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ON A SET OF POLARIZED KAHLER METRICS
ON ALGEBRAIC MANIFOLDS

GANG TIAN

0. Introduction and statement of main theorems

A projective algebraic manifold M is a complex manifold in certain

projective space CPN, N > dim c M = n . The hyperplane line bundle

of CPN restricts to an ample line bundle L on M. This bundle L is

a polarization on M. For the Kahler metric g on M, we can asso-

ciate a positive, rf-closed (1, l)-form ωg . In any local coordinate system

(Zj, , zn) of M , the metric g is expressed by a tensor (^/j)1</ 7-<fI,

and ωg is defined to be ^^- Σ" j=ι gqdzi Λ d~z.. We call this ω the
Kahler form associated to the metric g . By a polarized Kahler metric
with respect to L, we mean a Kahler metric with its associated Kahler
form representing the Chern class CX(L) of L in H2(M, Z). We de-
note by Ka(M) the set of all polarized Kahler metrics on M with respect
to L. Given a Kahler metric # in Ka(Af), one can find a hermitian
metric h on L with its Ricci curvature form equal to ω (cf. [7], or
Lemma 1.1 in §1). For each positive integer m > 0, the hermitian metric
h induces a hermitian metric hm on L m . Choose an orthonormal basis
{S™9 ,Sn

N}of the space H°{M, Lm) of all holomorphic global sec-
m c\

tions of Lm . Here the inner product on H (M, Lm) is the natural one
induced by the Kahler metric g and the hermitian metric hm on Lm,
i.e., <SQ

W, Sj> = fm hm(S™ , SJ) rfF^ . Such a basis So

m(x), , S ^ ( χ )

induces a holomorphic embedding 9?w of Λf into CPNm by assigning the

point x of M to [5^(x), , S£ (JC)] in CP^- . Let ^ F S be the stan-

dard Fubini-Study metric on CPN» , i.e., ω f e ^ i

for a homogeneous coordinate system [wQ, , w;̂  ] of CP m . The ~
in

multiple of ^ F S on CPNfn restricts to a Kahler metric ^φ*mgFS on M.
This metric is obviously in Ka(Af), i.e., polarized by L, and it is called
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the Bergmann metric with respect to L. One of our main theorems here
is the following.

Theorem A. Let M be an algebraic manifold with a polarization L
and let g be a polarized Kάhler metric in Ka(Af). Define the Bergmann
metric gm = ^φ*mgΈS as above. Then

m a x { | | s w - * | | , \Dgm-Dg\\\, \\D2gm-D2g\\ , \\R(gm)-R(g)\\]

•*(£)•
where D is the covariant derivative with respect to the metric g, R(gm) and
R(g) are the curvature tensors of gm and g, respectively, and 0(1/y/m)
means a constant bounded by C/y/m with C depending only on the metric
g the norm || || is taken with respect to the metric g.

In particular, the theorem implies that the gm converge to g in the
C -topology on the space S M of all symmetric covariant 2-tensors. It is
likely that the gm actually converge to g in the C°° -topology on S2 M.
When M is naturally polarized by its canonical line bundle, the theorem
solves a problem of S. T. Yau [15]; the problem asks whether or not the
Kahler-Einstein metric on M can be the limit of a sequence of Bergmann
metrics induced by pluricanonical line bundles K™ . This problem of Yau
is one of the motivations in proving the above theorem. As we have no-
ticed, the Bergmann metric %φ* gψ$ depends on the choice of the basis
{SQ9 - ,S™} of H°(M, Lm), so it depends on the metric g. But the
set of Bergmann metrics Pm = {^ψ*mgfS\o Ξ Aut(CPN>n)} is indepen-
dent of the metric g . A corollary of Theorem A is the following density
theorem.

Theorem B. Let M be an algebraic manifold with a polarization L.

Then the union Um=i ?m ~ ^ ^ dense in Ka(Λ/) in the C2-topology

induced by the one on S2M, where Ka(Af) and Pm are defined as above.
One can regard the Kahler metric in P as the metric defined by polyno-

mials on M. Hence, both Theorems A and B are analogues of the famous
Stone's approximation theorem on the space of continuous functions in
the case of Kahler geometry. In particular, Theorem A and Theorem B
imply that any function ψ can be approximated by the logarithm of poly-
nomials whenever ω+ddψ > 0 for an L-polarized Kahler form ω. Such
a function is sometimes said to be almost pluriharmonic. These theorems
also throw light on making use of the variational method in finding ex-
tremal Kahler metrics [2], such as Kahler-Einstein metrics. For instance,
one can first study whether or not there is a Kahler metric g in P which
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reaches the minimum of the functional of an zΛnorm of scalar curvature
[2] on Pm . Then one considers the convergence of those gm as m goes
to infinity. Note that the group PGL(Nm +1) = A\x\(CPNm) acts naturally
on the set Pm the latter is dominated by the affine space CNfn. If this
action is proper for the functional of an zΛnorm of scalar curvature, then
it admits a minimum on Pm . The properness of the group action might
be related to the stability of M in the Chow variety as defined in [9]. It is
another motivation of proving these theorems for studying the connection
between the existence of Kahler-Einstein metrics on M and Mumford's
stability.

The proof is based on Hόrmander's iΛestimate of the ^-operator [6];
it is local in nature. Therefore, we can generalize Theorem A to complete
Kahler manifolds with some conditions on Ricci curvature (see §4, Theo-
rem 4.1). As applications of the generalization of Theorem A in case of
quasiprojective manifolds, we can prove the following.

Theorem C. Let X be a quasiprojective manifold, and let g be a com-
plete Kahler metric on X with its Ricci curvature bounded from above by
-λg for some λ > 0. Define the Ricci form Ric(g) as

where {ΛJ.j}1</ j<n is the Ricci tensor of g in local coordinates (zχ, ,
zn). Suppose that Ύ is a smooth projective compactification of X. Then
the positive (1, \)-form -Ric(#) can be naturally extended across the in-
finity of X in Ύ, and

(1) 0<fχ(-Ric(g))n < C , where « = d im c ^,

(2) 0 < fχ{-Ric(g) Λ ωn~x) < C, where ω is a Kahler form on Ύ,

C depends only on λ and X, and (-Ric(g))n is the n-exterior product

of - Ric(g), similar to ωn~ι.

In the case that X is a quasiprojective surface, we can say more about
the extension of Ric(#) in the above theorem. This is stated in Theorem
5.1 in §5.

The organization of this paper is as follows. In §1, we construct L2-
holomorphic global peak sections of Lm with the zΛnorm almost con-
centrated at one point, i.e., the peak point. The tool used for this is
Hόrmander's ίΛestimate for 5-operator [6]. In §2, we calculate the Tay-
lor expansion of the peak section constructed in § 1 at the peak point. In
§3, we use those peak sections of Lm constructed in §1 to prove Theo-
rem A. Theorem B easily follows from Theorem A. In §4, we consider the
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generalization of Theorem A to noncompact, complete Kahler manifolds.
Then in §5 we will use the generalization of Theorem A to prove Theorem
C. We end the section with an improvement of Theorem C in the case of
complex surfaces (Theorem 5.1). In §6, we discuss briefly the application
of Theorem A or B to evaluating the holomorphic invariant introduced in
[11].

This paper is a part of the author's thesis at Harvard University. The
author would like to express his gratitude to his advisor Professor S. T. Yau
for help and encouragement during the course of this work. The author
also thanks the Alfred P. Sloan Foundation and Harvard University for
their generous financial support.

1. Construction of peak global sections of some line bundles

Let M be an ^-dimensional algebraic manifold with a polarization
L, and let g be a polarized Kahler metric with respect to I . In local
coordinates (zx, , zn), g is represented by a positive hermitian matrix
(gQ o) and the associated Kahler form

\ίΛ
ω = —— y^ gτdz Nd~zR

a,β=\

ωg is in C{ (L).

Lemma 1.1 (See [7] for the proof). There exists a hermitian metric h

on L such that the curvature form Ric(Λ) of h is just ωg.

In the local holomorphic frame eL of the line bundle L, the hermitian

metric h is represented by a positive function a(z), z e M, i.e., for a

local section s = feL of L, \\S\\2

h = a\f\2, where f is a local holomorphic

function. Then the curvature Ric(Λ) = ^^dd logα.
Proposition 1.1. Suppose that (M, g) is a complete Kahler manifold

of complex dimension n, L is a line bundle on M with the hermitian
metric h, and ψ is a function on M, which can be approximated by a
decreasing sequence of smooth functions {V/}κ/<+oo If

(1.1)

for any tangent vector v of type (1,0) at any point of M and for each

I, where C > 0 is a constant independent of I, and ( , ) is the inner

product induced by g, then for any C°° L-valued (0, \)-form w on M
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with dw = 0 and fM \\w\\2e~ψ dVg finite, there exists a C°° L-valued

function u on M such that Έu = w and

(1.2) ί \\u\\2e-ψdVg < 1 / \\wfe-ψdVg9

JM
 8 c

 JM
 8

where dVg is the volume form of g and the norms \\ \\ induced by h and

g for instance, in the local coordinates (z{, , zn) and the local frame
eL as above, g = (gaj), w = wa d~za, and | M | 2 = a(z)gaβwawβ .

This proposition can be proved easily by modifying the proof of [6,
Theorem 4.4.1, p. 92] with the use of the Bochner-Kodaira Laplacian
formula (see e.g. [7]).

Now let M and L be given as at the beginning of this section, and we
construct peak sections of Lm for m large. Fix a point x0 in M. Choose
a local normal coordinate (z{, , zn) at x0, such that x0 = (0, ,0)
and the hermitian matrix (ga o) satisfies

( U ) 2 ! L ( X o ) = o f o r γ , δ, = 1 , 2 , , n ,

dz/zldz^-0 forλ,y,δ=l,2,...,n,

Next we choose a local holomorphic frame eL of L at x0 such that
the local representation function a of the hermitian metric h has the
properties

(1.4) a{xo) = \, da(xo) =

where i, j , A: = 1, 2, , Λ .
Suppose that this local coordinate (z{, , zπ) is defined on the open

neighborhood U of JC0 in M. Define a function /> on U, p(z) =

\zι|2 H •• lz«|2 f°Γ z E ^ ' where | -1 is the euclidean norm.

Lemma 1.2. i w α« n-tuple of integers (p{9 •• ,p π ) G Z" Λ«rf α«

integer p' > p = px-\ h pn , there exists an mQ > 0 such that, for m >



104 GANG TIAN

m0, there is a holomorphic global section S in H°(M, Lm), satisfying

(1.5) l\\sth«dV=\, I \\s\^mdV=θ(-^-\,
JM g JM\ίp(z)<H2\ g \m» )lM\{f

and locally at x0,
(1.6)

m
2where || \\hm is the norm on Lm given by hm, and O(l/m p) denotes a

quantity dominated by C/m2p with the constant C depending only on p
and the geometry of M, moreover

J p(z)<\ogm/y/m '

g = det(^.j)(χ/ΓT/(2π))" rfz, AdΊιA-- AdznAdΊfl is the volume
form.

Proof. We apply Proposition 1.1. Take a cut-off function η from a
positive half real line Rι

+ to Λ^ such that η(t) = 1 for t < \ , η{t) = 0
for t > 1, 0 < -ι/'(ί) < 4, and \η"(t)\ < 8. Define the weight function

mp2{z)^(mp2{z)
ψ(z) = [n + 2p)η H v 'log

(logm)2 \(logmγ

Then

ddψ (z)

2 p ' ) ) \ J ' m P 2 ( z ) ™2 »J*»J

+n

(logm)2 (logm)4

,mp2{z) m Ά^j

(logm)2 (logm)2
log

(logm)
2

(logm)2 (logm)2

(logm)

Either η"mp2(z)/(lo$m)2 < 0 or η'mp2(z)/(logm)2 < 0 only if $ <

mp2(z)/(logm)2 < 1, i.e., (logm)2/(2m) < p2(z) < (logm)2/m. For m
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sufficiently large, ddp2(z) > 0 for p2(z) < (log m)2/m. We will always
use C to denote a constant independent of m. Hence

ddψ> /Lωg
(logra) v - 1 g

ωg forp(z)>0,
g

which implies that there is a decreasing sequence {ψ^ with lim/_^oo ψι

= ψ, and for any unit vector v of type (1,0) at any point of M we
have

(ddΨι +-^= (Ric (hm) + Ric (*)) , t; Λ v^

I
(logm)2

Put it; = (l/4)a(f/(m/72(z)/(logm)2)zf1 rfe™), and by applying Propo-
sition 1.1 we obtain an L-valued section u, solving du = w , and

1 f \}<ldv
C(n+2p')]JM eψ lV*'

(log/w)

where the norms || \\hm are induced by hm and g. For m large,
2

, |2 - v

<±f
8m y M

Ά
mp2(z)

4 (log my

17 2 , m

(1.10)
c

a e dVQ.

From the definition it follows that ψ(z) = 0 for p2(z) > (log m)2/m, and
by (1.4) and Taylor expansion we have

o2

(1.11)

o ( | z | 3 ) > ί 1 - ^ ! * ! 2 ) f o r lzl s m a I 1'
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-\ 2 / r\ r\
where we have used the fact that gη(x0) = -{d /dz dzj) log(a(z))\z=χ =

δ^. Hence, by (1.10) and (1.11) and the nonpositivity of ψ we obtain,

for m large enough,

JM

C L
< C UXogmf

n+P

\ m
1 -

(log mr

m
(1.12)

Thus (1 -(lθgm)2/m)m = e

w large.
Put S(z) = η(mp2(z)/(log m)2)

f Q r

•• zp

n*e™ - u(z). By (1.10) and the
2 '

)
2

definition of ψ, we have w(z) = O(|z| ) at xQ, so at x0

Now using the same argument as in (1.12) yields

2

• / .

(mp2{z)
•••zp; a dV

g

m4

Define 5(z) = S(z)/\\S\\h . Then 5 is the holomorphic section needed.

Those sections constructed by Lemma 1.2 are called peak sections of
the line bundle Lm .

2. Taylor expansions of the peak sections

In this section, we will evaluate λ, n^ to obtain the Taylor expan-

sions of the peak sections constructed in the last section.
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Lemma 2.1. Let (px, , pn) be an n-tuple of integers, and p = pχ +

V 2 / Jp(z)<lo&m/s/m

•dzxhd~zxh - Λ ύ?zn Λ

π"p.\ pn\m\ ( 1 \ ,
= —,—! r!-τr + O I ——7 I for m large.

(p + n + m)\ \m2ι>'J s

Proof. This follows from a straightforward computation and the fact

that [1 - (logmf/m]m = O(l/m2p>).
Denote by {^,-^/lκ, 7 ^ /<« ^ e bisectional curvature tensor of the

Kahler metric g in local coordinates {zχ, • • • , zn). Then

Ric(7 (z) = £ RΓjk-k (z) , r U) (z) = έ Ric^ (z) ,
A : = l A : = l

where r(g) denotes the scalar curvature of g.
Lemma 2.2. Let μ be a positive function on Rι. Then

p2(z)<(\ogm)2/m

dz{ Λ d~zχ Λ Λ d z Λ /\d~zn = 0

for (/>!>••• , p π ) ^ ( ί 1 , ••• , ί π ) .

/ Using polar coordinates, the above integral is equal to

Js2"-1 \\z\J \\z\J \\z\J \\z\J

where q = qλ H h qn , and dσ is the standard measure on S ' . But

(zJ\z\)Pl • • • (zj\z\)p" and (z,/lzl)'''""' ̂ l\z\)% are the eigenfunctions
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of the Laplacian on S 2 "" 1 and are induced by harmonic functions on
Cn moreover, they are orthogonal to each other when (p{, , pn) Φ
(Q\> "' > Qn) - Hence the lemma follows.

Lemma 2.3. We have the following expressions:

o, ,0) - r (8) (xo) + * + m + 6n

^

m! \ 2 \ iΦ " +n)J

/ By (1.3),

(2.1) d

where 6(z, ~z) is a homogeneous polynomial in zz and Y., and

deg6(z, z) = 3 . Since - β a logα = 2 π ω ^ / v

/ z T = Eα,/? ί β y ^ α

 Λ dΊβ '
using (1.3) and (1.4), we have the Taylor expansion

1 n 1

α (z) = 1 - |z|2 + - 53 ϋ.7jk7 (x0) z ^ . z ^ + - |z|4

( 2 . 2 ) ι,y ,ik,/=l

where d(z ,~z) is a homogeneous polynomial of degree 5 in zf. and z
Set

p{z)<\o%m/y/m

'dz{ΛdΊ{Λ' Λ dzn A d~zn
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2 Σ

• dzx A dzχ Λ Λ dzn Λ

Z Σ RrjkAxo)z?jzkΊι + \
1 , 7 , * , /

Λ ύfzj Λ Λ dzn Λ

- ί—V ί

Σ

Ndzχ Λ dzn
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By applying either Lemma 2.1 or Lemma 2.2 to the integral of each term,
obtain

-̂ ( 2 , o , , o ) - ^ 2 π

•Lz\<\ogm/y/m

Λ / o\

m | z 1 | 4 ( l - i z | 2 )

i<j

2m! /

+ « + 2)! V
1 +

+ 0

Similarly, one can compute λ^2

0 0 ) and /l(0

2_ 0 ) .
We end this section by summarizing the above into the following.
Proposition 2.1. We have for a point x0 in M, a local coordinate

(Zj, , zn) with the properties stated in (1.3), and a local frame eL of
L with properties stated in (1.4). Let μ = (μ{, , μn) be a unit vector in
Cn . Then for m large enough, there are holomorphic peak global sections
S,Sμ, and Sμ2 of Lm such that at x0,
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(2.3) f/i + 1) ( r ( g ) ( * o ) - " 2 - " )

(2.4)

(2.5)

RμΊiμΊi(x0) = Σij9k9ι
Rijkllιi/Λjljίklιi' Moreover, those sections of

Lm satisfy two equations in (1.5) for p = 4.
Proof Without loss of generality, we may assume that μ = (1, 0, ,

0). Then the proposition follows from Lemmas 1.2 and 2.3 for proper p1.

3. The proof of Theorem A

We adopt the notation of the last section. The m-multiple of the polar-

ization L induces an embedding φm: M —• CPNm, where Nm + 1 =

dim c H°(M, Lm). Such an embedding is not canonical and is up to

Aut(CPNfn). We define φm by choosing an orthonormal basis {S™, ,

S™ } of H°(M, O , i.e., φjx) = [So

w(x), ••• , S£ (*)] in C P ^ for
tn in

any point x of M . Although this #>w is not uniquely defined and is up
to U(Nm + 1), we observe that the pull-back metric gm = ^φ*mgFS is
uniquely defined. This observation is important and will often be used in
the following proof of Theorem A. Let ω be the associated Kahler form
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(3.1)
m

2mπ

2mπ

riog s:

Whm

+•••+

JN.>»\\hm

We should clarify the meaning of ddlog(|S™| + -- + \S% | ), since

S™ (0 < / < Nm) is no longer a function and its euclidean norm is

meaningless. Here in the local frame e™ of Lm , S™ = f™e™ for a

holomorphic function / as a form, and d

dd log(|/0

m|2 + + \f£ |2) is independent of the choice of the local frame

el of Lm.
The proof of Theorem A is local in nature. It suffices to estimate the

differences of gm and g, and their derivatives, in a pointwise manner.
Fix a point JC0 at M. Choose the local coordinate (z{, , zn) at x0

and a local frame eL of L at xQ such that (1.3) and (1.4) are satisfied.
For each μ = (μ{, , μn) e Cn , \μ\2 = 1, define yμ = Σ"=ι ^izi a n d

Y = d/dyμ , where Y is a local holomorphic vector field of M at x0 .
It is well known that the sectional curvature tensor is dominated by the
holomorphic sectional curvature. Thus in order to prove Theorem A, it is
sufficient to prove that

(3-2) (Yμ, Yμ) -D\g (Yμ, Yμ)\ (x0) ,

where 0{\/s/m) denotes a quantity dominated by C/φn with C in-
dependent of x0 and μ, and the covariant derivative D is taken with
respect to the metric g.
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By (1.3) and the definition of gm , one can easily see that (3.2) is equiv-
alent to

max κι>

(3.3)

rm
JN

m

where the {f™} are local representations of {S™} in the frame e™ of
Lm. It suffices to prove (3.3). First we investigate the orthogonal dis-
crepancy among the sections in the chosen basis {5Z

W} and those sections
constructed in either Lemma 1.2 or Proposition 2.1.

Lemma 3.1. Let S be a holomorphic global section constructed in either
Lemma 1.1 or Proposition 2.1. Then it is known that

at xQ, where p^ > p. Let T be another section of Lm with \\T\\hm - 1,

which contains no term z\x zp

n

n in its Taylor expansion at x0. Then

(3-4) (S,T)hm = O(i;),

where ( , )hm is the inner product on the linear space H°(M,Lm) induced

by the metric hm. Furthermore, if T contains no term z\x zq

n

n with
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Qχ + + Qn = P > then

(3.5)

Proof. We prove only (3.5), since the proof for (3.4) is almost the same.
By (1.5) and Schwartz inequality we obtain

{S,T)h* = f -β) dzΛdΊ =θ(-±-r),

where dz t\dz = dzx A dzx Λ Λ dzn A dzn , S(z) = fs(z)e™ , and
T(z) = fτ(z)e™ in a neighborhood of x0. From (1.6) it follows that

[
m\Pχ\...pn\ ^

for |z| < log m/y/m . By taking p' large enough, we only need to prove

(3.6) \z\<\o%m/m

Substituting (2.2) and (2.1) in the integrand on the left-hand side of
(3.6), we obtain

1= — — Ύ Ύ

1 . .4 o(rf) ή\ dzAdz
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\z\<\o%m I y/m

fl̂ l4 + 7 Σ % W - 1 dz NdΎ

V
ί

J\z

By Lemma 2.2 and the assumption that the Taylor expansion of fτ(z) at

x0 has no term z\ι - zq

n

n with qχ H h qn = p, one easily sees that the
first integral above is zero. Thus by Schwartz inequality we have

11/2

\I\<c \ \\T\\h

Without loss of generality, we may assume that μ = (1, 0, . . . , 0).
Then y — zχ. Since the metric gm is independent of the choice of

the orthonormal basis {S™ , . . . , Sn

N } of H°(M, Lm), by an orthogonal

transformation we may further assume that

f™ (0) = 0 for i > 1,

( 3 7 )
> J = ι > 2 > - > » >

= 0 for/>Λ

Lemma 3.2. Under the above assumption on the orthonormal basis
{S™, . . . , S™m}, we have the following estimates:
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(i)

(ϋ)

l(n + m
~ V w!

(iii)
σz,

(«—1)/2

(iv) l2(m + n
= V m!

/ The proof of (i) is almost the same as that of (ii), so we omit it.
Let us first prove (iii) and (iv). Use Lemma 1.1 to construct holomorphic
sections Tχ, . . . , Tn of Lm satisfying (1.5) and (1.6) for (p{, . . . , pn) =
(1, 0, ... , 0), (0, 1, ... , 0), . . . , (0, . . . , 0, 1), respectively. There are
constants βu (1 < / < n , 0 < j < N) such that

(3.8)
m

Σk
7=0

= 1,

(3.9)
7=0
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By (3.7), β.j = 0 for j < i. Applying Lemma 3.1 to Tn Sj, and

Σj=n+\ βijSj > w e conclude from (3.7) that for large p in Lemma 1.1,

(3.10)
f o r / = 1 , 2 , . •• ,/ ι ; i<j<n + l,

= O{l/mV2) f o r / = l , 2 , . , n .

Take derivatives on both sides of (3.9), and use the fact that

(d2fτ/dz2)(x0) = 0 (if we take p large in the construction of Tn by

Lemma 3.1), where T. = fτe™ at x0 . One then obtains

N* d2fm

(3.11) 0 = J2βij-^Γ(x0), i = l , 2, . . . , « .

It follows from (3.8) and (3.10) that \βu\ = 1 + 0(1/m2). Inductively,

one solves (3.11) for (d2f^ι/dz2

ι)(x0), i = l , 2 , . . , /i, and (d2f™/dz2

χ)

V 3/2

By using Proposition 2.1 to construct S i and proceeding as above, we

have

eή

Hence (iii) and (iv) follow.

By similar arguments, one can prove that (d3f™/'dz\)(xQ) = O(mn/2).

To finish the proof of (ii), it remains to evaluate (9/ 1

w /9z 1 )(x 0 ). For this

purpose, we simply take the section S constructed in Proposition 2.1 for

μ = (1, 0, , 0), and express it in terms of {^m} as follows:

7=0 j=0

One sees immediately that β0 = 0 and β. = O(±) for j > 2 by

Lemma 3.1, so we obtain the evaluation of (df™/dz{)(x0) required in

the statement of (ii).
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Now we are ready to prove the estimate (3.3). We split the proof into
the following four lemmas, and note that we may assume yμ = z{.

Lemma 3.3. With the above notation and assumptions, we have

1
m

log

dzιdzι

Proof. By (3.7) and Lemma 3.2 (i), (ii), we have

log

m dzιdzι

m
1)

-, 2

Lemma 3.4. With the above notation and assumptions, we have

l_
m dz\dzχ

Proof. By (3.7) and a direct computation, we obtain

log

m

, ,

(*θ)'

Then the lemma follows from Lemma 3.2 (i), (ii).
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Lemma 3.5. With the notation and the assumptions as in Lemma 3.3
and 3.4, we have

m

Proof. By (3.7) and a complicated, but straightforward, computation,
we obtain

= - 2 -
dz2

ιdzι

7? |/m)Q (χ0) - (7^

*) (df?/dzΛ) (

<\fom\4
K)

Then this lemma follows from Lemmas 3.3 and 3.4, and (i), (ii) of Lemma
3.2.

Lemma 3.6. With the notation and assumptions as in the above lemmas,
we have

m
— /v,7iT I
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Proof. By a straightforward computation and (3.7), we obtain

/ / = —

m dz\dz\

= -4Re

+ 4

J_

By Lemma 3.2(i), (ii), the first two terms on the right-hand side are both

of order O(l/rn2). By Lemma 3.2(iii), we have ΣH=χ\dfΓIdz\\2 =

O{mn~ι), and therefore

\foΎ

—2 (m + n + 2)(m + n + l)

1

(by Lemma 3.2 again)

- Λ π i T K ) - «2 - 5« - ό)

1 +
2(m + n

- 1
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- 2

The estimate (3.3) follows from Lemmas 3.3-3.6. Hence Theorem A is
proved. Obviously, Theorem B follows from Theorem A.

Remark. It is likely that one can estimate the difference between gm

and g up to higher derivatives, but one should have a neater method. For
Riemann surfaces we can show that gm converges to g in C3-topology
by computations analogous to the above ones.

4. Generalizations to noncompact manifolds

It is easy to see that the previous proof for Theorem A is local in nature.
This makes us believe that some generalizations of it should be possible
for noncompact Kahler manifolds. Let X be a complete Kahler manifold
with Kahler metric g and let L be a line bundle on X with a hermitian
metric h and Ricci curvature Ric(Λ) greater than εmax{ω^, -Ric(#)}

for some e > 0. Denote by H^2)(X, Lm) the space of all L2-integrable

holomorphic global sections of the line bundle Lm . This space is a Hubert

space with a natural inner product induced by the hermitian metric hm .

Choose an orthonormal basis {Sf }/>o o f H(2)(x> L™)

Lemma 4.1. For each local frame eL of L at any point x in X, write

S™ = f™e™ . Then ΣZo \fΓ\2 is a smooth function near x.

Proof Each f™ is holomorphic near x . Then by the Cauchy integral

formula (cf. [5]), it suffices to prove that Σ™0 | / j m | 2 is locally uniformly

bounded at x. First we observe that for a holomorphic section S in

H(2)(X, Lm) with HSΊÎm = 1, there is a neighborhood U of x and a con-

stant C which is independent of S, such that S = fe™ , | / | 2 is bounded

by C in U. Now for any N > 0, take an orthogonal transformation σ

from U(N+l) such that if σ = (^)o</,;<jsr a n d Ti = ΣUσUS? ' t h e n
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T.(x) = 0 for i > 1. Since σ is orthogonal,

p \ \
eL \\hm

(x)<C + oo.

Thus the lemma is proved.
By this lemma, one can define a positive, rf-closed, (1, l)-current ωm

on X in the following way: At any point x in I , define

(4 i}

where S™ = f™e™ in a neighborhood of x ({S™} is the basis as in
Lemma 4.1.) Formally, we can write

ω™ 2raπ
Λ

Since Ric(A) > εmax{ω , -Ric(g)} for some ε > 0, it follows from

the standard zΛestimate of the ^-operator (Proposition 1.1) that for any
compact set K c X, ωm will be regular (1, l)-form in K for m large
enough. By the same arguments as in the proof of Theorem A, one can
prove the following.

Theorem 4.1. Set X, L, g, and h as above. Then for any compact set
K of X, there are constants m0 and C, depending only on the geometry
of K in M, such that for m > mQ, ωm is regular in K and so induces a
Kάhler metric gm on K, and

(4.2) max{ | |g m -Ric(Λ)| | , \\Dgm - Z>Ric(Λ)||} < Cκ/yβi,
M.

where the covariant derivative D is taken with respect to g, and \\-\\ is

a norm on tensors induced by g. In the case that (X, g) is a complete

Kάhler-Einstein manifold with Ric(g) = -ωg, and L = Kχ is the canon-

ical line bundle, we have in the compact set K

m-ή , \\DgJ , \\D2gm

(4.3) < Cκ/y/m for m> m0,

where R(gm) and R(g) are curvature tensors of gm and g, respectively.
Furthermore, if the metric g has bounded curvature tensor, and the injec-
tivity radius at each point is bounded from below by a uniform constant
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c > 0, then Cκ in (4.2) or (4.3) can be taken independent of the compact
set K.

Remark. As a corollary of Theorem 4.1, one can prove that for any
strictly pluriharmonic function φ on the unit ball Bχ (0) of Cn , the func-
tion φ can be approximated up to its third derivatives in the ball Bι/2(0)

by functions of the form λlog(Σf=ι Iff), where the {f.} are holomorphic
functions on B{ (0).

5. The proof of Theorem C

In this section, we will use Theorem 4.1 to prove Theorem C. We start
with the following lemma.

Lemma 5.1. Let X be a quasiprojective manifold with a complete Kάhler
metric g, where Ric(g) < -λωg for some λ > 0. Let Ύ be a smooth

compactification of X. Then for each m, the space H®2)(X, Kχ) is of

finite dimension, and any holomorphic section S in H?2)(X, Kχ) can be

extended to be a meromorphic section of (Kγ)m on Ύ with poles along D

and the order less than m.
Proof. It suffices to prove the second statement. Fix a Kahler metric ~g

on Ύ induced by the Kahler form ω given in the statement of Theorem
C. Put h = (detQj^-j))"1 then h is a hermitian metric on Kj. Let h

be the hermitian metric on Kx induced by g on X, and put eφ = h/h.
Then by Kj\χ = Kχ we have

(5.1) jί dVg < +oo.

Put D = Ύ - X then D is a divisor in X. Let Sing(D) be the
singular points of D, and codinj(Sing(Z))) > 2. By Hartog's theorem
(cf. [5]), we only need to extend S across the regular part of D, i.e.,
across D - Sing(D). Take any point x in D - Sing(D). Then there is
a neighborhood Ux of x in ~X such that UxnX « Δ* x Δ"" 1 , where
Δ = {z e C{\ \z\ < 1}, and Δ* = Δ \ {0}. Thus there is a complete
hyperbolic metric gχ on UxnX. This metric gx is actually the product
metric of those Poincare metrics on Δ or Δ*. Moreover, if zx is the local
defining function of Dn Uχ , then for a smaller neighborhood Vχ of x in

(5.2)
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where C is a positive constant, and hx is the hermitian metric on Kγ\u n x

induced by gx.
On the other hand, by our assumption on Ric(g) and Yau's generalized

Schwartz lemma [14], the volume form of g uniformly dominates that of
gx on UXΓ\X, i.e.,

(5.3) eφh = H>C(λ)hχ onUχΠX,

where C{λ) is a positive constant depending only on λ and n .
Now by (5.1), (5.2), and (5.3), one easily sees that S can be extended

to be a meromorphic section of K-% possibly with poles along D and the
order less than m .

Let D be as above and write D = Σι

i=ι Dt, Zλ smooth (/ = 1,2,
••• , / ) . Let Γz be the defining section of D.. Then by Lemma 5.1,
there are integers p™, 0 < p™ < m - 1, such that for each S in

H°{1)(X,K™), Tf ••• Tfs can be extended to be a holomorphic section

of K% + γ!i=χp™Dr Define

α> = log
m 2mπ B

where Nm + 1 = dimcH®2JX, K™). Then ωm is a positive, rf-closed,

(1, l)-currenton X, extending ωm on X. Moreover,

n—\

< (Kτ + D)[ω]"~ι <+oo,

where [ω] is the cohomological class represented by ω .
It follows from Theorem 4.1 that

(-Ric(g))Aωn l <(KΎ + D) [ω]n 1 < + o o ,

so that part (2) of Theorem C is proved.
Note that we also proved that ωm converges weakly to a positive, d-

closed, (1, l)-current ω extending — Ric(g) = Ric(Λ^).
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Choose a hermitian metric A|. for the line bundle [Dz] (/ = 1, 2, , /)
to obtain

/ m

i=\

Define ωm ε by

ωm,e =

I ™

m

2mπ
'log

By Theorem 4.1, one can choose a sequence {εm}, limm_^ooεm = 0,

such that on each compact set K of X, ω m ε converges uniformly to

i. On the other hand, by a straightforward computation, ωm ε is

bounded from below by Min{0, - Ric(J) + Σ!i=x{p™lm) RicίA,.)} . Since
0 < p™ < m - 1, by Fatou's lemma we obtain

= lim

/ I m \

im C (KΎ) + Y -±-Cx (D.)
\ ι=l /

where pz = limm_^oop/

m/m , 0 < pi < 1. Hence Theorem C is proved.
Before we end this section, we give an improved version of Theorem

C in the case n = 2 for later use. For example, by using this improved
version of Theorem C and some tricks for solving complex Monge-Ampere
equations, one can prove that the volume of a complete Kahler-Einstein
metric on a quasiprojective surface is always a rational number. In fact,
one should be able to prove that the volume is an integer.

Theorem 5.1. Let X be a quasiprojective surface with a complete Kάhler
metric g and - Ric(g ) > εω , and let Ύ be a compactification of X.
Then the positive, d-closed, (1, \)-current -Ric(g) can be extended to
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a positive, d-closed, (1, \)-current ω on X such that it represents a

cohomologicalclass C^K^ + Σ^P C^Dj) in Hl'l(X, C)nH2(X, Z ) ,

where pt < 1 and X - X — \ji=x Dt, Dt irreducible. Moreover

(1) 0 < / A Γ ( R i c ( ^ ) ) 2 < ( C 1 ( % ) - f Σ ! / = I Λ (

(2) For any irreducible effective curve E in X,

i

i=\

and > 0 if E is not contained in \Jι

i=ι Dit where [E] denotes the coho-

mology class of E in H2(X,Z). In particular, C{(%) + Σ(.= 1 pxCλ(D.)

is numerically effective.

Remark. According to the terminology of algebraic geometry, such a
divisor Kj + D is numerically positive.

Proof. For each m > 0, choose an orthonormal basis {S^}0<i<N of
— — m

H(2){X, K™). Define p™ = m a x ^ ^ ^ {order of the pole of Sj1 along

D J , i = 1, 2, ••• , /, where we regard the zero of S™ as the pole
with negative order. Lemma 5.1 can be applied here to conclude that
p™ < m - \ for / = 1, 2, , /. Let Tt be the defining section of

the divisor Dr Then the holomorphic section {(Π/=i ^^^QKJKN

of Kj -h 53/=i P?Di has no divisor as common zero along D. Define a
positive, d-closed, (1, l)-current ωm on X as before by

(5 4) ^ ^ [ \ \
By 0 < fa ωm Λ ω, where ω is a positive Kahler form on Ύ, we have a
uniform lower bound for all p™/m < 1 (/ = 1, 2, , /), in fact,

(5.5) ~ L C \ (%) Λ ω ^ Ric/>Γm L C \ (Di) Λ ω-
J J

~ LC\ (%) Λ ω ^ Ric/>Γm LC\
Jx Jx

By taking a sequence of {m}m>0 , we may assume that pt = limw_^oo p™/m
exists for each /. Since / j ω m Λ ω < (C{{Kj) + Σ ( / 7 Γ / m ) c i ( j D / ) ) " ω i s

bounded uniformly from above, ωm converges weakly to a positive, d-
closed, (1, l)-current ωg, which extends to -Ric(g) by Theorem 4.1.
As in the proof of Theorem C, one sees

(5.6) 0 < f (Ric(g))2 = ί ω\ < [C{ (%) + ̂ Λ c i (Di))
Jx Jx \ / = 1 /
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Note that ωg represents the cohomological class Cx CKy)+Σ/=i ptCx (/).).

For each irreducible curve E, since {Π/=i(^f' )Sm}o<j<N ^ a s n o c o m "
mon zero divisor along D for m large enough, the restriction of the
(1, l)-current ωm to E as current is well defined and

(5.7)

By taking the limit, one sees (Cx (KΎ) + Σι.=ι p.Cx{D.)) [E] > 0. It is also

easy to see from (5.7) that (C\ (%) + £ ( = 1 piCι (£>,)) [E] > 0 if E is not
contained in D.

Remark. In the joint work [12] by S. T. Yau and the author, we prove
that the quasiprojective manifold X admits an "almost" complete Kahler-
Einstein metric with negative Ricci curvature if X = X—D with D normal
crossing and Kj + D positive in X and numerically positive in X. Note
that such a metric which we constructed on X should be complete. This
makes us believe that all pi in Theorem 5.1 are actually equal to one.

6. A final remark

Let (AT, g) be a compact Kahler manifold with positive first Chern
class and the metric g naturally polarized by the ample anticanonical line
bundle K^1 on M, i.e., ωg represents Cλ (M). There is an unsolved
problem of E. Calabi whether or not M admits a Kahler-Einstein metric
with positive scalar curvature. In general, there are obstructions to the ex-
istence of such a Kahler-Einstein metric. They were found by Matsushima
[8], Futaki [4], Donaldson [3], and Uhlenbeck and Yau [13] . However,
in [11] a numerical criterion is given for the existence of Kahler-Einstein
metrics on M. Such a criterion is expressed in terms of a holomorphic
invariant a(M). We will recall the definition of this invariant later. This
a(M) is an analogue of the conformal invariant in the study of Yamabe's
equation [1], [10].

Let G be a maximal compact group in the automorphism group Aut(M)
of M, and let the metric g be G-invariant. Define

PG(M,g)= ^φeC2(M,Rl)\ωg + ̂ Ξ

supp = 0, φ is G-invariant >.
M )
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Then we define
(6.1)

a(M) = sup j α 3Ca > 0 s.t Vp G PG(M, g) , j^e~aφdVg < Ca J .

Although the definition of a(M) depends on the choice of the metric g
and the maximal compact group G, the number a(M) does not. In [11],
the author proved that M admits a Kahler-Einstein metric with positive
scalar curvature whenever a(M) > qn/(n + 1), where n is the complex
dimension of M. So a natural question arises: How do we estimate a(M)
from below? Theorem B throws light on it.

Define

Pm(M, g) = {φ e C°°(M, R )sup#> = 0, φ is (/-invariant and

3 a basis {S V K Λ Γ of H {M, KM ) such that

1=0

where Nm + 1 = dim//°(M, ΛΓ~m) and w is large.
A direct corollary of Theorem B is that we can confine ourselves to

S) i n the definition (4.1) of a(M), where m0 is large. Pre-

cisely, we have
Proposition 6.1. The holomorphic invariant a(M) is equal to

(6.2) sup I a \3C > 0 s.t. Vφ in Pm (M, g) with m>m0,

ί e-aφdV<c).

This proposition turns the estimate of a(M) into the evaluation of
some rational integrals. But it is still hard to deal with the estimate since
we must compute infinitely many integrals. So we propose the following
approach. One can define, for m large,

am (M) = sup jα 3C> 0 s.t. VφcPm(M,g), J e~aφ dVg <cΛ.

Each oίm{M) is a holomorphic invariant of M, and obviously, a{M) <
infmaJM).

Question 1. Does a (M) = a(M) for m sufficiently large?
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The Kahler metric g induces a hermitian norm || || on K^m . Let Sm

be the unit sphere in H°(M, K^m) with respect to the induced hermitian

norm || \\m . Then one can check that

(6.3) {• C > 0 s.t. for any global section 5 in

the sphere Sm, j ^ (l/ \\stm)a'm dVg <

This interpretation indicates that the invariant am(M) reflects to some
extent how bad the singularities of the divisors of M are cut by the global
sections of K^m .

For fixed a > 0, the integral fM(l/\\S\\2

m)a/m dVg defines a function on
Sm . Note that this function may take the value infinity. The Fatou lemma
implies that this function, denoted by Fm , is upper semicontinuous.

Question 2. Is Fm continuous on Sm ? Or, more weakly, can the
supreme of Fm on Sm be achieved on Sm ?

In the case that M is a complex surface with positive first Chern class
and m small, we can affirm Question 2 by some direct, but complicated,
computations of rational integrals. The affirmation of these equations will
make the evaluation of a(M) much more tractable.

Added in proof. Lemmas 1.2 and 2.3 also yield the following result. Let
|| || be a hermitian metric on an ample line bundle L on M such that its
curvature form ω is a Kahler form on M. Then for large m, Σ^oll^/llw
is equal to [(m + n)\/m\](\ + 0(1/m)), where || | |m is the induced her-
mitian metric on Lm by || | | , and {5'/}0<z<w is an orthonormal basis of

H°(M, Lm) with respect to the induced inner product by || | |m and ω.
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