. Since a
is in the complement of ^ ( Σ ) \JJt(Σ), it follows that a is not a subset of
a trivial annulus or a boundary elementary annulus in S. By Proposition
4.5(9), a is a strong tight curve.

(ii) Suppose that a is a component of δA for a maximal annulus A
in M(Σ). If a is not strong, then a is a subset of a boundary elementary
annulus in S by Proposition 4.5(9). This yields a contradiction that A is
not maximal. Thus, a is a strong tight curve.

(iii) If a is a boundary tight-curve component of a trivial annulus in
Γ(Σ), then α is strong (see §3.1).

Consequently (1) and Proposition 4.5(8) imply that S is purely convex.
By (2), S is a maximal purely convex surface. Therefore, the existence of
an admissible decomposition collection follows.

5.2. Given two subsurfaces of a real projective surface, we say that they
are adjacent if their intersection is the union of finitely many imbedded
closed geodesies disjoint from one another.
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We now claim the uniqueness: Suppose that T!, M', and C' respec-
tively are a collection of trivial annuli, a collection of maximal annuli, and
a collection of maximal purely convex surfaces in Σ. If Σ is the sum of
all the subsurfaces that are elements of Tf, M1 or C', then Tf = T(Σ),
Mf = M{Σ), and C' = C(Σ).

By §2.6, T1 c Γ(Σ). Because of the decomposition of Σ into ele-
ments of Tf, Mr, and C', the number of components of δΣ that are
not geodesic equals the number of elements of T1. Similarly, the number
of nongeodesic components of δΣ equals the number of the elements of
T(Σ). Thus, T' = Γ(Σ).

Let A be an element of M'. Suppose that A is freely homotopic to
a component of δΣ. Since χ(Σ) < 0, Lemma 5.3 implies that at least
one component of δA is a boundary component of a maximal purely
convex surface in C'. Hence, A is hyperbolic or quasi-hyperbolic, and
A € M(Σ). Suppose now that A is not freely homotopic to a component
of δΣ. Then each component of δA is a boundary component of a
maximal purely convex surface in C1. Hence, each component of δA is
strong by Proposition 4.5(8), and A includes a π-annulus by Lemma 5.5.
Thus, A € M(Σ), and M' C M(Σ).

Suppose that M1 is a proper subset of M(Σ). Then by Lemma 3.10,
an element A of M(Σ) - M1 is a subset of the union of some purely
convex surfaces in C' and trivial annuli. Since the intersection of A
with each trivial annulus is a geodesic boundary component of the trivial
annulus or is empty by §4.6, A is a subset of the union of purely convex
surfaces belonging to C'. Since by Lemma 5.3, no two elements of Cf

are adjacent, A is a subset of a purely convex surface belonging to C'.
This contradicts Proposition 4.5(7). Therefore, M1 — M(Σ). Since no
two elements of C(Σ) are adjacent, we also have C' = C(Σ). Hence,
the uniqueness is proved, and the proof of the admissible decomposition
theorem is complete.

5.3. Lemma. Suppose that two admissible subsurfaces in Σ are adja-
cent. Then their types are different from each other.

Proof It is straightforward to prove this with the help of the following
lemma.

5.4. The following lemma generalizes Theorem 3.7 of Goldman [16].
It is also true that the lemma may be proved by an extension of the proof
given by Goldman [16].

Lemma. Let Sλ, , Sn be convex compact subsurfaces of Σ. Suppose
that x(St) < 0 for each /, / = 1, , n, and that n > 2. Assume the
following conditions:
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• {Sχ, , Sn} is a decomposition collection of a connected subsurface
S' ofΣ.

• An annulus in the decomposition collection is not adjacent to another
annulus in the decomposition collection.

• St Π Sj whenever i Φ j is either the union of strong tight curves in S
or empty.

Then S' is a convex subsurface of Σ. Moreover, if S{, , Sn are

purely convex, then S1 is purely convex.
Proof The union Sr is a compact subsurface of S with convex bound-

ary and with χ(S') < 0. Suppose that S* is not convex. Then Sf includes
an imbedded π-annulus. Let us call it E. There exists an integer k,
I <k <n, such that E° n Sk Φ 0 . By Lemma 3.5, E is not a subset of
Sk . Therefore, δSk ΠE° φ0. Let α be an arbitrary component of δSk .
Each component of δE either is disjoint from a or is identical with a
by Lemma 3.8. This fact implies that E° includes a component β of
δSk . The second condition of the premise shows that β is a component
of δSι for some / where /(£/) < 0. Since β is a strong tight curve, it
follows that β is a boundary component of a purely convex surface in St

by Proposition 4.5(9). However, this contradicts Corollary 4.6. Hence, S'
is convex, and the desired conclusions follow.

5.5. Lemma. Let A be a compact hyperbolic or quasi-hyperbolic an-
nulus such that each component of δA is a strong tight curve. Then A
includes a π-annulus.

Proof. By the annulus decomposition theorem of Appendix B, A is
the sum of elementary annuli E., i = 1, , n, where Et Γ\E. = 0 if
\i - j \ > 1, and E Π Ei+ι is a common component of δEi and δEi+ι.
Suppose that n = 1. Since the boundary components are strong, Ex is
an elementary annulus of type Πa, a π-annulus. Assume now that n > 2.
Suppose that A is hyperbolic. Then Ex and E2 are elementary annuli
of type I and meet at a weak tight curve. This implies that Ex U E2 is a
π-annulus. Suppose that A is quasi-hyperbolic. If Ex is an elementary
annulus of type Πa, then Eχ is a π-annulus. If Eχ is an elementary
annulus of type lib, then so is E2, and Eχ and E2 meet at a weak tight
curve. It follows that Eχ UE2 is a π-annulus. In all cases, A includes a
π-annulus.

Appendix A: The topology of closed curves in surfaces

1. Let S be a surface. Let S be the universal cover of S, and let

pr: S —> S denote the universal covering map. Let S1 be a circle, and
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let c: R —• S1 denote the infinite cyclic covering map from the real line
R to S 1 . A closed curve in S is a regular arc from S1 to S. It is said
to be simple if it is injective. (An imbedded closed curve is the image
submanifold of an injective closed curve.) In this paper, we consider only
closed curves that map into S° or δS. (Closed geodesies in real projective
surfaces always have this property; see §2.1 of the main text.) A lift of
a closed curve a: S1 —• S to S is a map a satisfying the following
commutative diagram:

S1 —2L_> S.

A lift of a to a cover Sf of S is the map a satisfying the following
commutative diagram:

S1 _2l-> S'

I -Ί
S1 —2L-, 5 ,

where pr': 5' —• S is the covering map. (It will be clear from the context
which one we mean by a "lift.")

A closed curve is said to be essential if it is not null-homotopic. Two
closed curves a and β are said to intersect if their images intersect, a
intersects a set A if the image of a intersects A. a and β are said
to intersect trivially in homotopy if they are homotopic to disjoint closed
curves and are said to intersect essentially otherwise. Simple closed curves
a and β have minimal intersection if their image submanifolds aχ and
βχ have minimal intersection (see Casson and Bleiler [3]); i.e., aχ and
βχ intersect transversally and there are no arcs μ and v in aχ and βχ

respectively having common endpoints and such that μUu is the boundary
of a disk in S.

Two closed curves a: S1 -» S and β: S1 —• S are said to be freely
homotopic if α and β are homotopic. We need the following definitions
for convenience in the main text. A closed curve α: S1 —• S is said to be
freely homotopic to an imbedded closed curve β in S if a is homotopic
to an imbedding from S realizing β. Two imbedded closed curves a
and β in S are said to be freely homotopic if an imbedding from S1

realizing a is homotopic to that realizing β . An annulus A in S is freely
homotopic to a if a component of δA is freely homotopic to a. Two
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annuli A and B in S are freely homotopic to each other if a component
of δA is freely homotopic to a component of δ B .

2. We now prove needed facts on curves in surfaces using hyperbolic
structures. Let H2 be the hyperbolic plane. We identify H2 with the in-
terior of the upper hemisphere of the complex projective space CP1 using
the Poincare model. A hyperbolic structure on S with convex boundary
whose associated metric is complete and such that each essential closed
curve has hyperbolic holonomy is called a generic hyperbolic structure on
S. Suppose that S is homeomorphic to a compact annulus or a cover of a
compact surface of negative Euler characteristic. Since a compact surface
with negative Euler characteristic admits a generic hyperbolic structure
(see [27] and [3]), it follows that S admits a generic hyperbolic structure.
Further, given an essential simple closed curve in S, there is a generic
hyperbolic structure on S such that the closed curve is geodesic (see Cas-
son and Bleiler [3]). We may identify S with a convex domain Ω in
H2 complete under the hyperbolic metric. Then S is identified with Ω/Γ
where Γ is a discrete subgroup of the group PSL(2, R) of fractional linear
transformations with real coefficients acting properly discontinuously and
freely on Ω. Here, Γ is identified with the deck transformation group of
S. (Each element of Γ is hyperbolic.)

Let us first discuss about commuting elements of Γ. Let ϋ and φ be
two nontrivial elements of Γ. Then ϋ and φ commute if and only if ϋ
and φ have the same fixed point set (see Proposition I.D.3 in [21]). This
means that ϋ and φ commute if and only if ϋ and φ have a common
invariant complete geodesic in H2 .

We claim that ϋ commutes with φ if and only if ϋ and φ are multi-
ples of a common element of Γ. Suppose that ϋ and φ commute. H2

includes a complete geodesic / that is invariant under both ϋ and φ.
Since the action of the group {φ e Γ\φ'(l) = /} on / is properly discon-
tinuous and free, the group is an infinite cyclic group. Thus, ϋ and φ are
multiples of its generator. The converse portion of the statement is trivial
to show.

Lastly, suppose that ϋ commutes with p d o ^ " 1 , Then we claim
that ϋ commutes with φ. The proof is as follows: ϋ has an invariant
complete geodesic / in H2 . Since ψ7 o ?? o p"1 commutes with &, it also
leaves / invariant. Since / is the unique invariant complete geodesic of
ϋ, we have φ(l) = I. Hence, φ commutes with ϋ.

3. We now discuss on lifts of closed curves. Let r and s be the
endpoints of a complete geodesic / corresponding to an essential simple
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closed curve. Then given ϋ in Γ, we have either that ϋ(r) — r and ϋ(s) =

s or that ϋ(r) and ϋ(s) lie in a common component of bdH2 - {r, s} .
Lemma. Suppose that a is an essential closed curve freely homotopίc to

a finite covering of a simple closed curve, and that a is a simple arc that is
the image of a lift of a to S, an injective map. Suppose that a and ϋ(ά)
for a deck transformation ϋ are transversal. Then if a and ϋ(ά) intersect
at a point, then they intersect at another point.

Proof. Since a is essential, a is an arc ending at two distinct points r
and s of bdH2 (see the proof of Lemma 2.3 of Casson and Bleiler [3]).
Let φ be an element of Γ corresponding to a and a. Then r and s are
the endpoints of a p-invariant complete geodesic. Suppose that we have
r = d(r) and s = ϋ(s). Then ϋ and φ commute. We have thus ϋm = φn

for two nonzero integers m and n by §2. This means that (φn) acts on
both ά and ϋ(ά). Hence, the conclusion follows. Suppose now that ϋ(r)
and ϋ(s) lie in the same component of bdH2 - {r, s} . The conclusion
follows easily in this case by transversality.

4. We will need the following lemma. Let d denote the complete
hyperbolic metric on »S corresponding to the generic hyperbolic structure.
We denote the induced metric on an arbitrary cover of S by d also.

Lemma. Suppose that S is compact. Let a be an essential simple
closed curve in S, and let a be the simple arc that is the image of a
lift of a to S, an injective map. Let ϋ be a deck transformation of S
corresponding to a and a. Suppose that a component Sa of S - a is
homeomorphic to an open disk. Then there is a deck transformation φ not
commuting with ϋ, that maps a point of a to a point of Sa.

Proof. We may assume without loss of generality that a is geodesic.
Since Sa is an open disk, the completeness of S implies that Sa is a
component of H2 removed the complete geodesic α. Hence, there is a
sequence of points {x.} in Sa such that {d(xi, α)} -> oo. Let x e a.
Since S is compact, for each /, there is a deck transformation #z such
that rf(df.(jc), jcf.) < 2diam(5) for the d-diameter diam(S). Let / be an
integer such that d(xt, ά) > 2 diam(S). Then ϋ.(x) e Sa. This completes
the proof (compare to [1]).

5. Let S' be a covering of S with covering map p: S' -> S. (S is
not necessarily compact.)

Lemma. Suppose that a and β are essential imbedded closed curves
freely homotopic to each other in S'. Suppose that a Φ β and that p(a)
and p(β) are imbedded closed curves. Then p(a) and p(β) are not iden-
tical.
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Proof. We may assume without loss of generality that p(a) is a closed
geodesic. Suppose that p(a) = p(β). The covering map p induces a
generic hyperbolic structure on Sf, where a and β are imbedded closed
geodesies in S' distinct from each other. However, it is well known that an
essential simple closed curve in a hyperbolic surface with convex boundary
is freely homotopic to at most one imbedded closed geodesic (see Lemma
2.3 in [3]). This is a contradiction.

6. Given a topologically imbedded submanifold Sχ of S, let S[ be a

component of p~ι(S{). Then p\S[ is a covering map onto S{.
Suppose that a and β are essential simple closed curves in S' disjoint

from and freely homotopic to each other. Suppose that p\a and p\β are
imbeddings onto p(a) and p(β) respectively, and that p(a) and p(β)
are disjoint.

Now, p(a) and p(β) bound a unique annulus, say A, and a and β
also bound a unique annulus, say A'. Each component of p~l{A) is a
cover of A and, hence, is homeomorphic to either S1 x / or R x / for
a compact interval / . Let F be the component containing a. Then α
is a component of δF. It follows that F is homeomorphic to S1 x / ,
and the covering map p\F is an imbedding onto A. Let β' be the other
component of δF. Then p{β') = p(β). By the preceding Lemma 5,
β' = β. Since a and /? bound a unique compact annulus, F = A!. It
follows that p|Λ ; is an imbedding onto A .

Appendix B: The annulus decomposition theorem

1. In this section, we will prove the annulus decomposition theorem
(Corollary 3.6 of [14]). The version proved here is more general than
that of Goldman since we do not require the boundary components to
be principal geodesic and the holonomy to be hyperbolic. We will base
our argument on the articles of Goldman [13], [14] (see [9] also) except
for Proposition 2, which is not a step used by Goldman. (The author
benefited greatly from a conversation with W. Goldman in February 1993
in constructing the proof.) For examples of projective annuli, refer to
Sullivan and Thurston [26] and §3 of Goldman [14].

Note that we will need only the materials in §1, the introduction of §2,
and §2.1 in the main text. The results in this appendix are independent of
other parts of the main text and Appendix A.

Annulus decomposition theorem. Let A be a hyperbolic or quasi-hyper-
bolic projective annulus with convex boundary. Then A decomposes into
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subsurfaces that are elementary annuli or trivial annuli.
Let p: A —• A be the universal covering map. Let A have a complete

metric d. We may assume that d is a hyperbolic metric with respect to
which δA is convex. We denote also by d the induced complete metric
on A. Let dev: A —> S2 be a developing map, and let ϋ be the projective
automorphism corresponding to a generator φ of the deck transformation
group of A. Let μ be the spherical Riemannian metric on A induced
from S2 by dev, and let d be the induced metric on A. Let A be the
completion. (See [18] and the introduction of [5].)

Suppose that ϋ is hyperbolic (leaving aside the case where ϋ is quasi-
hyperbolic until the end). Let s, m, w, -s, —m, and —w denote the
fixed points of ϋ as in § 1.4 of the main text. There are three invariant great
circles lχ, l2, and /3. We use the decompositions used in Goldman's arti-
cle [14, §2.1]. (See [12] also.) For each /, since /. is ^-invariant, dev"1^/)
is ^-invariant. Let Lt = ^(dev"1 (/.)). Then p~~ι(L.) = dev"1(/.), L, is
a compact set, and each component of L. is a one-dimensional compact
submanifold of A or the set of a point of δA. Each one-dimensional
manifold component is either an imbedded closed geodesic or a maximal
segment. Either the component is a subset of δA, or its manifold interior
is a subset of A0 by Lemma 3.4 in [5]. Note that dev"1^) is also φ-
invariant. Let L = /?(dev~1(/)). Then L is the union of one-dimensional
submanifolds transversal to one another and the finite set of points of δ A .
Notice also that p~x(L) = dev - 1(/).

2. Our first step is as follows:
Proposition. There exists a component of L that is an imbedded tight

curve freely homotopic to a component of δA.
Proof Suppose that A is convex. Then dev: A-> S2 is an imbedding

onto a convex domain Ω by Lemma 1.5 of [5]. A is projectively home-
omorphic to Ω/(ϋ). Since Ω is ^-invariant, an attractor and a repeller
of ϋ are in bd Ω. We may assume without loss of generality that they
are s and w respectively. Suppose that ΊFw° <£_ Ω. Then Ίw c bdΩ and
sw° Π (bdΩ - Ω) Φ 0 , which imply that Ω/(d) is not compact. Hence,
sw° is a subset of Ω and corresponds to an imbedded tight curve. Clearly,
it is a component of L.

Suppose that A is not convex. Then as in §5.1 of [5], A includes a
triangle T such that T Π A^ c η° Π A^ φ 0 holds for an edge η of T.
Let a be a maximal line in η - A^ containing an endpoint of η. Let
a be oriented away from the endpoint of η. Since p\a is semi-infinite
in d, there is a point x in A and a rf-unit vector v at x such that



DECOMPOSITIONS OF REAL PROJECTIVE SURFACES 277

p\a passes arbitrarily close to x and such that its rf-unit direction vector
passes arbitrarily near v (see Fried [11]). This implies that there is a
sequence {α } of lines in A such that the following properties hold:

(1) For each /, there is an integer n(ι) such that at = φn(ι\a). We
have {|«(/)|} —• oo as i —> oo.

(2) There is a sequence { x j , x{ e αz for each /, converging to a point

x of A corresponding to x.
(3) The sequence {vj, where y. is the rf-unit direction vector of ai

at xt for each i, converges to a vector v at x corresponding to v.

Let a^ be the maximal line in A passing through x in the direction
of v. We will prove that a^ corresponds to an imbedded tight curve in L
that we seek.

First, let A1 be a real projective open annulus including A. Clearly, A
is a closed proper subset of A , an open disk. The metric d on A extends
to a complete hyperbolic metric on A1 such that the inclusion map from
A to A' is isometric. Let us denote the complete metric on A1 by d
also. The developing map dev extends to a developing map on A' ,which
is denoted by dev also. Thus, the spherical metric μ also extends to a
spherical metric on X induced by dev. Let us denote the Riemannian
metric by μ also.

Considering A1 as a Riemannian manifold with the spherical metric μ,
we obtain a differentiate exponential map for projective geodesies defined
on an open domain in T(A') and mapping to A!. We may reparametrize
every projective geodesic so that it is rf-length parametrized. It is easy to
see that there is an associated continuous map exp': T(A') —> A1 where
exp'|{ίu|ί G R} is a rf-length parametrized projective geodesic for each
rf-unit vector u in T(Af).

Next, we claim that a^ is infinitely long with respect to d. Suppose
not. Then a^ is a segment of finite rf-length. Let y be the endpoint
of a^ in the direction of v. Let / be the ^-length of the segment on
a^ with endpoints x and y. Let us choose a point y. in the infinite
component of a( - {x } for each i such that the ^-length of the segment
on ai with endpoints xt and y. is /. The above paragraph implies that
{yt} —• y in A'. Since α is semi-infinite, αz includes a segment ζt with
ζ° 3 yt such that the ^-distance along αz from yi to each point of δζi

is equal to /. Again, the above paragraph shows that {£J converges to
a segment ζ in A' such that ζ° 3 y, and ζ given an orientation is in
the same direction as a^ at y. Since ζ. c A for each i, it follows
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that ζ c A, which gives a contradiction that a^ is not maximal in A.
Therefore, a^ is infinite with respect to d.

For some fc, k = 1, 2, 3, lk includes dev^^). Thus, pla^ maps
into L^ . Since p lα^ is infinite in d, it maps onto an imbedded closed
geodesic that is a component of Lk. Since a^ is a maximal line, it
follows that pla^ is a covering map onto the imbedded closed geodesic.

Finally, we claim that a^ is a convex line. Suppose not. Then the d-
length of α ^ is greater than π . In fact, since p lα^ covers an imbedded
closed geodesic, a closed one-dimensional real projective manifold, it is
straightforward to show that a^ is infinitely long in d in both directions.
Each a( is a convex line and a geodesic of d. Hence, a^ includes a con-
vex segment β such that άe\(β) is the geometric limit of a subsequence
of {Cl(dev(αz))} and such that β 3 x. Since β is convex, άe\\β is in-
jective; thus, Ar includes a rf-bounded open neighborhood % of β such
that dev|^ is an imbedding. For infinitely many i, it is easy to see that
dev(α.) c dev(^) and, hence, α c %. Since this contradicts the fact that
ai for each / is infinite with respect to d, it follows that a^ is convex,
and, therefore, Pla^ is a covering map onto the imbedded tight curve.
This implies the conclusion of Proposition 2.

3. To continue, we need several topological facts. The first collection
of facts are as follows: By a simple piecewise-regular curve, we mean a
topologically imbedded curve that is the union of finitely many regular
curves transversal to one another. Let S be a compact real projective
surface with convex boundary whose components are simple piecewise-
regular curves. Let F be a compact subset consisting of components
Cj, , ζn satisfying the following conditions:

(1) Each ζ. is an imbedded geodesic curve unless it is the set of a point
of δS.

(2) Each ζ( Π δS is either the set of endpoints of £z or ζ. itself or the
empty set.

Suppose that S includes no imbedded closed curve intersecting F at
a point transversally and intersecting F at no other point. Then it is
straightforward to show that given a component R of S - F, the closure
Cl(R) is a compact surface with convex boundary whose components are
simple piecewise-regular curves and that Cl(R)° = R° .
•* The second collection of facts that we need are as follows: Suppose that

B and its closure Bχ are topologically imbedded subsurfaces of S such
that B°χ = B. Let S' be a covering of S with covering map q: S1 -> S.
Let 3§ be a component of q~l(B). Then q\S§ is a covering map onto
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B. Let c ĵ be a component of q~l(Bχ) including 3S. Also, q\SBγ is a
covering map onto Bχ. Clearly, 3S c 3S[. Since #(«#*) c 5 , w e have
^ c ?" ! (5 ) . Since 3S[ is path-connected, we conclude <g = &° and
Q\{β) = &χ.

The third set of facts are as follows: Let K be a closed subset of S,
and let H be a component of 5° - K. Let # ' = q~X{K), and let Hr be
a component of q~ι(H). Then i/' is a subset of 5 / 0 - K1. Let tf" be
a component of S'0 - K1 including H1. Since q{H") is path-connected
and disjoint from K, we have #(#") c H. Thus, //" c q~l(H). Since
if" is path-connected, H' = H" . We conclude that H1 is a component
of S ' 0 - * ' .

Final facts are as follows: Let M be a surface, AT a closed subset of
M, and H a component of ¥ ° - K. Then (Cl(#) n M°) -HcK.
The proof is as follows: Let x be a point of a component Hf of Λf° - K
different from H. Then H1 is an open subset of M° - K and is an
open subset of M° . Since H and H1 are disjoint, x does not belong to
C\(H). Hence, if a point x belongs to Cl(H) Π M° , then x belongs to
H or K. Thus the claim follows.

4. Let B be a component of A — L. We will prove properties of Bχ

where i^ = 0 ( 5 ) . (Recall the facts on L in §1 of this appendix.)
Proposition. Suppose that Bχ includes an imbedded tight curve. Then

Bχ is a trivial annulus or an elementary annulus, where BχnL equals the
union of all geodesic components of δBχ.

Proof. We claim that Bχ is a compact surface such that B° = B°χ . To
prove this, we apply the results of §3 to Bχ. First consider A-Lχ. Choose
a component Rχ including B. Note that Rχ is disjoint from Lχ. Then
by the above argument, Cl(i?j) is a compact surface with convex boundary
whose components are simple piecewise-regular curves, and Cl{Rχ)° = R°x .
Consider Cl(Rχ)-L2. We obtain a component R2 including B. Sim-
ilarly, Cl(i?2) is a compact surface with convex boundary whose com-
ponents are simple piecewise-regular curves, and Cl(R2)° = R°2. Since
R2 c Cl{Rχ) - L2, it follows that R°2 c Cl(Rχ)° -L2 = R°-L2. Hence,
R°2 is disjoint from Lχ and L2 since R°2 is a subset of R°χ and R2 . Fi-
nally, we obtain a component i?3 of Cl(i?2)-L3 including B. Similarly,
Cl(i?3) is a compact surface with convex boundary, and Cl(R3)° = R°3.
Since R3 c Cl{R2) - L3, we have R°3c R°2-L3. Hence, i?3 is disjoint
from Lχ, L2, and L3 since i?3 is a subset of i?2 and R3. Clearly,
B° c R°3. Since 5° is a component of 5° - Lχ - L2 - L3, we have
B° = R° . Hence, ^ = Cl(i?3) and B° = B° . Thus, our claim follows.
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Next, let B1 be a component of p~ι(B°) for the universal covering
map p: A -> A, and let Bχ be the component of p~ι(Bχ) that includes
B1. By Lemma 5, dev|lϊ' is an imbedding onto a convex open domain
0 in an open Φ-invariant triangle T. Let Cl(Bf) denote the closure of
B1 in A. Since B1 is convex, §1.4 of [5] implies that άev\Cl(B') is an
imbedding onto a convex compact subset C\(<f) of C1(Γ). Section 3
shows that Bχ = Cl(2?') n ^4. Therefore, dev| 1^ is an imbedding onto a
dense domain in d(#), which is a subsurface denoted by Ω.

Finally, we use the hypothesis that Bχ includes an imbedded tight curve.
Bχ is projectively homeomorphic to the quotient surface of Ω by the
action of a discrete group of projective automorphisms. Since Bχ is not
simply connected and includes an imbedded tight curve, the discrete group
is not trivial and equals (ϋ). We may assume without loss of generality
that s and w are the attractor and the repeller of ϋ in C1(Γ) respectively.
Since C\(ff) is a ^-invariant convex compact subset of C1(Γ), it follows
that Cl(^) equals either C1(Γ) or a convex compact subset K whose
boundary is the union of Jw and an open arc γ in T connecting s and
w . In order that Ω/(#) be compact, Ω must either equal T u sw° U η°
for an edge η of T distinct from Iw , or equal K - {s, w} . Since the
quotients of these sets are an elementary annulus or a primitive trivial
annulus respectively, Bχ is an elementary annulus or a trivial annulus.
Suppose that Bχ is a trivial annulus. The nongeodesic component of
δBχ is disjoint from L since γ c T. Clearly, the geodesic component
of δBχ lies in L, and B°χ is disjoint from L. Hence, lίj Π L is the
geodesic component of δBχ. If 5j is an elementary annulus, then a
similar argument shows that BχΠL = 5 5 t . This completes the proof of
Proposition 4.

5. Lemma. 77*e tfώseί B' is a convex subsurface of A, and dev|2?' is
an imbedding onto a convex subset of an open ϋ-invariant triangle.

Proof Since the connected set B' lies in the complement of dev" 1 ^),
it follows that dev(2?') is a subset of an open Φ-invariant triangle, say T.
For each point x of Bf, we denote by Eχ the subset of the points of
B' reachable from x by segments in B1. Similarly to Proposition 1.2 of
Carriere [2], it follows that d e v ^ is an imbedding onto an open domain
in T for each point x of B1. We let E* denote the image of Eχ under
dev. Similarly to Proposition 1.3.2 of Carriere or Lemma 3 of Koszul [19],
B1 is convex if and only if E* is a convex subset of T for each point x
of B'.

Suppose that Br is not convex. Then E* is not convex for a point x

of B . Hence, T includes a compact triangle R such that
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R Π (Γ - E*χ) c η° Π (T - E*χ) φ 0

holds for an edge η of R (see [2]). The injectivity of d e v ^ implies
that B1 includes a convex open triangle imbedding onto R° under dev.
Taking the closure of the open triangle and using §1.4 of [5], we obtain a
triangle R! in C\(B'), a subset in A, such that

R! n ( i - Bf) c c" π ( i -B')Φ<Z>

holds for an edge £ of i?'.
Let Z/ = dev" 1 ^). Since p~l(L) = Lf, and 5° is a component of

4̂° - L, from §3 it follows that 5 ' is a component of A0 - Lf. Thus,

(Cl(5') Π A°) -B' cL', (ζ° n A0) -Bf cLf.

Since Λί = A^ u <Lί U ^ , we have

ζ°n(i-B1) c C°π(i^ uδAuL!).

Let α be the component of ζnB* containing a vertex of ζ. Let y be
the endpoint of a not in a that is, y is the unique point of Cl(α) - a in
vl. By our choice, y is a point of £° n(-4-2? ;). Then y is not an element
of δA otherwise a is tangent to a component of δA, and acδA. Also,
y is not an element of άe\~ι(l) since Re T. Hence, y is a point of A^ .
Now, this implies that a is semi-infinite in d. Again p\a is semi-infinite
in rf. We deduce as in the proof of Proposition 2 that there is a sequence
{ α j of ^-infinite lines in A having the following properties:

(1) For each /, there is an integer n(i) such that at = φn(<ι\ά). We
have {|«(/)|} —> oo as / -> oo .

(2) There is a sequence {xj , where x{ e a( for each /, converging to

a point x of A.
About the sequence we will now derive two facts that contradict each

other. The first is as follows: There is a tiny disk B(x) of x. Clearly,
d(x, bdB(x)) = ε for a positive constant ε. Let iV be an integer such
that ά(xi, x) < ε/2 for i > N. Since αz is semi-infinite in d, it follows
that for each / greater than iV, α ^ ^ J c ) includes a line whose d-length
is bounded below by ε/2. Thus, the d-length of dev(αz) for each / is
bounded below by a positive constant independent of /.

Second, let us consider the image of αz under dev. For each /, there is
the integer n(i) such that dev(α.) = ϋn("ι\άe\(a)). We may assume with-
out loss of generality that {h'J)} —• oc or that {n(i)} -^ -oo by extracting
subsequences, if necessary. Since both endpoints of dev(α) belong to T,
the sequence {Cλ{Λ&t(a?))} converges to the set of the attractor or the set
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of the repeller of ϋ in C1(Γ). Hence, {d-length(dev(o!/))} converges to
0.

Since the above two paragraphs contradict each other, we conclude that
B1 is convex. Since B' is convex, it follows by [5] that dev|i?' is an
imbedding onto a convex open domain in T.

6. We can now prove the annulus decomposition theorem. By Proposi-
tion 2, there is a component B of A - L such that its closure Bχ includes
an imbedded tight curve. By Proposition 4, Bχ is an elementary annu-
lus or a trivial annulus. Each component of δBχ is a subset of either
A0 or δA. Let B' be any other component of A - L sharing a bound-
ary point with B. Since each component of δB in A° is an imbedded
tight curve that is a component of L, the closure of Bf also includes an
imbedded tight curve. By Proposition 4, Cl{Bf) is also a trivial annulus
or an elementary annulus. Thus, an induction shows that the closure of
each component of A - L is a trivial annulus or an elementary annulus.
This implies the conclusion of the annulus decomposition theorem if ϋ is
hyperbolic. We are left with proving the conclusion of the theorem when
ϋ is quasi-hyperbolic. But it is absolutely clear that an entirely similar
argument can be used to prove this.
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