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ALMOST EINSTEIN MANIFOLDS OF
NEGATIVE RICCI CURVATURE

MAUNG MIN-OO

1. Introduction

For a Riemannian manifold (Mn, g), denote by K its sectional cur-
vature, a function on the Grassmannian bundle G2M of 2-planes in the
tangent bundle TM, by p its Ricci curvature, regarded as a function on
the sphere bundle SM of unit tangent vectors, and by R its scalar curva-
ture, which is a function on M. We normalize our curvature functions so
that the sphere Sn of radius 1 has K = 1, p = n - 1 and R = n(n - 1).
If M is compact, we denote by d its diameter, and by V its volume, and
we define r = fR=j?fR to be the average scalar curvature. {Mn , g)
is called Einstein if the Ricci curvature p is a constant function = £ .

This paper is concerned with compact almost Einstein manifolds of
negative average scalar curvature, where p is almost a constant and r < 0.

For n > 3 and Λ > 0, we define Jί~{n, Λ) to be the set of all smooth
compact Riemannian manifolds (Mn , g) of dimension n , satisfying the
following curvature bounds:

(i) r < 0 ,

(ii) rf2max|iί:|<Λ2.

It is well known [4] that if n > 3, then any smooth compact manifold
Mn admits a metric g with r < 0.

The main result of this paper is the following pinching theorem for the
Ricci curvature.

Theorem. For any n > 3 and Λ > 0, there exists an ε(n, Λ) > 0,
depending only on n and Λ, such that if (Mn , g) e Jf~(n, Λ) and if its
Ricci curvature satisfies

max \np/r - 11 < e(n, Λ),
SM

then M admits an Einstein metric ~g with p(g) = - 1 .
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In three dimensions, the Einstein metric ~g is of course a hyperbolic
metric of constant negative sectional curvature. The basic technique used
to prove the above theorem is to deform the metric in the direction of
its Ricci curvature as was first successfully done by R. S. Hamilton in his
fundamental work [9]. This flow of metrics, which by [9] exists, at least for
a short positive time, determines a nonlinear parabolic partial differential
equation for the curvature of the metric. In contrast to most previous
work that followed Hamilton's flow (e.g. [10], [11]), which were mainly
concerned with manifolds that are so positively curved that the flow leads
to a spherical metric (or in dimension 4 to a locally symmetric metric of
nonnegative curvature), we have here the more generic situation of a metric
with negative Ricci curvature and we make no particular assumptions on
the sectional curvature although we are dealing with all dimensions. On
the other hand, our deformation is a small one and the final Einstein metric
which we obtain is in fact near the initial metric which we started out with.
Our result should therefore be regarded as a statement on the structural
stability of the Einstein equation with a negative constant.

The main new ingredient in our proof is that, instead of the ordinary
C°-version of the Bochner-Weitzenbόck formula for the curvature evolu-
tion equation and the ensuring argument involving the maximum principle
which usually requires that the curvature is positive in some rather strong
sense, we make use here of a much weaker L2-estimate for the covariant
Laplacian acting on the curvature tensor and its irreducible components,
in particular, its trace free Ricci part, which are regarded as 2-forms with
values in the endomorphisms of the tangent bundle. This general L2-
formula is valid for any compact Riemannian manifold and is based on
the second Bianchi identity for the curvature. These iΛversions of the
Weitzenbόck formula are used in the study of cohomology groups associ-
ated to cocompact discrete subgroups of real semisimple Lie groups (see,
e.g., [14]). In fact we are led to such an L -formula by our interpretation
of Hamilton's Ricci flow as a Yang-Mills type flow for Cartan connections
of hyperbolic type as explained in a joint paper with E. A. Ruh [15].

In the present paper we will work in the better known framework of
conventional Riemannian geometry and derive our basic iΛformula in
§2. This, together with our assumption that r < 0, proves that we have,
in the L -sense, an exponential decay for the deviation from an Einstein
metric along the flow. This estimate is then boot-strapped to a C°-estimate
in §3 using the powerful iteration technique due to J. Moser. Moser's
method is perfectly suited for global estimates on a Riemannian manifold



ALMOST EINSTEIN MANIFOLDS OF NEGATIVE RICCI CURVATURE 459

since it involves only the Sobolev imbedding constant and hence only the
isoperimetric constant and this can be estimated in terms of a lower bound
for the Ricci curvature and upper bound on the diameter. In particular
we do not need any assumptions on the injectivity radius.

After having a C°-estimate established, higher order estimates and the
exponential convergence of the flow to a nearby Einstein metric then fol-
low by standard interior regularity results for parabolic partial differential
equations, since the nonlinearity in the evolution equations for the curva-
ture involves only zeroth order terms.

It should be remarked that our method of proof fails if the manifold
is almost Einstein with respect to a nonnegative Einstein constant. In
particular, it is still an open question whether almost flat compact nil-
manifolds admit an Einstein metric. It is known (see for example [4])
that they do not admit any Einstein metric with a nonnegative Einstein
constant. This shows that the analogous statement to our result for the
case where the Einstein constant is zero is, in general, false. For almost
Einstein manifolds with a positive Einstein constant all the known results
are geared towards proving a sphere theorem and hence usually assume
some stronger assumption on the whole curvature tensor. Finally, since
every compact 3-manifold is now known to carry a metric of negative Ricci
curvature ([7], [5]), one cannot allow the ε in our theorem to be too large.

The author wishes to thank Ernst Ruh for several helpful discussions
during the early stages of this work.

2. L2 -estimates

We follow R. S. Hamilton's fundamental paper [9] and consider the
evolution equation

(2.01) * = ̂ S = -2Rc+£r(0)*f

where the dot on g signifies the time derivative j - t , Re = R. is the
Ricci tensor of g and r(0) is the average scalar curvature of the given
initial metric g(0) at time t = 0. This differs in normalization from the
equation used by Hamilton [9] since r(0) is constant in time.

It is proved in [9] that this flow of metrics can be integrated on a compact
manifold for some maximal time interval [0, T) and that if T < oc, then
limr_^Γ max \K(t)\ - oo.

We will freely adopt here the notation of [9] except for some minor
modifications as in our paper [15]. For example, the Laplacians used here
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will always be nonnegative operators, which is opposite the sign convention
of [9].

We denote by h the symmetric (0, 2)-tensor

(2.02) h = Rc-r-fg,

so that the basic evolution equation (2.01) becomes g = -2h .
If μ denotes the volume form of g, then we have

(2.03) μ = -tτhμ = -Rμ,

where the trace of h is R = R - r(0), the hyperbolic scalar curvature. The
rate of change of the total volume V is then given by

(2.04) -J- log V{t) = -77 Rμ.
at V J

By a slight modification of Corollary 7.5 of [9], we obtain the following
evolution equation for the hyperbolic scalar curvature:

(2.05) ^R + AR = 2\h\2 + ^r(0)R.

Henceforth we will use the symbols | | and ( , ) for the natural norm
and scalar product induced by the metric g (at a given time t) on all ten-
sors. We will also raise and lower indices using the metric and, following
Einstein, sum over repeated indices; e.g., \h\2 ̂ tτh2 = gιigklhikh.{.

(2.05) already indicates that the scaling term -^g used in our metric
flow gives rise to the coefficient ^r(O), which we assume to be negative, in
front of R which is the trace of the tensor h . The purpose of this section
is to show that, up to higher order terms, the same coefficient appears in
the evolution of the zΛnorm of the tensor h , which we are trying to kill.

We now introduce the trace free Ricci curvature:

(2.06) zij = RiJ-£giJ

so that fly = z(j + f g z y. The standard decomposition of the curvature
tensor into irreducible components is then

where W is the Weyl conformal curvature tensor, and Z , the traceless
Ricci curvature tensor of type (1, 3), is given by

(2-08) Z,jk' = (**8hjk>
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where we define for any tensor s of type (0, 2) the tensor s * g of type
(1,3) by the formula

(2.09) (n - 2)(s * g)ijk

ι = sjk8i + gjks\ - sikg) - gilcs
lj - ^ j g j

w i t h Sijk = l(8 * 8)ijk = Sjkg\ ~ gikgj We then have (s * g)ljk

ι = sjk

and the following formula relates the two natural metrics which we use on
the tensors of type (1,3) and (0,2) :

(2.10) (n - 2)|* * s | 2 = 2\s\2 - ^ 2

In computing the evolution of the curvature one has to be careful about
specifying the type of the tensor, since with respect to a varying metric,
not only is the curvature changing but also its projections onto tensors
of various types. For example, the evolution equations for z.j are quite

different from those for Zι

ijk in the lowest order terms; In order to keep
track of the trace free Ricci component, we will denote the corresponding
projection by

(2-11) Pτ = ?τz:Sijk

l~(t*g)ijk

l,

where Sjjk

ι is any tensor of type ( 1 , 3 ) , ti} = stj - \gi} with sij = Skij

k

and S = giJsij.
The rate of change of this projection map with respect to an infinitesimal

variation of the metric given by g — —2h plays an important role in this
paper and is computed to be

(2.12) Pr' = §-Prz: SiJk' - (/ * g)ijk> + T^,

where Sf k is a fixed tensor of type (1, 3),

t h + S h

Kk - " 2 V ί + 2Sjkh""tιm + 2hikί'j + 2gikh'mt]m

both involve only the "trace free Ricci part" ttj of 5,-^'. It follows that

< r ' , / > = | ^ < A , ί > , \{T",(t*g))\<c(n)\h\\t\\

( P r ( S ) , P r ( S ) ) = {t'*g,t*g) + (f ,t*g)
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where c(n) generically denotes, from now on, any constant depending
only on the dimension n .

Applying Pr' to the curvature tensor Rι

ijk itself and using the fact that

(2.13) lhf = lzf + ίR> = !^l\z\2

+

l-R\

we obtain the following estimate:

c(n)\h\\z\2

The basic evolution equation for the whole Riemannian curvature tensor

Rm = R.jk

ι, regarded as a Γ*M®ΓM-valued 2-form as derived in Lemma

4 of [15], is

(2.15) — Rm + ΔVRm + [Rm,Rc] = O,
ot

where Δ v = dvδv + δvdv is the covariant Laplacian, the Ricci cur-
vature is regarded as a section of Γ * ¥ 0 TM and the second term is
defined by [Rm, ΈLc]\jk = Rl

ijmR™ - Rl

mR7jk ( R c = Λ R m i n t h e notation
of [15]). [Rm, Rc] is therefore a 2-form with values in the symmetric
endomorphisms of TM, being the Lie bracket of a symmetric and an
antisymmetric endomorphism.

The first term is obviously nonnegative in the L -sense and the second
term, with values in the endomorphisms which are symmetric with respect
to the metric g at the given instant in time, is a gauge correction term
reflecting the instantaneous change of the orthonormal frame bundle. In
particular this last term is always orthogonal (with respect to the metric
at any instant) to any 2-form with values in the skew-symmetric endo-
morphisms, for example any component of the curvature tensor. For our
purposes this is a more effective way of describing the changing curvature
than the equations given in Hamilton's original paper, which describe the
evolution of the curvature tensor of type (0, 4). In order to calculate the
time derivative of the L2-norm of the trace free Ricci curvature Z , we
need the following:

Basic Lemma. For any compact Riemannian manifold (Mn , g) of di-
mension n > 3, we have

(2.16) ί ( Δ V R m , Z ) > 0 .
JM
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More explicitly, we have the following formulas:

(2.17) (n - 2) j(ΔVRm, Z) = j\δVRm\2 + ̂  j\dR\2 forn>4,

(2.18) /"(AvRm, Z) = ί \δVZ\2 for n = 3.

Before we turn to the proof of the Basic Lemma we derive first the
fundamental estimates on the time derivative of the iΛnorms of R, Z
and h as a consequence. First, it follows from multiplying (2.05) by R
that

1 (§- + A)R2 = -\dk\2 + 2k\h\2 + I
(2.19) 2^όt Λ n

< -r(0)R2 + (Λ - £

since

and hence using μ = -Rμ , we obtain

On the other hand,

/(f; z z } = / ( i ; ( P Γ z ( R m ) ) z

/ (Prz (^Rm) , z).

The first integral in the last line above is estimated in (2.14), and by (2.15)
the last integral is

I /^Rxn, z\ = - | ( Δ V R m , Z) - |([Rm, Re], Z)

= - ί(ΔVRm,Z) + 0

< 0 by the Basic Lemma (2.16).

Therefore

+ c{n)j\h\\Z\2,
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and hence

\Z\2 + c{n) I \h\\Z\2 + (jj - i ) | R\Z\2

Combining the above two estimates we finally obtain:
Lemma.

(2.21) I ^ y \h\2 < lr{0) I \h\2 + c(n) j \h\\

We note that the right-hand side of (2.21) is negative if r(0) < 0 and
max|Λ| is small compared to - r (0) . This describes the underlying idea
of the whole proof.

Proof of the Basic Lemma. First we remark that the lemma is not ob-
vious, since the covariant Laplacian Δ v does not, in general, respect the
decomposition (2.07) of the curvature tensor. The lemma is a consequence
of the second Bianchi identity which reflects the invariance of the curvature
tensor under the group of diffeomorphisms and is therefore fundamental
for any problem related to curvature deformations (compare with Lemma
2 of [15]). The proof we give here is motivated by the interpretation of
Hamilton's Ricci flow as a flow of hyperbolic Cartan connections as elab-
orated in [15], and hence we will be using some of the formulas from that
paper. The second Bianchi identity is

(2.22) </

and therefore, by integration on a compact manifold,

ί(ΔVRm, Z) = ί(<JVRm, δVZ).

Now by Lemma 2 of [15] or a straightforward calculation,

(2.23) (^Rm)J. = -rf2-VVRc)* = gkl(RUJ - RiJtl),

where Rtj p = (VRc)(^ ei, e.) is the covariant derivative of the Ricci
tensor.

Similarly by taking the covariant divergence of Z = z * g we obtain

(2.24) (n - 2){δVZ)k

u = (<5VRm)f. + ^(g-R ,,- - * < / ' * ,,)

for n > 4.
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Formula (2.17) now follows from the computation:

= \dR\2 - \\dR\2 - {\dR\2 + \dR\2 = \dR\2,

where we have used in an essential manner the contracted second Bianchi
identity:

(2.25) Rikk = \R t (R f|. means </*(*.)).

For ease of notation, we are using here an orthonormal base {et} and
writing all our indices as subscripts.

For n = 3 there is no Weyl curvature in the decomposition (2.07) and
we have the simpler formula (2.18) since

ΔVRm = ±AR (g * g) + Δ V Z and (g*g,Z) = 0.

For ready reference, in the next section we record the usual Weitzenbόck
formulas for the whole Riemannian curvature tensor Rm, which follows
from formulas (2.14) and (2.15) of [15] or from Theorem 7.1 of [9]:

(2.26) Δ v R m + [Rm, Re] = Δ Rm + Q,

where Δ = V*V = - t r V2 is the rough Laplacian and

Q - RΓRJ + *#'*

(2.27) ±(JL+A\ |Rm|2 + I VRm|2 + (Q, Rm) = (h * Rm, Rm),

where (h * Rm),/ = (gf h) + h>g<)Rj .
To derive the analogous equation/inequality satisfied by h we first take

the trace of (2.26) to find that Re satisfies [9, Corollary 7.3]

(2.28)

where

Since
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and Ag = 0 it follows that

(2.29)

where q = qtj . (2.29) implies the following inequality:

(2.30)

Finally we remark that the right-hand side of the last estimate can

be made more precise since (q,h) = (q, z) lies between λmin\z\2 and

^maχlzl > w h e r e Amin and Amax are the minimum and maximum eigenval-

ues of the curvature operator R: Λ2 —• Λ 2 . Therefore

3. Convergence

We begin by normalizing the initial metric #(0) at t = 0. We assume

(3.01) max|]C(0)| = l , rf(0) < A.

This implies in particular that r(0) > -n(n - 1).
We set λ = -r(0)/2n > 0 and define

(3.02)

where SM is the set of unit tangent vectors at time t. We have

H{tf <max|Λ(/)|2 <n H{t)2.

Our assumption on the initial curvature is therefore

(A0) H(0) < -r(0) e = 2nλε.

Since |Rm| and \h\ both satisfy parabolic inequalities (2.27) and (2.30)
respectively with a quadratic nonlinearity occurring only in the zeroth or-
der terms, the usual maximum principle shows that there exists a universal
time t0 > 0, depending only on the dimension n , such that

(3.03) max|AX0| < 10-max|tf(0)| = 10 f o r a l l ί e [ 0 , t0],

(3.04) H(t) < 5\H(0)\ < lOnλε f o r a l l te[0, t0].

This implies H(tf < 100π2A2ε2 < 16«2A2εexp(-4/l/) fc
provided lOε < c(n) - exp(-2(/i - ί)t0) < exp(-4λt0).
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To prove that the flow (2.01) can be integrated for all time, provided
ε is chosen small enough, we first assume that the following bounds hold
for a maximal time interval [0, 2T]:

(Al) H(t)2 < I6n2λ2εexv(-4λή,

(A2) • max\K(t)\ < 100 for all tε [0, 2Γ].

We remark that we have deliberately put in an ε instead of an ε2 in the
estimate Al for H(t)2 in order to leave some room to prove a contradic-
tion to the maximality of 2Γ. It is clear from our initial assumptions that
there exists some 2T > t0 such that the above bounds are valid. Moreover
by the main result of [2] or [1], it follows from assumption A2 that

(3.05) max|V*Rm(0|<C(/!,ifc) for all ί e [tQ9 2T\

We will then show that there exists an ε > 0, depending only on n
and Λ, such that these running assumptions Al and A2, together with
the initial assumption A0, would imply that in fact the following stronger
curvature bounds actually hold at time 2T:

(Bl) H(2T)2 < 4n2λ2εexp{-4λT),

(B2) max\K(2T)\ < 20.

This would contradict the assumption that 2T is maximal, proving that
the flow exists for all time and that we have an exponential decay in the
C -norm for the tensor h , which is the vector field of the flow and, at the
same time, measures the deviation from an Einstein metric.

First we observe that assumption Al implies a uniform bound on all
the metrics g(t) for t e [0, 2Γ]. This is because the change in the metric
satisfies

•j}loggt{v9v) :(3.06)

and hence

(3.07)

since, by Al

max

g (v v)
m a x *, —7
M=i gQ(v,υ)

2T

H{t) <
f2T

/ exp(
./o

< 2ny/ε.

(3.07) implies the following volume estimate:

(3.08)
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Next we derive an zΛestimate for the tensor h . From inequality (2.21)
we obtain

(3.09) ^J '\h\ 2 <-&λ j'\h\2 + c(n)H J'\h\\

Using the notation || | |2 for the L -norm, we have from our assumption
Al the following inequality:

(3.10) ^| |A(0ll2 < -8λ||*(01l2 + c{n)λyΓe\\h{t)iί < —4A||Λ(0ll§

if we choose ε < ε{n). This implies the L2-estimate:

(3.11) \\h(t)\\2

2 < ||Λ(0)||ϊexp(-4Λr) for t e [0, IT],

In order to proceed to a C°-estimate we use the parabolic inequality (2.30):

Now applying the Cauchy-Schwarz inequality, dividing through by \h\,
and using the uniform bound A2 on the whole curvature tensor Rm we
obtain

(3.12) ^ + Δ ^ | A | < C ( Π ) | A | for r e [0,2.Γ],

where of course the inequality is to be understood in the weak distribu-
tional sense at the points where h = 0. It follows therefore that for any

M<7 \ 1 \Q~l I O A \ I 7 I / i \ I I ι < 7 ~ 2 I i / i i ι\ | 2

i * = ήf Ap + Δ )\h\ - q{q - \)\h\ \d{\h\)\

<c(n).q\h\g.

By setting v0 = \h\ and vΛ+1 = v\ for /c = 0, 1, with p = (n + 2)/Λ
we obtain

(3.13) ί ^ - h Δ J ^ <c(n)pk >vk, k = 0, 1, , oo.

If a nonnegative function u satisfies §-tu + Δw < ^ w, and χ is a
function of ί alone, then we have

(3.14) d t

= 2χ2 I (u • ύ + u • Au) + χ I u\vh < χ{2A + nH)\\uf2.
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For any 0 < tχ < tχ + τ < t2 < 2T, we choose a cut-off function χ(t)

satisfying χ = 0 on [0, tx], χ = I on [t{+τ, oo] and 0 < χ < 2τ~x.

By integrating the above inequality over the interval [0, t2], neglecting

the energy term \\du\\\, and choosing ε so that nH(t) < 4n2λ^/ε <

2n2(n - \)>fε < 2A, we obtain

(3.15)

By neglecting the first term we also get the energy estimate

ι.2
(ή\\(3.16) Γ 2 \\du(t)\\2

2 <4(A + τ~l) [t2\\u

Following Moser [16] we would like to combine these two estimates via
the Sobolev inequality:

l

2.

where m = n/(n - 2), to obtain an estimate of the form

(3.18) / \\t/\\2

2<c(n)CSob UA + τ l) \\u{t% .
Jt.+τ \ Jtχ )

However, since our metric is changing in time, we first have to estab-
lish a uniform bound for the Sobolev constant C S o b . It is by now well
known that the best constants in Sobolev inequalities are determined by
the isoperimetric constant defined by

C I s o = mf{(voldD)n/(volD)n-1},

where the infimum is taken over all (not necessarily connected) open sub-

manifolds Dn c Mn with smooth boundary dDn~{ and 2 vol(Z)) <

vol(M). The precise relation with the optimal CS o b appearing in (3.19)

is then CS o b = c(n)C-2/n (see [13], [6]).

By its very definition C I s o is a C°-invariant of the metric, and by our
uniform estimate (3.05) for the relative C°-norms of the metrics we have
CIso(0) < c(n) C I s o(0 for t e [0, 2T]. Now by results of S. Gallot [6,
Theorem 1.1] or [3], which are based on an isoperimetric inequality due to
M. Gromov [8], we know that C]soV~ι can be bounded from below by a
constant depending only on an upper bound for the diameter and a lower
bound for the Ricci curvature (scaled with the square of the diameter).
Since we also have a uniform bound (3.08) for the volume change we get

(3.19) Q o h ( 0 < C(n, A)V(0)~2/n uniformly for all te[0,2T],
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where V(0) is the initial volume and C[n, Λ) depends only on n and
Λ.

We can now follow Moser and apply the basic iteration step (3.14)-
(3.18) to the sequence of power functions vk satisfying (3.13), with an
appropriate choice of cut-off functions χk . We do not have to worry about
cutting off with respect to the space variables as in [16] since we are on
a compact manifold without boundary. Taking the limit as k —• oo then
gives the following C°-estimate (for details we refer to the original paper
[16, Theorem 3, pp. 113-117]):

max|λ(2Γ)f2 < c{ή) T~p ( m a x C ^ ί o ) " Γ \\h(t)\\2

2

(3.20) V l ' ] } J τ

Using now the fact that T is estimated from below by a universal

bound, 2T > t0 > 0, with t0 depending only on n , and substituting the

basic zΛestimate (3.11) in (3.20) we get

|Λ(2Γ)|2 < C(n, Λ)F(O) ιT" ί | |A(0)||*exp(-4λ0
J T

2 r2T

< C(n, Λ) 7/(0) f exp(-4λ/)
JT

max
M

< C(n, Λ μ V exp(-4AΓ) by A0,

where again we write f for the average value, and C(n, Λ) for any generic
constant depending on n and Λ. Because we have generously chosen ε
instead of e2 in Al, 3e> 0 depending on n and Λ, such that

H{2T)2 < C(n, ΛμVexp(-4ΛΓ) < 4n2λ2εexp(-4λT).

This establishes the bound B1 in contradiction to the maximality of the
interval [0, IT] for Al to hold.

To obtain higher order estimates for h , we regard equation (2.29) as a
linear parabolic system with coefficients depending on the changing metric
g(t) and its derivatives. Under our running assumptions Al and A2, we
have a uniform bound on the metric (3.07) and, by our smoothing result
[2], also a uniform bound (3.05) on the derivatives of the curvature in a
smaller time interval [/0, 2T]. This implies that with respect to a good
local coordinate system (normal coordinates would do) the coefficients ap-
pearing in (2.29) are bounded in the C2-norm by some universal constants
c(n) after some universal time tQ has elapsed. Thus we can apply standard
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interior regularity estimates for linear (or quasilinear) parabolic systems
to obtain bounds on the higher derivatives of the tensor h, in terms of
its C°-norm in a normal coordinate neighborhood around any given point
on M . We refer to [12, Chapter VII, Theorems 3.1, 4.1, 5.1 and 5.2] for
such local estimates. Since every point of M is an interior point and, in
normal coordinates, covariant derivatives coincide with the partial deriva-
tives at the origin of the coordinate system, we obtain a uniform global
C2-estimate:
(3.22)

\\h(t)\\c2 < c(n)\\h(ή\\co < c(n)λy/εexp(-2λt) for all te [to,2T].

Using now a formula (see, e.g., [4, Theorem 1.174]) for the rate of
change of the curvature tensor in terms of the derivatives of j-tg = — 2h ,
we have an estimate of the form

(3 23)
 \Έ

Hence by (3.22),

d_
dt

Therefore

< c(n)λy/ε exρ(-2λί) for t e [t0, 2Γ].

max|A^(2Γ)| < max|Λ^(ίo)| + c(n)\/ε / Aexp(—2λt)

< 10 + c(n)Vε by (3.03)

< 20 for some ε(n) > 0.

This establishes the bound B2. We have thus proved that there exists an
ε(n, Λ) > 0 such that if the initial Ricci curvature satisfies A0 then the
running assumptions Al and A2 together with all the ensuring estimates
which we derived above are in fact valid for T = oc. Since all the relevant
bounds on the tensor h and its derivatives are exponentially decaying, we
can now refer to Hamilton's original paper [9, Corollary 17.10] to conclude
that if the initial metric g(0) satisfies A0, with ε(n, Λ) > 0 determined
above, then the flow of metrics defined by the vector field j-tg - 2h can
be integrated for all time converging smoothly in the limit as t —• oo to
an Einstein metric ~g = g{oo) with p(g) = r(0)/n = -2λ < 0, proving
the theorem.
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