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Abstract

We prove a mod 2 universal constraint and then derive a structure the-
orem for the SU(2) Donaldson invariants of odd second Chern class on
even manifolds.

1. Introduction and the main theorem

Donaldson [5] uses Yang-Mills gauge theory to define infinitely many
invariants on smooth 4-manifolds. These invariants are extremely impor-
tant for studying differentiable structures on 4-manifolds. Because they
are difficult to calculate, they remain mysterious. An important open ques-
tion posed by Donaldson is whether there are any universal relations or
constraints on the invariants. This paper is a first step in answering this
question. All the Donaldson invariants in this paper are invariants for
SU(2).

If φp and ψq are multilinear symmetry functions of degree p and q ,
define their symmetric product as follows:

,Xp+g)p+g)

= Σ «*,,.-.*,,

where the caret means to omit this term. All addition is done mod 2
in this paper. If, for example, φ is of degree 2, then φ o φ = 0 mod
2, since the terms cancel in pairs (for example φ(xι, x2)φ(x3, x4) and
φ{x3, x4)φ(xx, x2)).

Main theorem. Let X4 be a simply connected spin manifold with in-
tersection form q and bt(X) > 1 odd. If the second Chern number
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k > | ( 1 + b^iX)) and is odd, then the Donaldson invariants Φk satisfy

qoφk(al9 . 9an)

. , α 7 ) Φ f c ( α 1 ? ••• , a . , ••• , α } , ••• , α J = 0 ( m o d 2 ) .

As an application, we can prove a strong structure theorem for even
degree Donaldson invariants:

Structure theorem. Under the assumptions of the main theorem, for any
even degree Donaldson polynomial invariant Φ,

Φ = qoH (mod 2)

for a symmetric function H of degree lower by 2.
This structure theorem implies that many cases of mod 2 Donaldson

invariants vanish. For example, under the hypotheses of the structure
theorem,

Φ(α, a, , a) = 0 (mod 2)

for any 2-dimensional homology class a.
Note that for algebraic surfaces, Donaldson shows that for large k,

Φ f c ( α , α , ••• , α) ^ 0

for the Kahler class a . By our theorem, Φk(a, a, , a) is even for k
odd and 4k - \ (1 +b\) even. The evenness of the degree of the Donaldson
invariant depends on b\ . If b\ = 4m + 3, for example in the case of
the Kummer surface, then the degree of the Donaldson invariant is always
even. In §3 we will discuss other cases where the invariants vanish. It
appears that this universal constraint severely diminishes the value of mod
2 Donaldson invariants. In an upcoming paper of Fintushel and Stern, by
combining their own techniques with this universal relation, they are able
to show that a lot of mod 2 Donaldson invariants vanish [8].

This paper is based on the work of Donaldson [3] in an essential way
and may be regarded as a partial extension of it. In fact, as was pointed
out in [3], there is a gap between the situation b\ = 0, 1, 2 and the sit-
uation b\ > 3. In the first case it is possible to get constraints on the
homology of the manifold as in [3]; in the second case, however, no such
direct information seems available. But we can still extract some infor-
mation about Donaldson's invariants. We note that Donaldson suggested
this approach in his paper [3].

The author owes a great deal of thanks to Tom Mrowka for his help
in preparing this paper. The author wants to thank Suguang Wang for
reading the draft and for many useful suggestions which improved the
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paper. He would also like to thank his advisor R. Kirby for his constant
encouragement.

2. Proof of the main theorem

Let X be a compact, connected, oriented 4-manifold, P -» X a prin-
cipal SU(2)-bundle, and E and gp the vector bundles associated to P
by the fundamental representation on C2 and the adjoint representation,
respectively. Let J / be the space of connections on P, and let & be the
group of gauge transformations such that

is an infinite-dimensional space of gauge equivalence classes of connections

on P. Let ^ be the group of gauge transformations which act as the

identity on the fiber of P over the base point x0 . Then ^ acts freely on

sf . Let £8 = srf I&Q . We can form the universal bundle:

s/ x<? P (=P)

_ 1°
3B x X

Denote by μ: H2{X, Z) -> H2{β, Z) the slant product μ(α) = c2{F)/a,
where c2(P) is the usual second Chern class in H*(β x X, Z). By choos-
ing a specific geometric representation of μ, Donaldson shows that μ(a)
descends to μ(a) on 38* = s/*/8?, where s/* is the space of irreducible
connections. There is a geometric way to describe this map which is im-
portant for us. We quickly sketch Donaldson's construction.

For a e H2(X, Z), choose a surface Σ representing a. There is a

restriction map rΣ: 3S{X) —• &(Σ). Now Σ carries a spin structure, so

we have a twisted Dirac operator dΣ Over Σ which has numerical index
0, and the class

ind(dΣ) G K(&(Σ)).

Any complex virtual bundle defines a complex line bundle, the determinant
line bundle,

det([K] - [W]) = (Λdim V ) Θ c (Λ d i m WV)*.

Thus for every surface Σ in X we get a complex line bundle LΣ =

( d e t i n d ^ ) " 1 over ^ ( Σ ) . Then it can be proved that μ(a) = cχ{LΣ).

Note that i^* = &*/&0 -> &* is a principal SO(3)-bundle. Donald-
son showed that we can push LΣ down to ^ * ( Σ ) . An index theorem
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argument shows that LΣ can be extended over the zero divisor. In other
words, LΣ is defined on ^-{nonzero reductions}. The restriction of an
irreducible connection may not be irreducible, but this can be taken care
of by working on a tubular neighborhood N of Σ instead of Σ itself
[5]. Then we can suppose rN maps the moduli space Jt of irreducible
anti-self-dual connections to irreducible connections, i.e.,

rN{jri)c&*{N) for/<fc.

Now we are in a position to give the definition of Donaldson's polynomial
invariant. For any k, the moduli space \£k for the bundle with c2 = k
is a finite-dimensional manifold; d i m ^ = Sk - 3(1 + b2) - For b2 odd,
άimJTk = 2b for b = 4k - | ( 1 + b2). For any α 1 , , ab e H2(X, Z),
choose Σ j , , Σb in general position representing ax, , ab . Further-
more, we can choose the small tubular neighborhood Nr of Σ( in general
position, i.e., NinNJ.Γ\Nk =• 0 for distinct /, j , k, and N -ΠNj is
exactly a tubular neighborhood of points Σ. n Σ . . Then we have complex
line bundles LΣ over 33N -{nonzero reductions}. Choose sections sΣ of
LΣ such that the divisors VΣ are transverse to each other and to J(χ

for / < k. In particular, the trivial connection θ is a zero reduction,
so we can suppose sΣ ([0]) Φ 0. Consider the zero-dimensional manifold
Vχ Π Π Vb f\JKk . By Uhlenbeck's compactness theorem, there is a natural
compactification of Jΐk as

ΊΓk c jek u u jrk_. x s\x) u u s * ^ ) .

From our choice of section sΣ , if there is a sequence [An] e VΣ weakly

convergent to ([A],xχ, ••• , JCΛ), then either some x7 € Nt or [̂ 4] e

ϊ^.. A dimension counting argument shows that if k > | ( 1 + b2), then

VΣ Π"'ΠVΣ Γ\^k is compact, hence finite. Counting these points, using

the orientation on Jfk , we define the Donaldson polynomial invariant

Donaldson shows that Phik is independent of the choice of metric, and
hence is an invariant of the smooth structure of X.

From now on assume k > | ( 1 + b2), and b2 > 1 is odd. Then the
Donaldson invariant is well defined. Consider the moduli space Jtk+ι. It
has dimension

d i m ^ + 1 = 8fc - 3(1 + b2) + 8.

Let b = 4k - 1(1 + b2) + 2. For any aχ, , α^ e //2(X, Z), choose
representing surfaces Σ j , ,Σb in general position and such that their
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tubular neighborhoods Nχ, , Nb are in general position as well. As
above, consider

Then dimN = 4, and a dimension counting argument shows that N c
^k+ι can only touch the first intermediate stratum / f c x I at ([A], x)
for

(*) xeNiΠNj, μ j e ^ n n ξ n . n ζ n n ^ .

Note that

[Λ] € vΣ n n ^ n n ^ π .nFΣ nJtk,

and its dimension is zero. Since we will only consider the mod 2 invariants,
we will ignore the orientation in the rest of the argument. Therefore,

#(Vy n . n ί £ n n κ Γ n nκ y r\Jt.)

= Φk(a{, ••• , α , ••• , α } , ••• , α f t).

On the other hand, N. Π N. is just a small neighborhood of the points of
Σ Π Σ . Its number of components is measures by q{at, a.). Hence the
number of ends of the moduli space is

(<*i><*j)Φk(
ai>'~ >"i> •">*}>••• , a n ) = q o φ k ( a l 9 . . , a h ) .

For the readers familiar with Donaldson's work [3], our case is exactly
the case causing the trouble in [3]. For the case of b\ = 1, 2, Donaldson
cut the moduli space in a way to avoid all the intermediate strata. Then the
intersection with the bottom stratum will give a constraint on the homology
of the base manifold. If b\ > 3, the submanifold sliced out by divisors
in [3] must meet the first intermediate stratum.

The idea in this paper is to intersect enough divisors to cut out a 4-
dimensional submanifold. Then it meets the first intermediate stratum in
a discrete set of points. If k is large enough, it also avoids the bottom
stratum. Therefore it only meets the first intermediate stratum and this
intersection gives our constraint on the Donaldson invariants.

Next we study the behavior of TV near pairs ([^4], x]) satisfying (*).
Let ([Ao], A:) be such a pair. ** Since every component of N. Π Nj is a
neighborhood of x for x e Σf n Σ , it is equivalent to study the behavior
near ( [^ 0 ] , x) for x e Σι:n Σj . We will see that after suitable cutting of
N near the ends we get a compact 4-manifold Nf with boundary. The
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part of the boundary corresponding to each end is homologous to SO(3).
Here SO(3) is regarded as a gluing parameter of [Ao] with a standard

instanton of S4 at x.

By Taubes' work [12], except for the bottom stratum, -^k+ι is a strat-

ified space with a local cone bundle structure, and the /th stratum is

-^ic+i-i x Sl(X) I n particular, there is a neighborhood of the first stra-

tum Jίk x X which is a local cone bundle with fibre = cone(SO(3)).

Therefore there is a neighborhood W^A hχ) of ([Ao]9 x) diffeomorphic

to W[A j x Ω χ x SO(3) x (0, λ) and there is a well-defined cone projection

P:^(\ΛΛ ^ - ^ ^ i i x Ω ^ where W, Λ Ί is a neighborhood of [AΛ in JH. ,

and Ω χ is a neighborhood of x e X containing a component of Nt Π Nj .

Denote by W .̂ ΪΛ λλ the subset of W. XAΛλ with fixed scalar λ, which is

diffeomoφhic to W[A ,x Ωχ x SO(3) x {A}. Without loss of generality,

let x e Σx Π Σ 2 and °[^0] e FΣ n nKΣ n ^ . Choose Ω χ such that

Ωχ ΠiV/ = 0 for i > 3. Then'for / > 3 *and [^] € W(JC M ]}, [A]\ N is
close to p(M])| N . Hence 5"Σ ([A]) gets arbitrarily close to sΣ (p([A])) for

small 2. Let vi be a tubular neighborhood of VΣ in Jίk and let ίjj be

the complement of a smaller tubular neighborhood. Then sΣ (ΪΛ ) φ 0,

and ^ ( p " ^ ^ ' x Ω J ) Φ 0 for λ small. Then both sy and sτ o p

define cohomology classes of H2(W, ίA Λλ9p~x(v. Π W[Λ Λ x Ω v )) , and
they are the same since those two maps are close to each other. But
clearly the class defined by sτ o p is the pullback of the generator of

For ^Σ and sΣ , we quote a theorem of Donaldson. In this paragraph,

j = 1,2. First of all, s.([A0]) Φ 0, where s. = sΣ , so we can suppose
si(WrΛ Ί) Φ 0. Let v. be a tubular neighborhood of Σ in I and let

v'j C V. be the complement of a smaller closed tubular neighborhood.
Without loss of generality, we can assume that Nj c i/ . Consider the
set Γ. c ^ + 1 consisting of pairs (JC, A), where x € i/. and A is a
connection satisfying the following two conditions:

(i) Away from x, A is close to an element of WlAΛ\

(ii) c2(A) = fc + 1, so that a small ball around x contributes = 8π2

to the Chern-Weil integral.

Let Tj c Tj be the set corresponding to v.. Donaldson showed in

[6] that the projection p: (T., Γ|) -> (i/ , i/ ) is a fibration and the class
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induced by Sj is the pullback of the generator of H2(vj, i /) . Obviously
we can choose small enough λ so that W, ΪΛ ,, c T . Then s induces a

class in i/2( W{χ [A]), W{χ [A ]} Π Γj) which is the pullback of the generator

It is easy to see that Fy n ΓΊK. n ^ ' i d i ^ . , χ Ω J ) = 0 . Furthermore
1 A l ^ O - l

we can perturb $. slightly such that PC Π -Γ)VT is transverse to W,λ

 r , n .

So if we cut JV along f?£ ^ ^ , we get a compact manifold with boundary

VΣ Π Π VΣ ΠW*χΛA]) near (x, [^0]). Taking the intersection of FΣ

corresponds to taking the cup product with the dual cohomology class.

The previous argument implies that VΎ n Π VΎ Π W, r Λ « is dual to

a cohomology class of H2b(W, [A «, ^ " ^ ^ ( ^ , x Ω^))) which is the

pullback of the generator of H2b{W{A^ x Ωχ, d{W{A^ x Ω J ) . If we fix a

small λ, the same argument shows that Vγ Π n ί4 Π W7* r . n is dual
i ^ o

to the cohomology class of H2b(W,λ

γ {Λ ΛΛ, p7l(d(Wf/i, x Ωv))) which is

the pullback of the generator of ^ ( ^ ^ Ω ^ ^ j x Ω J ) . But

the generator of H2b(W[A j X Ω ^ a ^ j X Ω J ) is dual to (x, [Λo]) and

hence VΣ n Π FΣ Π ̂  μ ]} is homologous to / Γ 1 ^ * , Mo])) = SO(3)

since W,λ

γ fJλλ is a compact manifold with boundary p7ι(d(JVίA λ x Ω v )).

Next we want to show that the ends are homologically nonzero. Don-
aldson uses the spin structure of the manifolds to define certain mod 2
cohomology classes as the Steifel-Whitney classes of the index of a family
of twisted Dirac operators. We simply state the results and refer the reader
to Donaldson's paper for details.

The index bundle for c2 even, written as Donaldson's notation, is

det(ind(Z>^)). An excision argument shows that over the gluing param-

eter SO(3), ind(D^) is m0 + mλη, where η is a Hopf line bundle over

SO(3). When we glue AQ together with an instanton on S4, mχ = 1. In

this case det(ind(Z>^)) = η.

Let k + 1 be even. Choose the first Steifel-Whitney class uχ =

wχ{άe\{inά(DA))). The argument above shows that ux\so{3) is the gen-

erator of i/*(SO(3), Z 2 ), and hence iιJ(SO(3)) = 1. Finally

q o Φk(aχ, , ab) = u\iβN) = 0 (mod 2).

This finishes the proof.
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Remark. The proof breaks down for the case k even because uχ = 0.
In fact, it has been shown that ^ * is simply connected for c2 odd corre-
sponding to our case k even (see [11]). Hence for this case Hx{β*, Z) =
0.

3. Structure of the mod 2 Donaldson invariant

In this section, we study the constraints imposed by the main theorem
on the structure of the Donaldson invariants. We will make use of several
basic facts from linear algebra over the field Z 2 . As the author could
not find them in the literature, they are included here. Throughout this
section, all operations are mod 2 unless we specify otherwise.

The key observation is the analogy between the symmetric product by
the even intersection form and wedge product by the Kahler form for
complex manifolds. It turns out that we can establish a partial theory in
analogy with the Lefschetz decomposition of the Dolbeault cohomology.
An interesting question is where the Donaldson invariants "lie" under this
decomposition.

Let us recall that for simply connected even 4-manifolds, every inter-
section form is equivalent over Z to tEs (&s(°χ Q) . In particular, the rank
of H2(X, Z) is even. By Poincare duality, q is a nondegenerate bilinear,
symmetric, unimodular form. It is well known that q is equivalent to
n( l o) o v e Γ ^2 * n other words, there is a basis xx, yx, x2, y2, , xn ,
yn such that

« ( X " y ; ) = { θ otherwise.

Let us use eχ, θχ, , en , θn to denote the dual basis. Over Z2 , since
symmetry is equivalent to skew-symmetry, we adopt the following nota-
tion:

Definition, φ e Symp(H*(X)) if φ(zχ, , zp) = φ(zt , , zt ) for

every permutation (iχ, , i ) of (1, 2, , p).
φ € /\P{H*{X)) will be called a /?-form if φ e Symp and φ(zχ, , zn)

= 0 whenever zt = z for some iφ j . Clearly eΛ, θi e Symι(H2). Natu-
rally we define the operation of symmetric product as in the introduction.
Therefore, the intersection form q can be written as
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One special feature of the mod 2 symmetric product is demonstrated in
the following proposition.

Proposition. For any φ e Syn/, φoφ = 0.
The proof follows easily from the fact that our addition is modulo 2.
It is easy to check that Λ* *s generated by

where et , θ • are mutually distinct. But the symmetric product of degree
one symmetric functions does not generate all the symmetric functions, as
demonstrated by the preceding proposition. In fact they only generate the
forms. Thus we are led to make the following definition.

Definition. The power e\ € Sym^ is the element of Symfc which sat-
isfies

k ( 1 if z< = = z, = x.,

<" ί<*. - . * . > - { o otherwise.
We can define θ* similarly and extend by the binomial formula. An easy
calculation shows that

~k+ι if A: is even,

otherwise.

Under this notation, Syn/ is generated by
fίt fir, ΛWI, Λ/H.

e}.
ι o o ei;

 k o θ .ι - o θ.',
Ί ιk h h

where e( , θ. are mutually distinct. When there is no confusion, we will

omit the o sign. Define

Lq: Syn/ - . Sym^ 2

to be L (c) = q o (c) = Σ"=ι e( ° θt o (c). One can observe that the Lq

induce the following sequence of homomorphisms of vector spaces:

(2)
LΛ Sym2 U Sym 4 h . Λ ... -> Sym 2 m h ... ,

(3) Sym1 LΛ Sym3 h Sym5 fi ... fi , Sym 2 m + 1 h ... .

By the proposition, L o L = 0. Hence ImL^ c KerZ^. So we can

define the cohomology Hp = KerLq/ImLg. Note that our constraint

on the Donaldson invariant just says that Φk e KerZ^ for k odd. The

purpose of this section is to calculate the Hp .
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Definition. For any x e H2(X), we define the contraction iχ: Syn/+ 1

-> Syn/ as iχa{z1, , zp) = a{x, Zj, , z p ) .

Then we can define the contraction by q, / : Syn/*2 -> Symp, as

Lemma.

We only prove the first equality, as the others follow similarly:

e(

Proposition. [L p , Iq] = n+p as a homomorphism Symp -» Symp.
Proo/

V.= Σ V ΛA,=

L e t Zj = ΣMJXi + A y. ) Then

Σ Le, ̂ ( α ) ( z i ' ' > Z

P) = Σ ^(^W^. > z i ' ' zj' . Z

P)

In the same way,

, θ i ( a ) { z . , . . . , z ) = Y <

ι,J
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and therefore

z i

j

Hence [Lq,Iq] = n + p. When n + p is odd, [Lq, 7J = 1. Then
L Λ( α ) = W α ) + α I f V α ) = °> α = V > ) - τ h e r e f o r e > « e
Im L , which implies the following theorem.

Theorem. When n+p is odd, Hp = 0.
Structure theorem. £/>κ/<?r */*£ assumption of the main theorem, for even

degree Donaldson polynomial invariants Φ,

Φ = qoH (mod 2)

,/br sorae symmetric function 77 of degree lower by 2.
Proof For even manifolds, the intersection form is *7?8 θ s{\ x

0). So
the rank of i72(X) = 2« = 2(4* + s). Note that b\ = 5. Thus when Z£
is odd, « is also odd. Therefore if degree p is also even, n + p is odd.
By the theorem, 77P = 0. But from the main theorem Φ G Ker L , which
implies that Φ G ImL^ . So Φ = q o 77. Moreover, 77 = 7^(Φ).

For degree p odd, 77P may be nonzero. But we still have [L ,71 = 0.
In fact we get a Z2-representation of the Lie algebra sl2 . In particular, it
is easy to check that

7,(KerL,) C Ker7^, ^(ImL,) C ImL,.

Therefore, Iq induces the maps

For our case, we do not quite have the decomposition of Hp as the case
of complex manifolds. Instead we have a filtration

(*) 0 c Ker/^ c KerIq c-cHp.

Note that Φ induces an element Φ G Hp .
On the other hand, q £ f\2. In fact, Lq induces a map

P P+2
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Thus we obtain a subspace Kp = KeτLf

g/ImLf

q c Hp . Furthermore we

have a similar filtration as (*) for Kp .
The structure theorem implies that in many cases mod 2 Donaldson

invariants vanish.
Corollary 2. Under the assumption of the structure theorem, let aχ, βχ,

a2,β2, - ,<*k,βke H2(X) satisfy q(ai9 βj) = 1 if i = j , and 0 oth-
erwise. Then

Φία^tfV-. , α £ , # ) = 0 (mod 2),

if tisi is even for every i. Here, a( means plugging in a. t times.
The proof is trivial.
A special case is that Φ Λ (α, α, , a) = 0 (mod 2) for even degree

Donaldson invariants Φk with k odd on even manifolds.
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