J. DIFFERENTIAL GEOMETRY
34 (1991) 255-265

HOMOTOPY K3 SURFACES CONTAINING X(2, 3, 7)

RONALD FINTUSHEL & RONALD J. STERN

1. Introduction

An interesting question in 4-dimensional topology is whether each irre-
ducible simply connected smooth 4-manifold other than S* must admit
a complex structure. One technique which has been suggested for answer-
ing this question is to try to produce examples which have all of their
Donaldson polynomials [3] vanishing, and then use Donaldson’s theorem
that complex algebraic surfaces have nontrivial polynomial invariants. A
natural place to begin study is among smooth manifolds with the homo-
topy type of a K3 surface; we refer to such manifolds as homotopy K3
surfaces. Kodaira [7] has produced a family of homotopy K3 surfaces
by performing logarithmic transforms on the fibers of elliptic K3’s but
these manifolds all have complex structures. (Their difftomorphism types
have been studied recently by Friedman and Morgan.) Also, there were
many (unpublished) examples of homotopy K3 surfaces constructed about
a decade ago by Kirby calculus pictures.

A common aspect of many of these latter examples is that they admit
an embedding of the Brieskorn homology 3-sphere X(2, 3, 7), which may
be described as the link of a complex algebraic singularity {(x, y, z) €
X+ y3 +z = 0} ns’ , or, equivalently, as the result of —1 surgery on
the right-handed trefoil knot. (The Poincaré homology sphere, (2, 3, §5),
is the result of +1 surgery on the right-handed trefoil.) In this article we
shall show

Theorem 1.1. Any homotopy K3 surface which admits an embedding of
X(2, 3, 7) has a nontrivial Donaldson polynomial invariant of degree 10.

We will give a fairly elementary proof of this fact based on Donald-
son’s study of 4-manifolds whose intersection form has one or two positive
parts [2] and on our study of the representation space of X(2, 3, 7) [4].
In particular, our calculations of Donaldson’s invariant use no algebraic
geometry.
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The philosophy of our proof is closely related to forthcoming work
of Donaldson which gives his relative polynomial invariants in terms of
Floer’s instanton homology theory. However, our result neither uses the
generality of that theory, nor does it admit any obvious generalizations in
that direction. The proof uses an analysis of the effect on anti-self-dual
moduli spaces of letting a metric on the homotopy K3 surface degenerate
along our homology sphere. It then applies rather specific knowledge about
the representation space of #,(X(2, 3, 7)) into SU(2).

Our result is also a key step in Akbulut’s construction of a fake relative
smooth structure on a compact contractible 4-manifold [1]. Akbulut’s
construction produces a homotopy K3 surface M containing X(2, 3, 7)
and contractible 4-manifold W together with a self-diffeomorphism f of
OW which extends to a self-homeomorphism of W such that either

(1) M has all its Donaldson polynomial invariants trivial, or

(2) there is no self-diffeomorphism of W extending f.

Our theorem then implies that (1) is false; so Akbulut’s construction gives

).

2. Donaldson’s polynomial invariant

Let us begin by quickly reviewing the construction of Donaldson’s poly-
nomial invariant [3]. Suppose we have a simply connected closed 4-
manifold M*, where b; (M) is odd and > 1. The moduli space .# (M)
of anti-self-dual connections on the SU(2) bundle over M with ¢, =k
has formal dimension 8k — 3(1 + b;" ) = 2d . For a generic choice of Rie-
mannian metric on M, the moduli space, .#, (M), if nonempty, will be a
manifold of this dimension [6], [2]. (Here, as usual, we must use Sobolev
spaces of connections; see [2] for details.) If k& > %(1 +b;r ) , Donaldson [3]
defines a polynomial g, (M) in the polynomial algebra P[H,(M ; Z)] as
follows. Let # (M) denote the space of gauge equivalence classes of con-
nections on SU(2) bundles over M. For z € H,(M; Z) choose an em-
bedded oriented surface S representing z with an open neighborhood N
such that H,(N; Z) = Z[S]. If ry: (M) — £ (N) denotes the restric-
tion map and @,{, denotes the space of gauge equivalence classes of SU(2)
connections over N which are either irreducible or trivial, then Donald-
son shows in an appendix to [3] that the surface S representing z can be
chosen so that I_[f=0./l,(M ) is contained in r; l(B}:,) . Furthermore, there
is a complex line bundle Lg over 3?;, with a section so that when pulled
back over r; 1(B;[,) it gives a section g of r;(LS) whose zero set V; is



HOMOTOPY K3 SURFACES CONTAINING X(2, 3, 7) 257

a codimension-2 submanifold of rg 1(B;‘\,) which meets all of the moduli
spaces .#, (I < k) transversely. In particular, since ./#,(M) = {8}, where
© is the trivial SU(2) connection, transversality means that @ ¢ V.
(The map z — c,(r5(Lg)) is the map u: H,(M;Z) - HX(B(M); Z)
constructed in [2].)

Given homology classes z,,---, z, € H,(M; Z), represent them by
surfaces S, -, S, in M chosen as above. It is possible to pick the
surfaces to be in general position and have their open neighborhoods N,
so that all triple intersections N, N N N N, are empty. The intersection
Vs N+ NV A (M) will then be discrete, and the condition & > 3(1 +b)
will imply that it is compact. (The ¥ are also chosen to have transverse
multiple intersections.) The Donaldson polynomial invariant is defined to
be

GM)(z,, -, 2;) = #(Vg NNV NAM)),

where # denotes a count with signs. Donaldson proves that g, (M) de-
pends only on the smooth structure of M . (See [3].)

Now let M denote a smooth oriented homotopy K3 surface. This
means that z,(M) =0 and that the intersection form of M is 2E; & 3H
of rank 22 and signature —16.

Lemma 2.1. X(2, 3, 7) embeds in a K3 surface, splitting it into sub-
manifolds with intersection forms Eq & H and E; & 2H .

Proof. This follows from [8] where it is shown that the triangle singu-
larity D,;,= Z(2, 3, 7) embeds in a K3 surface with smoothing given
by the E,, diagram.

Lemma 2.2. If X(2, 3, 7) embeds in a homotopy K3 surface M, it
splits M into smooth oriented submanifolds M = X UY , where the inter-
section form of X is E;® H, and the intersection form of Y is E;®2H .

Proof. The p-invariant of X(2, 3, 7) is nonzero; so the intersection
forms of X and Y must each have an E; summand. Now by Lemma
2.1, £%(2, 3, 7) bounds manifolds which have intersection forms E & H
and E; @ 2H. Thus, if either X or Y had the intersection form Eg,
we could construct a simply connected 4-manifold with intersection form
2E; @ kH for k =1 or 2, in contradiction to Donaldson’s Theorems B
and C of [2]. q.e.d.

Next we present information about the representations of the funda-
mental group of X = X(2, 3, 7). We shall use the same notation for (the
conjugacy class of) a representation n(Z) — SU(2) as for the gauge equiva-
lence class of flat connections over X which it induces. Consider an SU(2)
connection 4 over +X x R with finite action. It must be asymptotically
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flat with limiting connections p, o as ¢t — +oo. Let 4 s(p, o) denote
the moduli space of anti-self-dual SU(2) connections over +X x R with
these asymptotic conditions. (It is imperative in this situation to use con-
nections with exponential decay and a corresponding group of gauge trans-
formations. See [5].) Let 6 denote the trivial representation of =z (X).
The next proposition follows directly from computations in [4].

Proposition 2.3. Let X = X(2, 3, 7). Then up to conjugacy there are
two nontrivial representations o, f: n,(X) — SU(2), and the (mod 8)
dimensions of the corresponding moduli spaces of anti-self-dual connections
on £X xR are:

dim#(a, 0)=2,  dimsA_y(a, ) =3,
dim (B, 0)=6,  dimA_ (B,0)=7.

Now let M = X UY as in Lemma 2.2. Choose homology classes
2,25, 25,24 € Hy (X, Z) = E; ® H such that the pair z,, z, € Ej
satisfies zf = z§ =2 and z,-z, =1, and the pair z,, z, € H satisfies
z§ = zi =0 and z,-z, = 1. Similarly, choose zg, -+, z, € H,(Y;Z) =
E;®2H so that zg, z, form a pair in Eg and z,, zg and z,, z,, form
pairs in the two copies of H. For each z;, choose an oriented surface
S; in X or Y as in the definition of Donaldson’s polynomial. We may
suppose that the S; are in general position. Note that dim.#,(M) = 20.

Consider now the result of collapsing the homology sphere X to a
point. After removing the singular point, we are left with a disjoint union
X, 1Y _,where X, = XU(0X x[0, c0)) and Y_ = (0Y x (—o00, 0)UY .
According to [11, §8], for generic metrics g, and g, any moduli spaces
of anti-self-dual connections /lX+(p) and .#, (p) are manifolds. Since

we are dealing with finite action solutions of the anti-self-duality equa-
tions, these solutions must be asymptotically flat. Here “ p ” denotes the
representation corresponding to the flat asymptotic connection.

Fix a generic metric g¢ on M. We can then choose codimension-
2 submanifolds Vg -‘-Vs1 whose multiple intersections with the mod-
uli spaces .#,(M, g), | < 4, are transverse. Furthermore, the Vsi can

also be chosen to have transverse multiple intersections with any compo-
nents of .#, (g,, p)U#, (g, p) of total formal dimension < 20. (We

can view the Vg as living in " (X, 11 Y_) because the restriction maps

i

B (M) — B (N,) factor through Z(M\Z).)

Now consider a sequence {g,} of generic metrics on M with g, = g
which converge to the (necessarily singular) metric g, V g, on M/ ~,
where ~ collapses X to a point. Since the cone on ¥ minus the cone
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point is conformally equivalent to a cylinder X x R, we get our limiting
metrics g, and g, on X, and Y_. The ¥, being submanifolds of
the Hilbert manifold %" (M), have tubular nei‘ghborhoods For each i,

let 7(”) be such a sequence of tubular neighborhoods with radii — 0 as
n—oo. Then, using [3], for each 1 < n < co we can perturb the sections
o, to obtain new codimension-2 zero sets, Véf )| contained in W(" , SO

that the intersection of any p of the V( have empty intersection w1th any
moduli space (M, g,) of formal dlmensmn less than 2p. Donaldson
also shows that the polynomial invariant can be computed from these V(”
after further, arbitrarily small, perturbation making all the intersections
transverse.

Suppose now that g,(M)(z,, - , z,;) =1 (mod 2). In particular, for
each n, V(”) n---N V(") N.#,(M, g,) is nonempty. Choose an anti-self-

dual connectlon A € V(" ne-- nV(" N#,(M, g,) foreach n. By Uhlen-
beck’s Compactness Theorem [12], there are limiting anti-self-dual connec-
tions 4, over X \{x,, -, x}, 4y, over Y_\{y,,---, .}, and limit-
ing instantons at the points x; and yj. Both 4, and 4, are asymptoti-
cally flat with limiting flat connections p, and p, . In addition there is the
possibility that, in the limit, curvature is lost at the neck between X , and
Y_ . In that case one also has flat connections p, = p,, p,, - , p,, = Py
and limiting nontrivial anti-self-dual connections B; € #,(p;_,, p;) for
i=1,---,m. Let ny and n, denote the formal dimensions (i.e., the
dimensions given by the index theorem) of the components of the moduli
spaces containing A, and A4, ,and foreach i=1,.--,m let n, >0 be
the formal dimension of the component of .#, ;(p,_,, p;) containing B, .
Also, let T > 0 be the number of p, = 6. Then, counting dimensions,
we have:
20=ny+ny+8(r+s)+ ) n+3T.
Since the surfaces S, are in general position in M, no point lies on

more than two surfaces. So on X the points x,, ---, x, lie on at most
2r of the S;. Recall that a connectlon lives in V if and only if when

restricted to the open nelghborhood N, of §; it hes in the zero set of
the section o,. Each 4, € V , which converge as sets to Vs ; so if
no x; € S;, then Ay € V.. Slmllarly, for k = 5, , 10, 4, € Vsk

ifno y, €§,. Suppose first that A x 1s the trivial connectlon 6 x> on
X, ;80 ny=-6and T >1. But ©, does not lie in any V§ ; so for

i=1,---,4,and j=1,---,r each S,. contains some point X Thus
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r>2. If A, is also trivial then n, = -9, and similarly s > 3. The
above count of formal dimensions,

20=—6+(-9)+8(r+8)+Y_n+3T>25+Y n,+3,

then gives a contradiction. If A, is trivial but AY is nontrivial then
ny >0 and A, lies in at least 6 — 25 of the Vs, 's: Since each Vg is
codimension-2 thls means that 2(6 — 25) < n,,. The formal dimension
count then gives the contradiction

20> —6+2(6-25)+82+5)+y_n+3225-4s+) n,

A similar formal dimension count shows that we cannot have 4, = 6,
and A4, nontrivial so that neither 4, nor A, is trivial. Applying our
formal dimension count once more we get

20> 2(4-2r) +2(6— 25) +8(r +5) + >_ n, + 3T.

Thus, r=5=0, T=0,and ) n,=0;s0 m=0 and p, = p, = p,
say. Also ny, =8 and n, = 12. Arguing further we get:

Proposition 2.4. If q,(M)(z,, -, z,,) = 1 (mod 2), then there are
connections Ay € Vg N---NVg NAy (a) and Ay € Vg N---NVg NAy (@),
where dim/X+(a) = 8 and dim.#, (a) = 12. Furthermore, 0X = X,
and for any sequence of connections {A,} as above we have p = a.

Proof. If we get the asymptotic condition p, then dim.#, (p) = 8.
Let B be any connection over dX x R (where X = £X), which tends
asymptotically to p as ¢ — —oo andto 6 as t — +oo. Grafting 4, to B
as in [5] we obtain a connection 4, # B over X . » which is asymptotically
trivial, and so the index of the anti-self-duality operator D 4 #B is 8k —

3(1 +b;(X)) = —6 (mod 8). Butalso IndD, 4,=1IndD, +IndD,
8+Ind Dy = Ind Dy (mod 8) since B is irreducible. It now follows from
Proposition 2.3 that 0X =+ZX and that p=a. q.ed.

Conversely, we have
Proposition 2.5. Let .4, (a) and My (o) be moduli spaces of anti-

self-dual connections of dlmenszons equal to 8 and 12 respecttvely Let
z;,8;, i =1,--.,10, be as above, and let m_ = #(V. n--N¥s N

My () and n, = #(I/:95 NNV NAy (). Then q,(z,, - , z,y) =
m,n, (mod 2).

Proof. If f4x € VSlﬂ---nVS"n/&(a) and 4, € Vsjr‘ln.ﬂl{gwﬂ/y_ (a).,
then for metrics g on M close enough to g, V g, there is a grafted anti-
self-dual connection Ay #g Ay in I/:?n Nn---nN VS0 n#.(M,g), where

1
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8k — 3(1 + b;(M)) =8+ 12;s0 k =4. A study of this grafting process
shows that for g close to g, V g, each 4 € #,(M, g) can be uniquely
written as 4 = A, #, A, (see [9]).

3. Proof of Theorem 1.1

Let M = XUY beasinLemma2.2andlet S,, --- , S, be the surfaces
in X described in §2. The goal of this section is to build moduli spaces
My (o) and A, (o) as described in Proposition 2.5 such that m_ and
n, are odd, so that g,(M)(S,, --- , S;;) =1 (mod 2). The basic idea is to
apply ideas of the proofs of Donaldson’s Theorems B and C in [2]. In this
case, instead of obtaining contradictions, we obtain information about the
ends of the moduli space, which correspond to the asymptotics of X (or
Y_). First we work with X_ . It follows from the work of Taubes [10],
[11] that the moduli space .#y ,(6) of ¢, = 2 asymptotically trivial
anti-self-dual connections over +X+ is nonempty, and is therefore a 10-
dimensional manifold when X_ is given a generic metric. We want to
study the 2-manifold Nt = V:ﬂ n---nN VS4 n/xwz(e) , where S, ---, S,

are the surfaces described in §2. We need to examine the ends of N 2.

The ends of /lx+,2(0) correspond to the ways that sequences of anti-
self-dual connections in /X+ .2(6) can converge to an anti-self-dual con-
nection with a different ¢, or asymptotic condition. For example, such a
sequence could converge to

(1) a ¢, =1 anti-self-dual connection 4 € #; (0) together with
an instanton at a point x € X, :

(2) the trivial connection ©, together with a pair of instantons at points
x and y in X, or

(3) an anti-self-dual connection A4 , € /[,\g .1(p), p anontrivial asymp-
totic condition, together with an instanton over § X xR (where X = +X)
which tends asymptotically to p as t —» —oo andto 6 as ¢t — +oo.

This description also indicates how the moduli space .#, 2(8) is com-
pactified. For details see [2]. ’

If a sequence {4,} in N? converges to an A4_ € IX+’1(0) together
with an instanton at a point x € X, then as in §2 the point x lies on
at most two of the surfaces S, and so there are i, # i, with 4_ lying
in the transverse intersection V;, NVy N.#, ,(6). But V; NV is

! L +? il 2

l . . .
codimension-4 and dim.#, () = 2; so this situation cannot occur.
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Suppose there is an end of N 2 corresponding to a sequence {4,} con-
verging to ©, together with instantons at x and y in X. If there is
an S; containing neither x nor y, then O, € V; . However as noted in

§2, ®, ¢ V; for any i. Thus the ends of N? coming from sequences

converging to ©, corresponding to pairs {x, y} € s2 (X) such that each
S; contains x or y. It is shown in [2] that this correspondence is 1-1. By
our choice of surfaces there are

(S,.l -S,.z)(Si3 -Si4) + (S,.l 'Sia) + (S,.l -S,.d)(Si2 'Si,) =1 (mod 2)
such pairs of points.
Donaldson shows that the end of N* corresponding to (8,, {x, y})

is the cone on a circle L, , and further that (L, ,1#0 in H, (.93}; Z,)).

This is proved by producing a class u, € H l(gﬁ” ; Z,) which evaluates
nontrivially on each [L, ]. Since there is an odd number of these links,

there must be other ends of N* , and each of these other ends must corre-
spond to a sequence of “instantons travelling down the tube” Z x [0, o0)
in X, together with instantons at some points of X as above. This
means that there is a corresponding sequence {4,} in N? such that for
large enough n, A4, is close to a grafted connection I, #. .-#Ik # A X
# B, #---# B,, where each I, is an instanton at x; € X, 4, € #; (p)
for some flat connection p on X, and there are flat connections p ; on
X,j=0,1,---,1,suchthat py=p, p,=6,and B, e/lﬂ(pj_l,pj),
where dim#,(p;_,, p;) 2 1. (See [5, 1.c.2])

A dimension count quickly clarifies this situation. The sum of the di-
mensions of the moduli spaces containing the I;, 4, ,and B ; must be less
than or equal to 10 = dimMX+’2(0) . Itisclear that Kk < 2. If k =2 then
we are left as above with limit the trivial connection, and there is no energy
left for instantons to travel down the tube giving B,,--- , B,. If k =1
then as before A, € Vg NV N.#, (p). This is also impossible since

by hypothesis B, is nontr1v1al $0O dlm/l 1(p) <Ay (68) =2. Hence,
there are no point instantons in the limit. Thus, A, lies in the transverse
intersection VSI n---N V;4 N.#y (p). This means that dim.#Z, (p) > 8.

Since B, is nontrivial, it follows from Proposition 2.3 that +X = X,
p=a, p,==0,and [ = 1. Thus this end of .#, ’2(0) is related to a

local diffeomorphism
‘/[X+(a) x‘/[}_‘,(a9 0) - X+,2(0)s
where dim.#, (o) =8 and dim.#(a, §) =2
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It follows that /IX+ ()N Vsl N---N I{g“ is a 0-dimensional submanifold,
and is compact by another codimension argument. Hence, “l,\; (a)N V:Vl N
N VS4 is a finite set, say equal to {4;:i =1, ..., r}. Furthermore
the existence of a temporal gauge shows that £ (a, 6) = Z;(a, 0) xR,
where Z;(a, 0) is a 1-manifold. Any sequence of connections {B,} in

—

M (o, 6) which fails to converge will correspond to a local diffeomor-
phism
Z;(a, g,) xRxZ;(al, g,) xRx ... xffg(ak, 0) —uf?;(a, 0).

Proposition 2.3 together \lv\ith a simple dimension count implies that this
does not occur, and so £ (a, #) is compact. Say that .#(a, 6) is the
disjoint union of components {S,.l};=1 . The end of N? corresponding to
{4;} x S} is A, # S} ={4,#B: B¢ S}}, and the characteristic class u,
evaluates nontrivially on an odd number of these.

Donaldson defines the class %, as follows. For each connection 4 €
ﬂ; we can twist the Dirac operator over X to get a family of operators
B, over By . Since the bundles in question (i.e., the bundle support-
ing A and the +spin bundles) have structure group SU(2) = Sp(1), it
follows that the index bundle Ind I , has a real structure. The class u,
is defined to be w,(det(IndP,)). (The descent of the real line bundle
to .%’; follows from the fact that the numerical index ind B , 1s even;
see [2].) To evaluate u; on an end 4, # S} of N?, first restrict the real
line bundle det(Ind13,) over A, # S} . Since 4; is fixed, as an element
of K(4, # S}), the index Ind), has a constant contribution (the nu-
merical index) coming from A; and a perhaps twisted contribution from
S} . (This can be seen by an excision argument exactly as in [2, Lemma
3.24].) Thus there is a real line bundle over S} whose first Stiefel-Whitney
class v(S}) € H'(S;3Zy) satisfies u,], g1 = w,(det(IndB,|, 41) =
'U(S;) for each i = 1,--- , r where HI(A,. # S} ; Z,) is identified with
H'(S;;Z,). If v(S;) # 0 for j = 1,---,s, and (S;) = O for
j=84+1,---,t, then rs is the number of ends Ai#S} of N* on
which u, evaluates nontrivially. So rs is odd and therefore r is odd.

Hence we have:
Proposition 3.1. There is a nonempty moduli space #, (a) of SU(2)

anti-self-dual connections over X, such that dim.#y (o) =8 and m, =
#(Vs, n---nVs ﬂ/X+(a)) =1 (mod 2).
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As we mentioned earlier, the key idea in the proof of Proposition 3.1 is
that Donaldson’s proof of his Theorem B [2], which shows that there are
no closed simply connected 4-manifolds with intersection form pE; & H
for p > 0, does not contradict the existence of E;® H on X_ but rather
gives information about the ends of ./#; ,(6) which correspond to the
end of X_ . Similarly, by applying the pfoof of Donaldson’s Theorem C
[2], which shows that there are no closed simply connected 4-manifolds
with intersection form pE;®2H for p > 0, we get information about the
ends of ./, 3(0) corresponding to the end of Y_ . Since Proposition 3.1

has determined that X = X, it follows that Y = —X. Now using the
proof of Donaldson’s Theorem C in an argument completely analogous to
that of Proposition 3.1 we obtain:

Proposition 3.2. There is a nonempty moduli space #, (o) of SU(2)
anti-self-dual connections over Y_ such that dim.#, (o) =12 and n, =
#(VS5 n---n¥g N#y (o)) =1 (mod 2).

Thus Proposition 2.5 now implies

Theorem 3.3. Suppose M is a homotopy K3 surface containing
%(2, 3, 7). Then its Donaldson polynomial invariant q,(M)(S,, --- , S},)
=1 (mod 2).

As a corollary we have Theorem 1.1.

It is natural to ask whether g,(M)(S,,---,S),) =1 (mod 2) in any
homotopy K3 surface.
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