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ALMOST RIEMANNIAN SPACES

CONRAD PLAUT

Introduction

We call a complete metric space (X, d) almost Riemannian if X is fi-
nite dimensional and d is a geodesically complete inner metric of (metric)
curvature locally bounded below. This paper is an investigation of the local
and global properties of these and more general inner metric spaces. Our
two global results are generalizations of Toponogov's Comparison Theo-
rem and Maximal Diameter Theorem. The latter is used to prove our main
local result: that an almost Riemannian space is a topological manifold,
and that its metric structure has an infinitesimal approximation by a Eu-
clidean geometry (hence the name "almost Riemannian"). We also prove
a precompactness theorem (cf. [6]) for any class of ^-dimensional almost
Riemannian spaces with fixed bounds on diameter and curvature.

In order to state these theorems precisely we need a few definitions
(for more details see [17] and [18]). Throughout this paper X denotes a
metrically complete inner metric space which is convex in the sense that
every pair of points is jointed by a minimal curve. Convexity is implied by
local compactness (and metric completeness). Sk will denote the simply
connected, two-dimensional space form of curvature k. By monotonicity
we mean the well-known fact that the angle between two minimal curves
of fixed length in Sk is a monotone increasing function of the distance
between the endpoints opposite the angle. A geodesic terminal is a point
in X beyond which some geodesic cannot be extended. An open subset
U of X is geodesically complete if it has no geodesic terminals.

Definition A. An open set U in X is said to be a region of curvature
> k if for every triangle (γab, γbc, γca) of minimal curves in U,

(a) there exists a representative (γAB, γB(^, γCA) in Sk (i.e., yAB, γBC,
γCA are minimal of the same length as their correspondent curves) and

(b) for any y on γAB and Y on γAB such that d(y, a) = d(Y, A),
we have d(y, c) >d{Y, C).
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If x is contained in a region of curvature > k, let ck(x) = sup{r:B(x, r)
is a region of curvature > k}, and put ck{x) = 0 otherwise. Then ck is
continuous or ck = oo. If for all x e X there is a /: such that ck{x) > 0,
then we say X has curvature locally bounded below. If for some fixed
p € X and A:, ck has a positive lower bound on B(p, r) for all r , we say
Λf has curvature uniformly >k. If X is locally compact, then curvature
uniformly > k is equivalent to cfc > 0 on X .

Monotonicity implies that Definition A is equivalent to that of Gebiet
der Riemannscher Krύmmung >k in [18], so the angle a(y{, γ2) between
two geodesies exists and is a bona fide metric on the space of directions Sp

(unit geodesies) at a point p € X. For γ e Sp we let &(γ) = sup{t: ?\[Ott]

is minimal}.
Definition B. We say that a (geodesic) triangle (γ{, γ2, y3) in X is Al

if there exists a representative triangle (7j, y2, γ3) in Sk and α(7 /, y2) <
a{γt, γ2) for / = 1, 3. We say that a (geodesic) wedge (γab, ^α c) is A2
if there is a representative wedge (y^5, βAC) in 5^ (i.e., whose sides
are minimal with L(γAB) = L{yah)9 L(βAC) = L(^ α c ) , ot{yAB, βAC) =

«(Vab>βJ) a n d d(B>c) * d(b> c) I f d(B>c) = rf(*' c)> w e s a y
(yfl^' βac)

 i s A 2 w ί ί Λ equality.
Remark. By monotonicity, the conditions Al and A2 are equivalent in

the sense that (γχ, γ2, γ3) is Al if and only if (γ{, γ2) and (y2, y3) are
A2.

A wedge (y2, y2) or triangle (γχ, y2, γ3) in X is ^rop^r if yχ and y3

are minimal and L(γ2) < n/Vk. If ck(x) = r > 0, then in 2?(JC, r/2)
every proper triangle is Al, and every proper wedge is A2 (cf. Lemma 1.1
and [17]). We prove

Theorem C. If X is geodesically complete of curvature uniformly > k,
then every proper triangle in X is Al, and every proper wedge in X is A2.

Corollary D. If k > 0, and X is geodesically complete of curvature
uniformly > k then diam(X) < πj\[k.

We say X has rigid curvature k if every wedge of minimal curves in
X is A2 with equality.

Theorem E. If k > 0, X is geodesically complete of curvature > k,
and disίm(X) = π/\fk, then X has rigid curvature k. In particular, if X
is locally compact, X is isometric to Sk for some n.

For Riemannian manifolds of sectional curvature > k, the Rauch
Comparison Theorem implies that Definition A is satisfied. Nonethe-
less, all prior proofs of Toponogov's Theorem require further applications
of Rauch's Theorem or its generalizations. In other words, the proof of
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Theorem C shows for the first time, even in the Riemannian case, that the
powerful improvement from local comparisons to global comparisons is
purely a metric phenomenon.

The notion of a "completeness" in the Riemannian case can be gen-
eralized to the metric case either as metric or, more strongly, geodesic
completeness. For our proof of Theorem C we require geodesic complete-
ness (although essentially in only one place), and we do not know if it is
true with the weaker assumption. On the other hand, we give two examples
to show that Theorem E fails without geodesic completeness.

Theorem F. If (X, d) is almost Riemannian, then X is a topological

manifold. For each p e X there exist an n-dimensional vector space Tp

(n = dimΛQ with inner product ( , •), a continuous map expp:Tp —> X,

and a dense subset Tp of Tp, having the following properties:

(a) ifυeTp, then tv e Tp for all t e R,

(b) the correspondence v <-• γυ, where γv(t) — expp(tv), is one-to-one

between unit vectors in (T , ( , •) ) and unit geodesies starting at p, and
(c) expp preserves angles on Tp (i.e., a(υ, w) = a(γυ, γw) for all

v,weTp).
Note that (b) implies that exp restricted to Tp is surjective. On the

other hand, expp need not be locally one-to-one (so there may not be
"normal coordinates"); but very short geodesies starting at p are "almost
minimal" in the following sense: the ratio of the length of a short geodesic
to the distance between its endpoints is uniformly close to 1 (Lemma 2.8).
In particular, there are not arbitrarily short geodesic loops starting at p.

Theorem F is the last "manifold theorem" having as its hypothesis only
finite dimensionality and some combination of the three fundamental met-
ric conditions, (1) geodesic completeness, (2) curvature locally bounded
below, and (3) curvature locally bounded above. In [2] and [15] (cf. also
[1]) it is shown that a space satisfying (1), (2), and (3) is a smooth manifold
with a C 1 > a Riemannian metric. This theorem leads to a short, entirely
"metric" proof of the Convergence Theorem for Riemannian manifolds
([16], [5]). The main theorem of [17] is that a space satisfying (2) and (3)
is a smooth manifold with boundary, with failure of geodesic complete-
ness occurring precisely on the boundary. Theorem F covers the case of (1)
and (2), and examples show that there are finite dimensional nonmanifolds
satisfying any other combination of the above properties.

Theorem F is also a little progress toward solving the conjecture that
limits in the Grove-Petersen class of Riemannian manifolds [9] are topo-
logical manifolds. These spaces have curvature bounded below, but are not
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always geodesically complete. Theorem F proves the geodesically complete
case, and reduces the general problem to considering neighborhoods of sin-
gularities (i.e., points where there is no upper curvature bound) which also
lie in the closure of the set of geodesic terminals.

We do not, at present, know of a geometrically meaningful topology for
the union TX of the spaces Ύp , except when X is locally strictly convex
in the following sense: For any p e X and small r > 0, any pair of
points in B(p, r) can be joined by a unique minimal curve. We denote
by π: TX —• X the projection which takes elements of T to p, and by
exp: TX -* X the function given by exp(v) = cxpp(υ), then υ e Tp .

Theorem G. If (X, d) is a locally strictly convex, almost Riemannian
space, then TX has a topology such that exp is continuous, (TX, π) has
the structure of a vector bundle isomorphic to the topological tangent bundle
of X [13, p. 251], and ( , )+ is a continuous fiber metric. In particular,
except possibly for dimΛΓ = 4, X admits a smooth structure.

Theorem G completely generalizes the main theorem of [2] (except for
dim X = 4), by removing the upper curvature bound from the hypothesis.

In light of Theorems F and G we can ask whether almost Riemannian
spaces in general admit smooth structures. If some do not, then one must
ask how large is the class of topological manifolds admitting an almost
Riemannian metric.

Theorem H. For any fixed k, n, and D > 0, the set of all n-dimen-
sional almost Riemannian spaces of curvature > k and diameter < D is
precompact in the Gromov-Hausdorjf metric.

Note that the above class of spaces properly contains the class of Rie-
mannian ^-manifolds of sectional curvature > k and diameter < D.

1. The Generalized Toponogov Theorem

If X has curvature locally bounded below, and there are at most two
directions at some point p, then X is isometric to a circle or an interval.
Some of the lemmas below fail in this trivial case, and to avoid special
exceptions in the statements we assume for the rest of this paper that S has
at least three elements. The next lemma formulates a standard technique
in proofs of Toponogov's Theorem (see, e.g., [3], [7] for an argument).

Lemma 1.1. Let ^ [ 0 , 1] —• X be a geodesic with L(yab) < πj\fk,

γac be minimal, and 0 = t0 < tx < < tt = 1. Let y denote γab

restricted to [tj,tj+l], and suppose a. is minimal from c to t , with

a0 = 7ac. If the triangles ( α . , γj9 aj+ι) are Al for 0 < j < i, then

(Vab'Vac) i s A 2
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Lemma 1.2. Let ε > 0 and k be arbitrary. Then
(a) there exists a number δ > 0 such that if γχa and γχb are minimal

curves in Sk of length L < 1 with d(a, b)/L < δ, then a(γχa, γχb) < e,
and

(b) there exists a v > 0 such that if γχa and γχb are minimal curves in
Sk of length L < 1 with a(γχa, γχb) < v, then d(a, b)/L < ε.

Proof For a Φ x, let ψ(a) be the smallest number such that a(γχa, γχb)
= ε if d(a, b)/d(a, x) = ψ{a). The map ψ is easily seen to be continu-
ous (in fact dependent only on d(x, a)) and positive, with limfl_^ ψ(a) =
2 sin(e/2), and so has some positive minimum δ on ~B(x, 1). This proves
part (a), and the proof of part (b) is similar.

Lemma 1.3. Suppose B = B (p, r) is a region of curvature > k in X.
Let {y.} and {η^ be Cauchy sequences in Sp . For any positive si —• 0
and tt -> 0 such that st < C{γi), tt < C(^ z), and c{ < sjti < c2 for some
cx, c2 € (0, oo), if dt = dίyfa), ηfa)), then

lim α(yf., ηt) = lim cos" 1 !^ 2 + t) -

Proof For any positive s < C(y.) and t < C(fy), define rf.(s, ί) =
and

^ . ( j , ί) = cos" 1 ! ^ 2 + ί2 - rf^, ί)2)/(2Jί)].

If φi is continuously extended to ( 0 , 0 ) , then ^ ( 0 , 0) = α(y., /̂ ) . We

have

cos q>j{s, ή-cosφ^s, t)

= [(rf.(j, ί) - rf/j, 0 ) K (*, 0 + dj(s, ί)]/(2Jθ.

Assuming 0 < cχ < s/t < c2 < oo, we have

(di(s,t)-dj(s,t))/s

< d{y{(s), Yj(s))Is + rf(V/(ί) 9η.(t))/s

<d(7i(s), γj(s))/s + d(ηi(t), ηj(t))/(cxt).

By Lemma 1.2(b) and A2, the last amount is arbitrarily small for suffi-
ciently large / and j , independent of s and t. By a similar argument we
obtain that {d^s, t) + dj{s, t))/t is bounded, and conclude that for any
ζ > 0 there exists an m such that for all /, j > m, {φ^s, t) - φ.(s, ί)l <
C/2. If m is also chosen large enough that \φ.(Q, 0) - l i m . ^ ^ a(yt, ^ ) | <
ζ/2 for all j > m, then for 5 < C(y;.) and / < C ( ^ ), | ^ . ( j , 0 -

^ ot{γ. 9ηt)\<ζ9 and the lemma follows.
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Lemma 1.4. If either Sp is precompact or p is not a geodesic terminal
then for any a, β e Sp, δ > 0, and a{, a2 > 0 such that a{ + a2 =
a(a, β), there exists y e Sp such that |α(α, y) - aχ\ < δ and \a(a, y) -
a2\<δ.

Proof Assume first that c = a(a, β) < π. We need only consider

the case ax = a2 = c/2. Let ηt:[0, 1] -• X be minimal from a(2~ι)

to β{2~1) and γ. be minimal from p to τ/.(l/2); we denote by a.

the restriction of α to [0, 2~'], with similar notation for β. Let a =

l im.^^ α(α, yt) and b = l im.^^ a(β, γ.). By the triangle inequality,

a + b > c. Let (ά., //,-, γt) and (y., μ., j».) represent (α., ^ - | [ 0 1 / 2 ] , yz )

and (yi, ^-L/2 i] > βj) > respectively, so that ά̂  and ^z do not coincide (all

of these curves are assumed parametrized on [0, 1]). If Sp is precompact,

we can assume {)>•} is Cauchy, and by Lemma 1.3, a = lim / - > 0 0 a(άi, γ.) =

l i m ^ a{&t, ^ ) / 2 and b = l i m ^ α ( ^ , γ.) = l im.^^ a(a,., ^ ) / 2 . On

the other hand,

and so α(α, )8) < l i m ^ ^ a(ά., β.), and the case c < π follows.
If p is not a geodesic terminal, let T > 0 and α' be such that the re-

strictions aτ and aτ to [0, Γ] together form a minimal curve. Let ζ( be
minimal from a(T) to ^(1/2) and ( ά Γ , £/ 5 y.) represent ( α Γ , Cp y, ) .
Then α ( ά Γ , yf.) < 01(0;̂ ., 7.) by Definition A and if ABi = α(o;Γ, γ.)9

lim sup. ̂ ^ ^ ^ < α. If a = lim ^ ^ α(α ; , γt) and ^ = a(aτ, y ) then
lim sup.^^ i4j. < a!. Since lim^.^^ A^A^ = π, we obtain l im.^^ α^ά;, 7.)

Aχ. = a. A similar argument proves l i m ^ ^ a(at, ŷ ) = b, and
the proof of c < π is complete as in the case of S compact.

If c = π, we can choose a direction distinct from a and /? and apply
the above special case.

Remark. Since a Riemannian manifold has positive cut radius, one of
the few simplifications of the proof of Theorem C in the Riemannian case
is that Lemma 1.4 is true for δ = 0.

Lemma 1.5. Suppose a, β: [0, 1] —• X are minimal starting at p with
L(a) < π/y/k, L(β) < π/VJc, and 0 < a = a(a, β) < π. Suppose also
that ά, β:[0, 1] -• Sk are minimal, and (α, β) represents (a, β). Let
aχ, a2> 0 satisfy aχ+a2 = α(α, β), γ be minimal from ά(l) to β(l),
and t be such that if v is minimal from ά(0) to γ(t) then a(v ,ά) = a{.
If for every δ > 0 there is a geodesic μ starting at p with L(μ) = L{y) so
that \a(μ, a) - a{\ < δ, \a(v, α) - a2\ < δ, and both (a, μ) and (β, μ)
are A2, then (a, β) is A2.
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Proof, Let ζ > 0 be arbitrary. For sufficiently small δ, there is a
representative (ά, μ) of (α, μ) such that rf(#(l), y; (t)) < ζ. We as-
sume both μ and μ are parameterized on [0, 1] by A2 and the triangle
inequality, d(a(l), μ(l)) < d(γ(0), γ(ή) + ζ. Since a similar argument
applies to d{β{\), μ( l)) , we have

Lemma 1.6. Given k and 0 < D < π/Vk, for all sufficiently small
X>0fifγAB and γAC are unit minimal in Sk with 0 < a{γAB, yAC) < n,
L{γAB) <D, and d(B, C) < 4χ, then max{d(A, ά(s))} <t + χ for any
0 < t < min{L(y^), L(γAC)} and no minimal curve a from γAB(t) to

VACW

Proof Since metric balls are convex for k < 0, we need only to con-
sider k > 0 by scaling the metric we reduce to k = 1, and clearly now
we can assume t > π/2. Let χ > 0 be small enough that

cosZ) - (cos2/)(cos(D + χ)) > 0.

We fix curves γAB and γAC as above, assume a is parametrized on [0, 1],
and let τ = d(A9 ά(l/2)) = max{d(A, γ(s))}. Letting λ = L(ά) and
applying the cosine law to a(yAB, ά) we obtain

cosτ - (cost)(cosλ/2) __ cost - (cost)(cosλ)

sin A/2 " sin λ '

which reduces to cos τ = cos tj cos λ/2.
Applying the sum formula to cos(τ -1) we see that τ - 1 is maximized

when d(A, B) = d(A, C) = t = D and λ = 4/ . Thus we only need to
prove cos~1(cosD/cos2χ) < cos(D + χ), and this follows from the way
χ was chosen.

Definition 1.7. If a, β: [0, 1] -> Λ" are minimal curves starting at p ,
we call a proper triangle (α, γ, /?) p-based.

Proposition 1.8. Lei 0 < D < π/Vk, and suppose ck > c > 0 on
B(p, 2D) and B(p, D) is geodesically complete. Then every p-based tri-
angle in B = B(p, D) is Al.

Proof Let χ < D be as in Lemma 1.6 and also less than c/12. Let τ
be small enough that if a and γ are geodesies in Sk with a(ά, γ) < τ,
then d(ά{t), γ(ή) < χ for all 0 < t < D. We call a p-based triangle
(α, γ, β) thin if α(α, β) < τ and 7 is minimal. Note that χ < D
implies γ lies in B(p, 2D). Consider the following statements:
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S l ( n , m ) . I f ( α , γ, β) i s t h i n s u c h t h a t ( n - l ) - χ < L ( a ) < n - χ a n d
( m - l ) . * < L Q 5 ) < m ; t , t h e n ( α , y , j 9 ) i s A l .

S 2 ( / ι , m ) . I f ( α , γ, β) i s t h i n s u c h t h a t ( / i - 1) χ < L ( a ) < n - χ a n d
(m-l) χ< L{β) <m-χ, then (α, £) is A 2 ^

S3(ΛZ) . If (α, γ, β) is /?-based and lies in B(p, n-χ), then (a, γ, β)
isAl.

Note that by monotonicity Sl(n, m) and S3(n) state equivalently that
(o, γ) and Qff, y) are A2. Sl(6,6), S2(6, 6), and S3(6) are true by the
way χ was chosen. We will prove by induction that S3(/ί) holds for
n < (D—3χ)/χ . This will show that every p-based triangle in Ίί(p, D-3χ)
is Al, and the proposition follows from letting χ -> 0.

If a(a, β) = 0, the proof is trivial in each step; we will always assume
a(a, β) > 0 without further mention.

Step 1. Sl(n, n) and S2(Λ, π) zmp/y S2(/i, n + 1).
Pr<%>/ Fix a thin triangle (α, y, )8) such that « ^ < L(α) < (n + 1) χ

and ( π - l ) r < L(/?) < n-χ . Let ^ lie on a such that d(p, q) = L(β), let
x = α ( l ) , y = β(l), and η be minimal from y to q. If u is the segment
of a from /? to q, we obtain from S2(n, n) that (/?, v) is A2, and from
Sl(«, n) that {y, η) is A2. S2(«, n) implies {diam x, y, #} < 3/ if C
is the segment of α from q to x, then both (T/ , ζ) and (ζ, γ) are A2,
and that (a, β) is A2 follows from Lemma 1.1.

Step 2. S3(/ι) implies that if ω is minimal from p to a point a e
B(p, (Λ - 1) / ) , Λ«rf <̂  w minimal starting with a with L(ξ) < 4χ, then
(ω,ξ) is A2.

Proof Let i?' = L(ω), assume both ω and { are unit, and let x =
ί(L(ί)). Choose a representative (ώ, ξ) in 5^ , denoting the correspond-
ing points with capitals. Let μ be the unit minimal from P to X,
R = min{i?', L(μ)}, and k be minimal from A to μ(R). Since n <
(D-3χ)/χ, L(/i)+L(O<Z),andbyLemmal.6,forall s, d(P,κ(s))<
R+X < nχ . For any sufficiently small δ > 0, by Lemma 1.4 and geodesic
completeness there exists a geodesic K: [0, 1] -• X starting at a of length
L = L[κ) with \a(κ, ω) - a(k, ώ)\ < δ and \a(κ, ί) - a(k, ξ)\ < δ .
For small enough £ , S3(n) implies that d(p, κ(s)) <n- χ for all 5 and
(K , ω) is A2. On the other hand, by the triangle inequality, L[κ) < iχ
and diam{κ:(l), a, x)} < \2χ thus (K, ξ) is A2. Lemma 1.5 now im-
plies ( ω , ξ) is A2.

Step 3 . S l ( m , m ) , S2(m, m), for all m <nf and S 3 ( Λ ) /m/7/>;

Proof Let (a, γ, β) be as above. The proof that (a, γ) is A2 is
similar to the argument in Step 1. Let a be the point on β such that
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d(a, y) = / , R — d(p, a), ω denote the segment of β from p to a,
and £ be minimal from fl to x . By the triangle inequality (and the fact
that α(α, β) < τ), L(ξ) < 4χ, and Step 2 implies (ω, {) is A2. By a
proof similar to that of Step 1, Sl(w, ή) and S2(/ι, π) imply (α, ω) is
A2. If λ denotes the segment of β from a to y9 (ξ9λ9γ) is also Al,
and the proof is complete by Lemma 1.1.

Step 4 . S l ( r c , n + l) and S2{n, n+l) imply S 1 ( Λ + 1, n + 1)

This is an easy application of Lemma 1.1.
Step 5 . S l ( ra , m), S2(m, m), for all m<n+l, and S 3 ( Λ ) imply

S3(n + 1, n + 1) (α/irf /Aβ induction is complete).

Proof. Let (α, y, β) be /?-based, with y: [0, 1] -> B(p, ( Λ + I ) - * ) , and
assume first the α(α, β) < π. We claim the following: If ζ is minimal
from p to q = y(ί), for some ?, tt -> t9 and τ/ is minimal from p
to y(/,-), then for all sufficiently large /, (^, γ., η.) is Al, where yz is y
restricted to the interval between tέ and ί. By passing to a subsequence, if
necessary, we can assume l i m ^ ^ a(ηi, ζ) exists and is either 0 or 2ε > 0.
In the first case the proof is complete by Sl(m, m) for m < n + 1. In the
second case a(ηi9 ζ) > e for all large /. Let a be the point on ζ such that
d(a, q) = 2χ, ω denote the segment of ζ from p to a, v that from a
to q, and μ. be minimal from a to y(^). Since L(ω) + L(μt) -> L(?//),
if (ζ, ή.) represents (ζ, y/ ) in S^ then α(C, ?/.) -• 0. Now a(η.9 ζ) > ε
implies (ζ9 η.) in Sk then α(C, fy) -• 0. Now α(^., C) > ε implies
(C, ηt) is A2 for large /. By Step 2, (ω, μ.) is A2. Since yf. is minimal
for large enough / and (μ., v), (i/, y.) are A2, it follows from Lemma
1.1 that (ζ, y.) is A2. By a similar argument we obtain that (η.9 y.) is
A2 for all sufficiently large /, and the proof of the claim is complete.

For s > 0, let γs denote y|[0 s], and denote by A 1(5") the statement:
for every minimal βs from p to γ(s), (a, γs, βs) is Al. The above claim
implies that A 1(5) is true for sufficiently small δ > 0, and the claim and
Lemma 1.1 prove that if A1(Γ) is true for some Γ, then A1(Γ + <J) is
true. Likewise, if Al(s) is true for all s < T then A1(Γ) is true; it follows
that A1(Γ) holds for all T. This completes the proof for a(a, β) < π.

For α(α, β) = π , either α and β together form a minimal curve,
in which case the proof is trivial, or the minimal curve between their
endpoints does not pass through p, in which case we proceed as above.

Proof of Theorem C. By Proposition 1.8 the proof is complete for k <
0. For k > 0 we have that every proper triangle (α, y, β) in X such that
rf(α(0), y) < π/y/k is Al. Applying Lemma 1.1 we have that (α, y, β)
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is Al if a and γ are minimal of length < πj\fk and β is minimal of
length π/Vϊc. A limiting argument shows that if a and β are minimal
starting at p of length π/Vk9 then a and β have both endpoints in
common (this also proves Corollary D). The theorem now follows by an
easy application of Lemma 1.1. q.e.d.

In order to prove Theorem E we first reconcile the conclusion of Theo-
rem C with Definition A (1.9) and then prove a rigidity result (1.10).

Proposition 1.9. If X is geodesically complete of curvature uniformly
> k, then all of X is a region of curvature > k in other words, ck = oo.

Proof Let (γab, ybc, yca) be a triangle of minimal curves in I . By
monotonicity we need only show that for any x strictly between a and b
on γab, the following holds: if γaχ is the segment of yab from a to x,
yxc is minimal, and (γAX, yxc, γCA) represents (γax, γxc, γj in Sk,
then by extending γAX to a minimal curve yAB with L(yAB) = d(a, b) it
will follow that d(B, C) > d(b, c). But by Al, a(γaχ, yxc) > a(γAX, yχc)
and so a(γbχ, γχc) > a(γBX, γχc) the proof is complete by A2.

Proposition 1.10. Suppose X is geodesically complete of curvature uni-
formly > k and (γι,y2) is proper and A2 with equality, with represen-
tative (γ{,γ2), i = 1,2. Then for all 0 <t < L2, d(γ{(L{)f γ2(ή) =
d(γι(Lι),γ2(t)). In addition, if γ2 is minimal, then d{yx(s), γ2(t)) =
d{yx{s),γ2{t)) for all 0 <s <Lχ.

Proof The proof is trivial when a(γι, γ2) = 0 or π we assume other-
wise below. The second statement of the proposition follows immediately
from Proposition 1.9 and A2. If γ2 is not minimal, partition the domain
of γ2 into finitely many intervals [ti9 ti+ι] such that the restriction ai of
γ2 to [ti9 ti+ι] is minimal. Let β. be minimal from yx{Lχ) to α.(f.) (e.g.,
βχ =γx). Then by an argument similar to the proof of Lemma 1.1 we see
that (β., at) is A2 with equality for all /, and that if βt is minimal in
Sk from ^(Lj) to y2(f.), then L(β ) = L{βi). The proof is now finished
by the special case proved above.

Proof of Theorem E. We will show that every wedge (γ{, y2), such that
γχ and γ2 are minimal of length < π/Vϊc, is A2 with equality. Let p be
any point such that there exists a q with d{p, q) — πj\[k. Choosing a
minimal curve from p to q we can apply A2 (via Theorem C) to conclude
that every geodesic of length π/y/k starting at p is minimal from p to q,
and geodesies starting at q behave likewise. Using geodesic completeness
we can extend any minimal curve a from p to q to a geodesic γ passing
through q and returning to p . For any e > 0 small enough, if c = π/Vk,
a = c - ε, and b = c + ε, then μ = γi b] is minimal. If η = γiQ a] and
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v = y\[bi2c)> t h e n aPPlying Al to (η, μ, v) we obtain a(η9 u) = π (i.e.,
γ is a closed geodesic). Thus, (η9v) is A2 with equality.

Suppose β is minimal starting at p of length a. Since a(a, β) +
a(β, -i/) = π , from the triangle inequality and A2 we obtain that (α, β)
is A2 with equality. From Proposition 1.8 we conclude that if yx and γ2

are any minimal curves starting at p of length < π/Vk, then (γχ, γ2) is
A2 with equality.

The proof will now be complete if we can show that for any point
x e X there exists a point y e X such that d(x, y) = π/Vϊc. Let ^
be minimal from p to x and y2 be minimal starting at p of length
L = π/y/k - L(γ{), such that a(γχ, γ2) = π . Then since (^ , y2) is A2
with equality, d(x, y2(L)) = π/Vϊc.

If X is locally compact, we know from [2] that X is a manifold. Satz
(p. 361 of [18]) states that a manifold of constant curvature is isometric
to a space form; since X has diameter π/Vk, X must be a sphere.

Examples 1.11. A standard hemisphere shows Theorem E is false with-
out geodesic completeness. For a more interesting example, one can "sus-
pend" RPW with the metric of constant curvature 1 in the following way:
Let ^ s i n R P w be the warped product of RPn with (0, π) as the base space
and sine as the warping function. We can complete the space by attaching
two "endpoints." One can show (cf. [8, Example 2.5]) that the resulting
space X satisfies the conclusion of Theorem C with k = 1. On the other
hand, diam X = π , but X is not a manifold, let alone a sphere. Of course,
X is not geodesically complete at the "endpoints."

2. Local consequences of curvature bounded below

We assume throughout this section that X has curvature locally bound-

ed below. Briefly, we recall the definitions of spaces and maps associated

with S . The tangent space Tp at a point p e X is the metric space

obtained from Sp x R+ by identifying all points of the form (γ, 0) (and

denoting the resulting point 0) with the following metric, where the class

of (γ, t) in the identification space is denoted tγ:

δ(tγ, sβ) = {t2 + s2 - 1st cosa{γ, β))l/\

We denote by lSp the metric completion of Sp then elements of Tp can

clearly be written in the form tγ, where γ £ 5 p , t eR*, and Oγ = 0.

For v G T , we let C(υ) = C(υ/| |v | |). We define the exponential map

expp: Tp -• X by expp{s γ) = γ{s) wherever this makes sense (if X is
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geodesically complete expp is defined on all of Tp). expp is (locally) a
radial isometry and preserves the angle between radial geodesies.

Proposition 2.1. For any p e X, expp is continuous.
Proof. It suffices to prove that, if γ and γt are geodesies starting at p

such that l im.^^a(γ i , y) = 0, then lim^^γ^t) = y{t) whenever y.(t)
and γ(t) are defined. We can assume t > 0 let

T = sup{t:limγi(t) =
ι—>oo

If
T < W = s\xp{t: γ{t) and γ.(t) are defined},

we can find 0<c<T<d<W such that y\[c>d] is minimal. Let α.
be minimal from y(d) to yt(T), and let η. denote the segment of yt

backwards from γ.{T) to yt(c), and ι/ | [ Γ ̂ . By the triangle inequal-
ity, L(ηt) + L(α.) - rf(y.(c), γ(ή) < d(Vi(T)\ γ(T)) + d(Yi(c)). The latter
quantity is arbitrarily small for large i. Since L(η ) and L(at) have
positive lower bounds, it follows from the cosine law for Sk and Al that
l i m ^ ^ a(a., η.) = π . Then lim.^^ α(α z, i/.) = 0, and we obtain from
Lemma 1.2(b) and A2 that limJ._^00 yf.(rf) = γ(d), a contradiction, q.e.d.

There is a continuous extension of expp onto the closure in Ύp of its
domain of definition; this extension is also denoted by expp .

For the remainder of this paper we let B = B(p, r) c X be a region
of curvature > k. We call a minimal curve strictly minimal if it is the
unique minimal curve between its endpoints.

Lemma 2.2. Suppose 5 is compact an let γpb and γpc be strictly min-
imal in B. Then for any ai —• p and minimal curves γ. and r\i from a{

to b and c, respectively, lim._^ooα(y., η.) > a(γpb, ypc).
Proof Let ζ > 0. Choose T > 0 so that if γPB and γpc are

minimal curves in 5^ with d(P, B) = d(P, C) = T and d(B, C) =
d(ypb(τ)> ypS

τ))> t h e n α ( ^ ' V ) " <*(?/>*> ̂ c ) ^ C ^ i s compact
and therefore y = l i m ^ ^ yi and η = limJ._>oo ηt exist and are minimal
from p to b and c, respectively. But γpb and ypc are strictly minimal,
hence 7 = γpb, η = ypc, and l i m ^ ^ α C ^ . ^ ) = l i m ^ a { η t , , ycp) =
0. By A2, lim^diγ^T)^^)) = hm^d^T), η^T)) = 0.
If Cz is the point closest to C in Sk such that d(P, C,.) = T and

, C ) = d{yi{T), fy(Γ)), then applying Al and Lemma 1.2, we obtain
^ a(γt, ηt) > l i m ^ ^ α(y P 5 , yPC) = α ( 7 P 5 , 7PC) > α ( ^ ,j^c) - ζ .

Lemma 2.3. Suppose either p is not a geodesic terminal or B is com-

pact. If α 0 , β0 e Sp are such that α(α 0 , βo)>π-ε for some ε>0, then
a(ao' VQ) + α (^o , β0)<π + ε,forany yoeSp.
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Proof. If p is not a geodesic terminal then we can find aQ e S such

that α(α 0 , aQ) = π and the proof follows from the triangle inequality.
Suppose B is compact. Let p. —• p be points on a and a, b, c be

points on aQ, βQ, y0 such that the segments of α 0 , βQ, y0 from /? to
a, b, c, respectively, are all strictly minimal. For / > 0 let oti be the
segment of aQ from p. to #, a\ be the segment of a from /?z to p,
and /? , γ. be minimal from p. to £, c, respectively. If for all / we set
at = a(a , γ.) and ^ = α(β., γ.), then by Lemma 2.2 α0 < l i m ^ ^ a{

and ft0 < l i m ^ ^ bt. Therefore,

#n + έn < lim α, + b < lim α7- -f (π - aλ + α(α', βλ

= 2π - lim a(a , fl.) < π + β,

since l im.^^ αία,., βt) > α(α, β ) .

Proposition 2.4. //* p is not a geodesic terminal or Sp is precompact,

then (S , α) is an inner metric space. Suppose, in addition, that either B

is geodesically complete or 2? is compact. If Sp is convex, then cx(γ) — π

for all γ e Sp (in particular, Sp has curvature uniformly > 1).

Proof. Let a, β e Sp and A = α(α, β). For any ε > 0, by Lemma

1.4 we can choose γ{ e Sp such that α(ά, γx) + a(γ{, ~β) < (1 + ε/2) A.

We can then choose γ2, y3 G 5 p such that

α(α, γ2) + a{γ2, 7j) + a{γ{, y3) + a{γ3, jί) < (1 + 3e/4) ^ .

Repeating this procedure we can construct a map from the dyadic rationals

of [0, 1] into Sp whose continuous extension to [0,1] is a curve from

a to β of length (l+e)-A. Therefore a is an inner metric on Sp .
To prove the second statement it suffices, by monotonicity and Defi-

nition A, to show the following: Suppose άχ, , a4 e Sp satisfy 0 <
a(άi, α.) < π for all /, j , ά2 is between a{ and α 3 , and Γ( are unit

geodesies starting at P £ S% so that α(α., α.) = α(Γ / 5 Γ.) for all pairs
(i, j) except (3, 4) and (4,3) . Then a(a4, α3) < α(Γ 4 , Γ 3 ) .

Let a.. € 5 be such that l im.^^ a.. = α , and choose ί. —• 0 such
that (1) 0 < tx < C(a.j) and (2) if Qt is the intersection of the minimal
curve from Γ ^ ) to Γ3(ίJ ) and j . = d(P, Q.), then st < C(ai2). Now
let Γ be unit geodesies starting at P in si such that the following
holds for Au = Γz7(ί7.) if j' φ 2 and Ai2 = Γi2(Si): If a(j = α / ί ) for
jφl and ai2 = α/2(5z.), then d(aiJ, % ) = d{Aij, Λ/Λ) for all (j, /c) ̂
{(3, 4), (4, 3)} and d(Ai3,Ai4) is the closest to d{ai3, αz4(^)) of its two
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possible values. Choosing a subsequence if necessary, we can assume {Γ ; }
is convergent for all j , and by Lemma 1.3 l i m ^ ^ α(Γ/;., Γik) = α(Γ;., Γ^)
for all j > k with j Φ 3 and k Φ 4. From the way {IV} was chosen
it follows that l im.^^ α(Γ / 3 , Γ 4) = α(Γ 3 , Γ4) as well. Therefore, by
Lemma 1.3 it suffices to show that

lim d(Ai3, AiA)lti > lim d(ai3, ai4)/tr
I—• O O I—• O O

Let βijk be minimal in X from atj to aik and Ψijk be minimal in S%
from Au to Aik . Then since a(Γ{, Γ2) + α(Γ 2 , Γ3) = α(Γj, Γ 3 ), given
any ε > 0, for all sufficiently large / we have by Al that a(βn2, β/23) >
α ( Ψ n 2 , Ψ / 2 3) > π — e. The triangle inequality and Lemma 2.3 now imply
that α(Ψf 23, Ψ, 2 4) > oί(βi23, βi24) - 2ε for all large i. In other words,
by A2 and the triangle inequality, d(Ai3, Ai4) > d(ai3, ai4) - Kt, where
Kt is the length of the side of a trian^e in Sk with its opposite angle
2ε and adjacent sides of length d(ai2, ai3). In other words, lim ^ ^ ^
= 2 d(ai2, ai3) sine. On the other hand, \ivcίi^ood(ai2, ai3)/ti =
2 sinα(Γ 2, Γ 3 ), and the proof is complete by letting ε —• 0.

Proposition 2.5. Suppose that either 2? is compact and p is not a
geodesic terminal or B is geodesically complete. Then Sp is convex,
geodesically complete, and has rigid curvature 1. _

Proof. If a single geodesic passes through p, then Sp has diameter π .
The proof will therefore be complete by Proposition 2.4 and Theorem E
if we show that Sp is convex and geodesically complete.

Let ηι,η2 G Sp be distinct and a = (π - a(ηι, η2))/2. Since p is

not a geodesic terminal, there exists an rf{ e Sp such that a(η{, rf{) = π .

Because 5V is an inner metric space and S is dense in Sp , we can choose

γ. G Sp such that

\a(η2, γ.) - a\ < 2~ι and \a(ηι, γ.) - a\ < 2~\

We claim that any such sequence {y.} is Cauchy. If not, we can find
subsequences, which we reindex and denote by {γu} and {γ2i}, such that
α θ Ί ι > 72i) > δ > ° f 0 Γ a 1 1 ' L e t Ίli* Vli e Sp S U C h t h a t ^li " ^ ^1

and η2i —• 7/2. In the plane, choose points X, ^4, B, and Γ such that
A ^ and Γ are collinear, X ^ = 1, XB = 1, and a(XA,ΎB) =
a(XB,ΎT) = a. Choose t. -> 0 such that t. < min{C(y lz), Cγ },
rf. = ίf. XΛ/*Γ < C ( ^ . ) , and j . = ί. ^ 5 / X Γ < C(^2 ) . Let β., ? w ,
and C2{ be minimal curves from ί/2|.(j.) to y/j .(r.), y2 .(ί.), and y2|.(ί.),
respectively. By Lemma 1.3 for k = 1, 2 and any A > 0 there exists a

such that for all i<j, L{βt) + L(CW) < (1 + λ) d t o ^ ) , yw(/.)) it
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follows that the angle of a wedge Wt in Sk representing the wedge formed
by β. and ζki tends to π. Al then implies that l i m ^ ^ a(βi, ζki) = π .
By Lemma 2.3 and the triangle inequality, lim._^ooα(ζ1 , ζ2i) = 0. Let
Zj and Z2i be unit minimal curves in Sκ, with common endpoint y
and other endpoints zu and z2j., respectively, such that L(ZU) = L(ζv),
L(Z2i) = L(f 2 /), and a(Zu, Z 2 i) = a(ζu, C2ί) . Then

0= lim d(zu,z2i)/L(Zu)

This last limit being 0 implies that l i m ^ ^ a(γχ., y2i) = 0, a contradiction.

We now have shown that for any distinct r}l9J}2 e Sp there exists a

unique η3 e Sp such that a(ηι, η2) = a(η2, η3) = a(ηι, Tj3)/2. Applying

this result to rj2 and rfχ we can also find a unique ηA e Sp such that
α0/i 5 ̂ 4) = ^(^4 > ^2) = α ( ^ i > ^ ) / 2 U s i n 8 t h e s e t w o results and an
argument similar to the first part of the proof of Proposition 2.4 (without
the ε 's!) we can construct a minimal curve between any two points and
extend any minimal curve.

Proposition 2.6. If X is geodesically complete of rigid curvature 1 and
dim X > n > 0, then X contains a convex subset isometric to Sn .

Proof It is immediate from A2 (with equality) that any geodesic in
X of length π is minimal. In particular, X has diameter π. If X
is compact we know already from Theorem E that X is itself a sphere.
Suppose X is noncompact; then X is infinite dimensional and we need
to show that for all n , X contains a convex subset isometric to Sn . By
Proposition 2.5, for any p e X, 5 p is again geodesically complete of
rigid curvature 1. Furthermore, since C(γ) = π for all γ e Sp, 5 p = Sp

and Sp is noncompact. Suppose that Sp has a convex subset S isometric
to Sn for some n > 0. Then it follows from A2 (with equality) that
S' = {γ{t): γ e S and t < π} is a convex subset of X isometric to Sn+ι

The proof is now complete by induction, since any geodesically complete
space of rigid curvature 1 contains a copy of Sι, namely any geodesic of
length 2π.

Lemma 2.7. Let A., Bt, C € Sk, with A., C{ district,

rf(j4f., 5.) > Z) for some D > 0 and all i. Suppose γ is minimal from
Ai to B{, am/ jί. w minimal from A. to Ct. ΓΛerc ?> = l ί m ^ ^ a(γi, )S.)
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exists if and only if

L = ϋm[d(Ai, Bt) - d{Bt,[

exists. If φ and L exist, L = cosφ.
Proof If d(Ai9Bt) = d(Bn Cf) for all /, then l i m ^ α(y,., βt) =

π/2 follows from the cosine laws for Sk. In the general case, let a[
be unit minimal of length max{d(Ai, Bt), d(Ai, Cf.)} starting at Bt and
containing the point Cz let D. = ai(d(Ai, 2?z )) and ai be the segment of
di from Di to B{. If Z>z = Ai for all large /, then αz and yz coincide,
and the lemma is trivial. Otherwise, applying the above special case we
obtain that if ζ. is minimal from D. to A , then l i m ^ ^ a ( ζ , β() =
lim.^^ a(ζi, γ.) — π/2. The lemma now follows from the cosine laws
and the definition of angle.

Lemma 2.8. If S c Sp is compact, then for every small ε > 0 there
exists a p > 0 such that for all γ e S and 0 < t < p, 1 - ε <
d(p, exp (ίγ))/t < 1. In particular, expp(tγ) Φ p for all 0 < t < p,
γ e S, and elements of S Γ\S do not form loops at p of length < p.

Proof Given any / we can find a finite set Y. c S such that for every

ά e S there is a γ e Yi such that a(a, γ) < 2 " z . Then Y = U ^ ^ is
precompact and S c T . Let δ = s in" 1 ^ - e/2) and aχ, , aM e Sp

be 5-dense in Y. Choose R > 0 small enough that α L R] is min-
imal for all /. Let Tab be minimal in Sk of length R and Γflc be
unit minimal, with θί(Γab, Γac) = 5 . Then Lemma 2.7 implies that
l im^ 0 (Λ - d(b, Γac(t))/t = 1 - e/2 let p > 0 be such that for all ί < p,
(R-d(b, Ta.c(t))/t > 1-e. For any a e Y, there exists some α such that
α(α, αf.) < (j'. By the triangle inequality, rf(p, α(/)) > R-d(a(t)9 α (i?)),
and A2 implies 1 - ε < d(p, a(t))/t < 1 for all t < p. The lemma now
follows from Proposition 2.1.

Lemma 2.9. If S c Sp is compact, then for any ε > 0 ίΛere #re ί,

R > 0 so that if a, β e S and d(expp(ta), expp(sβ))/s < δ for some

0 <s <t < R, then α(α, ~β) < ε.

Proof As in the proof of Lemma 2.8 we let Y c Sp be precompact

such that S cT. Suppose, contrary to the lemma, there exist α / } βt e

S and 0 < si < ti < 2~ι such that a(a., /?.) > 2ε and, letting rfz =

^(exp^.ά,.), exppίt+iβj)), di/si < 2~ι~ι. By Proposition 2.1 we can

find αz , βteY such that α(αz , jS ) < ε and, letting rfz = d{a .(5.), ^-(ί,.)),

έ/f/.Sy < 2~z. Choosing a subsequence if necessary, we can assume that

both {α;} and {β.} are Cauchy. Let ζ, η e Sp be such that for all
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sufficiently large /, a(at, ζ) < ε/4 and a{βt, η) < ε/4. In 5 t , let
Γxa > Γxb> Γxc b e u n i t minimal such that a(Γxa, Γχb) = a(Γχb, Γχc) = ε/4
and α(Γ χ α, Txc) = e/2. Define

a', = d(Γxa(Si), Tχb{Si)), b\ = d{Tχb{ti), Γχc(ti)),

c, =
By A2 and the triangle inequality

Cι < a, + b't + dt < c\ + (ί, - Sf) + dr

Lemma 2.8 implies that if δ > 0, then for all sufficiently large i,

\-δ<d{p,βi{ti)lti<{si + di)lti

(*) * t, -st<δ t, + dt<S- (s,. + (t, - st)) + di

Combining these inequalities we obtain limί_>oo(Cj - ci)/si > 0. From (*)
it follows that hmi_toosi/ti = 1. By Lemma 1.3, we obtain

cosα(ζ, η) = lim(j? + ή-c1

i)/2siti
I—+OO

= Urn [(sf + t] - c?) + (cf - φyisύ

= cos(β/2) + .lim {c\ + CfXcJ - ci)/2siti

> cos(ε/2),

since l im^^ ci/ti is bounded. From the triangle inequality we have, for
all sufficiently large /, a(a., β.) < ε, a contradiction.

Proposition 2.10. If B is geodesically complete, then dim 7^ =
dim5(/7, p) for all sufficiently small p > 0.

Proof We first prove that dim B(p, r) > dimT p. Suppose S is a

convex subset of ~S isometric to Sn . Let T be the cone on S in Tp .

T is isometric to Rn+ι. Let U = 5(0, l ) n Γ and consider the maps
ί? : U —• B(p, p) given by p (v) = expp(pυ). We claim that for any
ε > 0 there exists a /? > 0 such that φp is an ε-mapping, i.e., for all

x € ΨP(U) > diam(^^"1(x)) < ε. Let ζ = cos '^ l - ε2/2) BY Lemma 2.8

and 2.9 there exists a /? > 0 such that for all 0 < s < t < p and O , | G S :

(1) Γ- β/2 < d(p,expp(iβ))/t, and (2) if expp(sα) = expp(iβ) 9 then

α(ά, ?) < C Then by (1), if expp(sa) = expp(tβ),

d (J=, j ^ j = (t - s)lp <(t- d{p, txpp(sa)))/p

= (t- dip, exppitβ)))/p < tε/(2p) < e/2.
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From (2) we have d(j=, -L) < e/2, and d(j=, -L) < e follows from the

triangle inequality.
Combining this result with Proposition 2.6, we have that for any n <

dim 5^ + 1 there exist ε-maps from the «-dimensional set U into B(p, p)
for arbitrarily small a > 0. ByJ14, IV.5.A], dimB(p, p) > n and hence
άimB(p, p) >dimT p .

On the other hand, for p < π/Vk, the set Bf = B(0, p) c T can
be naturally identified with B(0, p) in the tangent space at a point z in
5£= 1 we define a new metric δ on B1 by <5(w, w) = d(expz(υ), expz(w)).
Since Bf is then isometric to B(z, /?) c S™, if A: = {v e B1 n Γp: C(v) >
||v||)}, then exp^l^ is surjective onto B(p, p) and distance decreasing
by A2. Since K is a closed subset of 2?', A: has Hausdorff dimension
< n + 1, and since a distance decreasing map cannot increase Hausdorff
dimension, dim B(p 9 p) <n + 1.

Lemma 2.11. Suppose B is geodesically complete, and B is compact.
Let γpb and γpc be strictly minimal in B. Then for any ε>0 there exists
a δ > 0 such that for all a € B(p, δ) and minimal curves γab and γac,

Proof Let at -+ p and suppose γ. and Y\i are minimal curves from ai

to b and c, respectively. By Lemma 2.2, l i m . ^ α(yf., ι/ ) > α(yp 6, yp c).
To prove the opposite inequality let d be a point on the geodesic ex-

tension of γbp beyond p such that γ d is strictly minimal. If βi is a
minimal curve from a{ to rf, and v{ is minimal starting at a. such that
o;(y/, i/f.) = π, then, by the above argument, lim.^^ α(yz, β.) = π, hence
l im^^ a(βt, i/̂  = 0. Also by the above argument, l im^^ a(βi, η.) >
a(ypd>ypj = π - a(ypb>yPc)- β y t h e triangle inequality, a(γn ηt) <
π-a^j, βi)-\-a(βi, vt), and we obtain the necessary inequality by passing
to the limit.

Corollary 2.12. If X is geodesically complete, then the following are
equivalent:

(a) X has dimension n < oo,
(b) at one point p e X, Sp is compact, with dimiS^ = n - 1, and
(c) at every point q € X, Tq is isometric to Rn .

Proof If Sp is compact, then by Proposition 2.5 5 is a sphere, and,
equivalently, Tp is isometric to Euclidean space of one higher dimension.
Proposition 2.10 proves (a) =*• (c) and (c) =*• (b) is obvious. By Proposi-
tion 2.10, (b) => (a) will follow if we show that the mapping q ι-» dim 7^
is upper semicontinuous. We will show first that if (b) holds then X is
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locally compact. Let {*.} be a sequence of points in B{p, R) for some

R > 0 . Let a. be minimal from p to x.. Then {α J has a Cauchy subse-

quence, which by Proposition 2.1 corresponds to a convergent subsequence

of { x , } .

By elementary linear algebra, for any m there exists a δ-m> 0 so that

S contains a convex subset S isometric to Sm if and only if for every

δ >δm there exist γl9> , γm+ι e Sq such that \α(γt, y,.) - π/2| < δ for

all / Φ j . In particular, we can let δ = δm/3 and choose r > 0 such that

γ | [ 0 ™ is strictly minimal for all /. If z e X is sufficiently close to q and

αi is minimal from z to γ^r), by Lemma 2.11 |α(α., α.) - π/2| < <Jm/2

and so dim»Sz > m.

Proo/ of Theorem F. Suppose dim X = «, let p e X be arbitrary,

and let ^ , , γn e Tp be such that \α(γi, γ.) - π/2\ < δn+ι/2 (see the

proof of Corollary 2.12). Choose R > 0 small enough that y ^ . ^ R] is

strictly minimal for all /, and B(p, 3i?) is a region of curvature > k.

Define u:X -+ Rn by M^JC) = d(x, z.), where z. = y.(Λ) (cf. [2]). We

will show first that u is injective, and hence a homeomorphism, near p.

Suppose, to the contrary, there exist points x., yj —• p in B such that

u(Xj) = w(yy). Let η. be minimal from Xj to y ; , and y{. be minimal

from Xj to z z . We will show that, passing to a subsequence if necessary,

lim . ^ ^ α(ηj, γ.j) = π/2 for all /, and thereby obtain a contradiction. For

then by Lemma 2.11, for all large j we have \a{ytj, γkj) - π/2\ < δn+ι

and |α(y / 7, η.) - π/2\ < δn+ι. In other words, the space of directions at

Xj has dimension > n , which is not possible by Corollary 2.12.

Let atj be minimal from x. to wi = y z (-i?), δtj be minimal from y^

to z., and β be minimal from y to tϋ^. Set Atj = d(Xj, wt), 5. y =

rf(y;., Wi), and C7 = d(Xj, y ; ) . Passing to a subsequence if necessary we

can assume all of the following limits exist:

a = lim a(η•, α .), 6 = lim α(w , jί..), c = lim α(y., α. ),
y-κx> •/ ιJ -^oo ^ / 7 -^oo J lJ

d = lim a(η,, δtj), K=lim {Λtj - BJ/Cj.
J—>OC J J J-+OO lJ lJ J

From Lemma 2.7 and Al we know c, d > π/2. By Lemma 2.11,

l i m ^ ^ α ί α ^ . , ^ . ) = l i m ^ a ( β u , δtj) = π. Applying Lemma 2.3,

Lemma 2.7, and Al we obtain

K > sin(π/2 -a)- sin(c - π/2) > 0,

-K > sin(π/2 - b) - sin(d - π/2) > 0.

In other words, K = 0 and c = π/2.
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Let B = 5(0, R) c Tp and define functions φ, ψ:B -* Rn by

ψ(v) = (\\v-Rγι\\l/2-R9. . ,\\v-Rγn\\1/2-R).

Since RΛ can be identified with its own tangent space, invariance of
domain and the above argument that u is a homeomorphism imply that,
for small r, ψ\B,0 r) is a homeomorphism onto a neighborhood of 0
in R". Let 5(0, ε) denote the sphere of radius ε > 0 in R", and
/?β:R"\{0} -• 5(0, ε) be the radial projection. Then

Ψε=Peoψ\S{0>εyS(0,ε)->S(0,ε)

is defined and has degree ±1 for small ε. On the other hand, Lemma 2.8
implies that, for small ε, φ~ι{0) Π 5(0, 2ε) = {0}, and the map

is defined. If we suppose φ(B(0, 2ε)) contains no neighborhood of 0, 0
must be a topological boundary point of φ(B(0, ε)). But then φε has a
continuous extension over 5(0, ε) (cf. [10, p. 96]), and so deg(pg) = 0.
Therefore, to obtain a contradiction and prove that X is a manifold, we
need only show that for small ε > 0, φe and ψε are homotopic. Choose
δ > 0 such that for all v e T , there is some γ. with \a(υ, γ.) - π/2\ >
δ. By Lemma 2.7 (with φ = π/2 - δ) and A2, there exists a p > 0
such that for any v e Sp, ε < p, and i as above, ^(exp^εϊ;), γ^R))

and ||βv - (i?)yz.||
1/2 are either both < R - ζ or both > R + ζ, where

£ = (g/2) s i n ί . Since φ(B(0, ε)) and ψ(B(0, ε)) are both bounded, we

obtain that a(φε(ευ), ψε(εv)) <π-v for some v > 0. Since Sp is dense

in Sp , the same inequality holds on Sp , and φε and ψε are homotopic.

For v e Tp we define | |υ| | = L(γv\[0 „), and extend |j || continuously

to a norm on Ύp . Using a result of Frechet [ 14] we can obtain a compatible

vector space structure on Tp and inner product ( , •) . The remainder of

Theorem F follows from Proposition 1 and the discussion of the tangent

space at the beginning of this section.

Proof of Theorem G. If X is locally strictly convex, Ύp = Tp for all p,

and so we omit the "bar" notation. For any p e X, let B(p, R) be strictly

convex and small enough that it is contained in a region of curvature > k

and homomorphic to an open subset of R" . Let yχ, , γn be a basis

for Tp then by strict convexity y|[0 R] is strictly minimal for all /. By

Lemma 2.11 there is an r > 0 small enough that for all q e B(p, r), if y]
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is minimal from q to γ.(R), then y\, , yq

n lie in B(p, Λ) and form
a basis for 7^ . We define φ: π~ι(B{p, r)) -> £(/?, r) x Tp by ^(Σς.yf) =
(ί , Σc.y.). It is easy to verify that φ is a vector bundle chart, and that
the collection of all such charts is a vector bundle atlas. The proof that
exp and (-,•)„ are continuous is also straightforward.

To prove that TX is isomorphic to the topological tangent bundle of
X, we need only find an embedding ψ: TX —• X x X whose image is an
open subset containing the diagonal, whose restriction to the 0-section is
the diagonal map, and such that ψ(T) = p x U for some open set U of
X containing p. For simplicity, we assume first that X is compact, and
choose r > 0 such that for all p e X, B(p, r) is strictly convex. We let
p: R —• (-r, r) be a homeomorphism fixing 0 and define ψ: TX —• X x X
by ψ(v) = (p, exp ([p(\\υ\\)/\\v\\] v)) for υ eTp. The continuity of ψ

is easily proved using the above local trivializations and the continuity of
exp; the injectivity of ψ follows from the convexity of B(p, r). For the
noncompact case, we fix a base point, replace r by a possibly decreasing
function of the distance of a point p to x, and continuously deform the
homeomorphism p accordingly.

Since the topological tangent bundle of X is a vector bundle, it follows
from [12, Theorem 5.12] that the product X xRq can be given a smooth
structure for some q. By the Product Structure Theorem [11], this implies
that X has a smooth structure for dim X > 5. Since every manifold is
smooth in dimensions < 3, the proof of Theorem 2 is complete.

Proof of Theorem H. For any compact metric space Y we denote by
iV(ε 9r,Y) the maximum number of disjoint balls of radius e that can be
put in a ball of radius r in Y. Suppose dim X = n . By [5, Proposition
5.2], it suffices to prove that N(ε 9r,X)< N(ε, r, S£), where for simplic-
ity we use L = min{0, k} instead of k. Let B(x, r) be given, and endow
B(0, r) c Tχ with the metric δ defined in the proof of Proposition 2.10.
Let Bt = B(i(p.9 ε) be a collection of N disjoint balls in B(x, r). Let
d. = d(x ,Pi)<r — ε, and υi e Sx be minimal from x to p{. Then since
exρx is distance decreasing, Qxpχ(Bδ(vi, e)) c Bk , and the balls Bδ(υi, ε)
are N disjoint β-balls in 5(0, r) £ B{z, r) c S£ . q.e.d.

The above argument is easily modified to obtain a "pointed" precom-
pactness theorem without an upper bound on the diameter (cf. [5]).

Example 2.13. The "squashed sphere" β , due to K. Grove and P.
Petersen, is obtained is a limit of Riemannian manifolds of positive cur-
vature by flattening the upper and lower hemispheres of S2, while allowing
curvature along the equator to go to infinity. Q may also be obtained by
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gluing together flat disks along their boundaries. Q is easily verified to be
almost Riemannian. If p e Q lies on the interior of either disk, Tp = R2

and exp is an isometry on B(0, r) for small r. If p lies on the equator,

Tp can be identified with R2\{(t, 0): tφ 0}, i.e., Sp is Sι minus two an-

tipodal points. The missing points correspond to the two "directions" of

the equator, which is not a geodesic (but is a limit of geodesies). Points

along the equator are joined by pairs of minimal curves, Euclidean seg-

ments crossing each disk. The space X = Q x S1 can be given a natural

"product" inner metric so that geodesies are "products" of geodesies in Q

and Sι. If p e Q is on the equator, then at x = (p, z) e X, Tp con-

sists of R3 with two coplanar open half-planes removed. The cut radius

function C is not continuous at the two points in Sp corresponding to

the S ^directions.
Example 2.14. Let S" 9 n > 0, be the standard sphere of radius 2~ι,

and Xk = S" x ••• x S%. Then {Xk} has a unique compact Gromov-
Hausdorff limit X which is easily verified to be a geodesically complete
inner metric space with curvature uniformly > 0. Since X is infinite
dimensional, X is not almost Riemannian. Note that if n = 0, X is a
limit of flat manifolds, but does to itself have an upper curvature bound.
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