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A NUMERICAL CRITERION FOR
VERY AMPLE LINE BUNDLES

JEAN-PIERRE DEMAILLY

Abstract

Let X be a projective algebraic manifold of dimension n and let L be
an ample line bundle over X . We give a numerical criterion ensuring that
the adjoint bundle Kχ + L is very ample. The sufficient conditions are
expressed in terms of lower bounds for the intersection numbers if Y
over subvarieties Y of X . In the case of surfaces, our criterion gives
universal bounds and is only slightly weaker than I. Reider's criterion.
When dimX > 3 and codimF > 2, the lower bounds for Lp Y
involve a numerical constant which depends on the geometry of X . By
means of an iteration process, it is finally shown that 2KX + mL is very
ample for m > I2nn . Our approach is mostly analytic and based on a
combination of Hόrmander's L2 estimates for the operator Ί) , Lelong
number theory and the Aubin-Calabi-Yau theorem.

1. Introduction

Let L be a holomorphic line bundle over a projective algebraic manifold
X of dimension n . We denote the canonical line bundle of X by Kχ and
use an additive notation for the group Pic(X) — H (X, <f*). The original
motivation of this work was to study the following tantalizing conjecture
of Fujita [23]: If L e Pic(X) is ample, then Kx + {n 4- 2)L is very ample;
the constant n + 2 would then be optimal since Kχ + (n + \)L = <fχ is not
very ample when X = Pn and L = <?(1). Although such a sharp result
seems at present out of reach, a consequence of our results will be that
2Kχ + mL is always very ample for L ample and m larger than some
universal constant depending only on n .

Questions of this sort play a very important role in the classification the-
ory of projective varieties. In his pioneering work [9], Bombieri proved
the existence of pluricanonical embeddings of low degree for surfaces of
general type. More recently, for an ample line bundle L over an alge-
braic surface S, I. Reider [39] obtained a sharp numerical criterion en-
suring that the adjoint line bundle Kχ + L is very ample; in particular,
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KS+3L is always spanned, and KS+4L very ample. Reider's method was
further developed by Catanese [11], Sakai [40] and Beltrametti-Francia-
Sommese [6], who studied the existence of higher order embeddings via
s-jets. Reider's approach is based on the construction of rank two vec-
tor bundles associated to some 0-cycles in special position with respect to
the linear system \KS + L\ and a use a Bogomolov's inequality for stable
vector bundles. Unfortunately, these methods do not apply in dimension
> 3 and no similar general result was available. In a somewhat different
context, Fujita [22] proved that Kχ + {n + 2)L is always ample. This result
is obtained via Mori's theory of extremal rays [35] and the cone theorem
of Kawamata (cf. [27], [28]), but the arguments are purely numerical and
give apparently no insight on the very ample property.

Our purpose here is to explain a completely different analytic approach
which is applicable in arbitrary dimension. Let us first recall a few usual
notations that will be used constantly in the sequel:

1 / 7
 JY P

denotes the intersection product of p line bundles Lχ, , Lp over a
^-dimensional subvariety Y c X. In case Lχ = = Lp we write instead
if Y and in case 7 = 1 we omit Y in the notation. Similar notations
will be used for divisors. Recall that a line bundle (or a R-divisor) L over
X is said to be numerically effective, nef for short, if L C > 0 for every
curve C c X in this case L is said to be big if Ln > 0. More generally,
a vector bundle E is said to be nef if the associated line bundle ffE{Y) is
nef over P(E*) = projective space of hyperplanes in E any vector bundle
E such that some symmetric power SmE is spanned by its global sections
is nef. In this context, we shall prove

Main Theorem. Let X be a projective n-fold and let L be a big nef

line bundle over X. Suppose that there is a number a > 0 such that

TX <g> @{aL) is nef. Then Kχ + L is spanned at each point of a given

subset Ξ of X {resp. separates all points in Ξ, resp. generates s-jetsatany

point of Ξ) provided that Ln > σQ with σ0 = nn {resp. σ0 = 2nn, resp.

σ0 — {n + s)n), and that there exists a sequence 0 = βχ < < βn < 1

such that any subvariety Y c X of codimension p = 1,2, -- , n - I

intersecting Ξ satisfies

0<j<p-ι

with Sζ(β) = 1, Sp.(β) = elementary symmetric function of degree j in
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βx, • • • , βp and

The expression "separation of points" used here includes infinitesimal
separation, that is, generation of 1-jets at each point (the constant σQ =
(n+ l)n corresponding to s = 1 can therefore be replaced by the smaller
value 2nn). In fact, our proof also gives sufficient conditions for the
generation of jets corresponding to arbitrary O-dimensional subschemes
(Ξ, ^ Ξ ) of X, simply by changing the value of σ0 for example, if (Ξ, &-)
is a local complete intersection, the constant σ0 can be taken equal to
nnh (Ξ, έf-) unfortunately, this value is in general far from being optimal.
Notice that the number a involved in the hypothesis on TX need not be
an integer nor even a rational number: the hypothesis then simply means
that any real divisor associated to #τx(l) + aπ*L is nef over P(T*X).

As the notation are rather complicated, it is certainly worth examining
the particular case of surfaces and 3-folds. If X is a surface, we have
σ0 = 4 (resp. σQ = 8, resp. σ0 = (2 + s)2), and we take β{ = 0, β2 = 1.
This gives only two conditions, namely

(1.2) L2>σ0, L-C>σ{

for every curve C intersecting Ξ. In that case, the proof shows that the
assumption on the existence of a is unnecessary. These bounds are not
very far from those obtained with Reider's method, although they are not
exactly as sharp. If X is a 3-fold, we have σ0 = 27 (resp. σ0 = 54, resp.
cr0 = (3 -h s) 3 ), and we take β{ = 0 < β2 = β < β3 = 1 . Therefore our
condition is that there exists β e]0, 1[ such that

(1.3) L 3 > σ0, L2 S > β~lσ{, L - C > (1 - β)~\σ2 + βaσx)

for every curve C or surface S intersecting Ξ.
In general, we measure the "amount of ampleness" of a nef line bundle

L on a subset Ξ c X by the number

(1.4) /έ B (L)=min min (Lp Y)l/p,
V f ~ \<p<n dim Y=p, YnΞ^0

where Y runs over all p-dimensional subvarieties of X intersecting Ξ.
The Nakai-Moishezon criterion tells us that L is ample if and only if
μx(L) > 0. An effective version of this criterion can be easily deduced
from the Main Theorem: in fact, a suitable choice of the constants βp in
terms of a, σ0 and μE{L) yields
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Corollary 1. Let L be a big nefline bundle on X such that TX®<f{aL)
is nef for some a > 0, and let Ξ be an arbitrary subset of X. Then the
line bundle Kχ + mL spans (resp. separates points, resp. generates s-jets)
on Ξ as soon as

χ(au f )
^ ^ ' ' )\<k<n-2

with σQ = nn {resp. σ0 = 2nn, resp. σ0 = (n + s)n) and with a constant
Bn < 2.005 depending only on n {Table (11.11) contains the first values

ofBn)
When L is ample, the number a always exists and we have μΞ{L) > 1

for any choice of Ξ. We thus get an explicit lower bound m0 depending
only on n, a such that Kχ + mL is spanned or very ample for m> ra0.
Unfortunately, these lower bounds are rather far from Fujita's expected
conditions m > n + 1 and m > n + 2 respectively. Observe however
that the lower bound for Ln is the Main Theorem is optimal: if X - P"
and L - (f{l), then Kχ = &{-n - 1) so Kχ + nL is not spanned,
although {nL)n = nn = σQ. Similarly Kχ + {n + s)L does not generate
s-jets, although {{n + s)L)n = {n + s)n = σQ. When X c P"+ 1 is the
n-dimensional quadric and L = &X{1), then Kχ + nL — @χ is not very
ample, although {nL)n = 2nn = σQ.

Another unsatisfactory feature is that our bounds depend on the geom-
etry of X through the number a, while the case of curves or surfaces
suggests that they should not. In fact, our proof uses a rather delicate
self-intersection inequality for closed positive currents, and this inequality
(which is essentially optimal) depends in a crucial way on a bound for the
"negative part" of TX. It follows that new ideas of a different nature
are certainly necessary to get universal bounds for the very ampleness of
Kχ + L. However, an elementary argument shows that TX®@{Kχ + nF)
is always nef when F is very ample (see Lemma 12.1). This observation
combined with an iteration of the Main Theorem finally leads to a uni-
versal result. Corollary 2 below extends in particular Bombieri's result on
pluricanonical embeddings of surfaces of general type to arbitrary dimen-
sions (at least when Kχ is supposed to be ample , see 12.10 and 12.11),
and can be seen as an effective version of Matsusaka's theorem ([34], [30]).

Corollary 2. If L is an ample line bundle over X, then 2Kχ -h mL is
very ample, resp. generates s-jets, when {m - \)μχ{L) + s > 2Cnσ0 with
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a constant Cn<3 depending only on n {see Table (12.3)). In particular,
2Kχ + mL is very ample for m > 4Cnn

n and generates higher s-jets for
m>2CnσQ.

Our approach is based on three rather powerful analytic tools. First, we
use Hόrmander's L2 estimates for the operator d with singular plurisub-
harmonic weights to prove a general abstract existence theorem for sections
of Kχ + L with prescribed jets at finitely many points; the idea is similar
to that of the Hόrmander-Bombieri-Skoda theorem, but following an idea
of A. Nadel [36], we consider plurisubharmonic functions with logarith-
mic poles associated to an arbitrary ideal in ffx x (see Corollary 4.6). We
refer to [19] for further results relating ample or nef line bundles to singu-
lar hermitian metrics. The second tool is the Aubin-Calabi-Yau theorem.
This fundamental result allows us to solve the Monge-Ampere equation
(ω+j;ddψ)n = / where ω — j^c(L) is the curvature form of L, and the
right-hand side / is an arbitrary positive (n, n)-form with jχf = Ln.
We let / converge to a linear combination of Dirac measures and show
that the solution ψ produces in the limit a singular weight on L with
logarithmic poles. In order to control the poles and singularities, we use in
an essential way a convexity inequality due to Hovanski [25] and Teissier
[47], [48], which can be seen as a generalized version of the Hodge index
theorem for surfaces. Finally we invoke in several occasions the theory of
closed positive currents and Lelong numbers (see [3], [32]). In particular,
the generalized Lelong numbers introduced in [17] are used as a substitute
of the intersection theory of algebraic cycles in our analytic context. The
self-intersection inequality 10.7 can be seen as a generalization to currents
(and in any dimension) of the classical upper bound d(d — l)/2 for the
number of multiple points of a plane curve of degree d. It actually gives a
bound for the sum of degrees of the irreducible components in the sublevel
sets of Lelong numbers of a closed positive (1, l)-current T with integral
cohomology class {T} , in terms of an explicit polynomial in {T} .

2. Singular hermitian metrics on holomorphic line bundles

Let L be a holomorphic line bundle over a projective algebraic manifold

X and n = dim X. If L is equipped with a hermitian metric, we denote

by c(L) = ^ V 2 the Chern curvature form, which is a closed real (1, 1)-

form representing the first Chern class cχ (L) e H2(X, Z). It is well known

that L is ample if and only if L has a smooth hermitian metric such that

c(L) is positive definite at every point.
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However, we are also interested in singular metrics, because they often
give additional information about the existence of sections of high multi-
ples mL. By definition a singular metric on L is a metric which is given
in any trivialization τ : L f Ω ^ Ω x C by

(2.1) llίll = |τ({)|<Γ' ( J θ, xeίl, ζeLx,

where φ e Lloc(Ω) is a weight function. Then the curvature of L is

given by the (1, l)-current c(L) = ^ddφ on Ω. For example, to any
divisor D = Σ λjDj with coefficients λ. e Z is associated the invertible
sheaf (9{D) of meromorphic functions / such that div(/) 4- D > 0
the corresponding line bundle can be equipped with the singular metric
defined by | |/ | | = | / | . If g. is a generator of the ideal of Zλ on an open

set Ω c X, then τ(f) = fYlg/ defines a trivialization of (f(D) over
Ω thus our singular metric is associated to the weight φ = J^A. log \gj\.
By the Lelong-Poincare equation, we find

(2.2)

where [D] = Σλj[Dj] denotes the current of integration over D.
In the sequel, all singular metrics are supposed to have positive curva-

ture in the sense of currents (cf. [31]); i.e., the weight functions φ are
supposed to be plurisubharmonic. Let us recall some results of [18]: con-
sider the real Neron-Severi space NSR{X) = {H2{X,ZΓ\ HUX{X)) <g> R
of algebraic cohomology classes of degree 2, and let Γ+ c NSR(X) (resp.
Γfl c Γ+) be the closed convex cone generated by cohomology classes of
effective (resp. ample) divisors D\ denote by Γ° (resp. Γ°) the interior
of Γ+ (resp. Γ f l). Then if ω is a Kahler metric on X and ε > 0, we
have the following equivalent properties:

(2.3) c{(L) eΓ+<& L has a singular metric with c(L) > 0;

c{(L) € Γ° <Φ 3ε, L has a singular metric with c(L) > εω

&κ(L) = n;

c{(L) eΓa<=>Vε, L has a smooth metric with c(L) > -εω
(2.5) .

Φ> L is nef

Cj(L) G Γ° Φ> 3ε, L as a smooth metric with c(L) > εω

<& L is ample.

The notation κ{L) stands for the Kodaira dimension of L, that is by
definition, the supremum of the generic rank of the rational maps to pro-
jective space defined by the nonzero sections in H°(X, mL) for m > 1
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(if any), and κ(L) = -oo; otherwise, alternatively, κ(L) is the small-

est constant such that h°(X, mL) < 0{mκ{L)). The only thing that will

be needed here is the fact that a big nef line bundle satisfies the equiv-

alent properties in (2.4); we shall briefly sketch the proof of this. If

L is nef, the Hubert polynomial of χ(X, mL) has leading coefficient

Ln/n\ > 0, and it is well known that hj(X, mL) = O(mn~x)\ thus

h°(X, mL) = {Ln/n\)mn + O{mn~ι). Hence L is big if and only if

κ(L) = n. Let A be an ample divisor. Then H°(X, mL - A) is the

kernel of H°(X, mL) -> H°(A, mLtA), and the target has dimension

< Cmn~ι. When κ(L) = n we get H°(X, mL-A)^0 for m large, so
there is an effective divisor E such that mL ~ A+E. Now, pL+A is am-
ple for every p > 0, so pL+A has a smooth metric with c(pL+A) > ε ω,
and the isomorphism (m + p)L ~ pL + A + E gives a metric on L such
that

(2.7) c(L) = (m +p)~\c(pL + A) + [E]) > (m +/?)~1εpω.

Observe that the singular part (m + p)~ι[E] can be chosen as small as
desired by taking p large.

3. Basic results on Lelong numbers

These results will be needed in the sequel as an analytic analogue of
some standard facts in the intersection theory of algebraic cycles. They
are developed in more detail in [13,], [16], [17] (cf. Lelong [31], [32] for an
earlier presentation). We first recall a few definitions. Let T be a closed
positive current of bidimension (p, p), that is, of bidegree (n-p, n-p),
on an open set Ω c C " . The Lelong number of T at a point x e Ω is
defined by t/(T, x) = limΓ_>0+ i/(T,x,r) where

(3.1) v(T,x, r) = —L- / T(z) Λ (idd\z\2)p

(2πr Y JB{x,r)
measures the ratio of the mass of T in the ball B(x, r) to the area of the
ball of radius r in Cp this ratio is an increasing function of r (cf. [30]),
and the limit v(T,x) does not depend on the choice of coordinates. In the
case where T is a current of integration [A] over an analytic subvariety,
the Lelong number v([A], x) coincides with the multiplicity of A at x
(Thie's theorem [49]).

More generally, let φ be a continuous plurisubharmonic function with
an isolated -oo pole at x , e.g. a function of the form

9(z) = log £ \gj{z)\γ>, 7j>0,
\<j<N
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where (g{, , gN) is an ideal of germs of holomorphic functions in ffχ

with g~l(0) = {x}. According to [17], the generalized Lelong number

v(T, φ) of T with respect to the weight φ is the limit when t tends to
-oo of

(3.2) "{t,9,t)= [
Jφ(z)<t

Because of the logarithmic singularity of φ , the integral is not well defined
a priori. In fact, we can use Bedford and Taylor's definition of the Monge-
Ampere operator for locally bounded plurisubharmonic functions (see § 10)
and set

f TA(iddφ)p

Jφ{z)at

Jφ(z

(3.3) "ψ{z)at

T(z) A (idd ma.x(φ{z), s))p , s <t\
(z)<t

observe that the right-hand side is independent of s by Stokes' formula.
The relation with ordinary Lelong numbers comes from the equality

(3.4) i/(Γ, x, r) = v(T, φ, logr), φ(z) = log|z — JC|

in particular u(T, JC) = i>(Γ, log | - x | ) . This equality is in turn a con-
sequence of the following general formula, applied to χ(t) = e2t and
t = logr:

(3.5) / ΓΛ (ίaa/ o φ)p = χ\t - 0)p [ ΓΛ (idθφf ,
Jφ{z)<t Jφ{z)<t

where / is an arbitrary convex increasing function. To prove the formula,
we use a regularization and thus suppose that T, φ and χ are smooth,
and that Ms a noncritical value of φ . Then Stokes' formula shows that
the integrals on the left and on the right of (3.5) are equal respectively to

TA(iddχoφ)p-1 AW(χoφ),
φ{z)=t

I T A{iddφ)~l Aidφ,
Jφ{z)=t

and the differential form of bidegree (p-1), p) appearing in the integrand
of the first integral is equal to {χ o φ)p(id~dφ)p~ι A ίdφ . The expected
formula follows.

It is shown in [17] that v(T, φ) depends only on the asymptotic behav-
ior of φ near the pole x namely, the Lelong number remains unchanged
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for a weight ψ such that limz_>jc ψ(z)/φ(z) = 1. More generally, if
limsupz_^JC ψ(z)/φ(z) = λ, then

(3.6) u(T9ψ)<λpv(T9φ).

Finally, let F be a proper holomorphic map from a neighborhood of x
onto a neighborhood of y in Cn , and let ^ be a continuous plurisubhar-
monic function with an isolated pole at y. The definition of the direct
image FJΓ by adjunction of i7* easily shows that for t < t0 sufficiently
small

For any closed current T of bidimension (p, p) on a complex manifold
X and any positive number c, we let EC(T) be the set of points z € X
where u(T, z) >c. By a theorem of Siu [42], all sublevel sets EC(T) are
closed analytic subsets of X of dimension at most p . Moreover T can
be written as a convergent series of closed positive currents

(3.8) 1 =2^λfclZfcl + Λ '
k=\

where [Zk] is a current of integration over an irreducible analytic set
of dimension p, and R is a residual current with the property that
dim Ec(R) < p for every c > 0. This decomposition is locally and globally
unique: the sets Zk are precisely the ^-dimensional components occur-
ring in the sublevel sets EC(T), and λk = min ; c 6 Z v(T, x) is the generic
Lelong number of T along Zk .

The Lelong number of a plurisubharmonic function w on X can also
be defined as

(3.9) v{WtX)=sUmmfϊ^Tr

where z = (zx, , zn) are local coordinates near x, and | | denotes an
arbitrary norm on Cn . It is well known that i/(w, x) is equal to the Lelong
number u(T, x) of the associated positive (1, l)-current T = ±ί
Accordingly, we set Ec(w) = EC(T).

4. L2 estimates and existence of holomorphic sections

We first state the basic existence theorem of Hόrmander for solutions
of ^ equations, in the form that is most convenient to us.
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Proposition 4.1. Suppose that X is a Stein or compact projective man-
ifold equipped with a Kdhler metric ω. Let L be a line bundle with a
hermitian metric associated to singular plurisubharmonic weight functions
ψ such that c(L) > εω for some ε > 0. For every q > 1 and every (n, q)
form v with values in L such that dv = 0 and fχ \v\2e~2ψ dVω < +oo,
there is a (n, q - \)-form u with values in L such that du = v and

Here dVω stands for the Kahler volume element ωn/n\, and \u\2e~2ψ

denotes somewhat abusively the pointwise norm of u{z) at each point
z € X, although ψ is only defined on an open set in X. The operator d
is taken in the sense of distribution theory.

Proof The result is standard when X is Stein and L is the trivial
bundle (see [1] and [24]). In general, there exists a hypersurface H c X
such that X \ H is Stein and L is trivial over X \ H. We then solve the
equation du = υ over X \ H and observe that the solution extends to X
thanks to the L2 estimate (cf. [14, Lemma 6.9]). q.e.d.

We will also use the concept of multiplier ideal sheaf introduced by A.
Nadel [36]. The main idea actually goes back to the fundamental works of
Bombieri [8] and H. Skoda [43]. Let φ be a plurisubharmonic function
on I ; to p is associated the ideal subsheaf J^iφ) c @x of germs of
holomorphic functions / e (9X χ such that \f^e~2φ is integrable with
respect to the Lebesgue measure in some local coordinates near x. The
zero variety V*f{φ) is thus the set of points in a neighborhood of which
e~ φ is nonintegrable. This zero variety is closely related to the Lelong
sublevel sets Ec{φ). Indeed, if u(φ, x) = γ, the convexity properties of
plurisubharmonic functions show that

φ(z) < y log |z-x | + 0(l) at x;

hence there exists a constant C > 0 such that e~2φ^ > C\z - x\~2γ in a
neighborhood of x . We easily infer that

(4.2) v(φ, x) > n + s =* Jr{φ)x c Jt^ι

χ ,

where Jίχ χ is the maximal ideal of <9χ χ. In the opposite direction,

it is well known that u(φ, x) < 1 implies the integrability of e~2φ in a

neighborhood of x (cf. Skoda [43]); that is, ^{φ)x = @x x . In particular,

the zero variety V<y(φ) of I{φ) satisfies

(4.3) EnM
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Lemma 4.4 [36]. For any plurisubharmonic function φ on X, the sheaf
is a coherent sheaf of ideals over X.

Proof Since the result is local, we may assume that X is the unit ball
in Cn . Let E be the set of all holomorphic functions / on X such
that fχ \f\2e~2φ dλ < +00 . By the strong noetherian property of coherent
sheaves, the set E generates a coherent ideal sheaf / c ^ χ . It is clear
that / c J ' ( p ) in order to prove the equality, we need only check that
fχ + ̂ {φ)x Π -^χ^x = Jr{φ)x for every integer s, in view of the Krull
lemma. Let / e ^{ψ)x be defined in a neighborhood V of x and θ be
a cut-off function with support in V such that θ = 1 in a neighborhood
of x . We solve the equation du = d(θf) by means of Hόrmander's L2

estimates 4.1, with L equal to the trivial line bundle and with the strictly
plurisubharmonic weight

ψ(z) = φ(z) + (n+s) log \z - x\ + \z\2.

We get a solution u such that fχ \u\2e~2φ\z - x\~2{n+s) dλ < 00; thus

F — θf -u is holomorphic, F e E and fχ - Fχ = uχ e ^{φ)x Π Jtχ*x .
This proves our contention, q.e.d.

Now, suppose that X is a projective «-fold equipped with a Kahler
metric ω . Let L be a line bundle over X with a singular metric of
curvature T = c(L) > 0. All sublevel sets EC{T) are algebraic subsets of
X, and if φ is the weight representing the metric of L in an open set
Ω c X, then Ec(φ) = EC(T) Π Ω. The ideal sheaf <y{φ) is independent
of the choice of the trivialization and so it is the restriction to Ω of
a global coherent sheaf on X which we shall still call *f(φ) by abuse
of notation. In this context, we have the following interesting vanishing
theorem, which can be seen as a generalization of the Kawamata-Viehweg
vanishing theorem [26], [50].

Theorem 4.5 [36]. Let L be a line bundle over X with κ(L) = n.
Assume that L is equipped with a singular metric of weight φ such that
c{L) > εω for some ε > 0 . Then HQ{X, @{Kχ + L) ®S(φ)) = 0 for all

Proof Let ^ q be the sheaf of germs of [n, #)-forms u with val-
ues in L and with measurable coefficients, such that both \u\ίe~2φ and
\du\2e~2φ are locally integrable. The 5 operator defines a complex of
sheaves ( y " , 9) which is a resolution of the sheaf &{Kχ + L) <g> S{φ):
indeed, the kernel of ~d in degree 0 consists of all germs of holomorphic n-
forms with values in L which satisfy the integrability condition; hence the
coefficient function lies in *f(φ)\ the exactness in degree q > 1 follows
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from Proposition 4.1 applied on arbitrary small balls. Each sheaf &q is
a C°°-module, so &' is a fine resolution. Moreover, Hq(Γ(X, &")) = 0
for q > 1 by Proposition 4.1 applied globally on X. The theorem follows.

Corollary 4.6. Let L be a big nefline bundle over X. Assume that L
is equipped with a singular metric of weight φ such that c(L) > 0 and let
x{, , xN be isolated points in the zero variety V f(φ). Then for every
ε > 0, there is a surjective map

\<j<N

Proof This result can be seen as a generalization of the Hόrmander-
Bombieri-Skoda theorem [8], [43], [45]; it could be proved directly by
using Hormander's L2 estimates and cut-off functions. If c(L) > δω for
some δ > 0, we apply Theorem 4.5 to obtain the vanishing of the first
Hι group in the long exact sequence of cohomology associated to

twisted by (9{Kχ + L). The asserted surjectively property follows imme-

diately; as <y((p) c ^ ( ( 1 - ε)φ), we see in that case that we can even

take ε = 0 and drop the nef assumption on L. If c(L) > 0 merely, we

try to modify the metric so as to obtain a positive lower bound for the

curvature. By (2.7) there is a singular metric on L associated to a weight

ψ with -jddψ > δω, δ > 0, and with a singularity of ψ so small that

e~ ψ e LIOC. Replace the metric on L by the metric associated to the

weight φε = (l-ε)φ + εψ. Then e~2(/>ε = (e~2φ)ι~ε(e~2ψ)ε is integrable

on any open set where e~2φ is integrable, so V*f(φe) c V^r(φ) and the

points Xj are still isolated in V*f(φe). Moreover, ^(φε) C«J r ( ( l -ε)^) ,

for ψ is locally bounded above, and c(L)e = ^d~dφt > εδω. We are thus

reduced to the first case.

Example 4.7. Suppose that v{φ, x) > n + s and that x is an isolated

point in Eχ{φ). Then ^ ( ( 1 — ε)φ)χ c Jt^χ for ε small enough, and x

is isolated in VS(φ) by (4.2), (4.3). We infer that H°{X, Kχ + L) -»
Js

χ(Kχ + L) is surjective onto s-sets of sections at x .
Example 4.8. Suppose that (z{, ••• , zn) are local coordinates cen-

tered at x and that

φ{z) < y l o g d z j + + \ z n _ { \ + \ z n \ 2 ) + 0 ( 1 ) , y > n .

T h e n *X((1 - ε)φ) c (zl9-- , zn_{, z2

n) for ε small. T o check this,
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observe that for any δ > 0 the Parseval-Bessel formula gives

ΣK\2\za\2dλ(z)Γ

J\x

the integral is divergent unless the coefficients aQ and a,Q 0 ^ vanish.

Indeed, using polar coordinates zn — re1 and setting z = {zχ,..., zn_ι),
we get

f \lfdλ{z) r , rW ?dr
h\<* ( N + + |^_,I + K\2)2" J\z'\<'/2 Jo (\z'\ + r2)2"

dλ(z')
= +00.

Ί<ί/2 |Z'Γ~'

Thus, if x is isolated in Eχ(φ), we are able to prescribe the value of the
section at x and its derivative d/dzn along the direction z = 0.

Remark 4.9. More generally, it is interesting to consider logarithmic
poles of the form

where / = (g{, , gN) c Jίχ x is an arbitrary ideal with isolated

zero {x}. However, in this case, we do not know what is the general

rule relating the ideal o^(ylog|^|) =x to the ideal f . Observe that

^(yloglίfDjc o n ly depends on the integral closure β' = {germs / such

that I/| < CJ2\gj\} - I t i s almost obvious by definition that ~f(φ) itself

is always integrally closed. Let / = (g{9'- , gn) c / be the ideal

generated by n generic linear combinations gk of gχ, , gN . Then ^

and f have the same integral closure and we have Σ\gk\ > C'Σ\gj\

with some C' > 0 indeed these ideals have the same multiplicity by a

result of Serre [41], and this implies the equality of their integral closures

thanks to a result of D. Rees [38]. The ideal Jr(γ\og\g\)χ associated

to / thus coincides with Jr{y\o%\g\)x . We see that there is no loss of

generality considering only ideals generated by exactly n generators (as

we shall do in §§6, 7). Finally, the proof of the Brianςon-Skoda theorem

[10] shows that

(4.10) S{γlog\g\)x=S{γlog\g\)xc/'cfr when γ>n.
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In fact, (4.10) is a straightforward consequence of Skoda's division theo-

rem [51], applied to the elements of *^Ό>log|£|)

5. Aubin-Calabi-Yau theorem and convexity inequalities

The above results can be applied to construct sections of a given line
bundle, provided we are able to produce singular metrics with logarithmic
poles. For this, we use in several essential ways the well-known theorem
of Aubin-Yau on the Calabi conjecture. What we need is the following
existence result about solutions of Monge-Ampere equations.

Lemma 5.1 [51 ]. Let X be a compact complex n-dimensional manifold
with a smooth Kάhler metric ω. Then for any smooth volume form / > 0
with fχ f = fχ ωn, there exists a Kάhler metric ώ in the same Kάhler
class as ω such that ώ = / .

The method for constructing singular metrics from the Aubin-Calabi-
Yau theorem will be explained in detail in §6. Before, we need a useful
convexity inequality due to Hovanski [25] and Teissier [47], [48], which
is a natural generalization of the usual Hodge index theorem for surfaces.
This inequality is reproved along similar lines in [5], where it is applied
to the study of projective /ί-folds of log-general type. For the sake of
completeness, we include here a different and slightly simpler proof, based
on Yau's Theorem 5.1 instead of the Hodge index theorem. Our proof
also has the (relatively minor) advantage of working over arbitrary Kahler
manifolds.

Proposition 5.2. For any dimension n,

(a) // a{, - , an are semipositive ( 1 , \)-forms on Cn , then

(b) if uχ, - - , un are semipositive cohomology classes of type ( 1 , 1) on

a Kahler manifold X of dimension n, then

ul'U2'"Un>(ul) (u2) '"{un) .

By a semipositive cohomology class of type (1, 1), we mean a class in
the closed convex cone of Hι'ι(X, R) generated by Kahler classes. For
instance, inequality (b) can be applied to u- = cχ(L.) when Lχ, , Ln

are nef line bundles over a projective manifold.

Proof Observe that (a) is a pointwise inequality between (n , «)-forms
whereas (b) is an inequality of a global nature for the cup product inter-
section form. We first show that (a) holds when only two of the forms a
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are distinct, namely, that

for all a, β > 0. By a density argument, we may suppose a, β > 0.
Then there is a simultaneous orthogonal basis in which

\<j<n

with λj > 0, and (a) is equivalent to

p\(n-p)\ Σ λ j χ ' - λ j p χ n

Jl<"'<Jp

As both sides are homogeneous of degree p in (λj), we may assume
λx " λn = 1. Then our inequality follows from the inequality between the
arithmetic and geometric means of the numbers A, λ, . Next, we show

J\ Jp

that statements (a) and (b) are equivalent in any dimension n .
(a) =$> (b). By density, we may suppose that uχ, , un are Kahler

classes. Fix a positive (n, ή) form / such that Jχf= 1 Then Lemma
5.1 implies that there is a Kahler metric a. representing u. such that
α" = un.f. Inequality (a) combined with an integration over X yields

„) 7 / /•
(b) => (a). The forms ax, , απ can be considered as constant (1, 1)-

forms on any complex torus X = C"/Γ. Inequality (b) applied to the
associated cohomology classes u. e Hι' ι(X, E) is then equivalent to (a).

Finally we prove (a) by induction on n, assuming the result already
proved in dimension n - 1. We may suppose that an is positive definite,
say an = iΣ dz Λ d~z. in a suitable basis. Denote by uχ, , un the
associated cohomology classes on the abelian variety X = Cn/Z[i]n . Then
un has integral periods, so some multiple of un is the first Chern class of
a very ample line bundle 0(D) where D is a smooth irreducible divisor
in X. Without loss of generality, we may suppose un = c{(<f(D)). Thus

Ul-'Un-rUn=UUD--Un-ltD>

and by the induction hypothesis we get

However u"^ = u"~ι un > (u")in~l)/n(u"nγ
/n , since (a) and (b) are equiv-

alent and (a) is already proved in the case of two forms, (b) follows for
dimension n , and therefore (a) holds in C" .
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Remark 5.3. In case α (resp. u.) are positive definite, the equality
holds in 5.2(a,b) if and only if aχ, , an (resp. u{, , un) are propor-
tional. In our inductive proof, the restriction morphism Hι'ι(X, R) ->
Hιι(D, R) is injective for 77 > 3 by hard Lefschetz theorem; hence it
is enough to consider the case of ap Λ βn~p . The equality between arith-
metic and geometric means occurs only when all numbers λΊ. , , A, are
equal, so all λ. must be equal and a = λχβ , as desired. More generally,
there is an inequality

α Λ ' ' ' Λ α * Λ ^ l Λ ' " Λ ^ - *
>KΛ^...Λ/ί f l/...(αjΛ^Λ...Λi! f l/

for all (1, l)-forms a., βk > 0. Once again, inequality (5.4) is easier
to be proved with cohomology classes rather than forms. By a density
argument, we may suppose that all forms β. are positive definite and
have coefficients in Q[ι]. Let u{, , up be the cohomology classes of
type (1,1) associated t o α p , ap o n l = Cn/Z[i]n . The cohomology
class of βx is a rational multiple of the first Chern class of a very ample
line bundle <f(Y{), where Yj is a smooth irreducible divisor in X, that
of β2^γ is a multiple of such a divisor Y2 in Γj, and by induction the
cohomology class of β{ Λ -hβn_p is equal to a multiple of the cohomology
class of a connected ^-dimensional submanifold F c l . Then (5.4) is
equivalent to the already-known inequality

6. Mass concentration in the Monge-Ampere equation

In this crucial section, we show how the Aubin-Calabi-Yau theorem can
be applied to construct singular metrics on ample (or more generally big
and nef) line bundles. We first suppose that L is an ample line bundle
over a projective «-fold X and that L is equipped with a smooth metric
of positive curvature. Then consider the Kahler metric ω — j^c(L). Any
form ώ in the Kahler class of ω can be written as ώ = ω + ±ddψ,
i.e., is the curvature form of L after multiplication of the original metric
by a smooth weight function e~ψ. By Lemma 5.1, the Monge-Ampere
equation

(6.1) (ω+±ddψ\ =/
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can be solved for ψ, whenever / is a smooth (n, n)-foτm with / > 0
and fχf = Ln. In order to produce logarithmic poles at given points
xχ, , xN e X, the main idea is to let / converge to a Dirac measure
at x. then ω will be shown to converge to a closed positive (1,1 )-current
with nonzero Lelong number at x..

Let (Zj, , zn) be local coordinates centered at x., defined on some

neighborhood V. ~ {\z\ < R.}. Let gj = (gjΛ, - , gjn) be arbitrary

holomorphic functions on V. such that g~\θ) = {Xj} , and let

(6.2)

Then log|gy| has an isolated logarithmic pole at x}., and (^S91og|gp |)Λ =

/?,5V , where p, is the degree of the covering map g,: (Cn

 9 xA —> (Cn , 0).
J Xj J J J

Indeed ddlo^g^ = g*ddlog\z\ has rank (n - 1) on Fy \ {jcy}, and
2formula (3.5) with χ(t) = e2ί gives

) π J|g7.(

(2πr ) J\w\<r J

for every r > 0 small enough. Now, let χ: R —• R be a smooth convex
increasing function such that χ(t) = t for ί > 0 and χ(t) = —1/2 for
ί < - 1 . We set

(6.3) αyg = —dΊ)(χ(log\gj\/ε)).

Then o: ε is a smooth positive (1, l)-form, and a. ε = ±dΈlog\gj\ over

the set of points z e V. such that \gj{z) > ε. It follows that a1. ε has

support in the compact set \gj(z)\ <ε, and Stokes' formula gives

(6.4)

Hence an

 ε converges weakly to the Dirac measure p-δχ as ε tends to

0. For all positive numbers τ. > 0 such that σ = ΣPjt" < Ln , Lemma
5.1 gives a solution of the Monge-Ampere equation

(6.5) ωn

e=
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since the right-hand side of the first equation is > 0 and has the correct
integral value Ln over X. The solution ψε is merely determined up to a
constant. If γ is an arbitrary Kahler metric on X, we can normalize ψε

in such a way that Jχ ψεy
n = 0.

Lemma 6.6. There is a sequence εv converging to zero such that ψε

has a limit ψ in Lι(X) and such that the sequence of (1, \)-forms ωp

converges weakly towards a closed positive current T of type (1, 1). More-

over, the cohomology class of T is equal to cχ(L) and T = ω+ ±ddψ.

Proof The integral fχcoe Λ γn~ι = L {γ}n~l remains bounded, so
we can find a sequence zv converging to zero such that the subsequence
ω converges weakly towards a closed positive current T of bidegree
(1, 1). The cohomology class of a current is continuous with respect to
the weak topology (this can be seen by Poincarέ duality). The cohomology
class of T is thus equal to cχ (L). The function ψε satisfies the equation
^Δ^ ε = trγ(ωε-ω) where Δ is the Laplace operator associated to γ . Our
normalization of ψε implies

ψe = πGΐrγ(ωe-ω),

where G is the Green operator of Δ. As G is a compact operator from
the Banach space of bounded Borel measures into Lι(X), we infer that
some subsequence (ψε ) of our initial subsequence converges to a limit ψ

in L1 (X). By the weak continuity of d~d , we get T = limίω + id~dψ ) =

j q.e.d.
Let Ω c X be an open coordinate patch such that L is trivial on a

neighborhood of Ω, and let e~ be the weight representing the initial
hermitian metric on L.-. Then ±dd(h + ψε) = ωε, so the function
φε = h + ψε defines a plurisubharmonic weight on L.Ω, as well as its
limit φ = h + ψ. By the continuity of G, we also infer from the proof
of Lemma 6.6 that the family (ψε) is bounded in Lι(X). The usual
properties of subharmonic functions then show that there is a uniform
constant C such that φε < C on Ω. We use this and equation (6.5) to
prove that the limit φ has logarithmic poles at all points x • £ Ω, thanks to
Bedford and Taylor's maximum principle for solutions of Monge-Ampere
equations [3]:

Lemma 6.7. Let u, v be smooth (or continuous) plurisubharmonic
functions on Ω, where Ω is a bounded open set in Cn . If

\dQtdQ {iddύf <(iddv)n onΩ,

then u > v on Ω.
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In the application of Lemma 6.7, we suppose that Ω is a neighborhood
of Xj and cake

e) + logε) + Cχ, t; = φe,

where C t is a large constant. Then for ε > 0 small enough

o n Ω .

For Cj sufficiently large, we infer u > v on Ω, hence

o n Ω .

Corollary 6.8. The plurisubharmonic weight φ = h + ψ on L r Ω asso-

ciated to the limit function ψ = lim ψε satisfies ^ddφ = T. Moreover, φ

has logarithmic poles at all points x- e Ω and

φ(z)<τjlog\gj(z)\ + O(l) atxy

Case of a big nef line bundle. All our arguments were developed under
the assumption that L is ample, but if L is only nef and big, we can
proceed in the following way. Let A be a fixed ample line bundle with
smooth curvature form γ = c(A) > 0. As mL + A is ample for any
m>_ 1, by 5.1 there exists a smooth hermitian metric on L depending on
m , such that ω = c(L) + hc(A) > 0 and

However, a priori we cannot control the asymptotic behavior of ωm when
m tends to infinity, so we introduce the sequence of not necessarily pos-
itive (1, 1)- forms ωm = c(L)χ + ^c(A) e {ωm}, which is uniformly
bounded in C°°(X) and converges to c{L)χ. Then we solve the Monge-
Ampere equation

(6-10) ω M = V τ , α , e + 1 - - — - r — ^ ω,

with ωm ε = ωm + ^ddψm ε and some smooth function ψm ε such that

fχψmεy
n=zQ', this is again possible by Yau's Theorem 5.1. The numerical

condition needed on σ to solve (6.10) is obviously satisfied for all m if

we suppose

σ = Tpiτ
n

j<Ln< ( L ^ - Yz^o j y m
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The same arguments as before show that there exist a convergent sub-

sequence liτni/_¥+ooψm ε = ψ in Lι(X) and a closed positive (1, 1)-

current T = limco , = c(L)λ + i # d G C, (L) such that Corollary 6.8 is
ΠΊV , c v 1 71 1

still valid; in this case, h is taken to be the weight function corresponding
to c(L)χ. Everything thus works as in the ample case.

7. Choice of the logarithmic singularities

Let us assume (with the notation of §6) that each point x. is isolated
in Eχ(φ). Then we conclude by (4.3) and Corollary 4.6 that there is a
surjective map

(7.1) H°(X,Kχ + L)*
\<j<N J '

However, finding sufficient conditions ensuring that x. is isolated in Eχ(φ)
= Eχ(T) is a harder question. Therefore, we postpone this task to the next
section and explain instead how to choose the logarithmic poles log|g.|
and the constants τ. to obtain specified ideals and jets of sections at each
point Xj.

Suppose that an ideal ^ c Jtx χ is given at x-, in other words, that

we are given a O-dimensional subscheme (Ξ, <?Ξ) with Ξ = {x{, , xN}

and (9-i r = (9Y γ If.. We want to find sufficient conditions for the

surjectivity of the restriction map

H°(X ,Kχ + L)-^ H°(Ξ, ffE{Kχ + L))

\<j<N

By (7.1), we need only find a germ of map gjΓ: (X, Xj) -> {Cn , 0) and a
constant τy 0 such that ^ ( τ . Olog|g.|) c ^ . For τy > τy 0 and ε small
enough, Corollary 6.8 then implies J^((l - ε)φ) c J^ . Thus we have to
choose σ slightly larger than σ0 = ΣPjt" 0

 where /ι. is the degree of the
covering map gj this is possible only if Ln > σ0. Let us discuss some
specific cases.

Spannedness. To obtain that Kχ + L spans at x G X, we consider
a single point xχ = x and take fχ = -#^ x , g{(z) = (z,, ••• , z Λ ) ,
Tj 0 = « and σ0 = τ" 0 = nn . Then ^ ( i j Olog|gj|) c f̂̂  x , as desired.

Separation of points. To obtain the separation of two points xχ Φ x2

in X by sections of Kχ + L, we make the same choices as above at xx,
x2 and get σ0 — τ\ 0 + τ\ 0 = 2π". If jc t, x2

 a r e "infinitely near" in
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s o m e d i r e c t i o n ζ e TX, w e c h o o s e c o o r d i n a t e s (zχ, , z n ) c e n t e r e d a t

x = xι=χ2 so that d/dzn = ξ, and we set ^ = (zχ, , zn_χ, z2

n). By

Example 4.8, we can choose gχ(z) = (zχ, , zn_χ, z2

n) and τ, 0 = n.

Then the degree of gχ is pχ = 2 and we find again σ0 = pχτ[ 0 = 2nn .
Generation of s-jets. Instead of just considering jets at one point, we

wish to look at several points simultaneously which may come into coin-
cidence. Such a concern appears also in the work of Beltrametti-Sommese
[6] where an extensive study of the surface case is made. The relevant
definition is as follows.

Definition 7.2. We say that L generates s-jets on a given subset Ξc X
if H°(X, L) -» 0 Js

χ

jL is onto for any choice of points xχ, , xN e Ξ

and integers sx, , sN with Σ(sj + 1) = £ + 1 .We say that L is s-jet
ample if the above property holds for Ξ = X.

With this terminology, L is O-jet ample if and only if L is spanned, and
1-jet ample if and only if L is very ample. In order that Kχ + L generates
5-jets on Ξ, we take xχ, , xN e Ξ arbitrary, g.(z) = (zχ, , zn) at
each Xj and τ. 0 == Λ + ^ . Therefore σ0 = maxΣX« -f- .s1 )̂" over all
decompositions s + 1 = Σ(sj^ + 1) I n ^ a c t ' if w e s e t f/ = ŷ + 1 > Λe
following lemma gives σ0 = (n + ^)π that is, the maximum is reached
when only one point occurs.

Lemma 7.3. Let tχ, , tN e [1, +oc[. Then

\<j<N X

The right-hand side of a polynomial with nonnegative coeffi-
cients and the coefficient of a monomial ή involving exactly one variable
is the same as on the left-hand side (however, the constant term is smaller).
Thus the difference is increasing in all variables and we need only consider
the case tχ = = tN = 1. This case follows from the obvious inequality

nN = n +[])
n (N-l)<(n + N-I) .

Corollary 7.4. Let L is a big nefline bundle. A sufficient condition for
spannedness (resp. separation of points, s-jet ampleness) of Kχ -f L on a
given set Ξ is Ln > σ0 with

σQ = nn , resp. σ0 = 2nn , resp. σ0 = (n -h s)n ,

provided that the solution ωε of (6.5) (resp. the solution ωm ε = ωm +

π^ψm ε of (6.10)), always has a subsequence converging to a current T

for which all points x eΞΓ)Eχ(T) are isolated in EX(T).
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Case of an arbitrary O-dimensional subscheme. Let f^ = (A. k ) x < k < N

be an arbitrary ideal in ffχ χ with Vβ. = {Xj} . By Remark 4.9, we can

take gj = (gjχ, , gjn) to be « generic elements of /. and τ^ 0 = n .

Indeed, property (4.10) then shows that JF{y\o%\g \) c ^ for γ > n . In

this case, we find σ0 = n"Σp . Unfortunately, this value is in general

very far from a being optimal: for instance, we would get σQ = nn(s +l)n

instead of (n + s)n in the case of s-jets. If (Ξ, 0L) is a local complete

intersection, that is, if each β'. has N = n generators, we simply take

Sj = (hj)l, •'• , hjtVl). Thus we obtain p. = &\m@χ χJf. and

(7.5) σo = nnh°(Ξ,d?Ξ).

8. Upper bound for the 1-codimensional polar components

The goal of this section is to give a rather simple derivation of numerical
conditions ensuring that codim(Eχ(T), JC) > 2 at a given point x. In
particular, we will obtain a criterion for very ample line bundles over
surfaces. Although these results are only formal consequences of those
obtained in the next two sections, we feel preferable to indicate first the
basic ideas in a simple case.

Let L again denote an ample line bundle over a projective algebraic
manifold X and keep the same notations as in §6. Siu's decomposition
formula (3.8) applied to T = limω gives

V

+ 00

(8.1) T = Σλk[Hk] + R,
k=\

where [Hk] is the current of integration over an irreducible hypersurface
Hk and codim£"c(i?) > 2 for every c > 0. As we would like Eχ(T) to
have isolated points at x., a difficulty may come from the singular points
of high multiplicities in the hypersurfaces Hk . We thus need to find upper
bounds for the coefficients λk . The convexity inequality 5.2 can be used
for this purpose to obtain a lower bound of the mass of R:

Proposition 8.2. We have
+ OO

' 1 /

k=\

Proof. As fχ TAωn~ι = Ln and fχ[Hk]Λωn~ι = Ln~x Hk , we need
only prove that
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(8.3) [ RΛωn~x > (1 - σ/Ln)ι/nLn .
Jx

Let θ be a smooth function on X such that 0 < θ < 1, θ = 1 in
a neighborhood of \jλ<k<NHκ and fχθωn < ε 0 , where ε0 > 0 is an
arbitrarily small number. This is possible because \J\<k<N^k *s a c l ° s e ( i
set of zero Lebesgue measure in X. Then

ί (1 - Θ)T A ωn~l > liminf ί (\ - θ)ω Aωn~l

Jx ε-^° y ^

> l i m i n f / ( I - ^ ( ω ^ ^ ^ ω " ) 1 " 1 ^
ε—0 Jx

>(l-σ/Ln)l/n [ (\-θ)ωn

Jx
by the convexity inequality and equation (6.5). By our choice of θ we

have (1 - Θ)T < Σk>Nλk[nk] + R, so

Since N and ε0 were arbitrary, we get the expected inequality (8.3). q.e.d.
If L is big and nef, the same result can be obtained by replacing ω

with ωk and ωε with ωk ε in the above inequalities (ε —> 0, k —• +oo)
and by letting /c0 tend to +oo at the end. Now suppose that for any
hypersurface H in X passing through a given point x we have

(8.4) Ln~l tf > (1 - (1 - σJLn)Xln)Ln .

We can choose σ = σ0 + ε such that inequality (8.4) is still valid with
σ instead of σQ , and then all hypersurfaces Hk passing through x have
coefficients λk < 1 in (8.1). Thus

kφl

because the contribution of [Hk] to the Lelong number of T is equal to
1 at a regular point. As all terms in the union have codimension > 2
except the last ones which do not contain x , condition (8.4) ensures that
c o d i m ^ ^ Γ ) , JC) > 2. In the case of surfaces, we can therefore apply
Corollary 7.4 to obtain
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Corollary 8.5. Let X be smooth algebraic surface, and L a big nefline
bundle over X. Then on a given subset Ξ c X

Kχ + L

when L2>

V C , LC>

is spanned

4

2

separates points

8

6

9

5

12

4

generates s-jets

(2 + s)2

for all curves C c X intersecting Ξ. In particular, if L is ample, Kχ+mL
is always globally spanned for m>3 and very ample for m > 5.

Proof For s-jets, we have σ0 = (2 + s)2 , so we find the condition

> (2 + s) , JL C > (1 — (1 — (2 + s) /L ) )L .

The last constant decreases with L2 and is thus at most equal to the value
obtained when L2 = (2 + s)2 + 1 its integral part is precisely 2 + 3s + s2 .
q.e.d.

The above lower bounds on L2 are sharp but not those for LC. Rei-
der's method shows in fact that Kχ + mL is very ample as soon as m > 4.
In the higher dimensional case, a major difficulty is to ensure that the germs
(Eχ(T), X.) do not contain any analytic set of dimension 1, 2, , n — 2.
This cannot be done without considering "self-intersections" of T and pre-
scribing suitable bounds for all intermediate intersection numbers Lp Y.

9. Approximation of closed positive ( 1 , 1)-currents by divisors

Let L be a line bundle with cχ(L) e Γ+ and let T = c{L) > 0 be the
curvature current of some singular metric on L. Our goal is to approx-
imate T in the weak topology by divisors which have roughly the same
Lelong numbers as T. The existence of weak approximations by divisors
has already been proved in [33] for currents defined on a pseudoconvex
open set Ω c C " with H2(Ω, R) = 0, and in [15] in the situation consid-
ered here. However, the result of [15] is less precise than what we actually
need, and moreover the proof contains a small gap; a complete proof will
therefore be included here.

Proposition 9.1. For any T = c(L) > 0 and any ample line bun-
dle F, there is a sequence of nonzero sections hs e H°(X ,psF + qsL)
with ps, qs > 0, l i m ^ = +oc and limps/qs = 0, such that the divi-
sors Ds — (l/qs)div(hs) satisfy T = limZ>5 in the weak topology and

, x)-u{T, x)\ -+0 as s 5

+oo.
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Remark 9.2. The proof will actually show, with very slight modifica-
tions, that Proposition 9.1 also holds when X is a Stein manifold and
L is an arbitrary holomorphic line bundle. The last assertion concerning
Lelong numbers implies that there is a sequence εs > 0 converging to 0
such that Ec(T) = f]s>ι Ec_ε (Ds). When D is an effective divisor, given
locally as the divisor of a holomorphic function h , then EC(D) is the set
of points x e X such that the derivatives h^a\x) = 0 for all multi-indices
a with \a\ < c. This gives a new proof of Siu's result [42] that EC{T)
is an analytic set, at least in the case of bidegree (1,1 )-currents (in fact
the case of an arbitrary bidegree is easily reduced to the (1, 1) case by a
standard argument due to P. Lelong). Proposition 9.1 is therefore already
nontrivial locally.

Proof. We first use Hormander's L2 estimates to construct a suitable
family of holomorphic sections and combine this with some ideas of [31]
in a second step. Select a smooth metric with positive curvature on F,
choose ω = c(F) > 0 as a Kahler metric on X and fix some large integer
m (how large m must be will be specified later). For all s > 1 we define

w(z)= sup -

where (fχ, , fN) is an orthonormal basis of the space of sections of
&(mF + sL) with finite global L norm fχ \\f\\ dVω. Let eF and eL be
nonvanishing holomorphic sections of F , L on a trivializing open set Ω,
and let e~ψ = \\eF\\, e~φ = \\ej\\ be the corresponding weights. If / is a
section of &(mF+sL) and if we still denote by / the associated complex-
valued function on Ω with respect to the holomorphic frame eF Θ es

L,
we have | |/(z) | | = \f(z)\e~mψ{z)~sψ{z) here φ is plurisubharmonic, ψ is
smooth and strictly plurisubharmonic, and T = j^ddφ , ω = j^ddψ. In
Ω, we can write

w(z)= sup -log\f.(z)\-φ(z)-—ψ(z).
1<J<N S J ^

In particular T := idΊ)w, + Γ-h ^ ω is a closed positive current belonging
to the cohomology class cx(L) + fcχ(F).

Step 1. We check that Γ5 converges to Γ as s tends to +oo and that
Ts satisfies the inequalities

at every point x e X. Note that Ts is defined on Ω by Ts = ^ddvs Ω
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with

vttO(z) = i sup^ I log \fj(z)\, jf if/e-
2mψ-2sφ dVω<\.

We suppose here that Ω is a coordinate open set with analytic coordinates
(z 1 5 . . . ,zn). Take z e Ω' e Ω and r < rQ = \d(Ω!', ΘΩ). By the L2

estimate and the mean value inequality for subharmonic functions, we
obtain

\fj(z)\2 < % / |//C)|2Λl(C) < % «Φ e2sφ(Q

1 r" J[ζ-z\<r J rLn |C-r|<r

with constants C,, C2 independent of s and r (the smooth function ψ'
is bounded on any compact subset of Ω). Hence we infer

(9.3) vsQ(z)< sup p(C) + l l o g %
\ζ-z\<r Δ* r

If we choose for example r = l/s and use the upper semicontinuity of φ ,
we infer l i m s u p ^ , ^ υs Ω < φ. Moreover, if γ = u(φ, x) = i/(Γ, x),
then 9?(C) < y logIC - x\ + O{\) near x . By taking r = \z - x\ in (9.3),
we find

vsa(z)< sup
|C-jc|<

v{Ts, x) = u(υStQ, x)>(γ- j ) + >v

In the opposite direction, the inequalities require deeper arguments since

we actually have to construct sections in H°(X, mF + sL). Assume that

Ω is chosen isomorphic to a bounded pseudoconvex open set in Cn . By

the Ohsawa-Takegoshi L2 extension theorem [37], for every point x e Ω ,

there is a holomorphic function g on Ω such that g(x) = esφ<<x) and

ί \g(z)\2e-2sφiz)dλ(z)<C3,

where C3 depends only on n and diam(Ω). For x e Ω ' , w e set

σ(z) = θ(\z-x\/r)g(z)eF(z)m ®eL(z)s, r = min(l, 2~l d(Ωf, dΩ))9

where θ: R -• [0, 1] is a cut-off function such that θ{t) = 1 for / < 1/2
and 0(/) = 0 for ί > 1. We solve the global equation du = v on X with
v = dσ , after multiplication of the metric of mF + sL with the weight

e'2nPχ{z\ p(z) = θ(\z-x\/r)log\z-x\<0.
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The (0, l)-form v can be considered as a (n, l)-form with values in the
line bundle ff[—Kχ + mF + sL) and the resulting curvature form of this
bundle is

Ricci(α ) + mω + sT + n-ddpχ .

Here the first two summands are smooth, iddpx is smooth on X\{x} and
> 0 on B(x, r/2), and T is a positive current. Hence by choosing m
large enough, we can suppose that this curvature form is > ω, uniformly
for x eΩf. By Proposition 4.1, we get a solution u on X such that

ufe-2""* dVω <CJ lgl2e-2mψ-2sφ-2nPχ < .
Jr/2<\z-x\<r

to get the estimate, we observe that υ has support in the corona r/2 <
\z -x\ < r and that pχ is bounded there. Thanks to the logarithmic pole
of pχ , we infer that u(x) = 0. Moreover

ί\\σ\\2dVω<ί \g\2e-2mψ-2

ω6
JQ JΩ'+B(0,r/2)

hence f = σ-ue H°{X, mF + sL) satisfies Jχ \\f\\2 dVω < C7 and

II/WII = \\σ(x)\\ = \\g(x)\\ \\eF(x)\\m\\eL(x)\\s = \\eF(x)f = e-
mψ{x)

In our orthogonal basis (fj), we can write / = Σ^jfj with
Therefore

= \\f(x)\\ < Σ \λ.| sup ||/>(x)|| <

ws(x) > ilog(C77V)-1 / 2 | |/(x)|| > -l-[log(CΊN)l/2

where TV = dimH°(X, mF + sL) = O(sn). By adding φ + f ψ, we
- 1

8 e t VS,Ω - V ~ Css io&s - τ h u s ^ i - ^ + o o ^ n = Ψ everywhere, Ts =
j^ddυs Ω converges weakly to T = j^ddφ , and

1/(7; , x) = v(vsςι, x) < i/(^, x) = i/(7\ x) .

Note that v(vc o , x) = 7minord v (/ ) where ord r(/,) is the vanishing
order of / at x, so our initial lower bound for v(Ts, JC) combined with
the last inequality gives

(9.4) v(T, x)-l <^minoτdχ(fj) < v{T, x).
s
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Step 2: Construction of the divisors Ds. Select sections (gχ, , gN) e

H°(X, m0F) with mQ so large that mQF is very ample, and set

For almost every iV-tuple {g{, -- , gN), Lemma 9.5 below, and the weak
continuity of dd show that

converges weakly to Ts = j^dΈvs Ω as A: tends to +oo, and that

This, together with the first step, implies the proposition for some subse-
quence Ds = Dk,, s . We even obtain the more explicit inequality

Lemma 9.5. Let Ω be an open subset in Cn and let fχ, , fN e

H°(Q,(fQ) be nonzero functions. Let G c / / ° ( Ω / Ω ) be a finite-dimen-
sional subspace whose elements generate all l-jets at any point of Ω. Fi-
nally, set v = sup log I fj,\ and

, gjeG\{0}.

Then for all (gχ, , gN) in (G \ {0})N except a set of measure 0, the

sequence ^\o%\hk\ converges to v in Lloc(Ω) and

Proof The sequence £ log \hk\ is locally uniformly bounded above and
we have

at every point z where all absolute values | / (z)| are distinct and all

gj(z) are nonzero. This is a set of full measure in Ω because the sets

{|/\|2 = |yj|2, j φ /} and {gj — 0} are real analytic and thus of zero

measure (without loss of generality, we may assume that Ω is connected

and that the / ' s are not pairwise proportional). The well-known uni-

form integrability properties of plurisubharmonic functions then show that
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converges to υ in 1^(0). It is easy to see that v(υ , x) is the
minimum of the vanishing orders oτάχ{f.) hence

i/(log|Afc|, x) = ordχ(hk) > kv(v, x).

In the opposite direction, consider the set %k of all (N + l)-tuples

(x,gl9'- , gN) G Ω x GN

for which v{\og \hk\, JC) > kv(v, x) + 2. Then §^ is a constructive set
in Ω x G^: it has a locally finite stratification by analytic sets, since

( U { χ ; ^ α / / χ ) / θ } χ
> 0 V,|o|=5

The fiber ^ Π ^ cjxG^) over a point xeΩ where i/(v-, x) = minordJc(/)

= s is the vector space of ΛΓ-tuples (g.) G G^ satisfying the equations

Dβ(Σfjk8j(χ)) = 0, |i?| < to + 1 However, if ord^/p , the linear map

(0, .. , 0, gj9 0, ... , 0) » {Dβ{f*gj{x)))m<ks+χ

has rank n + 1, because it factorizes into an injective map Λg. *-+
Λ J

JχS+\fjkgj) l ι follows that the fiber g^ n ({x} x GN) has codimension
at least n + 1. Therefore

; < dim(Ω x G^) - (n + 1) = dimG^ - 1,

and the projection of <§̂  on GN has measure zero by Sard's theorem.
By definition of %k, any choice of (gχ, , gN) e GN \ \Jk^
produces functions hk such that ^(log \hk\, x) < kv(v , x) + I on Ω.

10. Self-intersection inequality for closed positive currents

Let L be a nef line bundle over a projective algebraic manifold X and
let T = c(L) > 0 be the curvature current of any singular metric on L.
We want to derive a bound for the codimension p components in the
sublevel sets EC(T) in terms of the pth power {T}p of the cohomology
class of T. The difficulty is that, in general, Tp does not make sense as a
current. However, products of currents can be defined in some special cir-
cumstances. Let M be an arbitrary complex manifold and n = dimc X .
Suppose given a closed positive current of bidegree (p, p) on M and
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a locally bounded plurisubharmonic function ψ on M. According to
Bedford-Taylor [4], the product θ Λ iddψ can then be defined by

(10.1) θΛiddψ = idd(ψθ).

Here θ is a differential form with measure coefficients, so its product by
the locally bounded Borel function ψ is a well-defined current of order 0,
and the derivative dd can be taken in the sense of distribution theory. The
resulting current θ Λ iddψ is again positive, as is easily seen by taking
the weak limit with a sequence of smooth approximation of ψ. More
generally, if ψχ, , ψm are locally bounded plurisubharmonic functions,
the product θΛiddψιΛ' - Λiddψm is well defined by induction on m .
Various examples (cf. [29]) show that such products cannot be defined in
a reasonable way for arbitrary plurisubharmonic functions ψ.. However,
functions with — oo poles can be admitted if the polar set is sufficiently
small.

Proposition 10.2. Let ψ be a plurisubharmonic function on M such
that ψ is locally bounded on M\A, where A is an analytic subset of M
of codimension > p + 1 at each point. Then θ Λ iddψ can be defined
in such a way that θ Λ iddψ = lim,, ^ θ Λ iddψv in the weak topol-
ogy of currents, for any decreasing sequence {ψv)u>x of plurisubharmonic
functions converging to ψ. Moreover, at every point x e X we have

is (θΛ -ddψ, x j > v{β, x)v{ψ, x).

Proof When ψ is locally bounded everywhere, we have lim ψuθ =
ψθ by the monotone convergence theorem and we can apply the continu-
ity of dd with respect to the weak topology to conclude that θΛ iddψ =

First assume that A is discrete. Since our results are local, we may
suppose that M is a ball 5(0, R) c Cn and that A = {0}. For every
s < 0, the function ψ-s = max(^, s) is locally bounded on M, so the
product θ Λ iddψ~s is well defined. For \s\ large, the function ψ-s

differs from ψ only in a small neighborhood of the origin, at which ψ
may have a -oo pole. Let γ be a (n-p-l, n-p- l)-form with constant
coefficients and set s(r) = lim inf.. _0 ψ(z). By Stokes' formula, we see
that

(10.3) / θΛiddψ-sΛγ
JJβ(0,r)

does not depend on s when s < s(r), for the difference of two such
integrals involves the dd of a current with compact support in 2?(0, r).
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Taking γ = (idd\z\2)n~~p~ι, we see that the current θ Λ iddψ has finite
mass on 5(0, r) \ {0} and we can define (lrm(θ Λ idΊϊψ), γ) to be the
limit of the integrals (10.3) as r tends to zero and s < s{r). In this
case, the weak convergence statement is easily deduced from the locally
bounded case discussed above.

In the case where codim A > p + 1, we use a slicing technique to reduce
the situation to the discrete case. Set q = n - p - 1. There are linear
coordinates (zl9 , zn) centered at any singular point of A, such that

0 is an isolated point of A Π ({0} x C p + 1 ) . Then there are small balls Bf =
5(0, r) in C* , B" = 5(0, r") in C ^ 1 such that A n (5' x dB") = 0 ,
and the projection map

π : C n - C * , z = ( z l 9 . . 9 z n ) ~ ( z l 9 . . , z q )

defines a finite proper mapping A n (Bf x B") —• B1. These properties are
preserved if we slightly change the direction of projection. Take sufficiently
many projections πm associated to coordinate systems (z™, ••• , z™),
1 < m < N, such that the family of (q, #)-forms

defines a basis of the space of (q, <?)-forms. Expressing any compactly
supported smooth (q, g)-form in such a basis, we see that we need only
define

(10.4) / θ Λ iddψ A f(z , z")idzχ Nd~z' Λ ΛidzΛ dz
JB'XB" q

= I [j///(z/,.)θ(z/\')Mddψ(zf

r)\idzιAdΎιA"ΆidzgAdΎq,

where / is a test function with compact support in B1 x B" , and θ ( z ; , •)
denotes the slice of θ on the fiber {z} x Bn of the projection π: Cn —• C9

(see e.g. Federer [20]). Here θ ( z ; , •) is defined for almost every z e Bf

and is again a closed positive current of bidegree (p, p) on B" . The
right-hand side of (10.4) makes sense since all fibers {{z} x Bn) Π A are
discrete and the double integral is convergent (this will be explained in
a moment). The weak convergence statement can be derived from the
discrete case by (10.4) and the bounded convergence theorem. Indeed, the
boundedness condition is checked as follows: observe that the functions
Ψι > - - - > ψv > Ψ are uniformly bounded below on some cylinder

Kδ ε = B((l - δ)r) x (B(r") \ B{{\ - ε)r"))
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disjoint from A, with ε < δ < 1 so small that Supp/ c 5((1 - <ϊ)r') x
2?((1 - e)r") for all z' 6 Ϊ ( ( 1 - δ)r), the Chern-Levine-Nirenberg in-
equality [12] shows that

[ θ{z, )Mdd\z"\2

B{{\-ε/2)r")

[Proof: introduce a cut-oίf function χe(z") equal to 1 near B((l - ε)r")

with support in 2?((1 - e/2)r/;), integrate by parts and write
e

Cε/<9d]z|2] for s sufficiently large (independent of v), the left-hand in-
tegral does not depend on s and is equal by definition to the corresponding
integral involving ψv the right-hand side, of course, has a bounded in-
tegral over B({\ - δ)r) because we integrate θ against a smooth form.
The same argument with ψ instead of ψv shows that the right-hand side
of (10.4) is convergent.

It only remains to prove the final statement concerning Lelong numbers.
Assume that M = B(0, r) and x = 0. By definition

v (θΛ -θdψ, x] = lim [ θ Λ -ddψ Λ (-ddlog\z\)

Set γ = v(ψ, x) and

^ ( z ) = max((^(z), (y - e) log |z| - v)

with 0 < ε < y (ify = O, there is nothing to prove). Then ψv decreases
to ψ and

f i - ίi - y-P-i
/ θ Λ -ddψ Λ ί-βaiog|z | J

J\z\<r n Ψ \π 6 1 7

> lim sup / θΛ-aa^Λ -aaiog|z|

by the weak convergence of θ Λ iddψv here (^aθloglzl)""77"1 is not
smooth on B(0, r), but the integrals remain unchanged if we replace
log Î I by /(log|z|/r) with a smooth convex function χ such that χ(t) = t
for t > - 1 and χ(t) = 0 for t < -2. Now, we have ψ(z) < γlog|z| -h C
near 0, so ^ ( z ) coincides with (y-e)log|z|-i/ on a small ball B(0, rv) c
5(0, r) and we infer

n—p— 1

L
>(γ-ε)v(θ,x).

\A<rv



A NUMERICAL CRITERION FOR VERY AMPLE LINE BUNDLES 355

As r e ]0, R[ and ε e ]0,γ[ where arbitrary, the desired inequality
follows.

Corollary 10.5. For 1 < j < p, let T. = ^ddψ. be closed positive
(1, \ycurrents on a complex manifold M. Suppose that there are analytic
sets A2 D ••• D Ap in M with c o d i m ^ > j at every point such that
each ψjf j > 2, is locally bounded on M\Aj. Let {Ap k}k>ι be the
irreducible components of Ap of codimension p exactly and let v. k =
minΛ:€^ u(Tj, x) be the generic Lelong number of T {or ψ.) along
Ap k . Then TχΛ -ΛTp is well defined and

Proof By induction on p, Proposition 10.2 shows that T{ Λ Λ T
is well defined. Moreover, we get

at every point x e Ap k . The desired inequality is a consequence of Siu's
decomposition theorem (3.8). q.e.d.

Now, let X be a projective n-foldandlet T be a closed positive (1, 1)-
current on ί . By the Lebesgue decomposition theorem, we can write
T = Γabc + Γsi where Γabc has absolutely continuous coefficients with
respect to the Lebesgue measure and the coefficients of Γ are singular
measures. In general, Γabc and Γs ing are positive but nonclosed. We fix
an arbitrary set Ξ c l and for p = 1, 2, , n, n + 1 we set

(10.6) bp = bp(T, Ξ) = inf{c > 0; codim(£c(Γ), x) >p, V X G Ξ } ,

with the convention that a germ has codimension > n if and only if it is
empty. Then 0 = bχ < b2 < < bn < bn+1 with bn+1 = maxJcGΞ ι/(7\ x)
< +oo, and for c e]bp, bp+ι], EC(T) has codimension > p at every point
of Ξ and has at least one component of codimension p exactly which in-
tersects Ξ. We call bχ, b2, ... the jumping values of the Lelong numbers
of T over Ξ. Our goal is to prove the following fundamental inequality
for the Lelong sublevel sets EC(T), when T is the curvature current c(L)
of a line bundle (this restriction is unnecessary but the general case is more
involved; see [20] for a general proof).

Theorem 10.7. Suppose that there is a semipositive line bundle G over
X and a constant a > 0 such that &τx(l)+aπ*G is nef; set u = ac(G) > 0
with any smooth semipositive metric on G. Let T = c(L) > 0 be the cur-
vature current of a nef line bundle Lf let Ξ c X bean arbitrary subset and



356 JEAN-PIERRE DEMAILLY

bp — bp(T, Ξ). Denote by {Zp k}k>ι the irreducible components ofcodi-

mension p in \Jc>b EC(T) which intersect Ξ and let vp k e ]bp, b +ι]

be the generic Lelong number of T along Z k . Then the De Rham coho-

mology class ({T} + bJu}) '({T} + bn {u}) can be represented by a closed

positive current θp ofbidegree (p,ρ) such that

The same is true for Ξ = X if we only suppose cx(L) e Γ+ instead of L
nef

Here Λ(^bc + bju) is computed pointwise as a (p, p)-foτm. It follows
in particular from our inequality that Tp

bc has locally integrable coeffi-
cients for all p . Let ω be a Kahler metric on X. If we take the wedge
product of the fundamental inequality 10.7 by ωn~p, integrate over X
and neglect Γabc in the right-hand side, we get

Corollary 10.8. With the notation of Theorem 10.7, the degrees with

respect to ω of the p-codimensional components Zp k of \Jc>b EC(T)

intersecting Ξ satisfy

+oo

J χk=\

In particular, if D is a nef divisor and if L = <f(D) is equipped with the
singular metric such that T = c(L) = [D], we get a bound for the degrees
of the p-codimensional singular strata of D in terms of a polynomial of
degree p in the cohomology class {D}. The case X = Ψn is of course
especially simple: Since TΨn is ample, we can take u = 0, and then the
bound is simply {D}p {ω}n~p the same is true more generally as soon as
TX is nef. It is natural to try to find an interpretation of the (p, p)-form
involving Γabc in the general inequality. Unfortunately this (p, p)-ίoτm
is not closed and so it does not correspond to an intrinsic cohomology class
that would have a simple counterpart in algebraic geometry. Nevertheless,
the additional Monge-Ampere mass provided by Γabc is absolutely crucial
for the purely algebraic application which we shall make in the next section.
Our intuition is that the additional (p, p)-form must be understood as an
excess of self-intersection, measuring asymptotically the amount of freedom
a divisor in the linear system H (X, sL) can be kept while being moved
through the fixed singular strata prescribed by sT, when s tends to infinity.
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Proof of Theorem 10.7. By the first step of Theorem 9.1 and by (9.4),
there is a positive line bundle F with the following property: for every
s > 0 there exist sections f. e H°(X, F + sL), 1 < / < N(s), with

v(T, x) - - < - m i n o r d ^ ) < i/(7\ JC) , V J C G I .
o IS

The main idea is to decrease the Lelong numbers by replacing each section
f by some of its high order derivatives, or rather by some jet section. In
this way, the polar components with low generic Lelong number disappear,
and we can decrease the dimension so as to be able to take intersections
of currents (thanks to Proposition 10.2 or Corollary 10.5). Of course,
introducing jet sections also introduces symmetric powers of the cotangent
bundle; this is the reason why the curvature of TX plays an important
role in the inequality.

First step: Killing Lelong numbers in the singular metric of L. Con-
sider the m-jet section Jm f{ with values in the vector bundle Em =
Jm@(F + sL) of ra-jets. First suppose that a is rational. There are
exact sequences

0 -> SmT*X®d?(F + sL) -+Em-+ Em_χ -> 0,

and SmTX<8)&(maG) is nef by our assumptions. By induction on m we
easily infer that

E*m ® @(2F + sL + maG)

is ample (in an exact sequence of vector bundles with ample extreme terms,
so is the middle term). Hence there is a symmetric power of order q with
qaeN such that

S*E*m 0 &(2qF + qsL + qmaG)

is generated by holomorphic sections g.. We use the pairing of SqEm

and SqE*m to get sections

S V m / ; ) gj e H°(X, @{2qF + qsL + qmaG)).

By means of these sections, for each pair (s, m) we define a new singular
metric || | | s m on L such that

where || || denotes the original singular metric on L as well as the induced
metric on (f(2qF + qsL + qmaG) here the metric of F (resp. G) is
smooth and has positive (resp. semipositive) curvature. Denote by φ the
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weight of the original metric on L, by φsm the new one, and by ψF,

ψG the weights of F, G on some trivializing open set Ω c X. Then

(10.9) φltm = • ^ t o g X iSV"1/,) *,| - § * , - ^ W G ,

because £~^ appears in the numerator an exp(-2qψF-qsφ-qmaψG) '
in the denominator of ||<^||5 w . As ψF , ^ are smooth and the £.'s do
not vanish simultaneously, we get

Hence we have the inequality

(10.10)

that is, we have been able to construct a new curvature current j^ddφs m

on L in which all the Lelong numbers that were < m/s have been killed.
Unfortunately the curvature is no longer > 0, but by (10.9) we have

(io.l i) ^ψs,m * --s

c(f) - jac(°) ^ ~)ω ~ 7 " '

where ω = c(F) > 0. Only the term jco can be made arbitrarily small.
Now, for each s, select an integer m such that bp < m/s < bp + } . By
(10.9) and (10.10), we see that φs m is locally bounded on X \ Em/s(T),
and the definition of b implies that Em.(T) has codimension > p in a
neighborhood of Ξ.

Second step: Construction of the pth intersection current θp . By in-
duction on p , we suppose that θ p _j has already been constructed (θj =
T satisfies the requirements for p = 1). By Proposition 10.2, the wedge
product θ . Λ ^ddφs m is well defined in a neighborhood of Ξ. How-
ever, this is not satisfactory when Ξ / X, because we need a current
defined everywhere on X. This is the reason why we have to assume L
nef when Ξ Φ X. Under this assumption, there is for each s a smooth
metric on L, associated to some weight ps on the trivializing open set
Ω, such that {d~dps > - } ω . We introduce the weight

where A, B > 0 are large constants. This weight corresponds to the
singular metric on L given by
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Clearly ψs m A B converges to φ as A, B tend to +00, and ψs m Λ B is

locally bounded; therefore the curvature current T
A n = ^zddψv m A n

converges weakly to Γ = £ddp as A, 5 tend to +00. Moreover, the

assumed lower bound on ^ddps combined with (10.11) implies

s,m,A,B - s s

this is easily seen by adding jΨF + faψG to each term in the supremum
formula defining φs m A B . Now, the positive (p, p)-current

is well defined over X since ψs m A B is locally bounded. Its cohomology
class is independent of A, B and converges to {c{(L)} {cχ{L) + bpύ)
when s tends to +00 (by the choice of m made at the end of the first
step, we have lim m/s = bp). Hence the family (θp s m A B) is weakly
compact. First extract a weak limit θ^ s m Λ by taking some subsequence
Bv —> -hoc . By Proposition 10.2 we see that in a neighborhood of Ξ

v

θP.s,m,Λ = sl^P^s^m^Λ^ = θp-l Λ

where

Indeed the codimension of the set of poles of ψs m A is at least p in a
neighborhood of Ξ. Now, by (10.10), we have

s,m,A (flί, x), ̂ ( 0 5 ? w , x))

Proposition 10.2 shows that

> \v(T, x) - *l±ILj .

By induction on p, we conclude that the generic Lelong number of

®p s m A a l° n S Zp k ^S a t ^ e a S t e C l u a ' t O

In fact, Z , meets Ξ at some point x , and therefore the inequality holds
p, K

at least on a neighborhood of x in Zp k . Siu's decomposition formula

(3.8) yields

p ,s ,m,A —
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Now, extract a weak limit θp s m for some subsequence Av —• -oo and
then a weak limit θp for some subsequence mι//sv —• bp with sv —• +00.
We obtain a current θ p such that {θp} = {θp_{} (cχ(L) + 6p{w}) and

It only remains to show by induction on p that

As the coefficients of [Zp k] are singular with respect to the Lebesgue
measure, θ will actually be larger than the sum. By construction, there
exists a subsequence (su ,mv,Au,Bv) such that

The desired lower bound follows from Lemma 10.12 below. At the begin-
ning of the proof, a was supposed to be rational, but this extra assumption
can be removed as above by extracting a weak limit θ a —> θ with a
sequence of rational numbers decreasing to a G R+ . If Ξ = X, everything
works even if we omit the term pk-B in the definition of ψk m A b : we
can start directly with ψk m Λ because its polar set has codimension > p
on the whole space X. Hence the nef assumption on L is not necessary.

Lemma 10.12. Let Ω c C " be an open subset and let φ be an arbitrary
plurisubharmonic function on Ω. Set φv = max(ί?, ψv) where ψu is a
decreasing sequence of plurisubharmonic functions converging to -00, each
ψv being locally bounded in Ω (or perhaps only in the complement of an
analytic subset of codimension > p). Let θ be a closed positive current
ofbidegree (p — 1, p — 11). If θ Λ iddvv) converges to a weak limit θ ' ,
then

Proof Let (pe) (resp. (pε)) be a family of regularizing kernels on Cn

(resp. on E 2 ) , and let maxε(x, y) = (max*/>ε)(.x ,y) be a regularized max
function. For ε > 0 small enough, the function

is plurisubharmonic and well defined on any preassigned open set Ω ' c Ω .
As φv ε decreases to φv when ε decreases to 0, Proposition 10.2 shows
that

lim θ Λ iddφ = θ Λ iddφ
e—o ^' ε v
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in the weak topology. Let (/?.) be a sequence of test forms which is dense
in the space of test forms of bidegree (n-p, n-p) and contains strongly
positive forms with arbitrary large compact support in Ω. Select εv > 0
so small that

(θΛiddφv^-θΛiddφu,βj) < i foτj<v.

Then the sequence θ Λ iddφv ε is locally uniformly bounded in mass

and converges weakly to the same limit θ ' as θ Λ iddφv . Moreover, at

every point x e Ω such that φ(x) > -oo, we have φv ε (x) > φ(x) >

ψv*pε (x)-fl for v large, because limj/_>_oo ψv — —oo locally uniformly.

Hence φv ε = φ * pε on a neighborhood of x (which may depend on

v) and idd φv ε {x) = (idΊϊφ)* pε (x) for v > v(x). By the Lebesgue

density theorem, if μ is a measure of absolutely continuous part μ a b c, the

sequence μ*pε (x) converges to μabc(.x) at almost every point. Therefore

limidΊ)φu ε (x) = (id^φ)Άhc(x) almost everywhere. For any strongly pos-

itive test form α = /α1Λα1Λ Λ i a

n-P

Λ®n-p °^bidegree (n-p, n-p)

on Ω, we get

θ ' Λ a = lim / θ Λ iddφ , Λ a

Λ iddΨΛc Λ a.

Indeed, the first inequality holds because iddφv ε is smooth, and the last

one results from Fatou's lemma. This implies θ a b c > θ a b c Λ(/^9^) a b c and
Lemma 10.12 follows.

11. Proof of the criterion in arbitrary dimension

We return here to the point where we arrived at the end of §6, and apply
our self-intersection inequality 10.7 to complete the proof of the Main
Theorem. First suppose, with the notation of §6, that L is an ample line
bundle over X. The idea is to apply inequality 10.7 to the (1, l)-current
T = l imω ε produced by equation (6.5), and to integrate the inequality
with respect to the Kahler form ω = c(L). Before doing this, we need to
estimate the excess of intersection in terms of Γ a b c.

Proposition 11.1. The absolutely continuous part Γ a b c of T satisfies
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Proof. The result is local, so we can work in an open set Ω which
is relatively compact in a coordinate patch of X. Let pδ be a family
of smoothing kernels. By a well-known lemma (see e.g. [3, Proposition
5.1]), the operator A ι-> (det^) 1 / π is concave on the cone of nonnegative
hermitian n x n matrices; hence we get

[(ω β •/>,(*))] ' > ( ω β ) ' *pό(x)>[l-jn) (ω ) *pό(x),

thanks to equation (6.5). As εv tends to 0, ωε • pδ converges to T*pδ

in the strong topology of C°°(Ω), and thus

{ ( T * p δ ) ) ' > [ \ - j ή ) ( ω ) / * p δ o n Ω .

Now, take the limit as δ goes to 0. By the Lebesgue density theorem
T*pδ{x) converges a.e. to Tahc(x) on Ω, so we are done, q.e.d.

According to the notation used in §10, we consider an arbitrary subset
Ξ c X and introduce the jumping values

bp = inf{c > 0 c o d i m ^ Γ ) , x) > p, Vx € X} .

By Proposition 11.1 and inequality 5.2(a), we have

/ i i 'ix rr>j A n-j ^ Λ O \Jln n

(11.2) τ^cΛω y > ( 1 - p J ω .
Now, suppose that <fτχ(l) + απ*L is nef for some constant a > 0. We
can then apply Theorem 10.7 with u = aω and

By taking the wedge product of θ p with ωn p , we get

n

ω

k>\

/ u •+• DΛUCU) Λ Λ ( l K + # ΛCϋ) Λ iaoc l 7 v aoc /? '
Λ.

Combining this inequality with (11.2) for TP~J yields
abc

k>\

0<j<P
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where Sj(b), 1 < j < p, denotes the elementary symmetric function of

degree j in by, • • • , bp and Sp

0(b) = 1. As Π(l + b}a) = ΣSj(b)aj , we
get

k>\

0<j<p

If L is only supposed to be big and nef, we follow essentially the same
arguments and replace ω in all our inequalities by ωm = c(L)m + jχc(A)
with A ample (see §6). Note that all (n, «)-forms ωn

m were defined to
be proportional to γn = c(A)n , so inequality 11.1 becomes in the limit

The intersection inequality (11.3) is the expected generalization of Propo-
sition 8.2 in arbitrary codimension. In this inequality, φ k is the generic
Lelong number of T along Zp k, and Zp k runs over all /^-dimensional
components Y of \Jc>b Ec[f) intersecting Ξ; by definition of b. we
have maxfc v k = bp+ι. Hence we obtain

Theorem 11.4. Let L be a big nef line bundle such that TX <g> 0{aL)
is nef, and let T ecχ (L) be the positive curvature current obtained by con-
centrating the Monge-Ampere mass Ln into a finite sum ofDirac measures
with total mass σ, plus some smooth positive density spread over X (equa-
tions (6.5) and (6.10)). Then the jumping values bp of the Lelong number
of T over an arbitrary subset Ξ c X satisfy the inductive inequalities

(11.5) {bp+i-bx)-{bp+x-bp)
 l V

where σ• = (1 - (1 - σ/Ln)Jln)Ln, and Y runs over all p-codimensional
subvarieties of X intersecting Ξ.

Observe that σ. is increasing in j in particular GJ < σn = σ for
j < n — 1. Moreover, the convexity of the exponential function shows that
/ »-• i ( l - (1 - σ/Ln)t)Ln is decreasing, and thus a- > σpj/p for j < p
in particular σ > σj/n for j' < n — 1. We are now in a positive to prove
the following general result, which contains the Main Theorem as a special
case:

Theorem 11.6. On a projective n-fold X, let g.: (X, x . ) -> (Cn, 0)
be germs of finite holomorphic maps with covering degree p . . Let
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<f\ c ffx,Xχ' ' ' * * Ά c &x,xN

 b e the.associated ideals S(τ. O

and let

σo = Σ Pjτΐ,o > σp = {\-{\- σJLn)pln)Ln , 1 < p < /i - 1,

wΛere L w α big nef line bundle such that Ln > σQ. Suppose that

(9TX{\) + aπ*L is nef over P(T*X) and that there is a sequence 0 =

fix < ' < βn < 1 with

Ln-^γ>(βp+ι-βιy
ι" (βp+ι-βpr

ι Σ fyβ)**°P-j

for every subvariety Y c X ofcodίm p = 1, 2, , n - 1 passing through
one of the points x.. ΓΛen ί/ẑ r̂  w a surjective map

Proof Select τ > τ 0 so that Ln p Y still satisfies the above lower
bound with the corresponding value σ > σ 0 . Then apply Theorem 11.4
with Ξ = {Xj, , xN} . Inequality (11.5) shows inductively that b < βp

for p > 2, so bn < 1 and we get codim(£'1(Γ), Xj) = n at each point
Xj . Thanks to (4.3), Corollaries 4.6 and 6.8 imply the desired surjectivity
property.

Proof of Corollary 1. This is only a matter of straightforward calcula-
tions, but adjusting the constants β to get optimal exponents of σ0, a
and μΞ{L) in the lower bound of m requires some care. By the convexity
argument already explained, we have <x . < (p - j)σ{ < p(ί - l/p)Jσ{ .
As β{ = 0, we find

V" SpΛβ)aJσp<pσιΣ
-l 0<j<p-\

When we replace L by mL, the constant a is replaced by a/m , and by

definition of μ = μΞ(L) we have (mL)k 7 > (mμ)^ . Hence Theorem

11.6 yields the sufficient condition

V,

with 0 = jίj < < βn < 1. When p = 1 we get (m//)""1 > ^ " V j , and
when /? = « — 1 the inequality implies mμ > (n — \)σ{ > (1 - l/n)σ0.
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We suppose in fact mμ > λσ0 where λ > l-l/n is a constant which will
be adjusted later to an optimal value; in particular mμ > λnn . We will
choose βj/βj+ι so small that Π ^ O ^ - j ^ . ) > U^β'^ with a constant
Up slightly larger than 1. We are thus led to define βp inductively by the
formula

( Π 8 ) β U

1 <P <n- 1,

and m has to be taken so large that βn < 1 suppose that this is the case.
The first step is to determine admissible constants 1 < U{ < < Un_{.
For j < p , (11.8) implies

1 ~P~l ι/u-χ)1 / β V 1 1 ( β Y P l /i-l\
j-\\mμ) p-\\mμ) HJ \n-lj

by taking p = n in the first inequality. In general, for j < p we get

(11.9) h <
βp -

Let /: be the largest integer in {1,
let t = max(βka/m, γk/γk+ι) e

W i t h 7 y = ( ^ ) / l / ) ( A π - Γ ( - I ) ( I / ι / - I ) - 1 / ( - I ) ) . The sequence (y.) is

strictly increasing and satisfies Vj/Vj+i < 1/Λ . Thus we can take

, n — 1} such that βka/m < 1 and
, 1] Inequality (11.9) implies

Ϊoτ2<j<k,

t±ι) over j = 2, , p is a polynomial

ί, ί " 1 ] , hence is a convex function of t.
The product of all factors (

with positive coefficients in
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Therefore, the product is at most equal to the maximum of its values for
t = 1 or t = γk/γk+{:

π K - T V H Π
2<j<k \ y rk+\J k+l<j<p

We have {p - l)/p + yjy < 1 - 1/P + 1/Λ < 1 for j > k moreover the
sequence y. /y. .. is increasing. If we introduce the increasing sequence

it is then easy to check that the above maximum is bounded by V for

p > k. Therefore (11.8) gives

As U VpP < Wn = Un_ιVn_ι(n - I), by induction these inequalities yield

βp+ι < ( ^ F ) l/k ( ^ ) 1 / ' + I / ( ^ 1 ) + - + I / ( k + I ) for p > k,

where the exponent of aμ is understood to be 0 if p = k . Finally, we have

{mL)n > {mμ)n > (λσo)
n by definition of μ and by our initial hypothesis

mμ > λσ0; hence σJ(mL)n < λ~"σ^~n < χ-"n~~n{n~X). It follows again

from a convexity argument that

σjao < (i _ ( i -Γnn-n{n~X)γln)λnnn(n-χ) = Tn.

Hence Wnσλ < Bnσ0 with BH = WJn - (n - VU^V^T,. Therefore,
sufficient conditions in order that βn < 1 are

(11.10) mμ>Bnσ0 foτk = n-\,

(11.10,) (mμ)n-k > Λ j | σ o ( β A l )«V(ι.-i)+i/(ι.-2)+...+i/(*+i)]

for k e {1, , n - 2} . These conditions are equivalent to the inequality
stated in Corollary 1. Observe that our constant Bn depends on λ. The
initial hypothesis mμ > λσ0 will be automatically satisfied if we adjust λ
so that Bn(λ) = λ; this is always possible because Bn(λ) is decreasing in
λ and Bn(λ) > 1 — \jn. With this choice, a numerical calculation shows
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that Bn < 2.005 for all n and limrt_^+oo Bn-2. For small values of n ,

we find (with rounding by above):

n 2

0.625

3

1.019

4

1.309

5

1.485

6

1.603

7

1.687

8

1.748

9

1.794

10

1.830

11

1.858

12

1.879

TABLE (11.11)

and B < 2 for n > 46.
n —

12. Universal bounds for very ample line bundles

Let X be an ample line bundle over a projective n-fold X. In order to
find universal conditions for Kχ + L to be very ample, our main theorem
would require a universal value a depending only on n = dim c X such
that TX®<f(aL) is always nef. However, this is clearly impossible as the
example of curves already show: if X is a curve of genus g and L has
degree 1, then TX ® 0{aL) is nef if and only if a > 2g - 2. In general;
it is an interesting unsolved question to know whether such a value a can
be found explicitly in terms of geometric invariants of X (Chern classes,
. . . ). Here, these difficulties can be avoided by means of the following
simple lemma.

Lemma 12.1. Let F be a very ample line bundle over X. Then the
vector bundle TX <g> &(Kχ + nF) is nef and generated by global sections.

Proof. By the very ample assumption, the 1-jet bundle J F is gener-

ated by its sections. Consider the exact sequence

0 -> T*X ®F->JlF-+F->0

where τ<ιnk(JιF) = n+l and det(JιF) = Kχ+(n+l)F. The nth exterior
power /\n(JιF) is also generated by sections and there is a surjective

morphism

-* {TX 0 F*) (8) det(/F) = TX® 0(Kχ + nF).

Hence TX ®<f(Kχ + nF) is generated by sections and, in particular, it is

nef. q.e.d.

The next idea consists in the following iteration trick: Lemma 12.1

suggests that a universal lower bound for the nefness of TX®<f(aL') can

be achieved with Lf = Kχ + L if L is sufficiently ample. Then it follows

from the Main Theorem that Kχ + Lf = 2Kχ + L is very ample under
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suitable numerical conditions. Lemma 12.1 applied with F = 2Kχ + L

shows that TX®0({2n + l)Kχ + nL) is nef, and thus TX®0{{2n + "
is nef with L" = Kχ + \L < Lf. Hence we see that the Main Theorem
can be iterated. The special value a = 2n + 1 will play an important role.

Lemma 12.2. Let Lf be an ample line bundle over X. Suppose that
TX %@({2n + l)l/) is nef. Then Kχ + Lf is very ample (resp. generates
s-jets) as long as μx{Lf) > Cnσ0 with the corresponding value of σ0 {resp.
a constant Cn < 3 depending only on ή).

Proof. If μ = μx(Lf), a = 2n +1 and σQ = 2nn (resp. σ0 = (n+s)n),
then the first arguments in the proof of Corollary 1 give the sufficient
condition

n —p TΓT / n n N — 1

i1 > 11 P Π + I - βi) P°
' 2<j<p

with 0 = β\ < • < βn — 1. We suppose μ > λσQ (in particular μ >

2λn") and choose

βp = («"- | ' + 1 (2π") l | - J ' ) 1 / ( < ' - I ) , 2 < p < n - 1

with suitable constants λ, a to be determined later. In analogy with the
proof of Corollary 1, we introduce the constants

- π [I-P-Y K- πP

We have σ{ < T'nσ0 and our conditions become

, _ ί pUf

pV^Tf

na
n-p(2nn)n~p~ισ0 forp<n-2,

p \ (n - \)ϋ'n_χ Vή-\T'n
σo forp = n—l.

As σ0 > 2nn , a sufficient condition is

We adjust λ and a so that
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and we take this common value to be our constant Cn . A numerical
calculation gives Cn < 3 for all n and limn_^+oo Cn = 3 . The first values
are given by

n

cn

2

0.563

3

0.737

4

0.995

5

1.201

6

1.370

7

1.510

8

1.629

9

1.730

10

1.817

11

1.893

12

1.959

TABLE (12.3)

Hence Lemma 12.2 is proved.
Lemma 12.4. Let F be a line bundle which generates s-jets at every

point. Then Lp Ύ >sp for every p-dimensional subvariety Y c X.
Proof. Fix an arbitrary point x e Y. Then consider the singular metric

on F given by

\\ξ\\2 =
\ξ\

where (u{, , uN) is a basis of H°(X, F ®J{s

χ). By our assumption,
these sections have an isolated common zero of order s at x. Hence
F possesses a singular metric such that the weight φ = j\o%Σ\uj\ *s

plurisubharmonic and has an isolated logarithmic pole of Lelong number
s at x . By the comparison inequality (3.6) with ψ(z) = log|z — x\, we
get

LP Y >/ I
JB(x,ε)

[Y] Λ ^ >spv([Y], ψ) = spv{Y,x)>sp.

Proof of Corollary 2. As L is ample, there exists an integer q (possibly
very large) such that

( Kχ + qL is ample,

TX 0<?((2/i + \){Kχ + tfL)) is nef,

μx(
κx + <iL) > cnσo

By Lemma 12.2 applied to L' = Kχ + qL, we find that F = Kχ + Lf =
2Kχ + qL is very ample and generates s-jets. In particular Kχ + | L is an
ample Q-divisor, and for any /7-dimensional subvariety 7 c X we have

(Kχ + {q- \)L)P = Q F +(q/2 - \)LJ Y

C\S" IJ-S n ^ '

2k P{q/2- \)kF" k • L . y .

0<k<p
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By the convexity inequality 5.2 (b) and Lemma 12.4 we get

Fp-k Lk . Y > (Fp Y)ι-k/p(Lp Y)k/P > /'k(μx(L))k .

Hence (Kχ + (q - \)L)P Y > ((q/2 - 1)%(L) + s/2)p and

% ( i ^ + (q - l)L) > i ( ( ί - 2 ) % ( L ) + 5).

Moreover, Lemma 12.1 applied to F shows that

TX®0{Kχ + nF) = ΓJT <8><?((2/i + 1)Λ^ + /i^L)

is nef. As nq/(2n +1) < #/2 < # - 1 for # > 2, we find that all properties
(12.5) except perhaps the last one remain valid with q — 1 in place of q :

( Kχ + {q - \)L is ample,

TX 0 0 ( { 2 n + \){Kχ + {q- \)L)) is nef,

μχ(Kχ + ( 9 - 1)L) > I((^ - 2 ) % ( L ) + 5).
By induction we conclude that (12.6) is still true for the smallest integer
q - l = m such that

(q - 2)μχ(L) + s = (m- l)μx(L) + s > 2Cnσ0.
For this value of m Lemma 12.2 implies that 2Kχ + mL is very ample,
resp. generates s-jets.

Remark 12.7. If G is a nef line bundle, the proof of Corollary 2 can
be applied without modification to show that 2Kχ + raL+G is very ample,
resp. generates s-jets, for (m - l)μχ(L) + s > 2Cnσ0: indeed, adding G
can only increase the numbers μχ(Kχ+qL+G) occurring in the induction.

Remark 12.8. The condition (m-l)μx(L)+s > Cnσ0 is never satisfied
for m = 1. However, it is still possible to obtain a sufficient condition in
order that 2Kχ + L generates s-jets. Indeed, the last step of the iteration
shows that 2Kχ + 2L generates s'-jets and that μx(Kx + L) > s'/2 if
μx{L) + s > 2Cn{n+s)n . Choose s > 2Cn(n + s)n . Then μχ(Kχ + L) >
Cn{n+s)n and we can perform another iteration to conclude that 2Kχ + L
generates s-jets. Of course, the corresponding lower bound for μx(L) is
extremely large, of the order of magnitude of (2Cn)

n+ι(n + s)n .
Remark 12.9. A numerical computation of 4Cnn

n in Corollary 2 gives
the following bounds for 2Kχ + mL to be very ample when L is ample:

n

m>

2

10

3

80

4

1019

5

15010

6

255537
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We now list a few immediate consequences of our results, in connection
with some classical questions of algebraic geometry.

Corollary 12.10. Let X be a projective n-fold of general type with Kχ

ample. Then mKχ is very ample for m > \2nn .
Corollary 12.11. Let X be a Fano n-fold, that is, a n-fold such that

-Kχ is ample. Then -mKχ is very ample for m > I2nn .
Corollaries 12.10 and 12.11 follow easily from Corollary 2 applied to

L = ±Kχ : then we obtain that 2Kχ + mL is very ample for m> Cnn
n ,

and a numerical check shows that 4Cnn
n + 2 < \2nn for all n . Hence we

get pluricanonical embeddings Φ: X —• P^ such that Φ*^f(l) = ±mKχ

with m = \2nn . The image Y = Φ(X) has degree

deg(7) = / cx(#{\))n = ί cχ{±mKχ)
n = mn\Kn

χ\.
J Y J X

It can be easily reproved from this that there are only finitely many defor-
mation types of Fano «-folds, as well as of «-folds of general type with
Kχ ample, corresponding to a given discriminant \K^\ such results were
already known by the fundamental finiteness theorem. In the Fano case,
it is conjectured that there is a universal bound (—Kχ)

n < An : if such a
universal bound could be proved, it would become possible to obtain an
explicit upper bound for the number of deformation types of Fano w-folds
in any dimension n .

Finally, let L be an ample line bundle over an arbitrary projective 72-
fold X. It follows from Mori's theory that Kχ + (n + \)L is always nef
(see [22]). If Kχ + tL is nef for some integer t > 0, Fujita conjectures
that m(Kχ + tL) is spanned for every positive integer m > n + 1 - t.
Although such a sharp result seems very hard to prove, our results allow
us to prove that some explicit multiple of Kχ + (t + ε)L is very ample for
every ε > 0 rational.

Corollary 12.12. If L is an ample line bundle such that Kχ + tL is
nef for some integer t > 0, the line bundle m(Kχ + (t + ε)L) is very
ample for every ε > 0 and every integer m > 0 such that mε e N and
mε > SCnn

n -2t-\.
Proof. First suppose that m = 2p is even. Then either pε or pε-X/2

is an integer. Apply Corollary 2 to the ample line bundles

L' = (p- \){Kχ + tL) + {pε + t)L,

and
l! = {p- \){Kχ + tL) + (pε + t- \/2)L

separately. In the first case, we find μx(Lf) > (pε + t)μx(L) >pε + t, and
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hence 2Kχ + 2Lf = 2p(Kχ + (t + c)L) is very ample when μx(Lf) + 1 >

pε + t+l > 4Cnn
n in the second case, we get the condition pε + t+l/2>

4Cnn
n and we apply Remark 12.7 to conclude that 2Kχ + 2l! + L is very

ample. When m = 2p + 1 is odd, we argue in the same way with

Lf = {p- \){Kχ + *L) + {{2p + l)e/2 + t)L9

and

L' = (p- \){Kχ + *L) + ((2p + l)ε/2 + ί - 1/2)L

separately, and conclude that 2Kχ + 2ί/ + (A^ + ίL) or 2Kχ + 2Z,' +

(Kx + (t+ l)L) is very ample when (2/7 + l)c/2 + t -h 1/2 > 4Cnn
n .
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