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FLOW OF NONCONVEX HYPERSURFACES
INTO SPHERES

CLAUS GERHARDT

0. Introduction

The flow of surfaces by functions of their principal curvatures has been
intensively studied. It started with the work of Brakke [1], who used the
formalism of geometric measure theory; a more classical approach had
been chosen by Huisken, who looked at the so-called inward flow in [5].
The outward flow of surfaces (this term will be explained in the sequel)
is scaling invariant and therefore more natural than the inward flow, pro-
ducing more general results so far. Huisken [6] and Urbas [8] proved that
the outward flow of convex surfaces by suitable functions of their principal
curvatures converges to spheres. The convexity assumption is essential in
their work.

In this paper we would like to present a different method for proving
the convergence of star-shaped surfaces into spheres via the outward flow.

Let / be a symmetric, positive function homogeneous of degree one
being defined on an open cone Γ of Rn with vertex in the origin, which
contains the positive diagonal, i.e., all ^-tuples of the form

(0.1)

Assume that

(0.2)

is monotone, i.e.,

(0.3) % >
v ; dλ'
concave

(C\ A\
v ̂  * /

and that

(0.5)

(λ, ••• , λ), ΛeR+.
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We also use the normalization convention

(0.6) / ( 1 , . , l) = /i.

Then we shall prove the following theorem.

Theorem 0.1. Let Mo be a compact, star-shaped C 2 ' 0 -hypersurface of

Rn+ι, which is given as an embedding

(0.7) xo:S
n->Rn+ι

whose principal curvatures are contained in Γ. Then the evolution equation

(0.8) x = Γlv, x(0)=x0

on Sn x R+, where v is the outward unit normal of the surface x(t) and

f is evaluated at the principal curvatures of x(t), has a unique solution of

class C 2 ' α . The reseated surfaces

(0.9) x = e~t/nχ

converge exponentially fast to a uniquely determined sphere of radius r,,

which is estimated by

where \MQ\ and \Sn\ denote the n-dimensional measures of the corre-
sponding surfaces. The lower bound is obtained iff f is equal to the mean
curvature function during the evolution process.

1. A reformulation of the problem

Let the surface M(t) be represented as a graph over Sn , i.e., the em-
bedding vector x = (xa) now has the components

(1.1) χn+l=u(x,t), x ' W ( 0 ,

where the (xι) are local coordinates of Sn , and the notation u = u(x, t)
is slightly ambiguous. In other words, we have introduced polar coordi-
nates.

Furthermore, let ξ = (ξι) be a local coordinate system of M{t). Then

(1.2) u = u(x(ζ)9t)9

the outward unit normal in (JC , u) has the form

(1.3) v = (ua) = v-\-Diu,l),
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where

(M, .,,= 0 ,
(1.5) v = (1 + u 2\Du\2)1'2 = (1 + u^σ'D.uD.u)1'2,

(σέj) being the metric of Sn in the coordinates (JCZ). The euclidean
metric now has the form

(1.6) ds2 = dr2 + r2σijdxidxj.

As usual we denote by (σιj) the inverse of (σ/7 ), and we agree to raise
and lower indices only with respect to this metric.

The evolution equation (0.8) now yields

(1.7) — u = f υ , x = - f v D U ' U ,

from which we deduce

We prefer to inteφret this as an equation on Sn x R + , i.e., to overlook

the time-dependence of (xι), and rewrite it in more convenient notation
as

(1.9) ώ " 7 = °' u(°) = uo-

Furthermore, let Af(Γ) be the class of all real (n x /^-matrices the
eigenvalues of which belong to Γ. Then, there is a natural way to define
a function F on Af (Γ):

(1.11) F{. — —rj is positive definite,

(I.IO)

where the (/!/) are the eigenvalues of (alJ). It has been shown in [2] that
the conditions (0.3) and (0.4) on / now take the form

dF

daij

and

(1.12) Ftj rs = —jj—— is negative semidefinite.

If we evaluate / at the principal curvatures of a surface M, then we
can define F = F(hr) as a function of the second fundamental form in
any fixed coordinate system. But, if we use the covariant tensor notation
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of the second fundamental form, then we also have to take the metric (g.j)
of the surface into account.

It is better to consider the mixed tensor

(1.13) h) = g

ikhkj,

the eigenvalues of which are precisely the principal curvatures.
For a graph M over Sn the metric has the components

(1.14) g.. = UjUj + u2σij = u\σij + φ.φ.),

where

(1.15) φ = \ogu\

the inverse is

(1.16) g =u (σJ -φ φJ /v ),

where υ can be expressed as

(1.17) v = (l + \Dφ\2)2-112.

The second fundamental form is given as

(1.18) htJ^{atJ + fi9j-9iJ)t

where all derivatives are covariant derivatives with respect to the metric
(σf..) of the sphere.

For the mixed tensor hι we obtain

(1.19) hj = —{δj + [-σ + φ φ /v ]φkj}.

It is not difficult to see that the symmetric tensor

(1.20) * v = *{***,*+ *,**?>
has the same eigenvalues (with respect to σr ) as the mixed tensor (1.19),
where

(1.21) σij = σij + φiφj.

Let us now define

and use the homogeneity of F. Then we conclude from (1.9)

(1.23) ^ _ ^ _ ^ = 0, φ(0) = φ0.
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This is a nonlinear parabolic equation on Sn x R+ , where the nonlinearity
F only depends on Dφ and D2φ. Therefore, we deduce the existence
of a solution on a maximal time interval (0, T) with T > 0. Uniform
estimates foτφ9φ9 and Dφ on this time interval are now simple conse-
quences of the maximum principal, although the equation is not yet known
to be uniformly elliptic.

2. First order estimates

Let us first proof the following simple lemma.
Lemma 2.1. If we regard Fijk^) as a function depending on Dφ and

D2φ, then

(2.1) aij = -dF/dφif

Proof First we remark that dF/dφ^ is a contravariant tensor, so that
is positive definite.

Proof First we

the notation aιj is justified. The positivity follows from (1.11), since

and consequently

(2.4) = — — — = v~2FlJ

where

a dF
(2.5) FlJ = **- .

Lemma 2.2. Let Qτ = Sn x (0, Γ). ΓΛe« the following estimate is
valid in Qτ:

(2.6) inf φQ <φ-t/n< sup φ0.

Proof We only prove the upper estimate. Let A be a small parameter
whose sign will be chosen later, and consider the function

(2.7) Φ = (ψ- t/n)eλt.
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If the supremum of φ in the cylinder β~ for 0 < f < T is attained at

a point (xQ, t0) with 0 < t0 < f, then we have at this point

(2.8) Dφ = 0, D2φ<0,

(2.9) 0 > 0.

Hence, from (1.23) and the positivity of (FlJ) we deduce

(2.10) 0>-e

τ + e

τ-λφ>-λφ,

in view of (2.8),

(2.11) F(hij)>F(σij) = n.

Now, we have to consider two cases separately. First let us assume, that

(2.12) s u p ^ 0 > 0 .
s"

Then we choose λ < 0, and deduce

(2.13) sup^ = supφ^
Qj s"

Thus by letting λ tend to zero, the estimate is proved because of the
arbitrariness of f.

If sup5* <p0 is negative, then we choose λ positive and deduce that on
any cylinder Q~, where

(2.14) s u p 0 < O ,

we have

(2.15) sup φ < sup φn < 0.

A simple continuity argument then leads to the final result.
To derive estimates for φ , we differentiate (1.23) with respect to t and

obtain

(2.16) φ + -L{-auDjD^ + alD^} = 0,

where

{2ΛΊ) aw,
The maximum principle, modified as in the proof of Lemma 2.2, then

yields
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Lemma 2.3. Let φ be a solution of(1.23) on Qτ . Then

(2.18) inf>(0) < φ < sup 0(0).

Finally, let us estimate

(2.19)

By differentiating (1.23) with respect to the operator

(2.20) DkφDk

we obtain

(2.21) it; + ̂ {-a^D^Dp.φ^φ + JD.W} = 0.
F

If we apply the rule for interchanging derivatives

(2-22) 9Uk = fikj+*",***

and use the fact that on S"

(2-23) Rmijk = σmjσik - σmkσu,

we deduce

w + -iji-a'D DjW + \Dφ\2al - aliDflDfl + aijDiDkφDjD
kφ} = 0.

F

Hence, we have proved
Lemma 2.4. Let φ be a solution of (1.23) on Qτ. Then

(2.24) | |
s"

As an immediate corollary we obtain
Lemma 2.5. Let Fιj be uniformly elliptic. Then the a!j are uniformly

elliptic, and \Dφ\f decays exponentially, or more precisely, there exists a
positive constant λ, independent of T, such that the estimate

(2.25) | D ^ V ' < s u p | Z t y o | 2

s"
is valid on Qτ.

Proof The uniform ellipticity of the alJ follows immediately from
(2.4). Let μ be the smallest eigenvalue of the alJ, and consider the func-
tion

(2.26) w = weλt
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with some positive constant λ. Then w satisfies the inequality

(2.27) w + -^{-^DJDJW + {μ-λF2)w} < 0,

and hence the result provided

(2.28) λ<μ F~2.

Let us finish this section with a comparison lemma:
Lemma 2.6. Let φ and φ be two solutions of the initial value problem

(1.22) with initial values φ0 and φ0 respectively. Then they satisfy the
estimate

(2.29) inf(p0 -φo)<φ-φ< sup(φ0 - φ0)
s s"

in their common domain of definition.
The proof of the lemma is a modification of the proof of Lemma 2.1

and is omitted.

3. Second order estimates

So far we have not yet used the concavity of F. We shall need it to
derive a priori estimates for the second fundamental form of the surfaces.

For this purpose it is also convenient to consider the original equation
(0.8), which we shall write now in the form

(3.1) x = F~l -v,

and deal directly with the geometric quantities of the surfaces.
Let us first derive the evolution equations for the normal, the metric,

and the second fundamental form.
Lemma 3.1. The normal vector v satisfies the evolution equation

(3.2) ϋ = F~2δF = F~2DkFxk.

In this section we use the notation gtj for the induced metric on the
surfaces M(t), covariant differentiation is always understood with respect
to it, and the same observation applies for raising or lowering indices.

Proof of Lemma 3.1. The proof is identical to that of the corresponding
result in [5, Lemma 3.3].

Lemma 3.2. The metric gtj satisfies the equation

Proof Compare the proof of [5, Lemma 3.2].
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From this we deduce immediately
Lemma 3.3. The volume element yfg satisfies

(3-4) ^v^=fv^>

where H is the mean curvature.
Before we establish the evolution equation for A.., some preliminary

remarks are in order. We recall the Gauss formula

(3.5) *« = V"

the Weingarten equations

(3.6) u, = hk

iXk,

the Codazzi equations

(3-7) V*=Vr
and the Gauss equations

(3-8) Rukl = hJkhu - huhJk

connecting the Riemann curvature tensor of hypersurfaces with its second
fundamental form. We also indicate with a comma the start of covariant
differentiation if the notation would become ambiguous otherwise.

We finally observe that by using the Codazzi and the Gauss equations,
and the rule for interchanging the orders of derivatives, the following re-
lation holds:

(3.9) hrsij = hirsj = hirjs + Rk

rsjhik + Rk

isjhkr

From the Gauss formula we deduce

(3.10) h i j = ( x i j 9 u ) 9

where we can use ordinary derivatives instead of covariant derivatives,
and hence

(3.11) hij i j i j

The last term is zero because of (3.2), and therefore

L = F~2Frshrs - 2F~3Frshrs tF
rshrs

/ ̂  i ^ \ ij rs ,ιj π>, i rs ,j

F F K h F (
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We obtain, from the Weingarten equations,

..13)

and, from (3.9),

(3.13) vu = hk

u,xk-hkhkjv,

F-2Frs(hkshrjh
k

i-hsihkrh
k

J),

where we have used the homogeneity of F :

(3.15) F = FiJhiΓ

Combining these relations we deduce
Lemma 3.4. The second fundamental form satisfies the evolution equa-

tion

hπ = F F h i i r . + F F hkhrhn + F F hr-h]m .
y"5 \ CΛ ιJ ιJ>rs Ks r ij rs, i ιm,j

- 3 r s h r s h -2Fr\rshrsiF
rshrsJ + F-2Fr\hkshrjh

k - hsihkrh
k).

For later purposes we need the evolution equation for the mixed tensor
h\ (no summation).

At first we notice that

d i d ki * . ki i ki j

(3.Π) d t ' " d \ \ . k i *
I j k i j , k i t

= -ψh hi+ g hr

If we choose coordinates such that at a fixed point gik = δik , we deduce

ΐ / 2 , ki i Γ - 2 Γ Γ J , Γ - 2 Γ r i , ΊkΊ

Af. = - -=h hki + F F hH rs + F F hkshr hu
[ J, 1. O )

+ F ^ hrsti
hlm,i-2F F hrs,iF Ksj

since the last term in (3.16) vanishes. Taking the concavity of F into
account we conclude

i i ^ 2 . k j i r- —2 τ->rs , i τ-—2 r-fs Ί , k , /

A. < - —A. hk + F F A 4- i 7 F A, Λ_ A.
(3.19) ' F ' k ι'rs ks r ι

at a point where gik - δik .
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We shall now derive the evolution equation for the crucial term that
controls the star-shapedness of a surface.

Lemma 3.5. Let φ = (x, v)~x. Then we have

(3.20) φ = F~2Frsφrs - 2φ~l • F~2Frsφrφs - F~2Fn\ΓA*φ.

Before proving the lemma let us remark that φ is always well defined
since

(3.21) φ = \x\-ι.υ,

where υ is the quantity defined in (1.17).
Proof of Lemma 3.5. We deduce from (3.2) that

(3.22) φ = -<p2F~l - φ2F-2Frshk

rs, (xk , x),

and from (3.13) that

(3.23) φrs = -φ2hrs + 2φ~Xφrφs + φhk

rhks - φ2h)s, (xk , x) ,

hence the result in view of (3.15).
We want to derive a priori estimates for the second fundamental form

of the rescaled surfaces

(3.24) x = x- e~t/n,

so let us remark that the right-hand side of the evolution equation (3.18)
or (3.20) is a scaling invariant, i.e., the rescaled quantity h\ or φ satisfies
the same equation with the additional term

0.25) μ;

or

(3.26) x-φ

on the right-hand side.
Let ψ be defined by

(3.27) ^ / y / y

Then we are able to prove
Lemma 3.6. Let the evolution equation for the surfaces M be defined

in the maximal time interval (0, T). Then the a priori estimate

(3.28) ψφ < sup ^(0)0(0)
Mo

is valid in (0, T).
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Proof. As before, let 0 < T < T be arbitrary and look at the point
x0 = χ(t0) where

(3.29) sup supψφ
0<t<T M{t)

is attained. At this point ψ can be expressed as

(3.30) ψ = h^ηW

with a certain unit vector η. We may now choose a Riemannian normal

coordinate system (ξ1) such that at Jc0 we have

(3.31) (»/'") = (0, 0, •• , 1 ) ,

(3.32) gtj = δtJ.

In this coordinate system the surfaces M(t) are locally described as x =
x(ξ, t), where we may assume that jc0 = x(0, / 0 ) .

If we now define

(3.33) w = hijη
iηj/gijη

iηj

for all (ξ, t) in a neighbourhood of (0, t0), then we have for t = t0

(3.34) w = h n

n ,

(3.35) w = h n

n .

Furthermore, w φ attains its maximum for t less than f in (0, tQ).
If we assume that t0 is positive, then in view of the maximum prin-

ciple from (3.19), (3.20), (3.25), and (3.26) we conclude that at x0 the
inequality

(3.36) o < - | ( * ; ) 2 # + ^ ; #

is valid, where we also have used the fact that hn

n and φ are nonnegative,
and hence

(3.37) n hn

n<F.

Obviously, hn

n is the largest principal curvature of M(t0) at x0, i.e.,
we have

(3.38) H < F.

On the other hand, the opposite inequality

(3.39) F < H
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is always valid due to the concavity of F and our normalization (compare
[8, Lemma 3.3]). Thus, we have a contradiction unless x0 is an umbilic.
But, by using the same trick as in the proof of Lemma 2.2, we can also
overcome this obstacle, and prove the assertion.

Let us summarize what we have proved so far. From the results in §2 we
know that |Jc| and (x, v) and bounded from below and above by positive
constants independent of t. Lemma 3.6 then yields an upper bound for
largest principal curvature of M(t). Moreover, the estimate (3.39) shows
that all principal curvatures haw to be bounded independently of /.

The principal curvatures of M(t) therefore stay in a compact subset of
Γ. But because of the assumption (0.5) and the results of Lemmas 2.3
and 2.4 we conclude that they even stay in a compact subset of Γ from
which we deduce the important information.

Lemma 3.7. During the evolution of M(t) the nonlinear operator
is uniformly elliptic.

4. Convergence to a sphere

Let us now return to the setting and notation described in §§1 and 2.
We shall assume that F is concave, so that during the evolution process
Λf. or, equivalently, φ.j are uniformly bounded and F(h.j) is uniformly
elliptic.

Applying the known a priori estimates for a uniformly parabolic equa-
tion of the kind

(4.1) φ-l/F = 0,

we first obtain, in addition to the estimates derived before,
Lemma 4.1. φ and Dφ are Holder continuous in Sn x (0, T). The

Holder norm is bounded independently of T.

Proof Differentiating (4.1) with respect to t and xk gives a system of
(n + 1) linear uniformly parabolic equations to which we apply the results
in [7, Theorem 4.3.4].

Using now the concavity of F and the trick of increasing the number
of independent variables we obtain uniform a priori estimates for D φ in

C° β ( β Γ ) .
Theorem 4.2. The second derivatives of φ are uniformly bounded in

C°'a(Qτ), where the estimate only depends on \φo\2,n>
n> and the elliptic-

ity constants of F, but not on T and the second derivatives of F .
For a proof we refer to [7, §5.5].
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We therefore know that the M(t) viewed as graphs over Sn are C 2 α

surfaces with uniform bounds. If we would know that the original embed-
ding x{t) remains an embedding in the limit t —> T, we could deduce
that T = oo.

The only thing that could go wrong is that

(4.2) £/y = <*/,*,)

could degenerate, i.e., its eigenvalues could approach zero or tend to infin-
ity. But this cannot happen, since in view of Lemma 3.3

(4.3) ft

where

(4.4) 0<H/F- 1 < const.

Moreover, from (3.3) and the boundedness of the principal curvatures it
follows that

t A c x ^ . -ItIn 2 „ 2 j -ItIn 2 „

(4.5) g i j = gije - -g.. = jhue - -g.. < c g..,

and hence that

(4.6) If/O^/OjV ' ,

while (4.3) yields

(4.7) vlW = \/W) exp [f\HlF ~[f\
Thus, no degeneracy can develop in finite time.

Let us define

(4.8) ύ = ue~t/n.

The family ύ(t) is uniformly bounded in C2'a(Sn), and Dύ decays ex-
ponentially fast. Using the well-known interpolation theorems we deduce
that the second derivatives of ύ decay exponentially fast. The rescaled
second fundamental form uhι. therefore satisfies the estimate

(4.9) \uhj-δj\<C'e~βmt

with some β > 0, which furthermore yields

(4.10) 0<H/F - 1 <c-e~βt

with some different constant c.
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We^an now prove the final assertions of Theorem 0.1. First, we note
that |AΓ(ί)| is a Cauchy sequence if t tends to infinity, since in view of
(4.7) we have

(4.11) \M{t)\-\M{t')\

[f\HlF ~ !)} " exp [j\HlF "
From this we conclude that M(t) converges exponentially fast to a

sphere with a uniquely determined radius rF, for subsequences always
converge to spheres 5" and their radius is given by

(4.12) rn \Sn\ = \im\M(t)\.

Suppose now that F = H. Then from (4.3) we derive

(4.13) rn

H = \M0\/\S"\.

To prove the sharp estimate

(4.14) rH<rF

with strict inequality unless H = F for the surfaces, we integrate (4.7) to
obtain

(4.15) |M(oo)| - |Λ/0| = jsn [exp { j H w - 1)} -
hence the result.

Finally, let us prove that even in the limit x remains an embedding.
We use the evolution equation for the metric, and write it in the form

) •*«-§*«•
Let k be the largest principal curvature of M and set μ = |jc| k . Then
(4 17) * « s f e H K
The terms in the braces converge exponentially fast to zero, thus we obtain
an upper estimate for the eigenvalues of g.j. Hence the relation (4.7)
shows that the smallest eigenvalue cannot tend to zero.
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