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CONVEX HYPERSURFACES WITH
PRESCRIBED GAUSS-KRONECKER CURVATURE

RAISING TSO

In [14, Problem 59] Yau raised the general question when a function
F defined in a Euclidean 3-space R3 is the mean curvature or Gaussian
curvature of a closed surface with prescribed genus. For mean curvature
it was proposed to minimize the functional

Area(X) - f F
Jx

among all surfaces X of the same genus (X is the set bounded by X).
However, it is not clear how the minimum, if it ever exists, should have
the same genus. In this paper we study the latter problem for the Gauss-
Kronecker curvature of a closed hypersurface in a Euclidean (n + l)-space
Rn+ι (n > 1). If the given function is positive, the solution hypersurface
is a priori convex. The difficulty of determining its topology is subdued
and we can concentrate on the analysis.

Let I b e a smooth hypersurface embedded in MΛ+1 and oriented with
respect to its inner normal. Denote σk (k = 0, 1, , n + 1) the normal-
ized kth elementary symmetric function of its principal curvatures. (Set
σ0 = 1 and σn+ι = 0.) The following first variation formulas for the kth
curvature integral, k = 0, , n, Ik(X) = (n-k)~ι fχ σk , are valid [10]:

(1) δIk(X)ξ= ί σk+ι(ξ,v).
J x

Here ξ is a smooth variation vector field on X, v is the unit outer
normal, and ( , •) is the Euclidean inner product in R"+1. If we let
Jk(X) = ik{X) - f~F, where F is a function defined in Rπ+1 and X is
the compact subset bounded by X, we have

δJk(X)ξ =
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Consequently, at least in a formal sense, any critical point of the functional
Jk is a hypersurface whose (k + l)th mean curvature is equal to F in
other words, it solves the equation

(2) σM

When k = 0, this variational formulation of the problem coincides with
the one outlined in [14].

In this paper we study the case k = n - 1. From now on we write In_χ

for / , / for Jn_χ, / and K for σn. Our first result is:
Theorem A. Let F be a smooth, positive, and integrable function in

Rn+ι. Then there exists an absolute minimum of J which is a smooth
solution of (2) if and only if there exists a smooth uniformly convex hyper-
surface X satisfying J(X) <0.

Recall that a hypersurface is uniformly convex if all its principal curva-
tures are bounded between two positive constants. Here the minimization
is taken over all smooth uniformly convex hypersurfaces. Theorem A will
be proved by deforming a minimizing sequence of hypersurfaces along the
logarithmic gradient flow

Xt = -(logK-logF)u

to an absolute minimum. Such a method was developed in our study of
Monge-Ampere equations [13]. Although a direct method may be applica-
ble and, in fact, has been successful in the two-dimensional case [12], the
method of gradient flow is more flexible in dealing with this problem. It
enables us to find critical points other than minima. We shall establish

Theorem B. Let F be a smooth function which satisfies (a) Ω =
{x: F(x) > 0} is bounded and (b) Fι^n is concave in Ω and the ra-
tio between the minimal and maximal eigenvalues of the Hessian of Fι^n

is uniformly bounded above. Then (2) admits two solutions if there exists a
convex hypersurface X lying inside Ω and satisfying J(X) < 0.

Further existence results can be found in §4, after we prove Theorems
A and B in §§2 and 3.

The problem of finding closed convex hypersurfaces with a given Gauss-
Kronecker curvature function was studied in [7] (see also [2]). For the
prescribed function F it is assumed that (a) there exist Rχ and R2,
0 < R{ < R2, such that F(x) > R~n for |JC| = R{ and F(x) < R~n for
|JC| = R2, and (b) £-pp

nF{px) < 0 , x e Sn , p > 0. Then it was shown
that there exists a unique convex hypersurface whose Gauss-Kronecker
curvature is equal to F. Subsequently Delanoe [5] showed that (a) alone
is sufficient for existence. As the reader will see, our proof of Theorem
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A also establishes Oliker and Delanoe's result after some obvious modi-
fication. In fact one can show that the solution hypersurface minimizes
all convex hypersurfaces bounded by the sphere S(R2) and containing the
ball B(R{). More recently, Oliker [8] found a variational approach to (2)
and established the existence of a certain generalized solution under con-
ditions similar to (a). Both his formulation and proof are very different
from ours.

In concluding the introduction we give a geometric interpretation of
the functional / and the associated variational formula. For a uniformly
convex X, I(X) is equal to Jsn σ{, where σχ is the (normalized) sum
of all principal radii. By Minkowski's formula we may again write /
as JsnH, where H is the support function of X, or 2" 1 fsnB, where
B(u) = H(v) + H(-v) is the distance between two supporting hyperplanes
of X with normals v and -v . Thus / is nothing but a constant multiple
of the average of width of X. Now the variational formula (1) is evident:
Let ξ be a normal vector field and φ = (ξ, v). Then the family of convex
hypersurf aces which fits in ξ has support function given by H + εφ . So
obviously the first variation of / is equal to Jsnψ = JχKφ .

1. A logarithmic gradient flow

Denote the class of all smooth uniformly convex hypersurfaces by X.
We consider the logarithmic gradient flow of / :

(1.1) Xt = -{\o%K-\o%F{X))v,

where X(0) belongs to 3?. Obviously X{t) stays in 3£ as long as it
exists. Along this flow / is decreasing:

(1.2) j-J(X(t)) = -f (K-F)loΛ<0

and equality holds if and only if X(t) solves (2). To study (1.1) we
shall first reduce (1.1) to an initial value problem for a parabolic Monge-
Ampere equation for the support function of X. Next we shall derive a
priori estimates for the solution of this equation. They will be used in the
proof of Theorem A in the next section.

Recall that for a convex hypersurface X (or, more generally, the bound-
ary of a convex body X) its support function H is defined by

H ( x ) = s u p { ( x , p ) : p e X } > x e R " 1
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It is convex and is of homogeneous degree 1. If X is uniformly convex,
H is differentiable and X can be recovered from H by

where p = (pι, , /?"+1) is the point on X with unit outer normal x.
Thus all geometric quantities can be described in terms of H. For in-
stance, the principal curvatures of X are the n positive eigenvalues of
the Hessian (H~ + Hδn) where subscripts a and β denote covariant
differentiations with respect to an orthonormal frame on Sn . Henceforth
there is a one-to-one correspondence between the class of smooth uni-
formly convex hypersurfaces and the class of smooth convex functions of
homogeneous degree one in R n + 1\{0} whose Hessians possess exactly n
many positive eigenvalues (the remaining eigenvalue is zero due to homo-
geneity).

Now, suppose (1.1) has a solution X(-, t) which is uniformly convex
for each t. We can parametrize it by the inverse of its Gauss map Nt.
Let x = Nt(x), X(χ, t) = X(N~\x), t) ,and K(x, t) = K{N~ι(x), t).
Then (1.1) becomes

Taking the inner product with x, we obtain, after replacing x by x,

(1.3) ^ = -lσgK + logF(VH), (x, ήeSTx (0, oc),

where H(x, 0) = Φ(JC) is the support function of X(0). Conversely, it is
not hard to show that (1.3) implies (1.1). (We have established this fact
for a similar equation in [11].) Therefore, (1.1) and (1.3) are equivalent.
In view of the formula

we see that (1.3) is a parabolic equation for H(t). Although (1.3) is
defined on Sn, in practice it is more convenient to act as follows: Ex-
tend K as a function of degree 0 over Rw + 1\{0} and consider the equa-
tion satisfied by the restriction of H on a tangent space of Sn. As
a typical case we consider the hyperplane passing the south pole. Let
h{x) = H(xχ, , xn, - 1 ) . Then h satisfies

( 1 4 ) ht(x> 0 = (1 + |*|2)1 / 2logdetV2A + * ( x , Λ, Vλ),

A 2 1 / 2
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in R" x ( 0 , o o ) . Here [3]

(1.5) Proposition. Suppose that H is a solution <?/(1.3) in Q = Sn x

[0, T] which satisfies r < H < R in Q for some positive r and R. For

to,O < to< T, there exist constants C and C' such that

\\H\\~Ϊ(S)<C, Q' = Snx[t0,T],

and

(Haβ + Hδaβ)ξaξβ > C'\ξ\2 (ζ e Rn) in Qf.

Here C and C' depend on n, t0, r, R, the C2-norm of F in the ball

B(2R), and a positive lower bound of F in B(2R). Furthermore, for each

k > 2, there exists Ck which also depends on higher derivatives of F such

that \\H\\ΐk(S)<Ck.

Recall that | | # | | ? f f ) = supQ, Σ2ι+m<k Φ^H\.

Proof In the following proof positive constants C{, C2, etc. have

the same dependence as C in the statement of the theorem. We also

fix a smooth function g in [0, T] such that it is positive in (0, T],

g(0) = 0, 0 < g < 1 in [0, t0), g{t) = 1 for t > tQ, and its derivative

g is bounded between 0 and 2t^1.

First from the assumption it is clear that X is contained in B(2R).

Therefore we have \VH\ < 2R.

Step ί:Ht > -Cx. Consider the function Ht(H - δ)~ιg, where δ =

r/2. Suppose it has a negative minimum which attains at (xχ, tχ) with

tx > 0. Without loss of generality we may assume x{ is the south pole

and the matrix (Haβ), a, β = 1, , n , is diagonal at this point. Let

Ht(X,l-\x\2Ϋ'\t)
η { X t ]
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At ( j c n tx) we have

0 dη ί Hta HtHa \
Ό-dxa \H-δ {H-δ)2)g'

Q>dη _ / Htt H2 V Ht ,

for α = 1, , n . On the other hand, differentiating (1.4) gives

(1.6) Htt-l^ — + —Ht + 2^ -^-Haί

at (x t , ί j). As a result

H2 g'

> ( + + y H +

δHt ι/n ( H

where in the last step we have used the arithmetic-geometric inequality.
This implies

which clearly gives a lower bound for η and hence for Ht.

Step 2: Ht < C2. Consider the function HtH~ιg. Assume it has a
positive maximum at (JC2 , f2), where £2 is positive and x2 is the south
pole. Rotate the coordinate so that (Haβ) is diagonal at this point. The
function

Ht(x,-(l-\X\Y2,t)
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satisfies

dxa

- dt

- dxa
 H

at (x2, t2). Putting these conditions into (1.5), we have

in dg J _ γ ^ d g \ g

that is,

which yields an upper bound for Ht.

Step 3: \V2H\ < C3.
Lemma. Let D be a bounded domain in R" x [0, T] such that Ωt =

{x: (x, t) e D} is a nonempty convex set for each t in [0, T\. Suppose
that u is a smooth solution of

/?(;c)logdetV u-ut = q(x, w, Vw) in D,

(1.7) u(x,0) = 0

u{x, 0 = 0 ondΩt x [0, Γ],

whose Hessian is positive definite for each t. Here p and q are smooth and
p is positive. Then for any subdomain Df of D such that Ωt c Ωr (Ω't =
ΩtπDf) for each t and t0, to< T, there exists a constant Ko such that

sup | | V 0 l i V

where Ko depends on n, t0, inff ..^y^ίdistίΩ^ dΩt)}, sup̂  </<Γ{diamΩJ,

INIIc1^)' HMJlc(2>)' a positive lower bound of p in D, and C2-norms of
p and q.

Taking this lemma for granted for this moment, we finish the proof of
this step as follows:
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Consider the restriction of H(-, t) to the tangent space of Sn at x .

As usual we may take x to be the south pole. From the assumption we

have

r(l + \x\2)1'2 < h(x, t) < R{\ + \x\2)XI\

where h satisfies (1.4). The set D(h0) = {(x ,t):h(x,ή<hQ,0<t< T}

has Ω, satisfying B(((ho/R)2 - 1)1 / 2) C ^ c B(((ho/r)2 - 1) 1 / 2 ) . As a

result, if we choose h0 = 2R and let D = D(2h0) and D1 = B(3ι/2) x

[0, T], we can apply the lemma to u = h - h0 to obtain a second-order

estimate for h and hence for H. Since x is an arbitrary point on Sn ,

we finish the proof of Step 3.

It remains to prove the lemma. We adapt the method of Pogorelov [9]

(see also [7]). Let Φ^ = -uexp(2~ιλ\Vu\2)uξξg, where ξ,\ξ\ = l and λ

is a large number to be chosen. We assume the maximum of Φ^ over ξ

and D attains at (x0, t0), t0 > 0, for some Φ^ . By a rotation we may

assume ξ = ( 1 , 0, ••• ,0) and (V2w) is diagonal at (xQ9 tQ). Writing
φ = φ^ 9 we have, for a = 1, , n,

a un

= - m + ) λuRURl +-!• + —,
u Δ^ β βt u g

(1.9)

u u +λu

2 +ίίsa_!ίa

at (x 0 , ί0). Multiplying the last inequality by unu^ and then summing
over a, we obtain

Uaa

On the other hand, differentiating (1.7) gives

and

dx]'
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Combining the above equations we have

\\Uaa

Using (1.8), (1.9), and then the inequality

we arnve at

( U O )

On the other hand,

dx\

dq dq

and

ax,2

g

where T is at most linear in V M . Substituting these into (1.10) and

using (1.8) we obtain

at (x0, t0) for some constants Kι,K2, and K3. If we choose λ such

that λ/? - .fiΓ, > 1, we have a bound of Φ { in D. For a subdomain Z)' of

Z> with p = inf, < K Γ { d i s t ( Ω ) , θΩ,)} > 0,

B)( S U P

- 1

7
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by convexity. Consequently, we deduce a bound on V2w in Ω,, tQ< t <
T, and the proof of the lemma is complete.

Combining (1.3), Step 2, and Step 3 implies immediately that

(Haβ+Hδaβ)ξaξβ>C'\ξ\2.

As a result, the restriction of H to a tangent space satisfies the uniformly
parabolic equation (1.4) in 5(3) x [tQ, T\. Applying Krylov's Holder
estimate [6] for uniformly parabolic equations we obtain a Holder estimate
on Ht and V2H in B{2) x [tχ, T] for tx>t0. Thus parabolic regularity
yields estimates of all orders in 5(1) x [t2, T] for t2> t{. Since a finite
number of these domains covers Sn x [t2, T], we have established the last
assertion of this proposition.

2. Absolute minima

In this section we prove Theorem A. Let c be the infinum of J over
all uniformly convex hypersurfaces. It is evident that c is nonpositive,
for the value of / at a sphere tends to zero as the sphere shrinks to a
point. On the other hand, if c is equal to zero and there exists X such
that J(X) < 0, then X is an absolute minimum and a solution of (2) in
view of (1.2) and the short time existence of (1.3). So we may assume c
is negative and show that it is attainable.

First we observe that there is a uniform upper bound for the diameter
of X with J{X) < 0. For, we have

Let L be the line segment in X such that its length is equal to D(X).
Denote its support function by HL. By a direct computation the inte-
gral fsn HL, which is apparently greater than fsn H, is equal to
{2n+2yιτn_χD{X), where τn_{ is the volume of Sn~ι. Therefore D(X)
is bounded. Fix ε0 > 0 such that c + ε0 < 0. Next we claim that for all
X with J(X) < c + ε0, there exist r and R which depend on ε0 and a
uniform upper bound on D(X) such that the inradius of X, rin(X), is
greater than r and all X are contained in the ball B(R). To see this sup-
pose that there exists a sequence of Xk with J{Xk) < c + ε0 but rin(Xk)
tending to zero. But as there is a uniform upper bound for the diameter of
X , l i m ^ ^ J(X ) > 0, which gives a contradiction. Hence there must
be a positive lower bound for the inradius. Similarly one can prove that
X is contained in B(R) for some large Jf?.
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For a convex body X (or its boundary X) with support function H
we define its support center to be

= z(X)= ί
Js

Hx.
sn

If X is a ball, z is its center. In general, z is contained in the interior
of X for a nondegenerate X. To see this let B be a ball inside X and
connect it to X by tX + (1 - ί)l?, 0 < ί < 1. In case the support center
of X lies outside X, by continuity there is some t such that the support
center of tX + (1 - ί)2? lies on its boundary. So it suffices to show that
it is impossible for z(X) to lie on X. For simplicity we may assume
z has outer normal (1, 0, , 0). Then, taking z as the origin, it is
not hard to see that H(x{, , xn) < H(-x{, , xn) for xχ > 0, and
H(l, 0, , 0) < H(-l, 0, , 0). Therefore, jsn Hxχ is not equal to
zero, a contradiction.

Denote by ^(r, D) the class of convex bodies whose inradii are not less
than r and diameters are not greater than D. We claim that there exists
δ > 0 such that B(z(X), δ) is contained inside X for X in ff(r, D).
For, if not, we can find a sequence {Λ^} in &(δ, D) whose centers z^
satisfy that dist(z/:, Jf*) tends to zero as k tends to infinity. By a suitable
translation we may assume all Xk 's are bounded in a ball. By Blaschke's
selection theorem it contains a subsequence (still denoted by {X }) con-
verging to a nondegenerate convex body X in the Hausdorff metric, that
is, the corresponding support functions Hk converge uniformly to H on
Sn . But this immediately implies that z(X) lies on the boundary of X.
Hence there is a contradiction and our claim is established.

Now, we are ready to establish the long time existence of (1.3). Let H
be a solution of (1.3) with J(X(0)) < c + ε, ε < eo. We derive a priori
estimates of all orders of H on any finite interval as follows. Denote
by [0, Γ*) the maximal interval of existence. By the local existence of
parabolic equations we know that Γ* is positive. Denote by z(t) the
support center of X(t). For t and t' in [0, Γ*) with \t - t'\ < 1,

\z(ή - z{t')\ < f I \Ht\ < f ί \Ht\ + f ί # \Ht\,
Jt' Jsn Jt' Ji\Ht\<S'} JO J{\Ht\>δ'}

where δ' = {4τn)~ιδ. Integrating (1.2) from 0 to T*, we obtain

[ ί Ht{\ - e~H<)F > m ( / - 1) Γ ί \Ht\,
o J{\Ht\<δ'} Jθ J{\Ht\<δ'}
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where m = inf{F(jc): x e B{R)} . Therefore, for

— 1 δ'

ε < min{ε0, 4 mδ(e - 1)},

we have
\z(t)-z(t')\<δ/2.

In other words, the ball B(z(t), δ/2) is contained in X(tf) for all t',
\t - t'\ < 1. We may write [0, T*) as a suitable union of intervals of
length less than or equal to one and apply Proposition (1.5) to each such
interval taking its left endpoint as the origin. In this way we obtain a
uniform estimate of H of all orders in the interval [2~ιT*, T*) in case
T* is finite. However, by a standard argument one can extend H beyond
T*. Since this contradicts the maximality of Γ*, Γ* must be infinity.
Proposition (1.5) thus yields a uniform estimate of all orders of H as well
as a positive lower bound for the curvature K of the convex hypersurfaces
determined by H in, say, [1, oo).

In view of the inequality

ε > Γ ί Ht(F-K)= Γ [ (F-K)log^
Jo Jsn Jo Jsn κ

we can extract a sequence {Xj}, Xj = X(tj), such that in self-explanatory
notation,

lim f (F(VHj) - Kj) log F(VIf ) = Q

By compactness we may assume {i/7} converges smoothly to a convex
function H on Sn. Clearly # solves (2).

We have shown that for each sufficiently small ε, there corresponds a
smooth solution Xε of (2) with J(Xε) < c + ε. Since we have a uniform
estimate of all orders on Xε, ε < ε 0 , by letting ε tend to zero, by com-
pactness again there is a subsequence of {Xε} which converges smoothly
to a solution X. Clearly J(X) = c. Hence the proof of Theorem A is
complete.

3. Another gradient flow

In this section we shall first study the gradient flow

(3.1) Xt = -(Kl/n-Fl/n)v

and then use it to prove Theorem B. We shall derive the equations satisfied
by the Gauss-Kronecker curvature K and the mean curvature M of X.
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By applying the maximum principle it will be shown that K has a positive
lower bound (hence convexity is preserved) and all principal curvatures
are comparable as long as X stays in the region where F is positive. The
choice of this flow is inspired from Chow [4], The computation below has
been carried out in [4] in case F is identically equal to zero.

Throughout this section the function F = Fι/n is always assumed to
satisfy (i) the set Ω = {x: G > 0} is bounded and (ii) there exist positive
constants a and b such that

a,β=l, - ,n + l,
UΛaUΛβ

in Ω.
We regard X as an embedding of Sn into Rn+ι. The induced metric

and the second fundamental form, written in terms of a local coordinate,
are given respectively by

lax ax\ A , , _.
£,, = ( T : — , -^— ) and A.. = ( -—

where ( , •) is the Euclidean metric in R"+1. Denoting by V the covari-
ant differentiation in x. and the moving indices up or down by contraction
with the metric as usual, we compute

(3.2)

As

= V,.V,(*1 / π - G) - (Ki/n - G)bikb
k

r

-V^

= -κι/n-1 v.v κ + -(-- ι)κι/n-\κv K
n ' } n\n ) ' J

and

where hkl satisfies hklblm = δk

m , we have
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Using Gauss' equation Rijkl = bikbjl - bubjk leads to

Λ W V , V , 6 W = hk'(Vk V,bu + Rijkmbml + Rijlmbmk)

= Ahbij + Mbij-nAij,

where ΔΛ = \KxlnhklVkV, and A(j = bikb
k . Therefore,

db;; 1 ,

-(Kυ"-G)Aij-ViVjG.

By means of (3.2) and (3.3), we obtain

(3.4) ^ = Ahκ + 1 ( I - Λκ1/n~l\VK\2

h + (K1/n - G)KM - KAhG.

Using the identity

" nk1 'M

we also have

- M-2hkmhln(MVibmn - v

1 Y 2

^Kι/n(M2 - n\A\2) - (Kι/n - G)\A\2 - ΔG

^ " ^ " Jbkl - VjMbkl).

Combining this equation with (3.4) we finally arrive at

d K K K (n\A\2 \ K nKA + { l ) A G +

(3-5) + — ^ Γ g ' J h h m h i m n ^ ^ j u j u

(3.6) Proposition. Let X be a solution 0/(3.1), which lies in Ω. Then
there exist positive constants I and Ko depending on a, b, and initial data
such that (a) lκmin > κ m a x and (b) K > Ko, where κ m a x and κmin are
respectively the maximal and minimal principal curvatures of X.
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Proof. Taking special coordinates so that g.. = δ^, h ;. and Gaβ are
diagonal at a point, we obtain

= Σ (- k

where ai = - ]Γ)GααV XαV ΛΓ" bounded between a and b. Thus we can
find λ such that

-nK~l/nAhG+±-AG>0n M

if ^max/̂ min - ^ Applying the maximum principle to (3.5) we immedi-
ately conclude that either - ^ > min^r(O) or 1 < ^m a x/κ:m i n < λ. In
both cases (a) holds.

To prove (b) we look at the coefficient of K in (3.4). By (a) we have

> n C M min { ^ \Gau
a\ + ic^fl > 0

if κ:min is less than a constant κQ depending on / and G. Applying the
maximum principle to (3.4) we conclude that either K > minA'(O) or
K >KQ . Hence the proof of the proposition is finished.

As in the case for the logarithmic gradient flow, it can be shown that
(3.1) is equivalent to the following equation for the support function H
of X:

(3.7) Ht = -Kl/n + G.

We shall derive a priori estimates for solutions of (3.7). Since G is smooth
and uniformly concave, we can find a small ε0 such that the principal
curvatures of the boundary of the set Ω; = {x: G(x) > eQ} are greater
than ε 0 .

(3.8) Proposition. Suppose that X is a solution of space (3.1) with X(0)
lying in Ω'. Then X remains in Ω'.

Proof If X touches <9Ω7 for the first time at a point, then at the
normal of this point Ht is nonnegative. On the other hand, since X{t) is
convex and touches dΩ! from inside, we have

a contradiction.



404 RAISING TSO

(3.9) Proposition. Suppose that H is a solution σ/(3.7) in Q = Sn x
[0, T] with X(0) contained inside Ω', and further that H > r for some
positive r. Then there exist constants C and C' such that

\\H\\m) < C

and

(Haβ + Hδaβ)ξaξβ>C'\ξ\2.

Here C and C1 depend on n, r, diam(Ω/), the C2-norm of F in Ω', a
positive lower bound of F in Ω', and initial data. Consequently for each
k, k > 2, and t0, 0 < tQ < T, there exists Ck which also depends on
higher derivatives of F such that

Proof By (3.7) and (3.8), X( 9 T) is uniformly convex and stays in
Ω'. We have \VH\ < Diam(Ω/), and estimate other derivatives of H as
follows. The argument is similar to that of Proposition (1.5) except now
we take g to be the constant function 1.

Step \:Ht>-Cx. This is similar to the proof of Proposition (1.5). By
differentiating (3.7) we obtain

Consider the same auxiliary function η as before. At a negative minimum
we have

>C2{-Htγ-Cv

This implies a lower bound for η and hence for Ht.

Step 2: Ht< C4 . This follows immediately from the equation itself.

Step 3: |V 2 i/ |<C 5.
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Step 4: (Haβ + Hδaβ)ξaξβ > C'\ζ\2 . Both steps are consequences of
Proposition (3.6).

Now we can argue as in the proof of Proposition (1.5) to conclude the
rest of the proof.

We have come to the main body of the proof of Theorem B. Let Y be
an element in 3? which is contained in Ω' and satisfies J(Y) < 0. By
assumption, Y exists. For X with D(X) = p, we have

J(X)> f ίϊ- (m3xF)ωnp
n+ι =δnp- (maxF)ωnp

n+1,

where H is the support function for a line segment of length p contained
in X, and ωn is the volume of the unit ball in Rn+ι. As a result, we can
fix a p, p < D(Y), such that

J(X)>2-ιδnp,

whenever D(X) = p. We can also fix a small sphere Z in Ω' such that
ι~ιD{Z) is less than p and J(Z) is less than 2~ιδnρ. Suppose that Γ =

{γ: γ: [0, 1] -+ 3? is continuous, γ{s) C Ω' and satisfies D(γ(0)) < p,

D(γ(l)) > p, and J(γ(0)), J(γ(l)) < 2~lδnp} , and set

c = infmax/(y(s)).
y€Γ s

Clearly Γ is nonempty and c > 2~ιδnp. We shall show that c is a critical
value of / .

For ε > 0 , c - ε > 0 , w e can find γ in Γ such that

J(γ(s)) <c + ε.

Using this γ as initial data we can solve the gradient flow (3.1) and obtain a
family of solutions γ{t, s) in a set of the form {{t, s): 0<t< T(s), 0 <
s < 1}. For each (t, s) in this set, γ(t, s) is uniformly convex and stays
in Ω'. For the life-span of γ we claim that with a further restriction of
ε, a flow of (3.1), which satisfies initially J(X) <c + ε9 exists as long as
J(X{ή) > c-ε. To prove this we first observe that D(X{ή) and rin(X(ή)
tend to zero simultaneously if this ever happens. For, if X collapses into
a degenerate convex body but not a pont as time evolves, there would
be some point on X with arbitrary small principal curvature at some
direction. However, by Proposition (3.6)(a) this implies that the Gauss-
Kronecker curvature at this point is also small—a contradiction with (b)
of the same proposition. As a result, the inradius of X has a uniform
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positive lower bound as long as J{X) > c - ε. As we have shown in the
proof of Theorem A we can find δ > 0 such that B(z{t), δ) is contained
in X(i), where z(ή is the convex center of X(t). Now, for t and /',
\t-t'\ < 1, we have

(t)-z(t')\< f ( ί
Jt1 \J{\Ht\<δ'}

[
where δf = (4τn)~ιδ. Along the flow,

1//2 F1/f l) < 0./ (

Jsn

Integrating it from t' to t gives

2ε> f ί {F-K)Ht>δn f ( \Ht\.
Jt1 J{\Ht\<δ'} Jt1 J{\Ht\<δ'}

Thus \z(ή - z(t')\ < δ/2 if we restrict ε to be less than 2" 2 / 2 " 3 τ^" + 1 .
Now using Proposition (3.9) rather than Proposition (1.5) we can argue as
in the proof of Theorem A that X{t) exists as long as J(X(ή) >c — e.

It makes sense to define t*(s) = sup{ί: J(γ(t, s)) > c - ε} (set t*(s)
to be zero if /(y(0, s)) < c - e). Notice that t* cannot be continuous,
otherwise γ(t*(s), s) defines a curve in Γ and yet J(γ(t*(s), s)) < c - ε.
Let s0 be a point of discontinuity. Then we claim that t*(s0) = oo.
Suppose on the contrary there exists {Sj} such that Sj tends to sQ and
t*(Sj) tends to tχ, which is not equal to t*(s0). For any / < t*(s0),
J(γ(t, s0)) > c - ε . Hence, for large j , /(y(ί, s )) > c - ε. This im-
plies that ίj > ί*(J0). However, fix t' with / ! > / ' > ί*(ί0). Then
J(γ(t', s0)) < c - ε. (y(ί*(50), sQ) cannot be a critical point otherwise
t*(s0) would be infinite.) But this yields that tx < / , a contradiction.
Similarly one can draw a contradiction in the case t*(s0) = 0.

Let X{t) = γ{t, s0). Then X satisfies (3.1) for all time. Using the fact

2ε> Γ ί (Kι/n -
Jo Jsn

we can follow the proof of Theorem A (a positive lower bound of K is
given by Proposition (3.6)) to conclude that there exists a smooth solu-
tion Xε of (2) with J(Xε) lying between c and c + ε. Since all Xε 's
are contained in Ω' and their Gauss-Kronecker curvatures are pinched
between two positive constants, it is not hard to see that the inradii of
Xε are bounded below and above by two positive constants. Thus a se-
quence {XJ = Xε } converges to a nondegenerate convex hypersurface X
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in Hausdorff metric as 6j tends to zero. We claim X is smooth and solves

our problem. Since there is δ > 0 such that B(z(Xj), δ) is contained in

XJ, B(z(X), ί/2) is contained inside Xj for sufficiently large j . Using

z(X) as the origin, we have

for sufficiently large j . Here hj is the restriction of Hj to the tangent
space at the south pole and satisfies the equation

detvV = j jm

in Rn . Since the domain {x: hJ < 4R} contains the ball B{31/2) and the

oscillatin of hJ over this domain is at least 21?, we may apply Pogorelov's

C2-interior estimate [9] to obtain a uniform estimate of {V2A7} in the unit

ball. Appealing to further interior regularity for solutions of uniformly

elliptic equations in nondivergence form we obtain uniform estimates of

all orders of {V2Λ7} in B(21^2). Therefore /us smooth and satisfies

, A*)

in 5(2 1 / 2 ) . Similarly one can show that the restriction of H on any
tangent space is smooth and satisfies a corresponding equation in a ball
of radius 1/2 centered at the base point. Hence we conclude that H is a
smooth solution of (2). Clearly J(X) = c. Thus the proof of Theorem B
is finished.

4. Functionals with symmetry

Perhaps the simplest candidate for a curvature function that one can
imagine is the constant function 1. By a characterization of spheres the
solution of (2) is the unit sphere. Next one may ask whether (2) is solvable
if the prescribed function is bounded between two positive constants. Al-
though it is easy to verify that the setting for a mountain pass argument is
valid, we have not been able to establish this result. Similarly a mountain
pass argument should be able to apply under the assumption in Theorem
A, that is, JF is integrable in the whole space, to produce a solution other
than an absolute minimum. A main technical obstacle is to ensure the
logarithmic gradient flow, though apparently preserves convexity, behaves
in a nice way. Specifically one would like to see that the inradius and
the diameter tend to zero simultaneously provided that it really happens.
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Nevertheless, this desirable property can be established if we impose cer-
tain symmetry assumptions on the prescribed function and seek solutions
among hypersurfaces invariant under this symmetry. To formulate the re-
sult let G be a subgroup of the orthogonal @{n + 1) which acts on Rn+ι

from the right. F is called G-invariant if F(xg) = F(x) for all x in
Rn+ι and g in G. A hypersurface X is called G-symmetric if Xg = X
for all g in G. Denote the class of all G-symmetric hypersurfaces in 3?
by XG. We assume G satisfies the condition that {x: xg spans RΛ+1

for some JC} . It is easy to see this condition is equivalent to

(4.1) β

(4.2) Proposition. Let G be a subgroup of @{n + 1) such that (4.1)
holds and let F be a positive G-invariant function. Then (i) there exists a
solution for (2) //

lim (^-JΪ ί
*_>oo V i KJBR

and (ii) there exist two solutions for (2) //

. = 00

JBR J
and inf{-Y: X e JίG} is nonpositive.

In particular, (2) is solvable if F is bounded between two positive
constants or F is integrable and there exists some X in 3£G with J(X) <
0.

Proof. In both cases it is easy to see that there exist p > 0 and Z , Y in
3fG such that J(X) > 2~ιδnp on D(X) = p, J(z) < 2~ιδnp, D(Z) < p
and J(Y) < 2~ιδnp, D(Y) > p. We may define Γ (replace Ω' by Rn+ι)
and c as in the proof of Theorem B and show that c is a critical value of
J in 3?G.

As usual we decrease / along a negative gradient flow. For the present
case we choose the logarithmic gradient flow (1.1) as it preserves convex-
ity. Also by the uniqueness of solution to a parabolic equation X(t) still
belongs to 3?G for each t. We claim that the solution exists as long as
J(X(ή) is bounded between c-ε > 0 and c + ε. For, in case (i) we have

Hence J(X) becomes nonpositive as rin(X) and D(X) go to infinity.
In case (ii) we first observe, by the Brunn-Minkowski inequality, that the
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following isoperimetric inequality [1] holds:
n + 1

and equality holds if and only if X is a unit sphere. Using this we have

Ίrn-U F)
\ D JB(D/2) )

- 2\ β DjB{D/2)

Hence as in case (i) we conclude that the diameter of X is bounded as long
as \J{X) — c\<ε. Now by symmetry the support center of X(t) is always
the origin. Arguing as in the proof of Theorem B and using Proposition
(1.5) instead of Proposition (3.9), we find that there exists X(t) with
c < J(X) < c + fi which contains a subsequence {X(t.)} converging
smoothly to a solution Xε of (2). Letting e go to zero, we obtain a
solution X of (2) with J(X) = c.
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