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HOMOTOPY K3 SURFACES CONTAINING Σ(2, 3, 7)

RONALD FINTUSHEL & RONALD J. STERN

1. Introduction

An interesting question in 4-dimensional topology is whether each irre-
ducible simply connected smooth 4-manifold other than S4 must admit
a complex structure. One technique which has been suggested for answer-
ing this question is to try to produce examples which have all of their
Donaldson polynomials [3] vanishing, and then use Donaldson's theorem
that complex algebraic surfaces have nontrivial polynomial invariants. A
natural place to begin study is among smooth manifolds with the homo-
topy type of a K3 surface; we refer to such manifolds as homotopy K3
surfaces. Kodaira [7] has produced a family of homotopy K3 surfaces
by performing logarithmic transforms on the fibers of elliptic K3's but
these manifolds all have complex structures. (Their diffeomorphism types
have been studied recently by Friedman and Morgan.) Also, there were
many (unpublished) examples of homotopy K3 surfaces constructed about
a decade ago by Kirby calculus pictures.

A common aspect of many of these latter examples is that they admit
an embedding of the Brieskorn homology 3-sphere Σ ( 2 , 3 , 7 ) , which may
be described as the link of a complex algebraic singularity {(x, y, z) e
C 3 : x2 +y3 + z1 = 0} Π S5, or, equivalently, as the result of - 1 surgery on
the right-handed trefoil knot. (The Poincare homology sphere, Σ ( 2 , 3 , 5 ) ,
is the result of -hi surgery on the right-handed trefoil.) In this article we
shall show

Theorem 1.1. Any homotopy K3 surface which admits an embedding of
Σ(2,3,7) has a nontrivial Donaldson polynomial invariant of degree 10.

We will give a fairly elementary proof of this fact based on Donald-
son's study of 4-manifolds whose intersection form has one or two positive
parts [2] and on our study of the representation space of Σ(2, 3, 7) [4].
In particular, our calculations of Donaldson's invariant use no algebraic
geometry.
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The philosophy of our proof is closely related to forthcoming work
of Donaldson which gives his relative polynomial invariants in terms of
Floer's instanton homology theory. However, our result neither uses the
generality of that theory, nor does it admit any obvious generalizations in
that direction. The proof uses an analysis of the effect on anti-self-dual
moduli spaces of letting a metric on the homotopy K3 surface degenerate
along our homology sphere. It then applies rather specific knowledge about
the representation space of πx(Σ(29 3, 7)) into SU(2).

Our result is also a key step in Akbulut's construction of a fake relative
smooth structure on a compact contractible 4-manifold [1]. Akbulut's
construction produces a homotopy K3 surface M containing Σ(2,3,7)
and contractible 4-manifold W together with a self-diffeomorphism / of
d W which extends to a self-homeomorphism of W such that either

(1) M has all its Donaldson polynomial invariants trivial, or
(2) there is no self-diffeomorphism of W extending / .

Our theorem then implies that (1) is false; so Akbulut's construction gives

(2).

2. Donaldson's polynomial invariant

Let us begin by quickly reviewing the construction of Donaldson's poly-

nomial invariant [3]. Suppose we have a simply connected closed 4-

manifold M4, where b2(M) is odd and > 1. The moduli space Jΐk(M)

of anti-self-dual connections on the SU(2) bundle over M with c2 = k

has formal dimension 8k - 3(1 + b2) = 2d. For a generic choice of Rie-

mannian metric on M, the moduli space, Jtk{M), if nonempty, will be a

manifold of this dimension [6], [2]. (Here, as usual, we must use Sobolev

spaces of connections; see [2] for details.) If k > | ( l + 6 * ) , Donaldson [3]

defines a polynomial qk{M) in the polynomial algebra P[H2(M\ Z)] as

follows. Let 3&{M) denote the space of gauge equivalence classes of con-

nections on SU(2) bundles over M. For z e H2{M\ Z) choose an em-

bedded oriented surface S representing z with an open neighborhood N

such that H2(N; Z) = Z[S]. If rs: &{M) -> 3B{N) denotes the restric-

tion map and 3S]^ denotes the space of gauge equivalence classes of SU(2)

connections over TV which are either irreducible or trivial, then Donald-

son shows in an appendix to [3] that the surface S representing z can be

chosen so that U f = 0 ^ ( Λ O is contained in r7ι(B*N). Furthermore, there

is a complex line bundle Ls over 3S]^ with a section so that when pulled

back over r~x{B\) it gives a section σs of r^(Ls) whose zero set Vs is
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a codimension-2 submanifold of ^(B^) which meets all of the moduli
spaces Jίι (I <k) transversely. In particular, since ^0{M) = {©}, where
θ is the trivial SU(2) connection, transversality means that θ £ Vs.
(The map z ι-> cx{r*s{Ls)) is the map μ: H2{M\ Z) -> H2{β{M)\ Z)
constructed in [2].)

Given homology classes zχ, , zd e H2(M; Z), represent them by
surfaces S1, , Sd in M chosen as above. It is possible to pick the
surfaces to be in general position and have their open neighborhoods Nt

so that all triple intersections N( Π Nj Π Nk are empty. The intersection
Vs Π Γ\VS ϊλJίk{M) will then be discrete, and the condition k > f (l+ϋ£)
will imply that it is compact. (The Vs are also chosen to have transverse
multiple intersections.) The Donaldson polynomial invariant is defined to
be

qk(M){zl9... ,zd) = #(vSιn...nvSdnjrk{M))f

where # denotes a count with signs. Donaldson proves that qk{M) de-
pends only on the smooth structure of M. (See [3].)

Now let M denote a smooth oriented homotopy K3 surface. This
means that πχ(M) = 0 and that the intersection form of M is 2E% θ 3H
of rank 22 and signature - 1 6 .

Lemma 2.1. Σ(2, 3, 7) embeds in a K3 surface, splitting it into sub-
manifolds with intersection forms £ 8 θ H and E% θ 2H.

Proof This follows from [8] where it is shown that the triangle singu-
larity D 2 3 7 = Σ(2,3,7) embeds in a K3 surface with smoothing given
by the EιQ diagram.

Lemma 2.2. If Σ(2,3 ,7) embeds in a homotopy K3 surface M, it
splits M into smooth oriented submanifolds M = XuY, where the inter-
section form of X is E% θ H, and the intersection form of Y is ES®2H.

Proof The //-invariant of Σ(2,3,7) is nonzero; so the intersection
forms of X and Y must each have an Es summand. Now by Lemma
2.1, ±Σ(2, 3, 7) bounds manifolds which have intersection forms E%®H
and £ 8 θ 2 / / . Thus, if either X or Y had the intersection form Es,
we could construct a simply connected 4-manifold with intersection form
2ES θ kH for k = 1 or 2, in contradiction to Donaldson's Theorems B
and C of [2]. q.e.d.

Next we present information about the representations of the funda-
mental group of Σ = Σ ( 2 , 3 , 7 ) . We shall use the same notation for (the
conjugacy class of) a representation π(Σ) —• SU(2) as for the gauge equiva-
lence class of flat connections over Σ which it induces. Consider an SU(2)
connection A over ± Σ x R with finite action. It must be asymptotically
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flat with limiting connections p, σ as t —• ±00. Let Jf±Σ(p, σ) denote
the moduli space of anti-self-dual SU(2) connections over ± Σ x R with
these asymptotic conditions. (It is imperative in this situation to use con-
nections with exponential decay and a corresponding group of gauge trans-
formations. See [5].) Let θ denote the trivial representation of πλ(Σ).
The next proposition follows directly from computations in [4].

Proposition 2.3. Let Σ = Σ ( 2 , 3 , 7 ) . Then up to conjugacy there are
two nontrivial representations a, β: πχ(Σ) —• SU(2), and the (mod 8)
dimensions of the corresponding moduli spaces of anti-self dual connections
on ± Σ x R are:

dimjr τ(a, θ) = 2, Σ

άimJ?Σ(β, θ) = 6, dim^_ Σ ()8, θ) = 7.

Now let M = X l) Y as in Lemma 2.2. Choose homology classes
z{, z2, z3, z4 e H2(X\ Z) = Es Θ H such that the pair zχ, z2 e Es

satisfies z\ = z\ = 2 and zx z2 = 1, and the pair z 3 , z4 G H satisfies
z\ = Z4 = 0 and z 3 z4 = 1. Similarly, choose z5, , z 1 0 € H2(Y\ Z) =
is8 Θ 2H so that z 5 , z6 form a pair in E% and z 7 , z8 and z 9 , z 1 0 form
pairs in the two copies of H. For each zt choose an oriented surface
Si in X or Y as in the definition of Donaldson's polynomial. We may
suppose that the St are in general position. Note that d i m ^ ( M ) = 20.

Consider now the result of collapsing the homology sphere Σ to a
point. After removing the singular point, we are left with a disjoint union
I + U r _ , where X+ = XU(dXx [0, 00)) and Y_ = (dY x (-00, O])U7.
According to [11, §8], for generic metrics gχ and gγ any moduli spaces
of anti-self-dual connections Jtχ (p) and Jίγ (p) are manifolds. Since
we are dealing with finite action solutions of the anti-self-duality equa-
tions, these solutions must be asymptotically flat. Here " p " denotes the
representation corresponding to the flat asymptotic connection.

Fix a generic metric g on M. We can then choose codimension-
2 submanifolds V~ K« whose multiple intersections with the mod-
uli spaces Jf^M, g), / < 4, are transverse. Furthermore, the Vs can
also be chosen to have transverse multiple intersections with any compo-
nents of Jfχ {gχ, p)U^γ (gγ, p) of total formal dimension < 20. (We

can view the Vs as living in &*(X+ Π Y_) because the restriction maps

3B{M) -+ &(NJ) factor through gf(M\Σ).)
Now consider a sequence {gn} of generic metrics on M with go = g

which converge to the (necessarily singular) metric gx V gγ on Mj ~ ,
where ~ collapses Σ to a point. Since the cone on Σ minus the cone
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point is conformally equivalent to a cylinder Σ x R, we get our limiting

metrics gx and gγ on X+ and Y_ . The Vs , being submanifolds of

the Hubert manifold &B*{M), have tubular neighborhoods. For each /,

let Ψ'sή) be such a sequence of tubular neighborhoods with radii —> 0 as

n —• oc. Then, using [3], for each 1 < n < oc we can perturb the sections

ai to obtain new codimension-2 zero sets, V^n), contained in T^n), so

that the intersection of any p of the V^ have empty intersection with any

moduli space Jtt(M, gn) of formal dimension less than 2p . Donaldson

also shows that the polynomial invariant can be computed from these V^

after further, arbitrarily small, perturbation making all the intersections

transverse.
Suppose now that q4(M)(zι, , z1 0) = 1 (mod 2). In particular, for

each n , v£n) n n V^n) n^A(M, gn) is nonempty. Choose an anti-self-
dual connection An e V^n-'-DV^n^iM, gn) for each n. ByUhlen-
beck's Compactness Theorem [12], there are limiting anti-self-dual connec-
tions Aχ over X+\{xχ, , xr), Aγ over Y_\{yλ, j j , and limit-
ing instantons at the points x. and y.. Both Aχ and AY are asymptoti-
cally flat with limiting flat connections pχ and pY. In addition there is the
possibility that, in the limit, curvature is lost at the neck between X+ and
Y_ . In that case one also has flat connections pχ = p0, pY, , pm — pY

and limiting nontrivial anti-self-dual connections 2? e ^r

±Σ{pi_ι, p() for
/ = 1, , m. Let nχ and nY denote the formal dimensions (i.e., the
dimensions given by the index theorem) of the components of the moduli
spaces containing Aχ and Aγ , and for each / = 1, , m let n. > 0 be
the formal dimension of the component of ^±j^P^\, Pt) containing Bt.
Also, let T > 0 be the number of pι. = θ. Then, counting dimensions,
we have:

20 = nx + nY + 8(r + s) + ^ nt, + 3Γ.

Since the surfaces St are in general position in M, no point lies on

more than two surfaces. So on X+ the points xx, , xr lie on at most

2r of the ^ . Recall that a connection lives in Vs if and only if when

restricted to the open neighborhood N( of S( it lies in the zero set of

the section σt. Each An e V^n), which converge as sets to Vs so if

no Xj € S , then Aχ e Vs . Similarly, for k = 5, ••• , 10, Aγ e Vs

if no y[ e Sk. Suppose first that Aχ is the trivial connection, θχ, on

Λί+ so nχ = -6 and T > 1. But θ ^ does not lie in any Vs so for

/ = !,••• , 4, and 7 = 1, , r each 5 contains some point x . Thus
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r > 2. If Aγ is also trivial then nγ = - 9 , and similarly s > 3. The
above count of formal dimensions,

20 = -6 + (-9) + 8(r + s) + ] £ n. + 3Γ > 25 + ]Γ *. + 3,

then gives a contradiction. If Aχ is trivial but Aγ is nontrivial then
fly > 0 and Aγ lies in at least 6 - 2s of the Vs 's. Since each Vs is
codimension-2 this means that 2(6 - 2s) < nγ. The formal dimension
count then gives the contradiction

20 > -6 + 2(6 - 2s) + 8(2 + J) + £ *,. + 3 > 25 - 4$ +

A similar formal dimension count shows that we cannot have Aγ = θγ

and Ax nontrivial so that neither Aχ nor Aγ is trivial. Applying our
formal dimension count once more we get

20 > 2(4 - 2r) + 2(6 - 2s) + 8(r + 5) + £ Λ,. + 3Γ.

Thus, r = j = 0, Γ = 0, and X)n. = 0 so m = 0 and pχ = pγ = p,
say. Also n^ = 8 and n r = 12. Arguing further we get:

Proposition 2.4. if q4(M)(zι, , z1 0) = 1 (mod 2), ίλen ίΛere flre

connections Ax eVs n- Γ)Vs Π^χ (a) and Aγ e Vs n- ΉVS Γ\J£γ (a),

where &mJίχ (α) = 8 and άimJίγ (a) = 12. Furthermore, dX = Σ,

and for any sequence of connections {An} as above we have p = a.
Proo/ If we get the asymptotic condition p, then d i m ^ , (/?) = 8.

Let B be any connection over dX xR (where dX = ±Σ), which tends
asymptotically to /> as J -> -00 and to θ as ί —• H-cx). Grafting ^4^ to B
as in [5] we obtain a connection Aχ # B over X+ , which is asymptotically
trivial, and so the index of the anti-self-duality operator DA #B is 8/c -

3(1 + b+{X)) = -6 (mod 8). But also IndZ^ #B = lndDA + IndZ>5 =

8 + IndZ>5 = lndDB (mod 8) since β is irreducible. It now follows from

Proposition 2.3 that dX = +Σ and that p = a. q.e.d.
Conversely, we have

Proposition 2.5. Let Jΐχ (a) and Jίγ (a) be moduli spaces of anti-

self-dual connections of dimensions equal to 8 and 12 respectively. Let

zn Si9 i = 1, , 10, be as above, and let ma = #(VS n Π Vs n

Jίχ{μ)) and n ^ ^ n n F ^ n / j . J α ) ) . Then q4(z{, ••• , z 1 0 ) =

m α « Q (mod 2) .

Proo/ If Aχ eVsΠ- -ΠVS Γ\Jίχ (a) and Aγ eVsΓ)> -Γ\VS ΠJ?γ (a),

then for metrics g on M close enough to gχ V g y there is a grafted anti-

self-dual connection Aχ#g Aγ in F 5 Π n K s Π Jίk{M, g), where
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Sk - 3(1 + b2(M)) = 8 + 1 2 ; so k = 4. A study of this grafting process
shows that for g close to gx V gγ each A e J?4(M9 g) can be uniquely
written as A = Aχ#g Aγ (see [9]).

3. Proof of Theorem 1.1

Let M = XuY be as in Lemma 2.2 and let S{, , 5 1 0 be the surfaces

in X described in §2. The goal of this section is to build moduli spaces

Jtχ (α) and Jtγ (a) as described in Proposition 2.5 such that ma and

na are odd, so that qA(M)(Sι, , Sl0) = 1 (mod 2). The basic idea is to

apply ideas of the proofs of Donaldson's Theorems B and C in [2]. In this

case, instead of obtaining contradictions, we obtain information about the

ends of the moduli space, which correspond to the asymptotics of X+ (or

Y_ ). First we work with X+ . It follows from the work of Taubes [10],

[11] that the moduli space JKχ 2(0) of c2 = 2 asymptotically trivial

anti-self-dual connections over X+ is nonempty, and is therefore a 10-

dimensional manifold when X+ is given a generic metric. We want to

study the 2-manifold N2 = Vs n Π Vs n Jtχ 2 (0) , where Sx, , S4

are the surfaces described in §2. We need to examine the ends of iV2 .

The ends of Jίχ 2(θ) correspond to the ways that sequences of anti-

self-dual connections in Jίχ 2(θ) can converge to an anti-self-dual con-

nection with a different c2 or asymptotic condition. For example, such a

sequence could converge to

(1) a c2 = 1 anti-self-dual connection A^ e Jίχ x{β) together with

an instanton at a point x e X,
(2) the trivial connection θχ together with a pair of instantons at points

x and y in X ,oτ

(3) an anti-self-dual connection Ap e Jίχ x(p), p a nontrivial asymp-

totic condition, together with an instanton over dXxR (where dX = ±Σ)

which tends asymptotically to p as t —• -oo and to θ as t —• +oo.

This description also indicates how the moduli space Jΐx 2(0) is com-

pactified. For details see [2].

If a sequence {An} in N2 converges to an A^ e Jίχ {(θ) together

with an instanton at a point x e X, then as in §2 the point x lies on

at most two of the surfaces St, and so there are ix Φ i2 with A^ lying

in the transverse intersection V~ Γ) V~ Γ) JKy , (θ). But F9 n FQ is
codimension-4 and &\rcvJ[χ {(θ) = 2 so this situation cannot occur.
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Suppose there is an end of N2 corresponding to a sequence {An} con-
verging to θx together with instantons at x and y in X. If there is
an iS. containing neither x nor y, then θχ e Vs . However as noted in

§2, θ ^ £ Vs for any i. Thus the ends of N2 coming from sequences

converging to θχ corresponding to pairs {x, y} e S2(X) such that each
Sj contains x or y . It is shown in [2] that this correspondence is 1-1. By
our choice of surfaces there are

(\ • Si2)(Si} • SiA) + (5. SJ + (Stι • SiA)(Si2 • Si}) EE 1 (mod 2)

such pairs of points.

Donaldson shows that the end of TV2 corresponding to ( θ ^ , {x, y})

is the cone on a circle Lχ and further that [Lχ y]^0 in HX{£BX Z 2 ) .

This is proved by producing a class ux e Hl(&x; Z2) which evaluates
nontrivially on each [L 1. Since there is an odd number of these links,

there must be other ends of iV2, and each of these other ends must corre-
spond to a sequence of "instantons travelling down the tube" Σ x [0, oo)
in X+ together with instantons at some points of X as above. This
means that there is a corresponding sequence {An} in TV2 such that for
large enough n, An is close to a grafted connection Iχ # -#Ik# Aχ

# Bχ # # Bι, where each I. is an instanton at x. e X, Aχ e Jίχ (p)
for some flat connection p on Σ, and there are flat connections Pj on
Σ, 7 = 0, 1, , /, such that p0 = p, pι = θ, and B. e Jr±Σ{pj_x, Pj),
where d im^ ± Σ (/? ; _ 1 , pj) > 1. (See [5, l.c.2].)

A dimension count quickly clarifies this situation. The sum of the di-
mensions of the moduli spaces containing the I(, Aχ , and B. must be less
than or equal to 10 = dim^fy Jθ). It is clear that k < 2. If k = 2 then
we are left as above with limit the trivial connection, and there is no energy
left for instantons to travel down the tube giving Bχ, , Bι. If k = 1
then as before Aχ £ Vs ΠVS n Jtχ x (p). This is also impossible since

Ί '2 + '

by hypothesis Bχ is nontrivial; so d\mJKx χ(p) < J£χ χ(θ) = 2. Hence,

there are no point instantons in the limit. Thus, Aχ lies in the transverse

intersection Vs n Π ^ Π Jίχ (p). This means that άimJίχ (p) > 8.

Since Bχ is nontrivial, it follows from Proposition 2.3 that ±Σ = Σ,

p = α, px = θ, and 1=1. Thus this end of JKχ 2(θ) is related to a

local diffeomorphism

where άimJίχ (a) = 8 and dim^(α:, θ) = 2.
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It follows that Jtχ {a)Γ\Vs n--nVs is a O-dimensional submanifold,

and is compact by another codimension argument. Hence, JKχ (a)ΠVs n

• Π Vs is a finite set, say equal to {A{: / = 1, , r} . Furthermore

the existence of a temporal gauge shows that Jίτ{a, θ) = ^ ( α , 0) x R,

where Jί^a, θ) is a 1-manifold. Any sequence of connections {Bn} in

^Σ(a, θ) which fails to converge will correspond to a local diffeomor-

phism

JtΣ(a9 σx) x R x ^ ί c Γ j , σ 2 ) x R x ••• x^Σ(σk, θ) ->J?Σ(a, θ).

Proposition 2.3 together with a simple dimension count implies that this

does not occur, and so JtΣ(a9 θ) is compact. Say that JtΣ(a9 θ) is the

disjoint union of components {5? }|=1. The end of TV2 corresponding to

{At} x Sj is At # Sj ={Ak# B: B eSj}, and the characteristic class u{

evaluates nontrivially on an odd number of these.
Donaldson defines the class u{ as follows. For each connection A e

3%χ we can twist the Dirac operator over X+ to get a family of operators

0 ^ over £Bχ . Since the bundles in question (i.e., the bundle support-
ing A and the ±spin bundles) have structure group SU(2) = Sp(l), it
follows that the index bundle \naJ/>A has a real structure. The class ux

is defined to be w;1(det(Indp^)). (The descent of the real line bundle
to 3SX follows from the fact that the numerical index i n d ^ is even;

see [2].) To evaluate uχ on an end A # Sj of iV2, first restrict the real

line bundle det(lnd0^) over A{ # Sj . Since A{ is fixed, as an element

of K(A. # Sj), the index I n d p ^ has a constant contribution (the nu-

merical index) coming from At and a perhaps twisted contribution from

SXj . (This can be seen by an excision argument exactly as in [2, Lemma

3.24].) Thus there is a real line bundle over s ! whose first Stiefel-Whitney

class υ(Slj) € HX(S)\Z2) satisfies ux\A#sι = ^ ( d e t ί l n d j ί j ^ ^ i ) ) =

v(Slj) for each / = 1, , r where Hι(Ai # Sj Z2) is identified with

Hl(S);Z2). If v(S]) φ 0 for j = 1, ••• , s, and v(Sj) = 0 for

j = s + 1, , /, then rs is the number of ends A. # Sj of N 2 on
which uχ evaluates nontrivially. So rs is odd and therefore r is odd.
Hence we have:

Proposition 3.1. There is a nonempty moduli space Jίχ (a) of SU(2)

anti-self-dual connections over X+ such that dim Jfχ {a) = 8 and ma =

#{VS n Π F 5 ΠJtx (α)) = 1 (mod 2) .
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As we mentioned earlier, the key idea in the proof of Proposition 3.1 is
that Donaldson's proof of his Theorem B [2], which shows that there are
no closed simply connected 4-manifolds with intersection form pE% θ H
for p > 0, does not contradict the existence of E% θ H on X+ but rather
gives information about the ends of JKy Jθ) which correspond to the
end of X+ . Similarly, by applying the proof of Donaldson's Theorem C
[2], which shows that there are no closed simply connected 4-manifolds
with intersection form pEs®2H for p > 0, we get information about the
ends of Jtγ 3(0) corresponding to the end of Y_ . Since Proposition 3.1
has determined that dX = Σ, it follows that dY = - Σ . Now using the
proof of Donaldson's Theorem C in an argument completely analogous to
that of Proposition 3.1 we obtain:

Proposition 3.2. There is a nonempty moduli space JίΎ (α) of SU(2)

anti-self-dual connections over Y__ such that dim^f r (a) = 12 and na =

#{VSΠ'"ΠVS ΓιJ?γ_(a)) = 1 (mod 2).
Thus Proposition 2.5 now implies
Theorem 3.3. Suppose M is a homotopy K3 surface containing

Σ ( 2 , 3 , 7 ) . Then its Donaldson polynomial invariant q4(M)(S{, , Sl0)
= 1 (mod 2).

As a corollary we have Theorem 1.1.
It is natural to ask whether qA{M){Sx, , Sl0) = 1 (mod 2) in any

homotopy K3 surface.
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