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DEFORMATIONS OF FLAT
CONFORMAL STRUCTURES

ON A HYPERBOLIC 3-MANIFOLD

SER PEOW TAN

Abstract

We show that a particular closed hyperbolic 3-manifold with a totally
geodesic hypersurface of genus two admits a real two-dimensional family
of flat conformal deformations that are distinct from the deformations
obtained by bending along the totally geodesic hypersurface. The con-
struction is quite general and can be applied to other not necessarily
hyperbolic manifolds; it follows from a more general theory of bending
hyperbolic cone manifolds along totally geodesic hyperplanes intersecting
at the singular set.

1. Introduction

It is well known by Mostow's rigidity theorem [16] that the hyperbolic
structure on a closed hyperbolic manifold M of dimension n > 3 is
rigid. On the other hand, in the category of flat conformal structures there
may be nontrivial deformations. (Recall that a flat conformal structure
on M is a maximal atlas of charts modelled on subsets of Sn such that,
locally, the transition functions are restrictions of the group of conformal
automorphisms of Sn.) The most obvious deformations are those that
correspond to "bending" along complete, totally geodesic hypersurfaces;
these have been studied by several authors (see for example [2], [10], [11],
[13] and [14]). At the same time, Apanasov has constructed a different type
of deformations called "stamping deformations" and studied the general
problem of the deformation space of flat conformal structures in a series
of papers (see [l]-[6]).

In this paper, we construct a different type of deformation for simply
connected conformally flat three-manifolds. The problem with applying
this to obtain deformations of closed hyperbolic three-manifolds is that we
need to be able to apply our deformations in an equivariant manner to the
universal cover of the three-manifolds. We show that this is possible for a
particular closed three-manifold X, thus obtaining a real two-dimensional
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family of flat conformal deformations on X which are different from the
usual "bending" deformations. The construction is quite general and it
seems likely that many other hyperbolic three-manifolds admit similar de-
formations. It is also a natural generalization of the bending and stamping
deformations and can be applied to manifolds of higher dimensions, for
example, the Gromov-Thurston examples constructed in §3.7 of [9].

To state our result more precisely, we first describe the three-manifold
X which is constructed as follows:

Take two tetrahedra with faces A, B, C and D and Af, Bf, C' and
D1 respectively. Glue the two faces D and Df together and then glue
the remaining faces according to Figure 1 so that the arrows on the edges
match. (Figure 1 is a schematic picture where the tetrahedra have been
flattened so that the vertex where A', B1 and C' meet is moved to oo.)

The resulting complex has one edge and one vertex, the link of the
vertex is a surface of genus 2, and removing a neighborhood of the vertex
one obtains a manifold N with boundary. X is obtained by doubling N
along its boundary.

We shall see in §2 that the manifold X admits a hyperbolic structure
with a totally geodesic hypersurface of genus two (cf. §3.2 of [19]). Our
main result is the following:

Theorem 1. X admits a real two-dimensional family of flat conformal
deformations about the hyperbolic structure {thought of as aflat conformal
structure). These structures are distinct from the one-parameter family of
deformations obtained by bending the hyperbolic structure along the totally
geodesic hypersurface.

Remark. In fact, the family of deformations constructed forms an in-
complete two-dimensional cone about the hyperbolic structure.

On the other hand, applying our construction to the examples of Gro-
mov-Thurston in §3.7 of [9], we get
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Corollary 1. For n > 4, there exists a sequence of manifolds W{ of
dimension n such that the dimension of the deformation space of flat con-
formal structures on W. approaches oo as i -> oo and such that each W{

is doubly branch covered by a hyperbolic manifold V..
The basic idea in our construction is to bend along intersecting totally

geodesic hypersurfaces, or, to put it in another way, to generalize bending
from codimension-one pieces to pieces with higher codimensions. It turns
out that to bend along intersecting totally geodesic hypersurfaces simulta-
neously, it is necessary for the intersection of the hypersurfaces to have a
cone-type singularity of positive curvature. At the same time, the bend-
ing parameters or weights are no longer independent; certain geometric
conditions must be satisfied (these are equivalent to spherical polygonal
conditions on the cross section of the intersection). A set of weights on
the hypersurfaces is said to be admissible if they satisfy the conditions or
equivalently, if bending along the hypersurfaces by these weights gives a
flat conformal structure.

Theorem 1 is proven by showing that there is a one-parameter family
of hyperbolic cone structures on X together with a collection of totally
geodesic hypersurfaces intersecting at the singular set such that for each of
the singular structures on X there is a one-parameter family of admissible
weights on the totally geodesic hypersurfaces. The proof of Corollary 1 is
a simple parameter count for the admissible weights on an appropriate set
of intersecting totally geodesic hypersurfaces of each of the W..

This paper is organized as follows:
In §2 we construct a one-parameter family of deformations of cone

hyperbolic structures on the three-manifold X. In §3 we give a brief
account of some of the general techniques used in the study of conf ormally
flat manifolds including the canonical stratification and the pleated image
associated to a conformally flat manifold. This is applied in §4 to show
how bending is done along intersecting geodesic hypersurfaces. In §5, we
apply the results of §2 and §4 to our three-manifold X to prove Theorem
1. §6 gives some other examples of how our deformations can be applied
to other manifolds, in particular, Corollary 1 is proven.

2. Hyperbolic cone structures on X

Let X be the closed three-manifold constructed in §1. In this section,
we prove the following.

Proposition 1. There exists a one-parameter family Xa of deformations
of hyperbolic cone structures on X, parametrized by a, 0 < a < π/3. The
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FIGURE 2. THE TRUNCATED HYPERBOLIC SIMPLEX

singular set V is an embedded Sι in X, and has positive curvature for
0 < a < π/6. For a = π/6, the structure is nonsingular. For each cone
structure Xa there are four totally geodesic hypersurfaces {with boundary)
A,B,C and D such that AnBnCπD=V.

Proof. It is easy to construct a regular truncated hyperbolic simplex
such that the dihedral angles between the adjacent hexagonal faces are all
a, 0 < a < π/3, and the dihedral angles between the adjacent triangular
and hexagonal faces are all π/2. (This can be easily seen by using the
projective model for H3 and expanding a regular tetrahedron from one
where the vertices touch the sphere at infinity to one where the adjacent
faces touch at the sphere at infinity, and then truncating by vf where vi

are the vertices of the tetrahedron; see Figure 2.)
We name the hexagonal faces A, B, C and D and identify two iso-

metric copies according to the pattern given in §1. The edges where the
hexagonal faces meet are all identified and we obtain a hyperbolic cone
manifold with a singular, totally geodesic boundary. The cone angle at the
singular set is 12α it meets the boundary (the singular surface formed by
the triangular faces) at two points. We get a nonsingular hyperbolic man-
ifold if and only if a = π/6. Doubling along the boundary, we obtain a
cone hyperbolic structure on X, with singular set an embedded Sι in X.
We denote the singular set by V, and if 0 < a < π/6, V has positive cur-
vature. The double of the faces A, B, C and D (which we will also call
A, B, C and D for convenience) are totally geodesic codimension-one
hypersurfaces whose intersection is V. This proves the proposition.
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3. The canonical stratification and the pleated image

In this section, we recall briefly some general properties of a conformally
flat manifold. The basic ideas were probably due to Thurston for the
dimension-two case, the generalizations to higher dimensions can be found
in [1], [2], [5], [11] and [13]. _

Let U be a simply connected conformally flat manifold and let U be
the completion of U with respect to the pullback of the spherical metric
on Sn to U by the developing map. A round ball in U is a subset of
U which is mapped diffeomorphically to a open, geometric round ball in
Sn by the developing map. This notion is well defined since the group
of conformal automorphisms of Sn preserves the set of balls in Sn . A
round ball is said to be maximal if it is maximal with respect to inclusion.
If U ψ Sn or Rn then there is at least one maximal round ball; in fact,
it is not difficult to see that there is either one or infinitely many maximal
balls. If B is a maximal round ball in U, then clearly, dBndU ^ 0 . We
define ΘBΠdU to be the ideal boundary of B, denoted by AB . Endowing
B with the Poincare metric of constant curvature - 1 , we can form the
convex hull of AB in B, denoted by C(B). Note that C(B) c B and
thus C(B) C U. Also, C(B) = 0 if AB has only one point; otherwise
dim C(B) = k, 1 < k < n, and C(B) inherits a hyperbolic structure from
the Poincare metric on B. We have the following general lemma which
shows that the C(B) form a geometric partition or stratification of U.

Lemma 1 (Thurston, etc.). Let U be a simply connected flat conformal
manifold of dimension >2, U ^ Sn or Rn and let Ω be the collection of
maximal balls of U. For B e Ω, let C(B) be the convex hull of its ideal
boundary. Then

(a) [}BeςιC{B) = Ut

(b) C{B) Π C(B') = 0 if BφB1.
The lemma was proved for dimension two by Thurston. In the special

case when U is a isomorphic to a subset of S2 , a proof can be found in
[8] and for the general case, the proof can be found in [5], [11] and [13].

Thus every point x e U lies in the convex hull of the ideal boundary
of a unique maximal ball or equivalently, the convex hulls of the maximal
balls form a partition of U into hyperbolic pieces. Clearly, if M is a
conformally flat manifold and M its universal cover is not conformally
equivalent to Sn or En, then the canonical stratification of M passes
down to a stratification of M since the stratification is invariant under
the covering transformations.

We can map U to a pleated hypersurface in Hn+ι as follows:
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Let B be a maximal ball in U and let dev(C(2f)) and dev(Λ^) be

the image in Sn of C(B) and Λ^ respectively by the developing map.

Regarding Sn as the boundary of Hn+ι we can take the convex hull of

dev(Λ^) in Hn+ι we denote it by C\B). dev(C(J?)) and C'{B) are

isometric (using the Poincare metric on dev(C(l?)) and the induced metric

from Hn+ι on C'(B)). There is a (isometric) map from dev(C(2ϊ)) to

C'(B) which is essentially the nearest point map; the point x e dev(C(i?))

is taken to the point x e C'(B) if there is a horosphere in Hn+ι at x

tangent to C'(B) at x .

The pleated map p from U to Hn+ι is defined to be the composition

of the developing map with the above map. Since every point in U lies

in the convex hull of a unique maximal ball, this is well defined up to

composition by the automorphisms of Sn .

The image p(U) of the pleated map is called the pleated image. The

map p and the pleated image p(U) have many interesting properties;

for example, the induced metric on p(U) from Hn+ι gives a pseudo-

metric on U. For dimension two, the metric on p(U) is isometric to the

hyperbolic metric if the pleated image has dimension 2. This is in general

not true in higher dimensions. The geometry of the pleated image can be

quite complicated; for example, the sectional curvature of p(U) may vary

and in fact, the pleated image may be singular.

An important special case is when U is conformally equivalent to a

subset of Sn not equal to Sn or Rn . In this case, the pleated image is the

boundary of the convex hull of Sn - U in Hn+X. (Points in the convex hull

are interior points if they have an open neighborhood strictly contained

inside the convex hull; otherwise, they are boundary points. Note that

there may be no interior points; for example, if U = S3 - {w, x, y, z}

where w, x, y, z are in general position.)

4. Bending hyperbolic structures along intersecting
hypersurfaces

In this section we specialize the results of the previous section to show
how to bend a hyperbolic cone structure along totally geodesic hypersur-
faces intersecting at the singular set to obtain nonsingular flat conformal
structures. For simplicity, we only consider this for dimension n = 3 al-
though analogous results hold for higher dimensions (see also [1] and [3]).

We start by recalling the standard bending deformation along a totally
geodesic hypersurface (see [10], [11], [13] and [14] for more details). Using
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the Poincare ball model, we identify hyperbolic three-space H3 with an
open B3 in S3 = (R3 U oo) and let H2 be a hyperbolic plane in H3.
The plane separates H3 into two components and intersects the sphere at
infinity in a geometric circle. Bending along the plane then corresponds to
bulging out one of the components of the H by an angle a. Actually,
in the conformal picture, it is more accurate to describe this as inserting
a lens of angle a. When a < π, the resulting structure is U = Bo U Ba ,
the union of two intersecting balls.

The bending terminology arises by looking at the picture of the pleated
image of this set in H . This is the boundary of the convex hull of S — U
in H4, which is two hyperplanes in H4 intersecting at a bend or pleat
such that the dihedral angle between them is π - a, or equivalently, the
angle between their outward pointing normals at the pleat is a.

The maximal balls of U are Bo, Ba and Bt, 0 < t < a, where Bt

are the maximal balls in U whose ideal boundaries are all dBQΓ\dBa.
Under the pleated map, the points in C(B0) and C(Ba) are mapped to
the two hyperplanes, and the points in C(Bt) are all mapped to the pleat.

The space of maximal balls in this case is isomorphic to a closed interval;
using the bending measure, we can put a metric on this so that the interval
has length a. We note also that, in this case, the pleated image p(U) is
isometric to H3 since it has extrinsic curvature 0 in H4.

Now, if we have a set {i7-} of nonintersecting, totally geodesic hyper-
surfaces in H3, then we can obviously extend the above argument and
bend along each F( by α to obtain a flat conformal structure. Thus, if
we have a hyperbolic manifold M with nonintersecting totally geodesic
hypersurfaces, by passing to the universal cover, we can bend along the lifts
of the totally geodesic hypersurfaces in an equivariant way to obtain defor-
mations of flat conformal structures on M. The underlying structure on
the pleated image is hyperbolic and the structure obtained is determined
by the hypersurfaces and their bending data.

We next examine the case of bending a cone hyperbolic structure along
intersecting hypersurfaces. This time we will start with the conformally
flat manifold U which we will identify with its developing image since
the developing map will be a diffeomorphism from U to its image. It is
defined as follows:

Let U be the union of three open balls Bχ, B2 and 5 3 in S3 such that
Bχ ΠB2 ΠB3 φ 0 a n d B. <£ Bj for iφj. T h e n dB{ ΠdB2ndB3 = {x, y }

where x and y are two points in S3 = R3 U oo and by a conformal trans-
formation of S3, we may assume that x = (0, 0, 0), y = oo so that,
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FIGURE 3. THE UNION OF THREE HALF-SPACES WITH

NONEMPTY INTERSECTION

in fact, our three balls are three half-spaces passing through the origin and
U is union of these half-spaces. Thus U consists of all points in R3 above
an infinite triangular pyramid with vertex at ( 0 , 0 , 0 ) . Let the faces of
the pyramid be Fχ, F2 and F3, where F c dBi and let the edge between
the faces Ft and FM be Ei, the angle on the face F of the pyramid at
the vertex be θt and the angle between the upward facing normal to Fi

and FM at E{ be ai (where i is taken mod 3 throughout). See Figure
3.

The maximal balls and canonical stratification of U are relatively sim-
ple and can be described as follows:

Proposition 2. The maximal balls in U are all half-spaces of three types
which can be described as follows:

(a) Half spaces whose boundary intersect dU at exactly one of the three
faces F . (There are three such maximal balls and the convex hull of their
ideal boundary are infinite three-dimensional hyperbolic wedges (or sectors)
bounded by intersecting hyperbolic planes. The angle between the bounding
planes of each wedge is θi.

(b) Half spaces whose boundaries intersect dU at exactly one of the edges
E . For each edge Er there is a one-parameter family of such maximal
balls; the convex hull of the ideal boundaries of these maximal balls are
infinite half hyperbolic planes.

(c) Half spaces whose boundaries intersect dU at only the two points
(0 ,0 ,0) and oo. There is a two-parameter family of such maximal balls;
the convex hull of the ideal boundary of these maximal balls is an infinite
hyperbolic line.

The proof of the proposition is easy and is left to the reader.
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FIGURE 4. THE SPACE OF MAXIMAL BALLS FOR U

THE UNION OF THREE HALF-SPACES

There is a natural metric on the space of maximal balls using the bending
measure. Using the metric the space of maximal balls in the above case is
isometric to a spherical triangle with edge lengths α. and exterior angles
θi. The vertices of the triangle represent the three maximal balls in case
(a) of Proposition 2 above where the convex hull of the ideal boundary has
dimension three. The edges of the triangle represent the maximal balls in
case (b) of Proposition 2 where the convex hull of the ideal boundary has
dimension two and finally, the interior points of the triangle represent the
maximal balls in case (c) of Proposition 2 where the convex hull of the
boundary has dimension one (see Figure 4).

On the other hand, if we look at the intersection of the faces F{, F2

and F3 with the unit sphere centered at 0, we obtain a spherical triangle
with edge lengths θi and exterior angles ai. This triangle is dual to the
triangle from the space of maximal balls in the following sense:

Proposition 3. For every convex spherical n-gon with edge lengths ei

and exterior angles βr 1 < i < n, there exists a dual spherical n-gon with
edge lengths βi and exterior angles ei.

Proof. We use the unit sphere centered at the origin as the model for
spherical space. For each edge ei there is a unique plane P. passing
through the origin and the edge. Fixing an orientation, we can take the
outward facing normals V{ to the planes Pi at the origin. These intersect
the sphere at n points v( which form the vertices of the dual n-gon. It
is easy to see that the dual n-gon has side lengths β. and exterior angles

er
q.e.d.

We now look at the pleated image of U in H4. Since ί / c S 3 , the
pleated image is the boundary of the convex hull of S3 - U in H4. This
is a singular hypersurface in H4 consisting of three H3 wedges Wχ, W2
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and W3 such that the dihedral angles between the bounding planes of each
wedge is θ(, and the angles between the normal vectors to the wedges W.
and Wi+ι at their intersection is α.. Thus the pleated image is a singular
hyperbolic three-manifold with three codimension-one pleats meeting at a
codimension-two singular set with cone angle θχ + θ2 + θ3.

The conformal structure on U can be thought of as being obtained
by bending a hyperbolic cone manifold along three totally geodesic hyper-
planes intersecting at the singular line. The dihedral angles between the
hyperplanes are θχ, and the bending measures are ai. Note that the bend-
ing measures in this case are determined by the dihedral angles θ between
the hyperplanes, since the spherical triangular condition must be satisfied
and a spherical triangle is completely determined by its exterior angles.
In other words, fixing the cone structure and the positions of the hyper-
planes in this case completely determines the admissible bending weights
(compare with [6]).

There are several ways in which the above can be generalized.
First, if we have n totally geodesic hyperplanes intersecting at the sin-

gular line of a simply connected hyperbolic cone manifold, bending along
the hypersurfaces to obtain a flat conformal structure is equivalent to satis-
fying a spherical «-gon condition, since U will be conformally equivalent
to the union of n half-spaces passing through the origin, and the space
of maximal balls will be a spherical Ai-gon with side lengths given by the
bending weights and exterior angles given by the dihedral angles between
the hypersurfaces. Thus, if the hyperplanes and their dihedral angles are
specified, the deformation space of such deformations is just the deforma-
tion space of spherical n-gons with specified exterior angles.

More generally, we can bend along totally geodesic hypersurfaces inter-
secting at more than one singular line as long as the spherical polygonal
conditions are satisfied about all the singular lines.

Second, the above arguments also hold for hyperbolic cone manifolds of
dimension n > 3 as long as the singular points of the singular set are all of
codimension 2 (see [20] for a definition of the codimension of a singular
point), and we bend along totally geodesic hypersurfaces intersecting at
the singular set. We summarize this in the following lemma.

Lemma 2. Let M be a simply connected hyperbolic cone manifold of
dimension n>3 such that the singular points are all of codimension 2. Let
V' = U; y] be the singular set where V1. are the components of V1, and
suppose there exists a family {Ft} of totally geodesic hypersurfaces in M
{possibly with boundary) intersecting at V1 such that M-{Fi) is hyperbolic
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without singularities. Then bending M along {i7.} by {α.} gives a flat

conformal structure on M if the bending data {at} is admissible, i.e,. if,

at each component Vj of V', the spherical polygonal condition relating the

weights and the dihedral angles of the faces meeting at Vj is satisfied.
Remark. Johnson and Millson showed in [10] that there were obstruc-

tions to simultaneously bending along intersecting totally geodesic hyper-
surfaces for a hyperbolic manifold M of dimension n > 4. From Lemma
2, we see that this is not possible without first deforming the structure so
that the intersection of the two hypersurfaces becomes singular, for this
would imply the existence of a nondegenerate spherical polygon with the
sum of exterior angles equal to 2π. The author has also been informed
by B. Apanasov that Lemma 2 was independently proven in [7].

Finally, if we have n balls in Sn (n > 4) such that the intersection
of their boundaries is two points, this corresponds to bending a cone hy-
perbolic manifold with singular points of codimension from 1 to n - 2
along totally geodesic hypersurfaces that intersect at the singular set. In
this case, the space of maximal balls is isometric to a spherical ^-simplex.
Thus in general a spherical (n - l)-dimensional polyhedral condition must
be satisfied to bend along hypersurfaces intersecting at the singular set of
a hyperbolic cone manifold. (Note that the codimension of the points in
the singular set must be between 1 and n-2.) However, we do not know
of any example of any closed manifold of dimension n > 4 which admits
such general deformations.

5. Bending the cone hyperbolic structures on X

Let X be the manifold defined in §1 and let Xa, 0 < a < π/6, be the
hyperbolic cone structures on X with cone angle 12α about the singular
set V as in Proposition 1. This pulls back to a cone hyperbolic structure
on X with singular set V. The totally geodesic faces A, B, C, D lift to
totally geodesic faces A, B, C and D intersecting at V where X - (AU
BuCuD) is hyperbolic with no singularities. To obtain a flat conformal
structure on X with underlying hyperbolic cone structure Xa, we can
bend along the totally geodesic faces A, B, C and D equivariantly with
respect to the covering transformations so that the spherical polygonal
condition about V is satisfied. Clearly, it is only necessary to check this
locally for each component of V. Looking at the cross-section of V, we
can easily check that the faces A, B, C and D intersect V twelve times
in the pattern in Figure 5 (next page).
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FIGURE 5. THE CROSS-SECTION OF V

If we bend along A, B, C and D by a, b, c and d respectively,
by Lemma 2 we will get a flat conformal structure (i.e., (a, b, c, d) is
admissible) if and only if there exists a spherical 12-gon with exterior angles
all equal to a and with side lengths (d,a,b,c,d,b,c,a,d,c,a,b)
in that order. By a dimension count, it is easily seen that the number of
degrees of freedom for such a 12-gon is 4 - 3 = 1 . (The four parameters
a, b, c and d gives us the four degrees of freedom, but we require that
the polygon closes up at the right angle which is 2+1 degrees of freedom.)
Thus a, b, and c are functions of d and it suffices to show that we obtain
a one-parameter family of admissible weights when a = b = c which is
the following:

Lemma 3. For each 0 < a < π/6 there exists a one-parameter family
of spherical \2-gons with all the exterior angles equal to a and such that
the side lengths s( (1 < / < 12) satisfy s{ = s5 = s9, s( = j . // i, j Φ 1, 5
or 9. If we let the two possible lengths be d and a respectively, then a is
a function of a and d i.e., a = f(a, d), and the family is parametrized
by 0 < d < d0 where d0 is the length of the sides of the regular spherical
triangle with exterior angles 4a.

Proof. There are three obvious (possibly degenerate) 12-gons which
satisfy the above lemma. The first is where d = a, so we have the
unique regular spherical 12-gon with exterior angle a (this exists since
12α < 2π). The second is where a = 0 so that we have a regular spherical
triangle with side lengths dQ and exterior angles 4α, and the third case is
where d = 0 and we have a 9-gon with the side lengths all equal to a0,
a0 = f(a, 0) and the exterior angles are (a, a, 2α, a, a, 2α, a, a, 2a).



DEFORMATIONS OF FLAT CONFORMAL STRUCTURES 173

It is easy to see that for each 0 < d < d0, we can find an a such that
we get a spherical 12-gon with exterior angles all equal to a and side
lengths (d, a, a, a, d, a, a, a, d, a, a, a) (start with the regular trian-
gle of side length d and open it up and expand it in a regular fashion
putting in three sides of equal length at each opening. At some point, we
can make the exterior angles all equal to α). Clearly, a = f(d, a) is a
monotone decreasing function of d for each fixed a, so the spherical 12-
gons satisfying the conditions of the lemma are parametrized by the side
length d, 0 < d < d0 . q.e.d.

Proof of Theorem 1. We have shown that for each hyperbolic cone
structure Xa on X (0 < a < π/6) there is a set of totally geodesic hyper-
surfaces A, B, C and D in X and a one-parameter family of admissible
weights on them parametrized by d, 0 < d < d0. The degenerate case
where d = 0 corresponds to the case where the bending data is 0 on the
D faces; similarly, the degenerate case where d = d0 corresponds to the
case where the bending data is 0 on the A, B and C faces. Clearly, they
are also admissible, so we have a one-parameter family of admissible data,
parametrized by d, 0 < d < d0, for each hyperbolic cone structure Xa

on X. Thus there is a two-parameter family of flat conformal structures
on X, parametrized by (a, d), 0 < a < π/6 and 0 < d < d0.

On the other hand, if we take the regular hyperbolic structure on X,
then the triangular faces of the truncated simplices form a totally geodesic
hypersurface in X, and we can put any positive weight on this surface
and bend along it by this weight. (Since there are no singular points, the
spherical polygonal condition is vacuously satisfied.) The flat conformal
structures obtained this way obviously have different underlying structure
and bending data from those constructed above, hence give different struc-
tures. This proves our theorem.

6. Deformations on other manifolds

The deformations we constructed can be applied to many other mani-
folds; we give two examples in this section.

Example 1. It is well known that the complement of the figure eight
know in S 3 admits a complete hyperbolic structure of finite volume, ob-
tained by identifying the faces of two copies of the regular hyperbolic ideal
tetrahedrons (with the dihedral angles between the faces equal to π/3) ac-
cording to Figure 6 (next page).
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FIGURE 6. IDENTIFICATION PATTERN FOR THE COMPLE-

MENT OF THE FIGURE EIGHT KNOT

Choosing a horospherical neighborhood of the cusp, we can double the
structure about the horosphere (this is essentially a Mόbius inversion, see
[2], [4] and [12] for more details) to obtain a flat conformal structure
on the double of the figure eight knot complement M. This is a closed
manifold which we denote by M1. The developing map is a bijection of
M' to a subset of a ball in S3 with infinitely many smaller balls removed.
Changing the horosphere used changes the developing image (conformally)
so that there is a one-parameter family of flat conformal structures on
M' from this construction. On the other hand, by expanding the regu-
lar tetrahedron so that the vertices are outside the sphere at infinity, we
can construct a hyperbolic cone structure on M' as before. We can then
attach an admissible bending data on the faces of the tetrahedron (e.g.,
by taking the weights on all the faces to be equal so that we get a regular
spherical polygon at the cross-section of the singular set) to obtain new flat
conformal structures on M1.

Example 2 (Gromov-Thurston example). In §3.7 of [9], Gromov and
Thurston constructed examples of hyperbolic manifolds V{ of dimension
n > 4 admitting /-isometric involutions fixing some hypersurfaces in Vt

which divide V{ into 2/ isometric sectors meeting at a codimension-two
submanifold V' (so that the angle of each sector at V' is π/i). Gluing
together 2) such sectors, one obtains a cone hyperbolic manifold, say
Wj . with singular set V' with cone angle 2πj/i. If j < i we can
obtain flat conformal structures on W. . by bending along the faces of the
sectors by admissible weights. Again, this amounts to a spherical polygonal
condition, i.e., finding a spherical 27-gon with exterior angles all equal
to π/i. Here since there are 2j independent faces meeting at V', the
number of degrees of freedom is 2j - 3, for j > 1. For 7 = 1, there
is a unique bi-gon with exterior angles 2π/i (the sides have length π),
so there is a unique flat conformal structure. Choosing j = i/2, we can
form manifolds Wi = Wi,2 t which are doubly branch covered by the
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hyperbolic manifolds V and whose deformation spaces of flat conformal
structures have dimension greater than or equal to / - 3 . This proves
Corollary 1.
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