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CURVATURE MEASURES AND CHERN CLASSES
OF SINGULAR VARIETIES

JOSEPH H. G. FU

The aim of the present article is to show how the approach of [8]
to studying the curvature measures of a singular space yields a natural
geometric treatment of the theory of Chern homology classes of singular
complex analytic varieties. These classes were first considered by M. H.
Schwartz [0], but were neglected at the time. Deligne and Grothendieck
later introduced axioms for a conjectural theory of Chern homology classes
for singular varieties. MacPherson then constructed classes fulfilling these
axioms in the seminal paper [16]. Subsequent to MacPherson's work, it
was shown by Brylinski, Dubson, and Kashiwara [2] that the MacPherson
Chern classes of a singular variety X admit a simple expression involving
the characteristic cycle of X from the theory of D-modules. Up to this
point, however, a complete treatment of the properties of these classes has
rested upon the somewhat indirect approach of [16]. In the meantime,
we independently constructed the characteristic cycle of Kashiwara by di-
rect geometric means [8]. The geometric insight from our construction
allows us to give a direct and intuitively appealing proof of the Deligne-
Grothendieck axioms, which is what we present in these pages.

The advantages of our method over that of [16] are twofold. First, the
key covariance axiom of Deligne-Grothendieck for morphisms / : X —• Y
of varieties was established only indirectly for singular varieties X, using
Hironaka's formidable resolution theorem. Our treatment, on the other
hand, works with the singular varieties directly, without mention of res-
olutions. (We have, however, no proof of uniqueness for the Deligne-
Grothendieck axioms apart from the original obvious argument using res-
olution.) Second, certain key coefficients associated to the strata of singular
X are in [16] computed somewhat circuitously: viz. by initially defining a
certain natural transformation T using a topological "Euler obstruction",
and then inverting T. The Euler obstruction never enters the treatment of
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the present paper; in fact the crucial role of this invariant in [16] in verify-
ing the key push-forward axiom (C3 below) is taken up here by a far more
elementary and intuitive result, namely the Gauss-Bonnet theorem. That
our classes agree with those of [16] follows from uniqueness; however, we
outline in the final section of this paper some ideas for a direct proof.

Our definition of the MacPherson Chern classes is formally identical
with that of [2]. However, the connection with [16] is there made by
showing the formal correspondence between MacPherson's Euler obstruc-
tion and Kashiwara's definition of the characteristic cycle. In other words,
[2] does not offer any new insight into the fundamental theory of [16]. It is
interesting also to observe that the basic definition at the bottom of p. 575
of [2] requires some explicit choices of signs that need not be made from
our point of view; cf. the lemma of 2.1 below for a possible explanation
of this divergence.

Our original motivation for studying these ideas was to understand the
curvature of a space with singularities. In [8] this problem is treated in de-
tail. From this point of view, our treatment of Chern classes corresponds to
the classical identification of characteristic classes with differential forms
arising from polynomials in the curvature tensor. Thus the cycles that we
define live in the world of currents, dual to the differential forms. These
currents coincide with those identified by Shifrin [19].

Let us now introduce the basic terms of our discussion. Let M be a
complex analytic manifold, and X c M a closed subanalytic set. The
conormαl cycle N*(X) is an integral current in the cosphere bundle S*M
of m, coinciding with integration over the conormal sphere bundle to X if
X is smooth; its construction is outlined in 1.1 below. The conormal cycle
corresponds precisely to Kashiwara's characteristic cycle, by 4.7 of [8]. We
will identify "universal" differential forms β, γ0, γχ, on S*M such
that if X is a complex subvariety of M, then the total MacPherson Chern
homology class cJ^X) is represented by the current π#(N*(X) L β Λ y j ,
where π is S*M -> M is the projection. The Deligne-Grothendieck
axioms now take the following form:

Cl. If X is smooth, then cjjt) is the Poincare dual of the total Chern
cohomology class of X.

C2. If Y c M is a second compact subvariety, then c^(X U Y) =
iφdm(X) + iβJT) - i+£*(X n ^) > w h e r e K denotes the various maps in
homology induced by the inclusions into XuY.

C3. If / : X —> N is an analytic morphism onto a proper analytic
subvariety of the complex manifold N, then
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where ni e Z and the Y(c N are analytic subvarieties such that

The plan of the paper is as follows. Section 1 gives a quick survey,
without proofs, of the theory of the conormal cycle developed in [8]. The
property C2 follows at once from this general theory. Section 2 identifies
the differential forms γi, and proves Cl. Sections 3 and 4 are the body
of the paper, devoted to the proof of C3 for / : M D X -> N. In these
sections we work on the graph offcMxN, using its conormal cycle
together with pullbacks of the universal forms γ. associated to M and N.
More precisely, we construct in §3 explicit homologies between the images
on graph / of the currents ck(X) and Y^nf^Y^ for certain Yt c N
and ni eZ. In §4 we use the Gauss-Bonnet theorem to verify that these

ni9Yi satisfy Σ V r ^ * / " 1 .

0. Background

0.0. Notation. Given a smooth manifold M, the algebra of all differ-
ential forms on M is denoted W*{M)\ the subalgebra consisting of those
forms with compact support is 3f*(M). Typically, we will use the same
symbol for a form and for its pullback. If M is a complex manifold,
then we have the operations d, dc: W*{M) -» ^* + 1 (M), given in local
coordinates by their action on functions:

Given a submanifold V with a canonical orientation, the current de-
fined by integration over it will be denoted by [V]. If 3S is a bundle with
fiber F and total space E over M, and F is canonically oriented, then
we define an injection of the currents on M into the currents on E by

T~Txa[F]: =φ»(Tx[F])

if T is supported in a trivializing patch of the bundle with chart φ , and
extend by linearity using a partition of unity.
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This paper is full of commuting canonical maps ("projections") between
spaces. Rather than giving a name to each map, it seems less confusing
to adopt the following practice: Any such map M —• N will be denoted
by πN. With this notation we have πN o πM = πN, etc., even though the
symbol πN denotes different maps with different domains on the right and
on the left. This convention is superseded by any other explicit labelling
scheme; usually these will be confined to small arguments within the text.

The technical foundation of the argument of this paper is the theory
of integral and normal currents of Federer and Fleming (cf. Federer [6,
Chapter 4]), and its specialization to the semianalytic case due to Hardt
[12]. Our notation will be consistent with that of [6], except that we will
denote pullback under a map / by the symbol /* rather than Federer's
f4. The symbol /+ will denote the derivative of / .

Other frequently used notation from the theory of currents includes: (i)
TL.φ for the restriction of a current T by a form φ. Thus (TL.φ)(ψ) =
T(φ Λ ψ). If T is representable by integration and U is a set, then we
may write also T L U for the restriction of Γ to U; cf. [6, 4.1.7]. (ii)
(T, / , x) for the slice of a current T by a Lipschitz function / at the
value x [6, §4.3]. Thus if T is given by integration over an oriented
smooth manifold M, / is a smooth map into an oriented manifold, and
x is a regular value of / , then (T, / , x) is given by integration over
M Π f~ι(x), with an orientation induced by / .

0.1. Let us also prove the following basic lemma.
Lemma (Residue theorem). Let V c Cm be an irreducible complex

analytic variety, and let φ: Cm -> C be a holomorphic function such that
V <£ φ~ι(0). Then the expression

T:=[V]L(2π\Π)~ιdc 2

defines a locally normal current in Gm, with

where Wt are irreducible components ofφ ( 0 ) π F , and nt

- 1If φ (0) does not contain any irreducible component of the variety
of singular points of V, and d(φ\S)(x) Φ 0 for any regular point x €
VΠφ~\θ), then

Proof Consider the map γ: V - φ 1 (0 )-^C / n x5 ί l ,

7(p):=(p,9(p)/\9(p)Γl).
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Then the closure of the image of γ is the real analytic subvariety

V := {(P, eiθ) :peV, Im(<p(p)e-
W) = 0}

cCmxS\

The variety V inherits an orientation from V so that the corresponding
current [V] satisfies

sptd[V]c(VΠφ~l(0))xS\

In fact, [6, 4.2.28] implies that [V] is a locally integral current in Cm xSι,
and invoking the support theorem (4.1.20, op. cite.) we may characterize
its boundary as

= (2π)~1γ*π*sldθ

for some integers n , where the W{ are the irreducible components of
Vnφ~\ϋ).

Now we observe that

and

= (2π) ιπ*s>dθ\{V-(φ 1(0)x5 1).

Thus

T := πcm#{[V] L {2π)~i dθ) = [V] L (2πV^T)~1ί/Cl--' ~'2

is well-defined and normal, with boundary

ΘT = πcm#(d[V] L (27Γ)"1 dθ)

:\x\Sι])\-(2π)'ιa

To prove the second assertion, we observe that under the additional
hypothesis we have

d i m ^ ' ^ O ) Π sing V) < άimdT-2,

so the support theorem implies that

= dTL(V-singV).
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Let p e (V - sing V)nφ~ι(O), and let % be a neighborhood of p in V-

sing V such that φ = φx, , ^ form a holomorphic coordinate system

Φ: % -• C*, k := dim F . Then we have a commutative diagram

Cm xSι D&

Φ |

C x 5 1 x C*"1
 D C X C*"1

where

C = {(z, ^/β) G C x 5 1 : Im ze~iθ = 0}

= { (z ,z / | z | ) : z€C, zί0}\J{0}x

d[CxCk~l] = [0]x[Sl]x[Ck~ll

Since Φ#[S^] = [C x C^"1] L Φ ( ^ ) , we obtain

= πm{d\^\ L (2π) - 1 rfβ)

= φ # ̂ c x c * - 1 * ^ x C*" 1 ! L

1. The conormal cycle of a subanalytic set

Let M be an oriented real analytic manifold of dimension m. Let
T*M denote the cotangent bundle of M, with projection π: T*M -> M
let S*M denote the cotangent ray space S*M: Γ*M-(zero - section)/ ~
where ξ ~ η if ξ = tη for some t > 0. The space S*M is a contact
manifold in a natural way, with contact ideal A = (σ*a) where σ: S*M —•
Γ*Λf is a section and α is the canonical 1-form of Γ*M.

Let X c Λf be a closed subanalytic set. There is then a naturally
associated subanalytic integral current N*(X) € Im_x(S*X) that is closed
(dN*{X) = 0) a n d Legendrian (N*(X)(φ) = 0 for φeA). T h e de ta i l s o f
the construction and uniqueness of N*(X) are given in [8]. The present
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section is devoted to describing, without proof, those properties of N*(X)
relevant to the construction of the Chern-MacPherson homology classes of
a complex analytic variety X.

1.1. Let / : Λf —• R be a locally Lipschitzian subanalytic function.
According to Fu [7], there is a unique integral current [df] € Im(T*M)
satisfying the conditions:

where ω is the symplectic 2-form of T*M,

π|spt[rf/] is proper,

a n d(1.1a) m

[df]{A ) / (df)e
m r

[df]{φAπ ε)= / (φodf)
JM

for any compactly supported m-form ε on ¥ and any
smooth function φ: T*M —• R.

Here π is the projection of the cotangent bundle T*M. The support of
[df] satisfies

(1.1b) spt[rf/]c graph d/,

where df is the generalized differential of Clarke [5]. Furthermore,

Let v denote the natural projection from Γ*Λ/-(zero section) —• S*M.
From the support relation above, the general facts about subanalytic sets, it
follows that for any compact K c M, the set f(spt[df] Π (zero-section) Π
π~ι(K)) is finite. In particular, v#{[df], π*f, r) is well-defined for all
but a countable set of r.

Theorem. Let f,g:M ^R be locally Lipschitzian, subanalytic and
nonnegative, with /~J(0) = g~\θ) = X. Then

# ( [ / l , 7Γ*/, r) = limu^([dg], π*g, r),

where the limits are taken in the flat metric topology.
Thus we may put N*(X) equal to any such limiting current. The closed-

ness and Legendrian character of N*(X) follow from the properties of
[df] above. Observe that if X is a real analytic subvariety of M, then
this construction has a particularly appealing form. Working locally we
may assume that X is contained in an open subset U ofRm, with
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where the f. are real analytic functions on U. Then, putting g := Σ \ft\ ,

we have g > 0, X = g~l{0), and

(g[,]),

where the conormal cycle on the right is integration over the usual conor-
mal manifold to the smooth body g~ι[0, r].

The operation X •-> N*(X) is additive in the sense that

N\x u η = N\X) + τv*(Γ) - #*(* n r)
for any closed subanalytic 1 , 7 c M . It follows that if we identify
X with its characteristic function \χ, then JV* may be extended to a
homomorphism of abelian groups

N*: Constr(M) -> / ^ ( ^ Λ / ) ,

where the group Constr(M) is the group of "subanalytic constructible
functions" generated by the characteristic functions of closed subanalytic
subsets of M.

1.2. Now suppose that M is endowed with a smooth Riemannian
metric, and let Ω denote the Chern-Gauss-Bonnet form of the metric.
We say that an (m - l)-form Π on S*M is a transgression if

f 1 1 = 1 ,

where π~ι(X) is any fiber of S*M -> M, oriented canonically following
the orientation of M.

Gauss-Bonnet Theorem. If X c M is subanalytic and compact, then

Jx

the Euler characteristic of X.
1.3. Given a smooth submanifold S c M, we let v*S c S*M denote

the image of the usual conormal bundle of S.
Proposition A. There is a stratification 5? of X such that

spt N*(X) c \J{v*S: S e &}.

If M is a complex manifold, and X is a holomorphic subvariety, then S?
may be chosen so that each S, S e<5*, is again a holomorphic subvariety.

For the rest of this section we let S? be such a stratification.
Now let φ: M —> R be analytic, and suppose that r is a regular

value of φ\S for each S e <S?. The next two propositions imply that
N*(X Π φ~ι(-oo, r]) is determined by its restriction to π~ιφ~ι(-00, r ) .
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Given a cone C c TχM, put

DualC := {ξ e S*M: {ξ, υ) < 0 for all υ e C}.

Proposition B. // φ(x) = r and x e S e S?, then

sptN*{X n ̂ " V o o , r]) Π π~\x) c Dual Tan(S Π ̂ " ^ - o o , r] , x)).

Proposition B has the following converse.
Proposition C. Suppose that dimX < m. Then there is no closed

nonzero flat chain of dimension (m - 1) with support in

( J Dual Tan(5 Π flΓ^-oo, r ] , x).

Corollary. N*(X Π ̂ ^ ( - o o , r]) w ίA^ unique cycle Q such that

spt(Q-(N*(X)Lφ-l(-oc9r)))
C U U

It will be convenient in the following pages to define N*(X) for any
locally closed subanalytic subset X c M. For this it is sufficient to write;
when U is open and X Π U is closed in U,

N*(X) L π~\u) = N*{X n £/),

where Z is considered as a subset of U on the right-hand side; and
N*(X) L TΓ^ΛΓ) = 0 whenever KnX = 0.

13\ . Theorem. Let X c M be subanalytic, and let φ: M —• R 6e α
subanalytic function. Then for any r e l ,

By Gauss-Bonnet we have therefore:
Corollary. If X is compact, then

sir

1.4. Now we specialize to the case where M is a complex analytic
manifold of complex dimension m, and X c M is a holomorphic subva-
riety. Using Proposition 1.3A, the conormal cycle N*(X) e I2m~\(s*M)
can be reduced to a projectivized cycle ΨN*(X) e l2m_2(F*M) (where
V*M is the projectivized cotangent bundle of m) in the following way.

The spaces T*M and V*M each carry a natural complex structure,
in such a way that if V c M is a holomorphic subvariety of M , then
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the conormal bundle ϊ>*(V) c T*V is a holomorphic subvariety of T*V,
and such that the projection T* V - (zero-section) -» P* V is holomorphic.
Given a smooth Hermitian norm || || on T*M, we put

Then {2πyf-ϊ)~ιdclogh =: β' is a real-valued 1-form on ^^(zero-sec-
tion), and it is not hard to see that there is a 1-form β on S*M such that

β' = π*s*M0 -

Let <%* denote the Hopf bundle S*M -• Ψ*M, with fibers Sι which are
canonically oriented by the requirement that θ »-> ̂ ^<^ be an orientation
preserving map P —> π^(π^(^)) for each ζ £ S*M. With this orientation
we have /π-i(?/) jff = 1 for η e P*M.

Proposition 1.3A, together with the constancy Theorem [6, 4.1.7], im-
plies that

(1.4a) FN*(X) := π^{N\X) L β)

is an integral current of dimension 2m — 2 in P*M. An inverse formula
is

(1.4b) N\X) = FN*(X) xj, [S1].

Since 0 = dN\X) = dPN*(X) x ^ [Sι], it follows that FN*(X) is closed.
1.5. Proposition 1.3A and the constancy theorem imply that there are

integers n(S), S e S?, such that

(1.5a) ΨN*(X) = Σ n(S)VN*(S).

Since the supports of the FN*(S) are holomorphic subvarieties of Ψ*M,
this is a holomorphic cycle. Furthermore, FN*(X) is legendrian, in the
following sense. Let σ be a local section of Γ*Λ/-(zero) —> P*Λf, and
consider the ideal ^4C of differential forms on F*M generated by a , α",
where

for any v e T (F*M). Clearly this ideal does not depend on the choice
of σ. We have

FN*(X)(φ) = Σn(S)FN*(S)(φ) = 0

for any φ e Ac .
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The preceding discussion has a converse.
Proposition A. Given any holomorphic, Legendrian cycle T e

I2m_2(¥*M), there are locally finite family {Yχ, Y2, } of holomorphic
subvarieties of M, and integers nx, n2, such that T = Σ ni¥N*(Yi).

Proof Let Fj, V2, be the irreducible components of spt T, and
put Y. := τιM(YιJ to be the image variety in Λf, with regular locus
Y? := Yt - sing Y.. Since the Vt are Legendrian and irreducible, we have

V{ = ¥v*(Y?), i = 1, 2, , and so by the constancy theorem there are
integers mx, m2, such that

Clearly each PΛΓ(lf) is a cycle: for spt5PiV*(y.0) c π" 1 (sing γ;)n Vt,

which is a proper subvariety of Vi and so has real codimension > 2 in Vi

therefore ΘΨN*(Yf) = 0 by [6, 4.1.20]. Let Ϊ ; F( , be the varieties

of maximal dimension A: among the Y{. Then by Proposition 1.3A,

since ΈN*(Y?) = PΛΓ*(y;.) L π ^ ( ϊ f ) . Our assertion now follows by in-
duction on k.

1.6. Finally, we note that the coefficients in the expansion (1.5a) are
independent of the embedding X -̂> M. This is most readily seen via
the following result from [8]. Let σ: S*M —> T*M be a section, and
put Σ S*M x [0, oo) -> f ¥ b y £ ( f , ί) := ίσ({). Define iV*(x) :=
Σ#(N*(X) x [[0' °°)1) J a n d n o t e * a t ^ i s does not depend on the choice
of σ.

Proposition. If X and Y are subanalytic subsets of the real analytic
manifold M and N, respectively, then

N*{X xY) = N*(X) x N*{Y),

where we identify T*(M x N) = T*M x T*N.
Corollary. If f: X —• iV is α« analytic isomorphism into a complex

manifold N with dimX < dimΛf, α«rf (1.5a) holds, then

VN*(f(X))=Σn(S)VN*(f(S)).

Proof Given p e X, there is a neighborhood U c M of P and an an-
alytic mapping f:U-*N such that /|X = f\U (this can be taken as the



262 J. H. G. FU

definition of an analytic morphism X -> N; cf. Shafarevich [18, 1.2.3]).
Choosing local coordinates in Cm + W for MxN about the point (p, /(/?))
so that graph / becomes C m x {0}, we may apply the Proposition above
(with Y = point) to obtain the identity of currents in P*(M x N):

PiV*(graph(/)) = £ «OS)PiV*(graph(/|S)).

Applying the same process to f~ι: f{X) —> X and the stratification
{f(S): S e S*} now gives the desired result.

2. Canonical forms on S*M and P*Λf

The definition of the characteristic homology classes of X c M will be
of the form

where the γk are certain "universal" differential forms on P*Af. The
proof that the homology classes of these closed currents satisfy the desired
transformation law will depend on the algebraic properties of these forms.

2.1. We have introduced the 1-form β on S*M in the previous sec-
tion. Since the tautological line bundle &T M(-~Ϊ) over V*M isholomor-
phic, it follows from Chern [4, §6] and the definition of β that there is a
closed 2-form ζ on P*M representing the Chern class -cx{0T.M(-\)) =
cχ{@τ*M{\)), such that

dβ = π*τζ.

A fundamental identity from the theory of Chern classes states that if E

is a complex vector bundle of rank r over a space X and ζ = cx{(fE{\)) e

H2(¥E), then the Chern classes cx(E) € H2(X) satisfy the relation

i=0

in 77* (Pis) (cf. Grothendieck [11] for a treatment of Chern classes based
on this identity, or Fulton [9, 3.1.24]). This implies that

/ . \

cM =

where π + : H*(ΨE) -• H*~2{r~ι)(X) is integration along the fiber. In par-
ticular, if we let cχ(T*M), ••• , cm(T*M) denote fixed choices of dif-
ferential forms on M representing the Chern cohomology classes of the
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cotangent bundle T*M, then we have the fundamental relation

(2.1a) ς +cι(T M)Λζ H \-cm(T M) = aτ

for some (2m - l)-form τ on P*Λf.
Suppose for the moment that X c M is a smooth subvariety, with

conormal bundle v*(X). Let π^: <T*(P*M) -> y — ^ ^ - ^ ^ - i ) ^ b e

the operation of integration along the fibers of the projectivized bundle
Ψv*(X) c P*M. Now (2.1z) implies that the total Chern class of v*(X)
is represented by the differential form

r>0

The Whitney sum formula yields at once a formula for the Chern class of
the cotangent bundle of X:

Thus we define the forms γk on Ψ*M by expanding

(Observe that the index k may be negative.) Computing the Chern classes
of X itself,

Lemma. If X is smooths then

ΨN*(X) = (-\)m~dimX[¥u*(X)l

Proof. Applying a change of variable and Proposition 1.6, it is enough
to see this for X = {0} c M = C, which case is obvious.

Now we may express the currents dual to the forms Cj(X) by

[X] Lct(TX) = (-l)m-dim*π# ί[Pv*(X)] L £ γ λ
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Example. If M = P m ,. then formula (2.1b) reduces to a classical for-
mula of Todd.

The projectivized contangent space P*Pm embeds canonically as a sub-
variety of P m x ¥m*. Let ω and ώ denote the Kahler forms of P m and
Ψm* respectively. Then

ζ = ω + ώ,

m—k—\m—k—\ / , i , 1 \

(-1) lJ )coJAω
y=o v J '

In particular,

7=0

That this form is exact in P*Pm may be seen as follows. If P m is equipped
with its invariant Hermitian metric, then this induces an anti-holomorphic
diffeomorphism P w ~ P m * . Thus we may identify P m x P m with PmxPm* .
The cohomology class of Ψm x Pw* that is Poincare dual to the diagonal
Δ c P m x P m is easily seen to contain the form y_λ. Since the image of

p * p m ^ pm χ pmφ _^ pm χ pm i s o b v i o u s l y disjoint from Δ, the claim

follows.
It is worthwhile to note that γ_χ is not identically zero if m > 1.
2.2. The currents of (2.1b) may also be written, using (1.4a), as

π#(N*(X) L β Λ yk). Thus it is useful to compute

Comparing elements of the same degrees, we obtain

(2.2a)
fc = 1, ... , m - 1,
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and

(2.2b) d(β Λ γ0) = -γ_γ + (- l ) m + 1 c m (Γ*M) = -y_χ - cm(TM).

Choosing cm(TM) to be the Gauss-Bonnet-Chern form Ω and noting
that

by (2.1a), we have

(2.2c) d(β Λ γ0) = ζ Λ γ0 = - Ω + (-1 ) m dτ.

It is important to recall here that τ is the pullback of a form from Ϋ*M.
Finally, we use this last relation to identify the transgression

(2.2d) Π:=/?Λy o + (- l ) m + 1 τ .

2.3. Now we can state our main result.
Theorem. Given a compact analytic variety X embedded in a smooth

analytic manifold M, the Chern-MacPherson homology classes of X are
represented by the currents πM#(ΨN*(X) \—yk), fc = 0, , m - 1.

This theorem will be proved by direct verification of the axioms Cl-3
of the Introduction. We have already shown in (2.1b) that Cl holds, and
the final remark of 1.1 implies C2. To establish C3 we prove the following.

Let N be a second complex manifold, and / : X —• N an analytic
morphism with dimf(X) < dimiV. We denote the canonical forms on
V*M and S*Λf by Greek letters (/?, y, ζ, •••) as above, and use the
corresponding Roman letters (b, g, z, ) for the corresponding forms
on Ψ*N and S*N.

Theorem. There are holomorphic varieties Y{, , Yr c N and inte-
gers « 1 5 , nr such that

(2.3a) χf~\q) = Σni\Yi{q) for each qeN,

and

(2.3b) for each k>0, the current

/#πM#(Pi\T(X) L yk) - £ Λ Λ w ( P Λ T ( Γ , ) L gk)

is a boundary in f(X).
Remark. Our expression for the Chern-MacPherson classes has the

same form as those of [16] and [2], that is, as a weighted sum of Chern-
Mather classes of strata. To see this, simply recall the decomposition (1.5a)
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and note that the Chern-Mather class of a variety X with top stratum So

is the homology class of Σk

 π#(rN*(so) L ?*)

3. Proof of (2.3b)

The graph Γ c Λ / x T V o f / i s a holomorphic subvariety, hence its pro-
jectivized conormal cycle FN*(Γ) e I2m+2n-2^ (M x N)) i s a holomor-
phic current supported on the subvariety vγ c P*(Af x N). Let S? be a
Whitney stratification of X as in 1.4, with ΨN*{X) = ΣSe^ a{S)FN*{S),
a(S) eZ. By the corollary of 1.6, we have also

(3.1z) PiV*(Γ) = j ; a(S)ΨN*((id,

Observe that there are naturally embedded copies of M x P*N and
¥*M x N within P*(Af x N), and canonical "rational mappings"

π r Λ / : P*(M xN)-Mx F*N -> P*M5

π p . ^ : P*(M x JV) - P * M xJV-^ F*N.

Let P denote the blow-up of P*(Λfx TV) over the union of the subvarieties
M x¥*N and Ψ*M x N. Then P is a smooth complex manifold, and
there are projections of all of P to F*M and P*iV such that the following
diagram commutes, where a is the blowing-down map:

P

(3.1a) ^ X [t

Ψ*Mi Ψ*(MxN) >P*iV

The subvarieties EQ := σ~ι(F*MxN), ^ := σ~ι(MxF*N) are complex
hypersurfaces in P, each isomorphic to F*M x.F*N via the projections
of (3.1a).

The set σ~ (i/r) is a subvariety of P. Thus we may choose coeffi-
cients for its irreducible components to construct a holomorphic current

^ * such that

(3.1b) σ#PJV*(Γ) = PiV*(Γ), P7V*(Γ) L (EQ U ^ ) = 0.

It is clear that these conditions determine FN*(Γ) this current is called
the proper transform of PiV*(Γ).

Observe finally that the pullbacks to P of the forms γ., g are every-
where-defined, smooth, and closed.
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3.2. Let hQ, hχ be Hermitian metric functions on T*M, T*N re-

spectively (i.e., *.(£) = \\ξ\\2). Inside T*(M x N) s Γ*Λf x Γ*iV there

are canonically embedded copies of Γ*M xJV = h^ι(0) and M x Γ*Λ^ =

HQ ι(0) corresponding to the inclusions Ψ*MxN, MxV*N ^->V*(MxN)

above. It will be convenient to identify the deleted spaces

P*(M x JV)° := P*(M x ΛO - (P*M x i V u M x P*N),

\M x TV0))

- {S*M xNϋMx S*N),

x TV) - (Γ*M xNuMx T*N).

It is easily seen that the ratio h0 ΛJ"1 is the pullback to Γ*(Af x iV)°

of a positive function p:Ψ*(M x N)° -> R. Put

and observe that the pullback to 5*(M x Λ )̂° may be expressed (cf. 1.4)

(3.2z) B = β-b.

Thus we have the equality of the forms on P*(Af x iV)°

(3.2a) dB = ζ-z.

Our immediate goal is to show that the expression VN* (Γ) L 5 defines a
normal current, in the sense of Federer and Fleming, despite the singularity
of B along Ψ*M x N U M x Ψ*N. We want also to evaluate its boundary.
To accomplish these we recall that

ΨN*(γ) L ΰ = <τ#(PiV*(Γ) L B ) ,

d(ΨN (γ) L ί ) = σ#d(¥N (Γ) L5)

and work in the blow-up P . We observe that although the pullback to P
of B remains singular, the singularity is quite mild.

3.3. Lemma. Given any point p e Eo (resp., Ex), there is a neighbor-

hood U of p in P and a holomorphic function φ: U -> C such that

(a) dφφO in U,

(b) φ~\θ) = E0ΠU (resp.f ExnU), and

(c) p\φ\ (resp. p\φ\~~ ) is smooth and nowhere zero in U.



268 J. H. G. FU

Proof. Since this is a local statement, we can assume that M = Cm

and N = Cn , so that

where the last projective factor is naturally identified with the complex
join of the previous two:

In other words, if [ξχ, , £ ] and [T/J, , ηn] are holomorphic homo-
1 * 1 *

geneous coordinates for Pm~ and P"~ respectively, then [ξχ, , ξm

ι/j, , //π] are holomorphic homogeneous coordinates for p"1"1"""1 .

The space P may be realized as Cm +" x Q, where Q is the blow-up of

Pm +"-1* over the subvarieties P m - 1 * , P""1*. Thus

Q = { ( K ; »/], [ξ'}> [η]): ξ, ξ'eCm'; η,η'e C π *

ξ ' φ Q φ η ; { ζ , η ) φ θ ;

We may assume that the point p e Eo = Cm+n x {([ξ η], [ξ'], [η]) e
β : j j = O } i s ( O , [ l , O , , 0 ; 0 , . , 0 ] , [ 1 , 0 , ••• , 0 ] , [ l , 0 , , 0 ] )
€ C m + " x Q . T h e n w e p u t

U := Cm+n x {(K; η], [ξ'], [η]) G Q: ξ, φ 0, η[ φ 0},

and define <p: U -* C by

Hence conclusions (a) and (b) are immediate. To prove (c), we express
the function p in these coordinates as

p{Q, [ξ η], [ξ'], [η]) = (ξ, ί>, l ( ί ) (V, η)^(q),

where the πί are the projections of Cm+n into Cm and C" , and multiply

this expression by \φ\2, to obtain
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which is clearly smooth and nonzero in U. The method for p e Eχ is
similar, q.e.d.

From the residue theorem (Lemma 0.1) we obtain at once
Corollary A. Given a holomorphic current T e Im(P), such that spt T

has no irreducible components contained in Eo u Ex, and the expression

TL.B defines a normal current in P, with

(3.3d) 9(ΓLβ) = ΓL(C-z) + Γn£ r Γn£ 0 ,

where T Π E. is a holomorphic current supported in E(t i = 0, 1.
Note that we use this statement to define the expressions TnEr

3.4. We turn now to characterizing the last two terms of (3.3d) for
T = ΨN*(Γ). The very last term is easy, using

Lemma. Let M, N be smooth manifolds, and X c M a smooth sub-
manifold. Let / : X —• N be a smooth map. Then the conormal bundle
ϊ/*graph(/) c T*(M x N) intersects T*M x N transversally.

Proof We may assume that N = Rn. The change of coordinates
(x, y) \-> (Λ;, y - f(x)) takes graph(/) to graph(zero) and preserves the
vertical foliation and hence also its conormal manifold T*M x N. Thus
we are reduced to the case / = 0, which is trivial, q.e.d.

We may express ΨN*(T) ΠEQ as follows. Let 38 denote the pullback
of the bundle F*N -> N to V*M x N9 so that the total space of SB is
P*M x Ψ*N £ Eo . For each stratum S e & of X, put

thus the sets S, S e S?, partition σ 1 (J/Γ) . Under the identification
EQ ^ Ψ*M x Ψ*N we have

Applying the last lemma to the f\S, we find that ι/*graph(/|5) intersects
T*MxN transversally, and therefore Pι/graph(/|S) intersects Ψ*MxN
transversally. It follows that S intersects EQ transversally. Furthermore,
by the proof of Proposition 1.6, no irreducible component of the singular
set of Ψv*S is contained within P*Λf x N, and therefore no irreducible
component of the singular set of S is contained within Eo. Thus the S,
S e ^ , and the locally defined functions φ of Lemma 3.3 satisfy the
hypothesis of the second part of Lemma 0.1. That lemma now gives

PΛΓ (Γ) n Eo = ΐ
(3.4a)
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as a current in F*M x P*N = EQ. In particular,

(3.4b) πrM,((VN(Γ) Π Eo) L *0) =

and

(3.4c) πrM#[(VN*(Γ) ΠE0)Lgι] = 09 / > 0.

The current ΨN*(Γ) Π Eχ is less clearly seen, but it will be enough to
characterize it in a general way. Let vγ c P be the variety supporting
PΛΓ*(Γ) and let V[, ••• , V's c P be the irreducible components of vγ.
We consider the images of the V under the maps of the commutative
diagram

PDE{* Ψ*M x P*N

Ψ*N

We claim that the images of the v! in P*iV annihilate the contact ideal
A of V*N. For it is easily seen that

π\A = μ*Λ|Λ/ x P*iV = ijjl/ x P*N,

where A is the contact ideal of P*(AfxiV). Since each a(y[) is contained
in the Legendrian variety sptPΛ^*(Γ) c V*(M x N), we have

which implies the claim.
In particular, each of these images has complex dimension < n -1, and

those of dimension n - 1 are, by definition, Legendrian subvarieties of
P*ΛΓ. Let V{, , Vq c P*iV be these images of top dimension; we may
change indices so that V. = λ(VJ), i = 1, , q. Let ωt e H2m_2(Ψ*M)
be the homotogy class of the generic fiber of the map V[ -* Vn i =
1, , q. Pairing with the canonical form γ0 pulled back from F*M,
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we compute

πrm([VN(T) n £,] L y0) = πrm [ £ m,^'] L J
Lί=i J

(mp ,mseZ)

(after comparing dimensions of the

fibers with deg y0 = 2m - 2)

1=1

By Proposition 1.5A, this Legendrian cycle may be written

(3.4d) πrm{[ΫN*{T) n E{] Ly o ) = ^ ^PΛT (7,)
;=1

for some varieties Yj, • • , Yr c N and integers nγ, ••• , nr. We have
also
(3.4e) πrm[{ΫN\Y) n £ , ) L y,] = 0, i > 0.

3.5. We are now in a position to prove (2.2b). We examine first the
most straightforward case k = 0, which nonetheless exhibits all of the
essential features of the computation:

d[ΨN\Y) L B Λ γ0 Λ g0] = dσ#[ΨN*(Γ) LBΛγ0AgQ]

= σ#[ΫN*(r>L(ζ-z)Λγ0Λg0]

To compute the first term, note that

(C - z) Λ γQ A g0 = (C Λ y0) Λgo-γoΛ(zΛ g0)

by (2.2c). Since the projections of ¥N*(Γ) to M and iV are proper
subvarieties, it follows that

ΨN*(Γ) L Ω = 0 = PΛΓ*(Γ) L O;
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since PiV*(Γ) is a cycle, the first term above becomes

(-l)md(ΨN*(Γ) LτΛ ? 0 ) + (-l)n+ιd(fN\Γ) L γ0 Λ /) = OR.

Projecting the second and third terms to M and N yields

*(Γ) n Eo) L γ0 A g0) = πm{πrm{ΨN*{T) L *0) L γ0)

by (3.4b) and

πmσ#((ΨN*(Γ) nEι)\-γ0/\g0) = πm(πrm(PN*(Γ) L γ0) L

by (3.4d). Thus we have shown that there is a normal 1-dimensional
current T = πΛ/XJV#[PΛ^*(Γ) L 5 Λ y 0 Λ g 0 ] , supported on the graph Γ,
such that d T = Sx - So + dπMχN#R, where

and

\i=l /

This is equivalent to the case k = 0 of (2.2b).
To prove (2.2b) for k > 0, we will show that if we put

k / k λ

Tk := πΆ
*ΆIxN#

\ /=0

then dTk = 5f - S% + δi?^ for some current 7?* , where

and

Proceeding as above, we compute
Γ k

/=o
k

ϊ=0
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In view of (3.4b, c, d, e) we may take sf and S^ to be the projections to
M x N of the second and third terms, and it only remains to check that
the image of the first term under πMxN is homologous to zero.

Using (2.2a), we find that

ι=0

for some "horizontal" forms φ. e &*(M), ψ. e &*(N). The first sum-
mation telescopes to

which is exact. It remains to show that

*(Γ) L J > , Λ gk_t - γ, Λ Ψfc_,.)] = 0.

Since the forms here are pullbacks from P*Λf x N or M xΨ*N via the
projections λ: P -> Ψ*Mx N and μ: P —• MxP*Λ^, it is enough to prove:

Lemma. A#PiV*(Γ) = 0, μ#FN*(Γ) = 0.
Proof. The second relation follows from the dimension count:

dimcsptPiV*(y) = m + n - 1,

dimcμ(sptPiV*(Γ)) < d i m * + dimP"" 1* < m + n - 1.

To prove the first relation, let x e X be given and let x e S £ S?. Put

p : = ( x , f{x)) € Γ. Then the conormal space i/graphί/IS) at p inter-

sects {0} x T*f{χ)N nontrivially, namely in the subspace {0} x [f+(TxS)Y~.

It follows that the projection of i /graph^S) to T*Mx{0} decreases di-

mension, and therefore so does the projection of Pι/*graph(/|5f)~MxP*iV

to Ψ*M x N. Applying this to each stratum, the support theorem gives

λ#PiV(Γ) = λ#(FN' (Γ) L (P - (Eo U Eχ)))

= 0.
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4. Proof of (2.3a)

4.1. The plan is as follows. Let q € N be any given point, and let
δ: N -*> [0, oo) be the distance from q in N with respect to some analytic
Hermitian metric. For s > 0, we consider the semianalytic set

Γs: = {(x,y)eMxN:δ{y)<s}nΓ

and its conormal cycle N*(ΓS) e I2(m+n)-i(s*(MxN)) ^ π a n d p b e

the transgression forms

on S*M and 5*Λ^ respectively. Pulling these back to S*(MxN)° via the
projections of this space to iS*Af and S*N, Π and JP may be regarded
as singular forms on ιS*(AΓ x iV). We will prove that the expression

(4.1a) ΛΓ*(ΓJLPΛΠ

defines a normal current of dimension 1 in S*(M x N), with

(4.1b) β[ΛT(Γ,)LPΛΠ] = Σ 1 - Σ ϋ >

where the 0-currents (i.e. measures) Σ satisfy

(4.1c)

Here we have defined

xs:=Γιδ-ι[θ,s], r ^ ^ y . n ί ' Ί o . j ] .

In particular the signed measures of (4.1c) have the same total measure.
Then Theorem 1.3 3 and the Gauss-Bonnet Theorem 1.2 give for small

xΓ\q) = * 1

1=1 1=1 1=1

Thus we are reduced to proving (4.1b) and (4.1c).
4.2. That (4.1a) defines a normal current follows from a blowing up

construction and generalities about compact semianalytic sets. Let S be
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the real oriented blowup of S*(M x N) over the canonically embedded
copies of S*M x N and M x S*N. Then we have the commutative
diagram:

S

(4.2a)

S*M < S*(MxN) > S*N

Locally, S*(MxN) is just R 2 m + 2 / I x5 2 m + 2 / I - 1 , and 5 = R ^ ^ x ^ " ^
S2n~ι x [0, 1]), with the projection σ: S -> S*(M x N) induced by the
map

~ (ί2 + (1 - tf)-χl\txx, , txlm (1 - t)yx, • , (1 - ί ) ^ ) .

It is clear that S is a real analytic manifold with boundary, where dS is
analytically diffeomorphic to two copies of S*MxS*N via the projections
of (4.2a). These boundary components may be identified as

Fo := σ~\s*M xN), Fχ := σ~l(M x S*N).

By results of Hardt [13], the compact semianalytic subset
σ~ι(sptN*{Γs)) c S has finite (2m + 2n - l)-dimensional Hausdorff mea-
sure (with respect to any Riemannian metric on S). Assigning multiplic-
ities appropriately, it follows that there is a unique semianalytic integral
current N*(ΓS) e I2m+2n-ι^) s u c h t h a t

σ*N*(Γs) = N\ΓS), N*(Γs)l_dS = 0,

and

sptdN*{Γs)cdS = F0\JFv

Since the pullbacks to S of Π of P are smooth forms, we find that

(4.2b) N*(ΓS) L Π Λ P = σ#(#*(Γ5) L Π Λ P)

is a well-defined normal current. Moreover,

= aΛT(Γ,) L Π

since, for any φ e 3>*(S),

= 0
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in view of the fact that X = πM{Γ) is a proper subvariety of M. Similarly,

(4.2d) d(N*{Γs) LP) = dN*(Γs) L P,

and so putting, for 0 < s < oo,

we have

d(N*(Γs) L Π Λ P ) = [Λr*(Γ4) Π F, + ΛΓ*(Γ,) ΓΊ FQ] L Π Λ P

(4 2e) = ( ( Λ Γ * ( Γ ί ) n F 1 ) L Π ) L P

-P*(Γs)Πf0)LP)LΠ.

Since (N*(ΓS) ΠF,) L Ω = 0 = (ΛΓ*(Γ,) n f 0 ) L O, the currents (ΛΓ*(Γ,) n
F,) L Π and (N*(ΓS) Π F o L P are closed. We will use the Proposition
1.3C, with φ = δ oπN,Xo establish for small s that

(4 2f) r

"S>NA"*VS) n Fx) L Π) = Σ»iN*(γi,s)

Taking

we thus prove (4.1b, c).

4.3. Put Γ^ := π ^ t Γ ^ O , j ) n Γ , and define jζ, Y?s similarly. Since

conormal cycles are locally determined, to show that the currents of (4.2f)

agree over X® and U, rf s

 ίx i s e n o u 6 h t 0 prove

(4 3a) Γ

*s *#[(#*(Γ) Π F,) L Π] = Σ ni
ι = l

To this end, let λ and μ denote the compositions

λ: S -• 5*Λ/ x 5*iV -> P*M x 5*iV,

/i: S -» 5*M x 5*iV - 5*Λ/ x P*iV.

Lemma. λΦN*(Γ) = 0, /i#J\Γ*(Γ) = O.
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Proof. Given x e S e S?, observe that the full conormal space
u(χ /(x))8raP^(^l^) c o n t a i n s a s a direct summand the complex vector space
v*Sx{0}. Then the projection of S* (MxN)° into P*MxS*N decreases
the dimension of the conormal ray bundle of graph(/|5). Applying this
to each stratum and using the support theorem we obtain

A#ΛΓ*(Γ) = λ,(N*(Γ) L (S - (Fo U Fx)))

= 0.

The second relation has a similar proof.
Since τ and t are pullback from P*M and Ψ*N respectively, it follows

that

(4.3b) V M # ( ^ ( Γ ) L 0 = 0, πs*m(N*(Γ) L τ) = 0.

Thus we are reduced to proving (4.3a) with P and Π replaced by b Ag0

and β Λ γ0 .
Since β is smooth in the neighborhood of Fo, we have

d(N*(Γ) L b Λ gQ) L σ(F0) = 0(ΛT(Γ) L_(b-β)A gQ) L σ(FQ)

= - d(N*(Γ) L β Λ g o ) L σ(F0) by (3.2z)

(where ^ is the Hopf bundle S*{M xN)->Ψ*(Mx N))

= - [β(PΛT(Γ) Lf iΛg 0 ) x ^ [51]] L σ(F0)

= - [d(ΨN*(Γ) L 5 Λ ^ 0 ) L σ(£0)] x ̂  [5 1].

The restriction ^ to σ(E0) s P*Λί x N is identical to the pullback of
the Hopf bundle S*M —• P*M, which we denote by ^ . Therefore, using
(3.3d) and (3.4b) we obtain the image of this current in S*M:

σ(E0)]} x^ [Sι]

which is the first relation of (4.3a). A similar computation by (3.4d) in
place of (3.4b) gives the second relation.

4.4. To complete the proof, we may suppose that the stratification
S? of X is such that the family {f(S) J G ^ } constitutes a Whitney
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stratification of f(x). In particular, each restriction f\S, S e S?, has
constant rank. By Proposition 1.3b, we have

{(ζ, η) € T*{M x JV) = T*M x T*N: (ξ, υ) + {η,f,v) < 0

for all v e Ύan{S Π f~\β{q, s)), πh

whence

C π r M(spt7V*(ΓJ Π

c \J{ξeS M:πM{ξ)eSnf δ (s),(ξ,υ)<0

for all v e Ύan(Sn f~ιδ~ι[0, s], πM(ξ))}9

and the first part of (4.2f) follows from the Corollary to Proposition 1.3C.
Meanwhile,

C τrrΛr(sptΛΓ*(Γ5) Π (M x 5*

for all w e fJ*n(S n / " ^ " ^ O , j ] , x) , x e f~lπN(η)}.

Furthermore, the hypothesis on S? implies that

/ + T a n ( S Π r l δ ~ ι [ 0 , s ] , x ) = Tan(/(S) Πδ~ ι[0, j ] , /(*))

for each Λ: G S n f~ιδ~ι(s) and each 5 Έ y . Hence the second part of
(4.2f) follows from Proposition 1.3C.

5. Concluding remarks

The construction of MacPherson is founded on his definition of the

"local Euler obstruction" Eu (V) of a point p in a variety V. The ap-

proach of the present article suggests a geometric expression for Eup{V)

as follows. We may suppose that V is a subvariety of Cn . Let κ0 de-

note the pullback to S*Cn 2 Cn x S 2 "" 1 of the volume form on S2n~ι

(volί^2""1) = 1). It then appears that

(5a) Eup(V) = lim(N*(V n B(p, ε)) L V°



CURVATURE MEASURES AND CHERN CLASSES 279

where V° is the smooth locus of V, and Έ(p, ε), S(p, ε) are, respec-
tively, the closed ball of radius ε about p and its boundary sphere. In
other words, Eup(V) should in the limit be equal to the "Gauss curva-
ture" of V Π B(p, ε) within V° n S(p, c). In what follows we give two
loosely connected remarks supporting this assertion.

5.1. Let k + 1 := dim V. For each ε > 0, there is a complex Λ>plane
bundle ^ ε over V° nS(p, ε) with fiber over x equal to TχVn (p - JC)X ,
where _L is computed via the Hermitian inner product. Of course there
is a natural map of this bundle to the tautological bundle & over the
Grassmannian G(n, k) let ck{β^) denote the pullback to V° n S(p, ε)
of the kth Chern form ck(JΓ). A formula of Loeser [15] asserts that

(5b) Eup(V) = l i m — 1 = / ck(^ε)Λ(d + dc)log\z-p\2.
μ ε-*0 2 π V - l Jv°nS(p,ε)

The connection with formula (5a) may be made via the following for-

mula for ck{βΓ). Let & denote the (In - Ik - l)-sphere bundle over

G(n, k) with fiber S2n~ι Πλ^ over λ e G(n, k) and the total space Eφ .

Let t\ E^ —• s2n~ι be the tautological map, and let π^ be fiber integration
in 5?. Then

(5c) ck(Γ) = πSκ0.
5.2. The construction of MacPherson proceeds by defining an auto-

morphism T of the free abelian group generated by the strata of the given
singular variety X, and using the local Euler obstruction. The characteris-
tic homology classes can then be obtained by weighting curvature integrals
over the strata of X according to a recipe involving T~ι (cf. Shifrin
[19]). The use of the inverse corresponds in our picture to the condition
ipeX):

1 = limχ(XnB(p,ε))
ε->0

= Kmlf{XnB(p,e)){K0)

= (N*(X)Lπ-1(p))(κ0)

+ lim(N*(Xn~B(p, e))\-S(p,e))(κ0)

= (N*(X)Lπ-i(p))(κ0)

lim(JV*(X Π B(p, e)) L (S(p, ε) n S))(κ0)

if we use (5a), where S" is a Whitney stratification of X containing the
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singleton {/?}, and
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