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GRAUERT TUBES AND THE HOMOGENEOUS
MONGE-AMPERE EQUATION. II

VICTOR GUILLEMIN & MATTHEW STENZEL

1. Introduction

Let M be a complex ^-dimensional manifold and σ: M —• M an anti-
holomorphic involution. The fixed point set X of σ is an ^-dimensional
real-analytic submanifold of M which is "totally real" at all points p (i.e.,
there exists no nonzero holomorphic vector in TpM®C with the property
that both its real and its imaginary part are tangent to X). To simplify the
exposition below we will also assume that X is compact (though a good
deal of what we have to say in the following paragraph is true without
this assumption). We recall that the article [8], of which this article is a
continuation, has to do with the following well-known theorem of Grauert:

Theorem. There exists a σ-invariant neighborhood Mχ of X in M
and a smooth strictly plurisubharmonic function p: Mχ —• [0, 1), such
that

(1.1) χ = p~\θ) and σ*p = p.

The main result of [8] is that the function, p, in this theorem can be
chosen to have an additional property: namely to satisfy the homogeneous
Monge-Ampere equation

(i 2)

on the compliment of X in M{. In fact we showed that if X is equipped
with a real-analytic Riemannian metric, there exists a unique real analytic
solution p of (1.2) such that the inclusion of X into Mχ is an isometric
imbedding of X (equipped with the given metric) into M{ equipped with
the Kaehler metric
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Our purpose below will be to describe why such /?'s are useful and, in
particular, to explain the function-theoretic significance of (1.2).

For the moment let p be any function satisfying the hypotheses of
Grauert's theorem. The property (1.1) implies that, for all x e X, dpχ =
0. Moreover, since p is strictly plurisubharmonic, the Hessian d2pχ is
positive-definite on the normal space to X at c. Therefore, without loss
of generality, one can assume that the only critical points of p on M{ are
the points of X. Since X is compact, one can also assume without loss
of generality that p is proper, and, therefore, that the open sets

(1.3) Afβ = ̂ " 1 ( [0 ,β 2 ) ) , 0 < ε < l ,

form a neighborhood base of X in M. From now on we will refer to these
open sets as Grauert tubes. Since p has no critical points on Mχ - X, the
boundary of Me,

(1.4) dMε = p'\ε2)9

is smooth, compact, and strictly pseudoconvex, and, as a consequence, Mε

has lots of globally defined holomorphic (n, 0)-forms. Let us denote by
0{Mtτ ΛΛ'°) the space of holomorphic («, 0)-forms on Mε which are
smooth up to the boundary. We will show in §§2-3 that there is a natural
fibration π: M{ -> X which, restricted to M ε , gives rise to a Gysin map:

(1.5) Gε:d?(Mε,A
n^)-*C°°(X).

It has been known for some time [7] that this map is Fredholm; recently
Epstein and Melrose [5] have shown that, for sufficiently small ε, it is a
bijection. Therefore, given such an ε, there exists, for 0 < δ < ε, a map

(1.6) Rεδ:C°°(X)-+C°°(X)

defined by the diagram

(..7)

with the vertical arrows the Gysin maps and the bottom arrow the restric-
tion mapping. Notice that, by definition, if δ < s < ε then
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In §4 we will derive from (1.8) an evolution equation of the form

(1.9) dsRε>s = P s R ε s ' δ < S < £'

the Ps in this equation is a positive-definite first-order elliptic pseudodif-
ferential operator. We will compute the leading symbol of this operator
and show that if p satisfies the homogeneous Monge-Ampere equation on
the annulus δ < y/p < ε, then the symbol of Ps does not depend on s
(and conversely). In other words, there exists a positive-definite first-order
elliptic pseudodifferential operator P such that

(1.10) Ps = P + Qs,

where the β/s are bounded pseudodifferential operators. We will show,
moreover, that if p satisfies (1.2) on all of Mε then

(1.11) P = VΔ,

where Δ is the Laplace operator associated with the restriction to X of
the Kaehler metric (*).

This result is closely related to a result of Boutet de Monvel on the
analytic continuation of the fundamental solution of the wave equation to
the imaginary time axis. We will describe the relationship of his result to
ours in §6. (We are grateful to Steve Zelditch for calling our attention to
this result.)

2. The canonical fibration of the Grauert tube A/

The following theorem will play a fundamental role in this paper.
Theorem 2.1. For every sufficiently small neighborhood U of X in M

there exists a unique fibration

(2.1) π:U-+X

such that the one-form

(2.2) β = lmdp

is π-horizonal at every point p {i.e., if v is tangent to M at p and
dπp(υ) = 0, then β(v) = 0) and such that, restricted to X, π is the
identity map.

This theorem is due to Kostant and Sternberg (see [9, p. 228]). We will
give a brief sketch of its proof: Let Ω be the Kaehler form

(2.3) dβ = -l ~ "
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and let Ξ be the vector field defined by the identity

(2.4) ι(Ξ)Ω = β.

One can show that X is an unstable fixed point set of the one-parameter
group of diffeomorphisms generated by Ξ. In fact, there exists a neigh-
borhood U of X with the property that for every p e U the integral
curve γ(t), - o o < / < 0 , o f Ξ through p tends to a unique limit point
π(p) — Lim γ(ή as t tends to -oo. Moreover, the mapping

(2.5) π:U-+X, p-+π(p),

is a smooth fibration satisfying the hypotheses of the theorem. We will

prove now that it is the only such fibration: Suppose πχ is another such fi-

bration. Then, for every q e X, the restriction of β to the fiber (πχ)~ι(q)

is zero; so (π{)~ (q) is a Lagrangian submanifold of U with respect to

the Kaehler form (2.3). Thus, by (2.4), Ξ is tangent to (π^iq). Let p

be any point on (n{)~l(q). Then the integral curve of Ξ through p lies

on (nx)~l(q), and so the limit to which this curve tends as t —• -oo is

q. Thus q = πι(p) = π(p).
Remark. Some additional properties of the vector field Ξ are dis-

cussed in the appendix. One property which we will make use of in §4
is that p satisfies the Monge-Ampere equation (1.2) if and only if

(2.5) Ξp = 2p.

For a proof of (2.5) see [8, §5].
Without loss of generality we can assume that U is invariant under the

involution σ. Since the fibration πoσ satisfies the hypotheses of Theorem
2.1, the uniqueness of π implies

(2.6) π = πoδ.

Next we will give a description of π in terms of the cotangent bundle
fibration:

(2.7) π 0 : T*X —>X.

Recall that T*X is equipped with a canonical one-form β0 = Σξ dX;,
and with a canonical involution σQ: T*X -> T*X, which maps (x, ξ) to
(x, -ξ). Moreover, the fixed point set of this involution is just X.

Theorem 2.2. For every sufficiently small open neighborhood U of X
in M there exists a unique open embedding

(2.8) Φ: U - * T*X
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such that the restriction of Φ of X is the identity map and such that

(2.9) Φ*βo = β>

(2.10) π = π 0 o φ ,

and

(2.11) <70oφ = φo<7.

Proof To say that the one-form β is π-horizontal is equivalent to
saying that for every p e U

jίp€lmage(ί/π*).

Therefore, one can define a mapping

(2.12) Φ: U -+T*X

by setting

(2.13) Φ(p) = {x,ξ)#x=.π(p) and {dπp)(ξ) = βp.

It is trivial to check that Φ is the identity on X and that it satisfies (2.9)
and (2.10). Moreover, since it satisfies (2.9) it maps the symplectic form
dβ onto the symplectic form dβ0, and, hence, is locally a diffeomorphism
in a neighborhood of every point. Since it is the identity map on X, it
is a diffeomorphism on every sufficiently small neighborhood of X in M
(and hence, if U is sufficiently small, on U itself). We will leave for
the reader to check that Φ is unique, (This amounts to showing that if a
diffeomorphism of T*X onto itself is the identity on X and preserves the
canonical one-form Σξ. dxi, then it is identity; see [1, p. 186].) Finally we
note that σ0oφocr also satisfies the conditions (2.9) and (2.10); therefore
the uniqueness of Φ implies (2.11).

3. The Gysin map

If ε is sufficiently small, then the closure of Me is contained in U,
and the restriction of π to Mp is a fibration

(3.1) πt:Mε-+X

whose fibers are closed w-balls. Let C°°(Mε, An) be the space of n-
forms on Mε which are smooth up to the boundary. Given an H-form ω
belonging to this space, we will associate with it a function (nε)^ω on X.
This function is defined at the point p as the fiber integral

(3.2) / ω
JMε(p)
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over the n-ball

It is easy to see that this expression depends smoothly on p, and hence
defines a linear operator

and by restriction a linear operator

(3.4) GΛ:S(M99A
n'0)-+Coo(X).

As we mentioned in the introduction, Epstein and Melrose have recently
proved

Theorem 3.1 (see [5]). For ε sufficiently small, (3.4) is a bijection.
Gε is known to have some very nice microlocal properties (see [3], [5],

[7]). We will not attempt to describe these properties in detail; however,
roughly speaking, they amount to the following:

Theorem 3.2. Gε is an elliptic Fourier integral operator, and its under-
lying canonical relation is a symplectic mapping

(3.5) γε:Σ
+

ε^T*X-0.

Without getting involved in too may technical details we will try to
explain what the various items in this theorem mean: To begin with, dMε,
being the boundary of a strictly pseudo-convex domain, is equipped with
a complex of differential operators: the 9^-complex. The characteristic
variety of this complex is a conic symplectic submanifold of the contangent
bundle of dMε. It consists of of two connected components, and Σ* is
what is usually called its "plus" or "inward-pointing" component. Σ* can
also be described as follows. Let aε be the restriction of dMε of the
one-form (2.2). Then

(3.6) Σ+ = Up, c{aε)p)p edMε,-ceR+}.

Notice that there is a natural identification:

(3.7) Σε

+ = ΘMε x R+

identifying (p,c(ae)) with (p, c).
Next we will describe the mapping γε. Basically, γε is just the "bound-

ary value" of the Φ occurring in Theorem 2.2. Restricting Φ to dMε we
get an imbedding

(3.8) Φ β :βAf e -+ Γ*ΛΓ-0
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which can be extended to a diffeomorphism

(3.9) γε:dMεxR+ -+T*X-0

by requiring it to be R+-equivalent. If we identify Σ* with dM£xR+ (see
(3.7)) the mapping (3.9) becomes the mapping (3.5). We will not take the
time here to give a precise statement of the first part of theorem; however,
the following result explains why the transformation Gε lives microlocally
on Γ .

Theorem 3.3. Let q be a smooth function on Ήε. Then the operator

(3.10) feC°°{X)-+{πΛ)mqG;ιf

is a zeroth order pseudodifferential operator. Moreover, its leading symbol
depends only on the restriction of q to dMε; the pullback of this symbol
to dMε by the mapping (3.8) is the restriction of q to dMε.

Proof See [4, §11] or [7, §5].
In §4 we will need an analogous result about vector fields, which is also

a consequence of the theorems we have just cited: Let ϋ be a smooth
vector field on M ε , and, for every smooth w-form ω e C°°(Me, An), let
DDω be the Lie derivative of ω with respect to D .

Theorem 3.4. The operator

(3.Π) feC°°(X)->(πχDΌG;ιf

is a first-order pseudodifferential operator, and, moreover, its leading symbol
depends only on the restriction of * to dMε.

The explicit receipt for this symbol, which we will describe in a moment,
is a little more complicated than in the previous theorem; but it again
involves the canonical mapping (3.5). To begin with, suppose that, at the
boundary points of M£, D is tangent to the boundary. Then the restriction
of D to the boundary is a vector field on the boundary, say Ό0 , and, by
Lie differentiation, t>0 defines a first-order differential operator DΌ on the
space of (n - l)-forms on the boundary. Let σχ be the restriction of the
symbol of this operator to Σ^ and let σ2 be the symbol of the operator
(3.11). Then

(3.12) σ2oγ = σ ι .

If Ό is not tangent to the boundary, one can compute the symbol of (3.11)
as follows. Write t> as a sum

(3.13) t^ϋj+tυ,
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where tυ is tangent to the boundary of Mε and ΌX is of type (0, 1). (In
local coordinates,

where the ft's are complex valued C°° functions.) Then, restricted to

0(Me, Λ*'°), Dυ is the multiplication by a C°° function; hence, the

leading symbol of (3.11) is identical with the leading symbol of the oper-

ator

(3.14) f e C ι

4. The evolution equation

To derive (1.9) from (1.8) we have to compute the left derivative

(4.1)

at s = ε. To do this we will first derive a more manageable formula for
Rε s itself. It is clear from the computations in §2 that

on Me - X. Let / be a smooth function on Mε which is equal to
1 on the annulus δ > ^fp < ε, and let

(4.2) D = / Ξ .

Then, for 0 < t < ε - δ ,

υp = -l,

and, therefore, exp tx> maps Mε onto Mε_t. Moreover, since Ξ is tan-
gent to the fibers of the fibration π,

π o exp tx> = π.

Hence, for every p e X, exp /t) maps the set

diffeomorphically onto the set



GRAUERT TUBES AND THE HOMOGENEOUS MONGE-AMPERE EQUATION 635

Now let ω be a holomorphic (n, 0)-form on Mε, which is smooth up to
the boundary. Then

(4.3) / ω= [_ (expίa)*ω.
JM{ε_t)(p) JMε(p)

As in §2 let (πε)^ be the "fiber integration" operator

M ΛΛ'°and Gε its restriction to <9{M^ ΛΛ'°). Let / be in C°°(X). Applying

(4.3) to ω = G~x f one obtains:

(4.4) ε ε t χ ;
differentiating the left-hand side with respect to t and setting t = 0, one
obtains for (4.1) the formula

{ 4 5 )

at s = ε. By Theorem 3.4, this operator is a pseudodifferential operator
of order one, and its leading symbol can be computed by the procedure
outlined at the end of §3. Namely, let

D = t)j + t υ ,

where Dj is a vector field of type ( 0 , 1 ) and tυ is a vector field which,
at the boundary of Mε, is tangent to the boundary. Since d is tangent to
the fibers of π,

(4.6) (α, Im dp) = 0

or, in other words,

(4.7) (*,dp) = (x>,dp).

On the other hand,

(0, dp) + <t>, dp) = (D , dp) = ύ(y/p)2 = -2yfp,

so we obtain from (4.7) the identity

(4.8) (υ,dp) =

Since t̂  is of type (0.1), (t>, dp) is equal to (tυ, dp), so, by (4.8),

(4.9) (to,dp) = -y/p.

Since tυ is tangent to dMε,

(4.10) {tϋ,dp) = 0
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on dMε, from (4.9) we also obtain

(4.11) (to,dp) = y/p

on dMε. Recall now that the one-form aε is the restriction of Im dp to
dMe so, on dMp,

P P(tυ, αβ) = (tυ, Im dp) = (to,

and, therefore, by (4.10) and (4.11),

(4.12) (tΌ,aε) = -iy/p = -ie

on dMε. Now let tυ0 be the restriction of tυ to dMε and let σx be, as

in (3.12), the symbol of Dn , restricted to Σ+ . Then, by (4.12) the value

of σχ at the point (p, (ote)p) € Σ* is -ε, so the recipe of §3 gives us the
following answer for the symbol of the operator (4.5).

Theorem 4.1. Let Φ: M -> Γ*JSΓ &e ίAe mapping Φ //i Theorem 2.2.
ΓA «̂ ίA^ symbol of the operator (4.5) w ^wα/ /o +ε on Φ(dMε).

Since the symbol of (4.5) is homogeneous for degree one, this theorem
determines the symbol on the whole cotangent bundle of X. More explic-
itly, let p0 be the function (Φ" 1 )*p . Then for every point (JC , ξ) € T*X,
there exist a unique ξoe T*X and a unique C G R " , such that

and (yfp^)(x ,ξo) = ε; the theorem states that the symbol of the operator
(4.5) at (x, ξ) is cε. Suppose now that for a < ε < b, this symbol
is independent of ε. The computation we have just made shows that a
necessary and sufficient condition for this is to be the case is that on the
annulus a < yfp^ < b, ^fp^ be a homogeneous function of degree one.
In other words, p0 has to satisfy

where Ξo is the vector field Σξid/dξi. However, the diffeomorphism
Φ " 1 maps th
equivalent to
Φ " 1 maps this vector field onto the vector field Ξ, so this condition is

which is just the Monge-Ampere equation for ^fp. Thus, to summarize,
we have proved

Theorem 4.2. The leading symbol of the operator (4.5) is independent
of ε for ε on the interval a < ε < b if and only if y/p satisfies the
Monge-Ampere equation (1.2) on the annulus a < y/p < b.
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One obtains (1.10) as an immediate corollary of this result. Equality
(1.11) follows from this result and a result which we proved in §5 of [8].
Namely, there we showed that if p satisfies (1.2) on all of Mβ, then p0

has to be a quadratic function on the cotangent fibers of T*X and has to
be equal to the symbol of VΔ, Δ being the Laplace operator associated
with the metric (*).

5. The analytic continuation of the fundamental solution

of the wave equation to the imaginary time axis

Let X be equipped with a real-analytic Riemannian metric, and let
P = Λ/Δ , where Δ is the Laplace operator associated with this metric. The
symbol of P is a real-analytic function on T*X-0 which is homogeneous
of degree one. Let η be the Hamiltonian vector field whose Hamiltonian
is this function and let

exptη:S*X->S*X

be the restriction to the unit cosphere bundle of X of the Hamiltonian flow
generated by η. Composing exp tη with the cotangent bundle projection
open gets a map

which is real-analytic both with respect to the manifold variables and with
respect to t. Therefore one can analytically continue it to the complex
ί-plane, obtaining, for Im t sufficiently small, a mapping

ψt:S*X-^M.

For ε sufficiently small, the image of the set

{(x,ζ,t), (x,ξ)eS*X, | I m ί | < β }

with respect to the mapping (JC , ξ, t) -+ ψt{x, ξ) is an open subset Mε of
M with a smooth strictly pseudoconvex boundary. Let #(Me) be the ring
of homolomorphic functions Mε which are smooth up to the boundary.
The following theorem is due to Boutet de Monvel (see [2]).

Theorem 5.1. Let expy/^ϊtP be the one-parameter group of unitary
operators generated by P and let e(x, y, t) be its Schwartz kernel. Then
for ε sufficiently small:

1. e(x,y9t) can be extended to a holomorphic function of t on the
strip 0<ImKε,

2. for y and ε fixed, e(x, y, iε) can be extended to a holomorphic
function of z, e(z, y, iε), on the tube Mε,
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3. for every C°° function f = f(y), the integral

(5.1) Je(z,y,iε)f(y)dy

is not only holomorphic on Mε but is smooth up to the boundary,

4. the operator

(5.2) /eC°°(I)->^(Ie)

defined by (5.1) is a Fourier integral operator of complex type,
5. for ε small enough the operator (5.2) is invertible.
One consequence of Theorem 5.1 is that for every g e <f{Mε) there

exists an / e C°°(X) such that g is equal to the expression (5.1). How-
ever, this means that the restriction of g to X is just (exp ~εP)f so
from Theorem 5.1 Boutet obtains:

Theorem 5.2. A necessary and sufficient condition that a function on X
extend holomorphically to Mε is that it be in the space (exp -εP)Coc(X).

As a corollary of Theorem 5.1 one also gets a simple formula for the
restriction operator

(5.3) rεy.d?(Mε)^(Mδ), 0<δ<ε.

Namely, let

(5.4) Wε:d?(Mε)->C°°(X)

be the inverse of the operator (5.2). Then

(5.5) rεδ = Wδ-
ι(exp-(ε-δ)P)Wε,

which implies that the groupoid of restriction operators rε δ , 0 < ε > δ ,
is microlocally equivalent to the heat semigroup exp -{ε-δ)P, 0 < δ < δ.

We will briefly describe how Theorems 5.1 and 5.2 are related to the
results in §4. To begin with, as we pointed out in the introduction, there
is a unique real-analytic solution p of the Monge-Ampere equation (1.2)
having the property that the restriction to X of the Kaehler metric (*)
is the given Riemannian metric on X. The main result of our paper [8]
states essentially that the Grauert tubes associated with this p are the Mε's
in Theorem 5.1.

Let μ be the holomorphic (n, 0)-form on Mε whose restriction to
X is the standard Riemannian volume form. For ε sufficiently small
every holomorphic (n, 0)-form can be written as the product of μ with
a holomorphic function, i.e., as gμ, where g € &(Mε).

Theorem 5.3. There exists an invertible elliptic pseudodifferential oper-
ator Kε of order \ such that, for all g e &{Mε),

(5.6) Wεg = (KεGε)gμ.

Moreover, K depends real-analytically on the parameter ε.
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Proof. This is essentially just a restatement of part 4 of Theorem 5.1.
q.e.d.

Combining formulas (5.5) and (5.6) one obtains the formula

(5.7) Rεδ = κ;\εxp-(ε

from which one deduces the evolution equation

with

(5.9) Ps =
 p + Qs>

where

(5.10) Qs = κ;\[P,Ks]-ks).

Conversely suppose Rε s satisfies an evolution equation of the form
(5.6)-(5.7). Then (if all data are real analytic) one can solve the equation

(5.10') KS = [P,KS]-KSQS

for Ks, and, setting Ws = KSGS, obtain Boutet's formula (5.5).

Appendix A

Let Ξ be the vector field defined by (2.4). We recall that the fibers of
the canonical fibration π: M —> X are just the unstable manifolds of the
flow generated by this vector field: Given p e M let γ(t), -oo < t < ε,
be the integral curve of Ξ through p . Then

(A.1) π(p)= Urn γ{t).
t—• — o o

In this appendix we will describe some other properties of Ξ and in
particular give a rather elegant formulation in terms of Ξ of the Monge-
Ampere condition (1.2).

a. Here is another description of Ξ: Let η be the Hamiltonian vector
field on M associated with the function p/2. By definition,

(A.2) ^

Let / : TM —» TM be the vector bundle automorphism defining the com-
plex structure on M. Since Ω is /-invariant,

ι(Jη)Ω = -J^- = Imdp = β,

and hence

(A.3) Ξ = Jη.
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b. Let g be the Kaehler metric g(-, •) = Ω(/ , •). Then

which proves:
Proposition Al. Ξ is the gradient vector field associated with the func-

tion -ρ/2.
c. As we pointed out in §2, the assertion that y/p satisfies the homo-

geneous Monge-Ampere equation (1.2) is equivalent to the assertion that

(A.4) Ξp = 2p.

(For the proof of this fact see [8, Proposition 5.1].) Differentiating the
identity (2.4) by the vector field η, one gets

ι([η,Ξ])Ω = Dηa = d(a(η)).

However,
a(η) = Ω(Ξ, η) = -Ω(η, Ξ) = -(Ep/2),

so this shows that

(A.5) ι([S

On the other hand, by definition

(A.6) ι(η)Ω

Therefore (A.4) is equivalent to the assertion

(A.7) [E9η] = η.

Thus we have proved
Proposition A2. The Monge-Ampere equation (1.2) is equivalent to the

Lie bracket identity (A.7).
d. Let μ = Log p and let τ be the Hamiltonian vector field associated

which μ i.e.,

(A.8) ι(τ)Ω = dμ.

We claim that (A.7) is equivalent to

(A.9) [τ,/τ] = 0.

Indeed, τ = ^η, and Jτ = -Ξ so

[Jτ, τ] = [p~lΞ, p~lη] = /Γ2[Ξ, η] - p'\Ep)η
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However, (A.9) implies that the Hamiltonian action of the group of real
numbers R on M-X generated by the Hamiltonian vector field τ extends
to a local action of the group of complex numbers C. This action is not,
in general, a holomorphic action of C, but it has the property that its
orbits are complex one-dimensional submanifolds of M - X. Thus we
have proved:

Theorem. Let

(A. 10) R -> Symplecto (M - X)

be the Hamiltonian action on R on M-X generated by the Hamiltonian
μ = Log p. Then (A. 10) extends to a (local) action of C on M-X if p
satisfies the homogeneous Monge-Ampere equation (1.2).

Remark. The orbits of this action of C have another nice characteri-
zation: Let Ω# be the two-form (2μ)~ιdd^/p. The homogeneous Monge-
Ampere equation states that (Ω#)" = 0 from the fact that p is strictly
plurisubharmonic it is easy to see that

rank Ωp = n - 1

at all points p e M-X. Thus the annihilator of Ω# is a two-dimensional
integrable subbundle of the tangent bundle of M - X. The foliation of
M-X which it defines has, as leaves, the orbits of the C-action above.
(For more about the structure of these leaves see [4].)
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