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HOMOLOGY OF MODULI SPACES
OF INSTANTONS ON ALE SPACES. I

HIRAKU NAKAJIMA

1. Introduction

In [13] P. B. Kronheimer and the author introduced a new class of
hyper-Kahler manifolds which arise as moduli spaces of anti-self-dual con-
nections on a certain class of 4-dimensional noncompact manifolds, the
so-called ALE spaces. The ALE space is diffeomorphic to the minimal res-
olution of the simple singularity C2/Γ for a finite subgroup Γ of SU(2),
and was constructed by P. B. Kronheimer [12]. In [17] we studied the ge-
ometry of the moduli space, and showed that, under a certain topological
condition on the vector bundle (cf. (5.1)), its middle cohomology group is
isomorphic to a weight space of an irreducible finite dimensional represen-
tation of a simple Lie algebra. The key geometric property of the moduli
space is the existence of an S ̂ action.

The aim of the present paper and its sequel is to compute the homology
of the moduli spaces. The method is to use the moment map for the in-
action as a Morse function. In this paper we treat the case where the group
Γ is a cyclic group (i.e., the base ALE space is of type An). One of the
main results in this paper is the following:

Theorem 1.1. Let Tl be the moduli space of anti-self-dual connections
on a vector bundle over the ALE space of type An (see §2 for more precise
definitions). Suppose that the hyper-Kahler metric on ffl is complete. Then
Wl has a nondegenerate Morse function F which has only critical points of
even index. In particular, the homology of OT has no torsion and vanishes
in odd degrees, and every component of ffl is simply connected.

In fact, we can say more: we have a precise description of the criti-
cal points and an algorithm to compute the Betti numbers (Theorem 3.2,
equation (3.4), Proposition 4.3).

It was shown that the homology group of the moduli space is isomor-
phic to that of Spaltenstein's variety in [17, 8.7] when the ALE space is
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of type An and the above mentioned topological condition holds. Spal-
tenstein's varieties were studied extensively in conjunction with the rep-
resentations of the Weyl groups. Borho and MacPherson gave formulae
of their Poincare polynomials in terms of Green polynomials [3]. More
recently Terada gave their partitions into affine spaces and another de-
scription of the Poincare polynomials in terms of Young tableaux [21],
inspired by the works on similar varieties by Spaltenstein [19] and Hotta-
Shimomura [18], [10]. Their approaches are totally different from ours,
but we can show that our algorithm also has a combinatorial description in
terms of Young tableaux (Theorem 5.14), which is essentially equivalent
to Terada's description.

Together with the result in [17], our result gives a formula for the di-
mension of the weight spaces in terms of Young tableaux (see (5.16)).
This is nothing but the classically well-known correspondence between the
number of semistandard tableaux and the Kostka coefficient (see e.g., [6]).

Goto gave an inductive formula for the Betti numbers for the very spe-
cific moduli spaces (i.e., d i m ^ = 0, dimί^ = 1 (1 < k < n) see §2
for the notation) [8]. Under his assumption, the moduli space SDt has an
action of the m/4-dimensional torus (m = dim 971). His approach has
some similarities in the homology calculations for toric varieties, but his
condition is too restrictive for our purpose.

2. The ALE spaces and the ADHM description

The main result of [13] states that the moduli spaces of anti-self-dual
connections can be identified with spaces of solutions of the ADHM equa-
tion for the representations of the quiver associated with the corresponding
extended Dynkin diagram. We shall review the construction of ALE spaces
[12] and the ADHM description [13].

Let Γ be a nontrivial finite subgroup of SU(2) and let Q be the 2-
dimensional Γ-module obtained from the inclusion Γ c SU(2). Suppose
that we are given a pair of unitary Γ-modules, V and W. Define a
Hermitian vector space M by

M d = H o m Γ ( F , ρ<g>F)ΘHomΓ(H', F ) θ H o m Γ ( F , W),

where HomΓ means the space of Γ-morphisms. If we choose an orthonor-
mal basis for Q so as to represent an element of M as a quadruple of en-
domorphisms (Bχ, B2, i, j), we can define an antilinear map / : M —• M
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by

J(Bχ,B2,i,j) = (-Bl,Bl-j\?)
for B{, B2 e E n d ( F ) , i e HomΓ(W, V),je H o m Γ ( F , W).

Together with the original complex structure / , / gives a quaternion-
module structure on M . We put a Hermitian metric on M induced from
those on V and W. In particular, M is a hyper-Kahler manifold.

Let U ( F ) Γ be the group of unitary transformations of V commuting
with the Γ-action. It acts on M preserving the metric and the quaternion
structure. Define maps μ R :M—>u(F) Γ , μ c : M —• gl(F)Γ by

μR(B{ ,B2,i,j) = ^ΞL ([Bχ 9 B\] + [B2, B\] + π +

This is a hyper-Kahler moment map of the U(F)Γ-action in the sense of
[9]. Combining the two components, we write

μ = (μR, μc): M -> (R Θ C) 0 u(F) Γ .

To gain more information, we decompose V, W into irreducible rep-
resentations. Let RQ, , Rn be the irreducible representations of Γ,
with RQ the trivial representation. Then V and W decompose as

Now

Hom Γ (F, Q 0 V) = Q H o m ^ , Vk) ® H o m p ^ , Q Θ Rk).

If akl = dim c H o m p ^ , Q®Rk), then C = (2δkl - akl)o<kj<n is an
extended Cartan matrix of type An, Dn, E6, Eη, or E%. "The" McKay
correspondence [15] states that this gives a bijection beteen finite subgroups
of SU(2) and simple Lie algebras of type ADE.

Consider the corresponding extended Dynkin diagram. We number the
vertices so that we get the ordinary Dynkin diagram if we remove the vertex
0. Let define H c {0, 1, ••• , n} x {0, 1, ••• , n} so that (fc, /) e H if
and only if the vertex k and / are joined by an edge, or equivalently
akl = 1. Note that (k, I) e H is equivalent to (/, k) e H. Our space M
has the following description:

= ( φ Hom(Fp Vk)) θ (®Hom(Wm, VJ@Hom(V
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For an element of M we denote its components by Bk ι , im , j m . We
write B, /, j for the collection {Bk /)/_>*£#> etc. When we want to
emphasize V and W, we use the notation M(v, w), where

v = (dim Vo, . , dim Vj, w = (dim WQ, , dim FFΛ)' € (Z> 0)Λ + 1 .

Choose and fix an orientation Ω of the diagram, that is a collection of
arrows k —> /, one for each edge fc — / i n the diagram. We denote by
Ω the reversed orientation. Hence H = Ω U Ω. Define a function ε by
β(fc,/) = 1 if fc-^/GΩ, e(fc,/) = - l if fc->/€Ω.

The group U ( F ) Γ can be written Π u ( ^ ) So its Lie algebra u(V)Γ is
given by φk u(Vk). The hyper-Kahler moment map μ is explicitly given
by

(

\l: k-*l€H

\l:k-+leH Jk k

(The choice of the orientation is not essential. The orientation depends
on the choice of the basis for HomΓ(i?y, Q®Rk).)

Let Z v c u(K)Γ denote the center. Choose an element ζ = (ζR, ζc) e

ZΎ θ (Zv <8> C), and define a hyper-Kahler quotient 971 of M by U(K)Γ as

follows:

m = αrt(γ, w) ^ {(B, i, 7) e M | //(5, /, 7) = -C}/U(K)Γ.

We denote by [(B, z, 7)] the ί7(F)Γ-orbit of ( 5 , /, 7) considered as a
point in a«. We call μR(B, i, 7) = -fR (resp. μc(B, i, 7) = - f c ) the
real (resp. complex) ADHM equation.

In general, UJl has singularities. We take a subset

I the stabilizer of (B,i, j) in U(V)T is trivial}/U(F)Γ,

which is a nonsingular hyper-Kahler manifold of dimension (over R)

(2.1) d i m M - 4 d i m ί / ( F ) Γ = 2v'(2w-Cv),

where C is the extended Cartan matrix. (See [13, §9].)
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The ALE spaces can also be described as SDt(v, w) for specific data v,
w. Let R = L2(Γ) be the regular representation of Γ, which decomposes
as

where nk = dim c Rk. We consider the case V = R, W = 0. Then

the group U(l) of scalars acts trivially, so we consider the action of the

quotient group PU(i?)Γ = U(i?) Γ /U(l). Choose ζ = (fR, ζc) € Z θ

(Z <g> C), where Z c u(R) is the trace-free part of the center. Now define

X ^ {y e M(n, 0) I μ(y) = ζ}/ PU(i?)Γ,

where n = (nQ, , nn)* . Then the main result of [12] can be summarized
as follows.

Proposition 2.2. // ζ e Z θ (Z 0 C) w ^ « O T C (^^ [12, p. 666] /or
more precise information), the action of VλJ{R)Y on μ~l(ζ) is free, and
the quotient X is a smooth A-dimensional hyper-Kάhler manifold, then ζ
is diffeomorphic to the minimal resolution of C2/Γ, and the metric is ALE.

The ALE condition means there exists a coordinate system at infinity
X: X \ K —> (C2 \ 5^)/Γ for some compact set K, and the metric approx-

imates the Euclidean metric on C 2/Γ.
The ALE spaces are fundamental among the spaces 9Jt(v, w) they are

4-dimensional, i.e., they have the lowest possible positive dimension. They
are fundamental for another reason. The other spaces are all obtained as
moduli spaces of anti-self-dual connections on ALE spaces, as we explain
below.

The construction of ALE spaces gives a natural principal PU(F) Γ -
bundle μ~l(ζ) —> X. This bundle has a natural connection [7]; the
horizontal subspace is the orthogonal complement to the fiber direction.
Identifying PU(i?)Γ with Ylk^0U(nk) (recall n0 = 1), we consider an
associated vector bundle

1 = 0, I , - - , n ) ,

where U{nk) acts trivially on CW/ when fc//,and U(/i7) acts naturally
on CΠ /. From the definition of X there is also a tautological vector bundle
endomorphism

The parameter ζ e Z θ (Z <g> C) determines an element, for which we
use the same symbol ζ, in Zy θ (Zv ® C) as follows. In the decomposition
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u(R)Γ = (&ku(nk), the kth component of ζ is a scalar matrix of size
nk. Multiplying the identity matrix of size dim Vk by the same scalar,
we consider ζ as an element of Z v θ (Zv <g> C). We shall treat only the
parameters given in this way throughout this paper.

Take (B, i, j) e μ~ι(-ζ) and consider vector bundle homomorphisms

τ = ( ( , ) / i k * r

Here 1# is the identity map. Then the complex ADHM equation
μc{B, i,j) = -ζc implies that τσ = 0, so (2.3) is a complex. The
condition of the trivial stabilizer is equivalent to saying that σ is injective
and τ is surjective [13, 9.2]. Now the main theorem of [13] states that
the induced connection A on the bundle

E = Coker(σ, τ f) c (

is anti-self-dual (the real ADHM equation is used here) and has the fol-
lowing asymptotic behavior:

A - AQ = O(r~3), VAQ(A - AQ) = O(r'4)

where Ao is a flat connection defined on E\(Xζ \ K), V^ denotes the
covariant derivative associated with Ao, and r is the absolute value \X\
of the coordinate system at infinity. Conversely any such a connection is
obtained by this ADHM description.

Denote by j / a s d the set of anti-self-dual connections A satisfying the
above asymptotic behavior and having a fixed topological charge (the L2-
norm of the curvature). It has an action of the group ^ of gauge trans-
formations γ satisfying

γ - lE = O(r~2), VAp - \E) = O(r~3)

where \E is the identity transformation of E. We call the quotient space
a s d /= j/ a s d/«^ 0 the moduli space of anti-self-dual connections.

The main result of [13] can be stated as follows.
Proposition 2.4. When ζ is generic, the ADHM description gives a one-

to-one correspondence between ffl(E) and fJJl™8 ,̂ w) for some v, w. (The
data v, w are determined from the topological data of E and Ao.)
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The one point compactification X = X U {00} has a structure of an
orbifold (or V-manifold). On a neighborhood U of the singular point
{00} we can take coordinates 2): U -> BJT. Changing the hyper-Kahler
metric conformally, we get an orbifold metric on X.

Let Έ be an orbifold vector bundle over X with a Hermitian metric.
This means, by definition, (%)~ι)*(E\U) is a quotient of a vector bundle
over Br with a Γ-action. In particular, Έ^ is a Γ-module. Our moduli
space 971 can be identified with the framed moduli space of anti-self-
dual connections on E. This is the set of gauge equivalence classes of
the pair [(A, φ)] of an anti-self-dual connection A and the trivialization
φ'.E^ —• W of the fiber over 00. Here φ is a Γ-equivariant isomorphism.

It is known [13, 2.2] that c ^ has an anti-self-dual connection and ex-

tends to X . The fiber over infinity is the irreducible Γ-module i?7. It is

also known that the first Chern classes cχ{βl^ (/ = 1, 2, , ή) form a

basis for H2(X R). («$?0 is the trivial bundle with the fiber C.)
In this paper, we shall put the following assumption:

(2.5) the hyper-Kahler metric on Wl(E) = 97treβ(v, w) is complete.

We have the following proposition [13, Remark after Proposition 9.2]:
Proposition 2.6. The assumption (2.5) is equivalent to

9Jlreg(v, w) = 0R(v,w).

For the convenience of the reader, we explain (2.5) and (2.6) in the
gauge theory language. Let [A.] be a sequence in UJl(E). By Uhlenbeck's
compactness theorem we can take a subsequence [Aj] such that

(1) there exists a finite set S = {x{, , xn} c X such that A. con-
verges to an anti-self-dual connection A^ outside S after gauge transfor-
mations,

(2) there exist constants ak (k = 1, , n) such that the curvature

densities \RA \2dV converge to
AJ

k

k

The above constant ak relates to the curvature integral of an anti-self-

dual connection bubbling out around xk . If xk is a regular point of X

(i.e., xk e X), ak is an integer multiple of 8π2 . On the other hand, if

xk = 00, ak is an integer multiple of 8π 2/#Γ, where #Γ is the order of

Γ.
By [13] Proposition 2.6 can be restated in the following way:
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Proposition 2.7. The metric on the moduli space ffl is complete if and
only i£we have S = 0 or S = {oo} for any sequence [At] as above.

This proposition gives us examples of moduli spaces ΐΰl which do not
satisfy the condition (2.5). For example, if we take a rank-2 vector bun-
dle E with c{(E) = 0, c2(E) = 1 and a trivial connection Ao on the
restriction of E to the end Xζ \ K, Taubes existence theorem [20] gives
us a sequence [At] with the singular set S consisting of a single point x
in Xζ. On the other hand, if we have cx{E) = 0, c2(E) < 1, then we
have S = 0 or S = {oo}. Anyhow there are infinitely many examples
with (2.5), as we shall see.

3. Torus action on the moduli space

From now on, we assume that the group Γ is the cyclic group of order
n + 1. Then the corresponding extended Dynkin diagram is of type An .

We assume that the parameter ζ satisfies

(3.1) ζc = 0,

which means that the ALE space X is biholomorphic to the minimal res-

olution of quotient variety C 2/Γ. Since the differentiate structure of the

moduli space 9JI is independent of ζ [17, 4.2], the assumption (3.1) is

not essential for studying the homology.

Under (3.1) the equation μ(y) = ζ is preserved under the Sι action

y —• Γιy. This action commutes with the PU(/?)Γ action, so induces

an Sι action on X which preserves the natural metric and the chosen

complex structure / , but not J and K. In fact, this is the pullback of

the following action on C 2/Γ:

(Zj, z2) mod Γ ι-> (Γ z{, t~ z2) mod Γ.

If a gauge equivalence class of an anti-self-dual connection A with a
frame ψ'Έ^ —• W is given, we can pull back the bundle E with them by
the above map V.X —> X. Since E and t*E have the same topological
data, we can find a bundle isomorphism γ:E —• t*E, and therefore define
an S ̂ action by

[(A,φ)]-+[{γ tmA9{t*φ)ϋmoγ{x))].

The action on the corresponding ADHM data is given by (B, /, j) —•
(tB 9 ti, tj). The ADHM equation μ{B, /, j) = -ζ is preserved by this
action.
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We use the method due to Frankel [5] to compute the Betti numbers
of Tl. The moment map of the S action on 9Jt is given by Fo =
| |5 | | 2 + ||/||2 + ||7Ί|2 = ^m|ΛJ 2 r fF, where m{\y]) = \\y\\2 (cf. [14]). This
is a nondegenerate perfect Morse function on dJl in the sense of Bott (see
[1], [11]). If V is the generating vector field, we have gradF0 = IV. Thus
the critical points are the fixed point sets of the Sι action.

Unfortunately, it is not so easy to determine the fixed point sets ex-
plicitly in general cases. So we consider another torus action on SDt and
perturb JP0 by adding the corresponding moment map as follows. Fixing
a maximal torus TWk of the unitary group XJ{Wk) (wk = dim Wk), we
define the action by

(B,i, j) -> (B, ih~x, hj) for he Tr = l[ TWk.

Note that r = rankl? since dimi?^ = 1 for all k for the cyclic group
Γ. Geometrically this action means the change of the frame at infinity. It
preserves the metric and the hyper-Kahler structure, not only the complex
structure. We take a unitary basis (ex, , er) of W so that the maximal
torus Tr is a set of diagonal matrices. We take a diagonal matrix ε and
make a pairing with the moment map (the real component of the hyper-
Kahler moment map): {ε, jj* - iU). This can be written in terms of
connections: if we regard ε as a section of End(E) over the end which is
parallel with respect to the flat connection Ao, it is equal to

where s — \X\ is an absolute value of the coordinates at infinity, Ss = {x \
\X(x)\ = s} , i denotes the interior product, and ω is the Kahler form.

We consider the function

Theorem 3.2. Assume the condition (2.5). Then for sufficiently small
and generic ε the function F satisfies the following properties:

(1) F is proper.
(2) The gauge equivalence class [(A, φ)] is a critical point of F if and

only if there exists a decomposition E = Lχφ e Lr into a sum of line
bundles such that A decomposes accordingly and φ maps the component

(^)oo intoCea.
(3) F is a perfect Morse function, and the index of a critical point is an

even number between 0 and dim c iJJt̂ .
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In particular, the homology of 971 has no torsion and vanishes in odd
degrees, and every component of 971 is simplyconnected.

Proof (1) If ε is sufficiently small, F < c implies a bound on ||2?||2 +

II*Ί|2 + IUII2 T h i s shows that F < c is compact.
(2) Since F is a moment map of the torus Sι x Tr action coupling with

ε, the critical points of F are precisely the fixed points if ε is generic.
Take a gauge equivalence class of a pair (A9φ). It is fixed by Tr if and
only if for each h e Tr there exists a gauge transformation γ such that
γ*A = A and

φ lim γ(x) = hφ.
X—KX)

Then A decomposes as the bundle decomposes into eigenspaces of γ.
If the eigenvalues of h are all distinct, the bundle is a direct sum of
line bundles, that is Lχ θ θ Lr. On the ALE space X, anti-self-dual
connections on line bundles are classified by their first Chern class. In
particular, the framed moduli space on La consists of one point, so the
point must be fixed by the Sι action. Therefore the direct sum is also a
fixed point.

(3) This statement holds for a general function arising from a moment
map (see [1], [11]). But we give the proof for our situation since it will be
nesessary in the next section.

Take a fixed point [(A, φ)] in 971. Let dA , d*, and d* denote the ex-
terior differential operator acting on forms with values in End(E) (twisted
by the connection A), its formal adjoint and its projection to the space of
self-dual 2-forms respectively. The complexified tangent space of 971 at
[(A, φ)] is identified with the L2 kernel of the operator

d* θ d+: Ωl(End(E)) -> Ω°(End(£)) θ Ω+(End(£))

(see [16, §2]). The complex structure I on X induces an almost complex
structure on this space. Since x corresponds to the sum of line bundles
Lj θ θ Lr, the L2 kernel has a C-vector space decomposition

0 ( L 2 kernel of d\ θ d*) Π Ω!(L* 0 Lb).
aφb

Note that d\ θ d* has trivial L2 kernel on Ω*(L* ® La), because the
moduli space on La is zero dimensional. Since [(A, φ)] is a fixed point,
there exists a lift t to E of t: X —• X which respects the connection A ,
preserves the decomposition £ = I 1 θ θL Γ and acts as the identity on

^ . Hence 7^97tc becomes an Sι module and decomposes
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into the sum

(3.3)

of complex subspaces where Sx acts on H™b with weight m. Then

the Hessian of Fo acts on H™b as multiplication by m. Suppose ε,

regarded as an element in End(FΓ), acts on (i^α)oo as the multiplication

by εa . Then the Hessian of (ε, 7 / - ***) acts on H™b as multiplication

by εb - εa . So the Hessian of F is nondegenerate, if all εa 's are distinct,

as we have been assuming. The index is given by

Since H™b is a complex vector space, the index is even. In particular,
the Morse function F is perfect. Finally, the vanishing of cohomology in
degree > dim c 9tt follows from the fact "9K is diffeomorphic to an affine
algebraic variety" [17, 4.2].

Remark 3.5. For a general Γ, we can define a function F on SDΐ by
the same construction. But it is no longer a Morse function; it may have
critical submanifolds of positive dimension.

4. Lefschetz formula

By (3.2),(3.3) the calculation of the homology of the framed moduli
space 9Jt is reduced to two steps: (1) the classification of decompositions
into the sum of line bundles, (2) the calculation of the torus action on
the L2 kernel of d*A Θ dA when A is the sum of connections on line
bundles. We shall carry out step (2) in this section. Since a line bundle is
classified by its first Chern class on the ALE space of type An , step (1) is
reduced to the classification of decompositions of a vector into a sum of
vectors (see the next section for the special case). Step (2) will be carried
out by determining the fixed points of the Sx action on the ALE space X
explicitly, and applying the Lefschetz formula.

Suppose that the orbit \y] e X is a fixed point of the Sλ action. Then

there exists a one-parameter subgroup λ:Sι -+ PU(i?)Γ = X

such that Γxy = λ(t).y. Since nk — 1 for all k, we can write
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(IB = 5 + 1)

FIGURE 2. Σ.

for some integers r,, , rn . We put r0 = 0. We then have:

ί 1 ) i f yk,k+ι*0> rk = r k + ι - ι >

(2) i f>*+i,fc*°> r ^ r ^ + 1,

where «+l is understood as 0. Thus it is not too difficult to determine the
fixed point set explicitly. For simplicity, we put the following assumption
o n C R = ( ί C ί V , iCi Λ ) ) : C f ) > 0 f o r f c = l , 2 , . - . , « . Let/>,. be the
point whose ADHM data are given by Figure 1, where i = 0, 1, , n .
The linear maps yk 7 's such that the corresponding arrows are not written
in Figure 1 are zero. When n is odd, let Σ be a submanifold given by
Figure 2.

Lemma 4.1. When n is even, the fixed points set consists ofp0, pχ, ,

pn, and Sι acts on the tangent space Tp X with weights 2i-l-n and n-

1—2/. When n is odd, it consists ofp0, 'pχ, , P{n_3)/2 > P(n+3)/2 >'" ^n

and Σ . The manifold Σ is isomorphic to C P 1 . If p eΣ, Sι acts on the

tangent space TpX with weights 0 and - 2 .

We can lift the Sι action to the tautological bundle

by letting it act trivially on the Rk factor. The induced action on the

fiber at infinity Rk is trivial. Using the above explicit description, we can

calculate the weight of the action on the fiber {&k)p over the fixed point

pt. It is given by
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(n+l-k, if i<k,
( 4 2 ) U , if, >*.

Similarly the weight of the action on (&k)Σ is given by the same formula
with / = (/! + l)/2.

Suppose that [(A, φ)] is a critical point of the Morse function F as in

Theorem 3.2, and let E = Ljθ -®Lr be the corresponding decomposition

into the sum of line bundles. The index of F at [(A, φ)] is given by the

formula (3.4). At each fixed point p., the fiber of the line bundle L* ® Lb

becomes an Sλ-module. Let mi denote its weight. Similarly let mΣ be

the weight of the S -action on the fiber on Σ.

Choose k so that (L* ® L^^ is isomorphic to Rk as a Γ-module.

Let r, (resp. ry) be the weight of the S^action on the fiber (31 A (resp.

(<y2k)Σ) over the fixed point p{ (resp. Σ) . These are given by the formula

(4.2).
We now give the Lefschetz type formula. We assume that n is even for

simplicity. (When n is odd, the formula contains the term coming from
the action on Σ.)

Proposition 4.3. If n is even, then

1 i—ri f—m{

9 ^—* ϋ* u,υ L^j /Λ fiι—i—n\(Λ fn—ι—zi\
m 0<i<n\l ι A1 ι )

Proof We use the Lefschetz formula for manifolds with boundary [4].
It is not difficult to make a suitable modification of such a theorem to
the ALE manifold X via a conformal change of the metric and working
on a manifold with a cylindrical end (cf. [2]). Since the L2 condition
differs from the boundary condition used in [2], [4], one must check the
asymptotic behavior of the solutions of the Dirac equation. But it is con-
tained, for example, in [16, Lemma 4.8 and Proposition 5.2]: Any solution
which converges to zero at infinity, in fact, satisfies the decay condition
O(|3CΓ3).

The L2 cokernel of rf! θ dΐ is zero, hence the dimension of the kernel
Ά Si

is equal to the index. If n is even, we have

i = 0
_ J.-1-2K

ι )

where ξt is an error term which depends only on the asymptotic behavior
of the connection.
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To calculate ζt, we consider the tautological vector bundle 9lk . The

asymptotic behavior, including the Sι action, is the same for L* <g> Lb

and 91 k . In particular, the error terms ξt are equal for L* <g> Lb and

9lk . But we know that the L2 kernel of d*A Θ dA for 91 k is zero by [13,

Lemma 7.1]. Hence

This completes the proof.

5. Row increasing Young tableaux

We give a combinatorial algorithm to calculate the cohomology of the
framed moduli spase 9Jt. We shall treat the case

(5.1) VQ = WQ = 0.

By [13, remark after Proposition 9.2] the condition (5.1) implies (2.5).
Then we may assume that n is even and the fixed point set consists of

finite points. (Otherwise, put Vn+ι = 0 and replace n by n + 1.)

We modify the Sι action as

Bk-\,k ~~* Bk-\,k> Bk,k-\ " * t Bk,k-\

for fc = 1, 2 , , Λ,

for a later purpose. If we set gk = tk+ι e U(Vk), hk = tk e U(H^), the
new action relates to the previous one by

Bk-ι,k = 8k-\ tBk-ι,k Sk , t BkJc_ι = gk tBkk_ι gk_{,

Therefore the new action is a combination of the previous one and the
change of frame at infinity caused by \[hk e T\U(Wk). It can also be
checked that the corresponding moment map is proper.

We first give the classification of line bundles. Suppose that an anti-
self-dual connection on a line bundle L is given. Let Vk , Wk , (B, i, j)
be the corresponding ADHM data. Since the moduli space consists of
one point, the data {B, /, j) are uniquely determined from Vk , Wk . So
the classification of line bundles is reduced to the classification of vk =
dim c Vk and wk = dim c Wk . There exists a number w such that

{ 1, if k = w ,

0, otherwise.

We assume that v0 = wQ = 0.
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Lemma 5.1. The data vk, w correspond to a line bundle L with L^ =
Rw if and only if

Oorl, ifk<w,
( 5 ' 2 ) ^ ^ - ' { o o r l ifk>w.

Proof Suppose that the data correspond to a line bundle L. Since the
dimension of the moduli space is 0, the formula (2.1) gives us

(5.3)

(Vk-Vk-O2 + 2υw>

where we set vn+ι = 0 in convention. Noticing that q2 > ±q holds for
an integer q and equality holds if and only if q = 0 or ± 1 , we find

w

/ Λ
k=i

k k—\'

w

— / Λ k
A : = l

n+\

A:=iϋ+1

k—l'

^ A;

n+1

2^k=w+\

So (5.3) implies (5.2).
Conversely we can show that there exists a line bundle if vk satisfies

(5.2). In fact, let

A : = l

where &®m = (^*f~m when m < 0. The condition (5.2) ensures
^ r s t Chern class of L is given by

k=\

By [13, §9], the corresponding ADHM data should be

dimc Vk-vk-\-m for k = 0, 1, , n

for some integer m . The moduli space must be 0-dimensional, therefore
the dimension formula implies m = 0. q.e.d.

We now make a bijection between the set of line bundles and that of
strictly increasing sequences of [b integers between 1 and n + 1. In order
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to fit the notation used later, we enclose a figure by a box, e.g., 2 | 4

Suppose that a line bundle L with Vo = Wo = 0 is given. The line bundle
is determined uniquely by the data υk and w . We set the number of boxes
(the length of the sequence) to be w . The number is always positive since
A» ^ ^o ky the assumption WQ = 0. We define a sequence so that the
figure k appears if and only if

ί vk-χ -vk = 0, for k < w ,

I vk-\ ~vk~ ^ > for k > w.

(Recall vn+ι = 0.) If the first Chern class of L is given by

k

the above condition is equivalent to

(5-4) ^

It can be checked easily that the number of figures is equal to w . Thus
we get

Lemma 5.5. There exists a bijection between isomorphism classes of
line bundles with Vo = Wo = 0 and strictly increasing sequences of positive
integers between 1 and n + 1.

For example, 2 | 4 | corresponds to the line bundle L with L^ = R
2 ,υ{ = v2 = v3 = 1.

Set nk{L) to be 1 if the figure k appears in the sequence corresponding
to the line bundle L, and to be 0 otherwise. Then

T _
JU —

k=l

We pull back the Sι action to L so that the induced action on the fiber
at infinity L^ is of weight w. Hence (4.2) shows that Sι acts on the
fiber Lp over the fixed point pt with weight

+ 1 - k)(nk(L) - nM(L)) + w

(5.6) *-'" k>i

Now we return to the case of a moduli space on a vector bundle E.
The representation at infinity E^, the first Chern class c{ (E) and the
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instanton charge determine uniquely the data υk = dim c Vk and wk =
dim c Wk . We assume that v0 = w0 = 0, and let

(5.7) uk

 d=' vk_χ + vk+ι +wk-2vk for 1 < k < n ,

where we set vn+ι = 0 in convention. Then the first Chern class can be rep-

resented as cx (E) = Σk^ ukcι (<3lk). We take a unitary basis {e\, , e* )

of Wk for each k collecting them, we have a basis of W:
n—\ n—\

' e\ > '" > e

n_i
Then renumbering the vectors in the above order, we denote them by
(e{, , er) (r = rank!?). We consider the action of Sι x Tr and the
Morse function F on the framed moduli space 9JI of anti-self-dual con-
nections on E as in §3.

We want to give a combinatorial description for critical points :>f F.
Let N = Σk kwk - T o w ' w e a s s o c i a t e Λ , a partition of N (namely
λ = (λl9λ2, ••• , λΓ) with Afl € N such that λχ > λ2 > •• > λr and
Σα=i ^α = ^ ) by Λe following rule: "The figure k appears wk -times in
the sequence λ ". We also define a sequence μ = (μ{, μ2, , μn + 1) by

Note that Σkμk = N. \ϊ μk<0 for some /:, then the Morse function
F has no critical points by the proof of Lemma 5.9. But this is impos-
sible unless the moduli space 971 is empty. Therefore F must attain the
minimum at some point, and hence we may assume that μk > 0 for all
k.

Definition 5.8. Let λ, μ be as above.
(1) A //-tableau of shape λ is a Young diagram of shape λ whose nodes

are numbered with the figures from 1 to n + 1 such that the cardinality
of the nodes with figure k is μk .

(2) A //-tableau of shape λ is said to be row-increasing if the entries in
each row strictly increase from left to right.

Lemma 5.9. There exists a one-to-one correspondence between the crit-
ical points of F and the set of row-increasing μ-tableaux of shape λ.

Proof If [(A, φ)] is a critical point of F, there exists a line bun-
dles decomposition E = Lj θ φ L r with φ: {L^^ = Cea (Theo-
rem 3.2(2)). Each line bundle La corresponds to a sequence of boxed
positive integers by Lemma 5.5. Place the sequence for La in the ath
row to make a row-increasing tableau of shape λ. Let va

n be the dimen-
sion of the Rn -component of the ADHM data for the line bundle La . If
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FIGURE 3

c\(^k) > t * i e fiβure £ appears in the fcth row if and only
= 1 by (5.4). Since v° + Σ ^ < = 0 or 1, the figure Jk

cχ(La) = Σk

if < + Σ , >*
appears

times in total. Thus we get a μ-tableau of shape λ. q.e.d.
Now we want to give a formula for the index (3.4) in terms of the Young

tableau. We assume that 0 < ε{ < ε2 < < εr. We need the following
definition.

Definition 5.10. For a row-increasing μ-tableau T of shape λ we de-
fine an integer l(T) as follows: Denote by Γ(m, ή) the figure in the mth
row and the nth column. Define lm n to be the number of nodes, sitting
in the shaded region in Figure 3, such that the figure on the node is less
than T(m, ή), and the figure T(m, n) does not appear in the same row.
Then set

Lemma 5.11. The index of the Morse function F at the critical point
corresponding to T is given by 21 (T).

Proof The index is given by formula (3.4). We first calculate

(5.12)
m<Ό

\ Σ
m=O,εa>eb

for each a, b.
Define w(a) so that the fiber at infinity is isomorphic to

as a Γ-module. As in Proposition 4.3, choose k so that = Rk



HOMOLOGY OF MODULI SPACES OF INSTANTONS ON ALE SPACES. I 123

Explicitly k is

( w{b) - w(a), if w(b) > w(a),

\ n + 1 + w(b) - w(a), if w(b) < w(a).

Then the weight r. of the Sι-action on the fiber (&k)p over the fixed
point p. is given by

_ J n + 1, for i < w(b) - w(a).
1 {2{w(b)-w(a))9 for i > w(b) -w(a)

__ ( 0, for / < n+ 1 +tί;(i) - t ί (α),

' "" I /i + 1 -h 2(tt;(6) - tί (α)), for / > /ι + 1 + tι (ft) - tt (fl),

By Proposition 4.3, (5.12) is the sum of the coefficients of tm (m<0
or m < 0) in

where m/ is the weight of the 5 1 action on the fiber {L*a®Lb) over the

fixed point pt and given by

(see (5.6)). First consider the case a > b (so w(b) > w(a)). Putting

« by «', we may assume that n is sufficiently large compared with the
maximum M of figures appeared in the αth and 6th rows in the tableau
and w(ά), w(b). This procedure does not affect the index, since the
ADHM data are unchanged essentially. If i > max(w(b) -w(α), M), we
have

r. = 2(w(b) - w(α)) — mr

Hence it is enough to sum up the terms from 0 to max(w(b) -w(α), M)
in (5.13). In particular, we may assume that n - 1 > 2/. Then

()
_ , -m|.+w+l-2i -r/+n+l-2/\ y ^ i(«+l-2/) r ^ i(n-l-2/)

k=0 k=0

where the summations are the formal power series. We may assume that
-m + 2(n - 2ί), -ri + 2(n - 2ϊ) > 0. Therefore in order to calculate
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the sum of the terms of nonpositive power of t, it is enough to consider

is nonpositive if and only if

The exponent of the second term on the right-hand side of (5.14) satisfies

- 2/, if i < w(b) - w(a),

2(w(a) - w(b)) + n + 1 - 2/, if i > w(b) - w(a).

We have w(b) - w(a) nonpositive terms for the first case, while we may
assume that 2{w(a) -w(b)) + n+l-2i is positive. Hence (5.12) is given
by

#{m I T(b, m) < T(a, m) and

"Z?th row does not contain the figure T(a, m)"}

We have a similar description in the other case a < b. We replace
the ADHM data by V[ = V'2 = ••• = V\ = 0, V\+k = Vk, etc. Then
we may assume that the minimum of figures in the <zth and &th rows are
sufficiently larger than n/2, and the remaining argument is similar to that
in the first case.

Summing up with respect to a and b, we find that the index is equal
to 2l(T). q.e.d.

Theorem 5.15. The Poincare polynomial of the moduli space Wt is given
by Στt

2 ^τ\ where T runs over the set of row-increasing μ-tableaux of
shape λ.

This description is very manageable. For example, we can see
Corollary 5.16. The moduli space is connected under the assumption

(5.1).
In fact, it is not so difficult to prove that there exists at most one tableau

T with l(T) = 0. Hence the moduli space is connected if it is nonempty.
Remark 5.17. By [17, 10.6] the middle cohomology group of ffl is

isomorphic to the (w - Cv)-weight space of the irreducible representation
of the simple Lie algebra $u(n + 1) with highest weight w. The vectors
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are related to λ, μ by

w - Cv = (μχ - μ2, μ2 - μ3 , - , μn - μn+χ)',

125

— (I1 1f

λ )

where λ' = (λ[,λ'2, ••• , λ'n+ι) is the conjugate partition of λ defined

by λ'k = #{/ I λ[ > k}. A row-increasing //-tableau T of shape λ has

2l(T) = dim c UJl if and only if the entries in each column increase (may be

stationary) from top to bottom. Such a tableau is said to be semistandard.

(The roles of the column and the row are in reverse usually.) The fact that

the number of a semistandard tableaux is equal to the the dimension of

the weight space is classically known (see, e.g., [6]).

We give a few examples of the list of row-increasing //-tableaux T of

shape λ and their l(T) (Figures 4-6).

1{T)

FIGURE 4. λ = (2 , 2), μ = (1 , 1, 1, 1).
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FIGURE 5. λ = (2, 1, 1), μ = ( 1 , 1, 1, 1).
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FIGURE 6. λ = (2, 1, 1), μ = (1, 1, 2).
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