ON A SET OF POLARIZED KÄHLER METRICS ON ALGEBRAIC MANIFOLDS

GANG TIAN

0. Introduction and statement of main theorems

A projective algebraic manifold M is a complex manifold in certain projective space $C P^{N}, N \geq \operatorname{dim}_{C} M=n$. The hyperplane line bundle of $C P^{N}$ restricts to an ample line bundle L on M. This bundle L is a polarization on M. For the Kähler metric g on M, we can associate a positive, d-closed $(1,1)$-form ω_{g}. In any local coordinate system $\left(z_{1}, \cdots, z_{n}\right)$ of M, the metric g is expressed by a tensor $\left(g_{i j}\right)_{1 \leq i, j \leq n}$, and ω_{g} is defined to be $\frac{\sqrt{-1}}{2 \pi} \sum_{i, j=1}^{n} g_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}$. We call this ω_{g} the Kähler form associated to the metric g. By a polarized Kähler metric with respect to L, we mean a Kähler metric with its associated Kähler form representing the Chern class $C_{1}(L)$ of L in $H^{2}(M, Z)$. We denote by $\mathrm{Ka}(M)$ the set of all polarized Kähler metrics on M with respect to L. Given a Kähler metric g in $\mathrm{Ka}(M)$, one can find a hermitian metric h on L with its Ricci curvature form equal to ω_{g} (cf. [7], or Lemma 1.1 in $\S 1$). For each positive integer $m>0$, the hermitian metric h induces a hermitian metric h^{m} on L^{m}. Choose an orthonormal basis $\left\{S_{0}^{m}, \cdots, S_{N_{m}}^{n}\right\}$ of the space $H^{0}\left(M, L^{m}\right)$ of all holomorphic global sections of L^{m}. Here the inner product on $H^{0}\left(M, L^{m}\right)$ is the natural one induced by the Kähler metric g and the hermitian metric h^{m} on L^{m}, i.e., $\left\langle S_{\alpha}^{m}, S_{\beta}^{m}\right\rangle=\int_{m} h^{m}\left(S_{\alpha}^{m}, S_{\beta}^{m}\right) d V_{g}$. Such a basis $S_{0}^{m}(x), \cdots, S_{N_{m}}^{n}(x)$ induces a holomorphic embedding φ_{m} of M into $C P^{N m}$ by assigning the point x of M to $\left[S_{0}^{m}(x), \cdots, S_{N_{m}}^{m}(x)\right]$ in $C P^{N_{m}}$. Let g_{FS} be the standard Fubini-Study metric on $C P^{N_{m}}$, i.e., $\omega_{g_{\mathrm{FS}}}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\sum_{i=0}^{N_{m}}\left|w_{i}\right|^{2}\right)$ for a homogeneous coordinate system $\left[w_{0}, \cdots, w_{N_{m}}\right.$] of $C P^{N_{m}}$. The $\frac{1}{m}$ multiple of g_{FS} on $C P^{N_{m}}$ restricts to a Kähler metric $\frac{1}{m} \varphi_{m}^{*} g_{\mathrm{FS}}$ on M. This metric is obviously in $\mathrm{Ka}(M)$, i.e., polarized by L, and it is called
the Bergmann metric with respect to L. One of our main theorems here is the following.

Theorem A. Let M be an algebraic manifold with a polarization L and let g be a polarized Kähler metric in $\mathrm{Ka}(M)$. Define the Bergmann metric $g_{m}=\frac{1}{m} \varphi_{m}^{*} g_{\mathrm{FS}}$ as above. Then

$$
\begin{aligned}
& \max _{M}\left\{\left\|g_{m}-g\right\|,\left|D g_{m}-D g\right|\|,\| D^{2} g_{m}-D^{2} g\|,\| R\left(g_{m}\right)-R(g) \|\right\} \\
&=O\left(\frac{1}{\sqrt{m}}\right),
\end{aligned}
$$

where D is the covariant derivative with respect to the metric $g, R\left(g_{m}\right)$ and $R(g)$ are the curvature tensors of g_{m} and g, respectively, and $O(1 / \sqrt{m})$ means a constant bounded by C / \sqrt{m} with C depending only on the metric g; the norm $\|\cdot\|$ is taken with respect to the metric g.

In particular, the theorem implies that the g_{m} converge to g in the C^{2}-topology on the space $S^{2} M$ of all symmetric covariant 2-tensors. It is likely that the g_{m} actually converge to g in the C^{∞}-topology on $S^{2} M$. When M is naturally polarized by its canonical line bundle, the theorem solves a problem of S. T. Yau [15]; the problem asks whether or not the Kähler-Einstein metric on M can be the limit of a sequence of Bergmann metrics induced by pluricanonical line bundles K_{M}^{m}. This problem of Yau is one of the motivations in proving the above theorem. As we have noticed, the Bergmann metric $\frac{1}{m} \varphi^{*} g_{\mathrm{FS}}$ depends on the choice of the basis $\left\{S_{0}^{m}, \cdots, S_{N_{m}}^{m}\right\}$ of $H^{0}\left(M, L^{m}\right)$, so it depends on the metric g. But the set of Bergmann metrics $P_{m}=\left\{\left.\frac{1}{m} \varphi_{m}^{*} g_{f s} \right\rvert\, \sigma \in \operatorname{Aut}\left(C P^{N_{m}}\right)\right\}$ is independent of the metric g. A corollary of Theorem A is the following density theorem.

Theorem B. Let M be an algebraic manifold with a polarization L. Then the union $\bigcup_{m=1}^{\infty} P_{m}=P$ is dense in $\mathrm{Ka}(M)$ in the C^{2}-topology induced by the one on $S^{2} M$, where $\mathrm{Ka}(M)$ and P_{m} are defined as above.

One can regard the Kähler metric in P as the metric defined by polynomials on M. Hence, both Theorems A and B are analogues of the famous Stone's approximation theorem on the space of continuous functions in the case of Kähler geometry. In particular, Theorem A and Theorem B imply that any function ψ can be approximated by the logarithm of polynomials whenever $\omega+\partial \bar{\partial} \psi \geq 0$ for an L-polarized Kähler form ω. Such a function is sometimes said to be almost pluriharmonic. These theorems also throw light on making use of the variational method in finding extremal Kähler metrics [2], such as Kähler-Einstein metrics. For instance, one can first study whether or not there is a Kähler metric g_{m} in P_{m} which
reaches the minimum of the functional of an L^{2}-norm of scalar curvature [2] on P_{m}. Then one considers the convergence of those g_{m} as m goes to infinity. Note that the group $P G L\left(N_{m}+1\right)=\operatorname{Aut}\left(C P^{N_{m}}\right)$ acts naturally on the set P_{m}; the latter is dominated by the affine space $C^{N_{m}}$. If this action is proper for the functional of an L^{2}-norm of scalar curvature, then it admits a minimum on P_{m}. The properness of the group action might be related to the stability of M in the Chow variety as defined in [9]. It is another motivation of proving these theorems for studying the connection between the existence of Kähler-Einstein metrics on M and Mumford's stability.

The proof is based on Hörmander's L^{2}-estimate of the $\bar{\partial}$-operator [6]; it is local in nature. Therefore, we can generalize Theorem A to complete Kähler manifolds with some conditions on Ricci curvature (see $\S 4$, Theorem 4.1). As applications of the generalization of Theorem A in case of quasiprojective manifolds, we can prove the following.

Theorem C. Let X be a quasiprojective manifold, and let g be a complete Kähler metric on X with its Ricci curvature bounded from above by $-\lambda g$ for some $\lambda>0$. Define the Ricci form $\operatorname{Ric}(g)$ as

$$
\operatorname{Ric}(g)=\frac{\sqrt{-1}}{2 \pi} R_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}
$$

where $\left\{R_{i j}\right\}_{1 \leq i, j \leq n}$ is the Ricci tensor of g in local coordinates $\left(z_{1}, \cdots\right.$, $\left.z_{n}\right)$. Suppose that \bar{X} is a smooth projective compactification of X. Then the positive $(1,1)$-form $-\operatorname{Ric}(g)$ can be naturally extended across the infinity of X in \bar{X}, and
(1) $0<\int_{X}(-\operatorname{Ric}(g))^{n} \leq C$, where $n=\operatorname{dim}_{C} X$,
(2) $0<\int_{X}\left(-\operatorname{Ric}(g) \wedge \omega^{n-1}\right) \leq C$, where ω is a Kähler form on \bar{X}, C depends only on λ and \bar{X}, and $(-\operatorname{Ric}(g))^{n}$ is the n-exterior product of $-\operatorname{Ric}(g)$, similar to ω^{n-1}.

In the case that X is a quasiprojective surface, we can say more about the extension of $\operatorname{Ric}(g)$ in the above theorem. This is stated in Theorem 5.1 in $\S 5$.

The organization of this paper is as follows. In $\S 1$, we construct L^{2} holomorphic global peak sections of L^{m} with the L^{2}-norm almost concentrated at one point, i.e., the peak point. The tool used for this is Hörmander's L^{2}-estimate for $\bar{\partial}$-operator [6]. In §2, we calculate the Taylor expansion of the peak section constructed in $\S 1$ at the peak point. In $\S 3$, we use those peak sections of L^{m} constructed in $\S 1$ to prove Theorem A. Theorem B easily follows from Theorem A. In $\S 4$, we consider the
generalization of Theorem A to noncompact, complete Kähler manifolds. Then in $\S 5$ we will use the generalization of Theorem A to prove Theorem C. We end the section with an improvement of Theorem C in the case of complex surfaces (Theorem 5.1). In $\S 6$, we discuss briefly the application of Theorem A or B to evaluating the holomorphic invariant introduced in [11].

This paper is a part of the author's thesis at Harvard University. The author would like to express his gratitude to his advisor Professor S. T. Yau for help and encouragement during the course of this work. The author also thanks the Alfred P. Sloan Foundation and Harvard University for their generous financial support.

1. Construction of peak global sections of some line bundles

Let M be an n-dimensional algebraic manifold with a polarization L, and let g be a polarized Kähler metric with respect to L. In local coordinates $\left(z_{1}, \cdots, z_{n}\right), g$ is represented by a positive hermitian matrix $\left(g_{\alpha \bar{\beta}}\right)$ and the associated Kähler form

$$
\omega_{g}=\frac{\sqrt{-1}}{2 \pi} \sum_{\alpha, \beta=1}^{n} g_{\alpha \bar{\beta}} d z_{\alpha} \wedge d \bar{z}_{\beta}
$$

ω_{g} is in $C_{1}(L)$.
Lemma 1.1 (See [7] for the proof). There exists a hermitian metric h on L such that the curvature form $\operatorname{Ric}(h)$ of h is just ω_{g}.

In the local holomorphic frame e_{L} of the line bundle $\stackrel{g}{L}$, the hermitian metric h is represented by a positive function $a(z), z \in M$, i.e., for a local section $s=f e_{L}$ of $L,\|S\|_{h}^{2}=a|f|^{2}$, where f is a local holomorphic function. Then the curvature $\operatorname{Ric}(h)=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log a$.

Proposition 1.1. Suppose that (M, g) is a complete Kähler manifold of complex dimension n, L is a line bundle on M with the hermitian metric h, and ψ is a function on M, which can be approximated by a decreasing sequence of smooth functions $\left\{\psi_{l}\right\}_{1 \leq l<+\infty}$. If

$$
\begin{equation*}
\left\langle\partial \bar{\partial} \psi_{l}+\frac{2 \pi}{\sqrt{-1}}(\operatorname{Ric}(h)+\operatorname{Ric}(g)), v \wedge \bar{v}\right\rangle_{g} \geq C\|v\|_{g}^{2} \tag{1.1}
\end{equation*}
$$

for any tangent vector v of type $(1,0)$ at any point of M and for each l, where $C>0$ is a constant independent of l, and \langle,\rangle_{g} is the inner product induced by g, then for any $C^{\infty} L$-valued $(0,1)$-form w on M
with $\bar{\partial} w=0$ and $\int_{M}\|w\|^{2} e^{-\psi} d V_{g}$ finite, there exists a $C^{\infty} \quad L$-valued function u on M such that $\bar{\partial} u=w$ and

$$
\begin{equation*}
\int_{M}\|u\|^{2} e^{-\psi} d V_{g} \leq \frac{1}{C} \int_{M}\|w\|^{2} e^{-\psi} d V_{g} \tag{1.2}
\end{equation*}
$$

where $d V_{g}$ is the volume form of g and the norms $\|\cdot\|$ induced by h and g; for instance, in the local coordinates $\left(z_{1}, \cdots, z_{n}\right)$ and the local frame e_{L} as above, $g=\left(g_{\alpha \bar{\beta}}\right), w=w_{\alpha} d \bar{z}_{\alpha}$, and $\|w\|^{2}=a(z) g^{\alpha \bar{\beta}} \bar{w}_{\alpha} w_{\beta}$.

This proposition can be proved easily by modifying the proof of [6, Theorem 4.4.1, p. 92] with the use of the Bochner-Kodaira Laplacian formula (see e.g. [7]).

Now let M and L be given as at the beginning of this section, and we construct peak sections of L^{m} for m large. Fix a point x_{0} in M. Choose a local normal coordinate $\left(z_{1}, \cdots, z_{n}\right)$ at x_{0}, such that $x_{0}=(0, \cdots, 0)$ and the hermitian matrix $\left(g_{\alpha \bar{\beta}}\right)$ satisfies

$$
\begin{align*}
& g_{\alpha \bar{\beta}}\left(x_{0}\right)=\delta_{\alpha, \beta}, \quad d g_{\alpha \bar{\beta}}\left(x_{0}\right)=0, \\
& \frac{\partial^{2} g_{\alpha \bar{\beta}}}{\partial z_{\gamma} \partial z_{\delta}}\left(x_{0}\right)=0 \quad \text { for } \gamma, \delta,=1,2, \cdots, n, \tag{1.3}\\
& \frac{\partial^{3} g_{\alpha \bar{\beta}}}{\partial z_{\gamma} \partial z_{\delta} \partial z_{\lambda}}\left(x_{0}\right)=0 \text { for } \lambda, \gamma, \delta=1,2, \cdots, n, \\
& \frac{\partial^{4} g_{\alpha \bar{\beta}}}{\partial z_{\gamma} \partial z_{\delta} \partial z_{\lambda} \partial z_{\mu}}\left(x_{0}\right)=0 \text { for } \lambda, \mu, \gamma, \delta=1,2, \cdots, n .
\end{align*}
$$

Next we choose a local holomorphic frame e_{L} of L at x_{0} such that the local representation function a of the hermitian metric h has the properties

$$
\begin{align*}
& a\left(x_{0}\right)=1, \quad d a\left(x_{0}\right)=0, \quad \partial\left(\frac{\partial a}{\partial z_{i}}\right)\left(x_{0}\right)=0, \tag{1.4}\\
& \partial\left(\frac{\partial^{2} a}{\partial z_{i} \partial z_{j}}\right)\left(x_{0}\right)=0, \quad \partial\left(\frac{\partial^{3} a}{\partial z_{i} \partial z_{j} \partial z_{k}}\right)\left(x_{0}\right)=0,
\end{align*}
$$

where $i, j, k=1,2, \cdots, n$.
Suppose that this local coordinate $\left(z_{1}, \cdots, z_{n}\right)$ is defined on the open neighborhood U of x_{0} in M. Define a function ρ on $U, \rho(z)=$ $\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}$ for $z \in U$, where $|\cdot|$ is the euclidean norm.

Lemma 1.2. For an n-tuple of integers $\left(p_{1}, \cdots, p_{n}\right) \in Z_{+}^{n}$ and an integer $p^{\prime}>p=p_{1}+\cdots+p_{n}$, there exists an $m_{0}>0$ such that, for $m>$
m_{0}, there is a holomorphic global section S in $H^{0}\left(M, L^{m}\right)$, satisfying

$$
\begin{equation*}
\int_{M}\|S\|_{h^{m}}^{2} d V_{g}=1, \quad \int_{M \backslash\left\{\rho(z) \leq \frac{\log m}{\sqrt{m}}\right\}}\|S\|_{h^{m}}^{2} d V_{g}=O\left(\frac{1}{m^{2} p^{\prime}}\right) \tag{1.5}
\end{equation*}
$$

and locally at x_{0},

$$
\begin{equation*}
S(z)=\lambda_{\left(p_{1}, \cdots, p_{n}\right)}\left(z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}+O\left(|z|^{2 p^{\prime}}\right)\right) e_{L}^{m}\left(1+O\left(\frac{1}{m^{2 p^{\prime}}}\right)\right) \tag{1.6}
\end{equation*}
$$

where $\|\cdot\|_{h^{m}}$ is the norm on L^{m} given by h^{m}, and $O\left(1 / m^{2} p^{\prime}\right)$ denotes a quantity dominated by $C / m^{2 p^{\prime}}$ with the constant C depending only on p^{\prime} and the geometry of M, moreover

$$
\begin{equation*}
\lambda_{\left(p_{1}, \cdots, p_{n}\right)}^{-2}=\int_{\rho(z) \leq \log m / \sqrt{m}}\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2} a^{m} d V_{g}, \tag{1.7}
\end{equation*}
$$

where $d V_{g}=\operatorname{det}\left(g_{i \bar{j}}\right)(\sqrt{-1} /(2 \pi))^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}$ is the volume form.

Proof. We apply Proposition 1.1. Take a cut-off function η from a positive half real line R_{+}^{1} to R_{+}^{1} such that $\eta(t) \equiv 1$ for $t \leq \frac{1}{2}, \eta(t) \equiv 0$ for $t \geq 1,0 \leq-\eta^{\prime}(t) \leq 4$, and $\left|\eta^{\prime \prime}(t)\right| \leq 8$. Define the weight function

$$
\psi(z)=\left(n+2 p^{\prime}\right) \eta \frac{m \rho^{2}(z)}{(\log m)^{2}} \log \left(\frac{m \rho^{2}(z)}{(\log m)^{2}}\right)
$$

Then
$\partial \bar{\partial} \psi(z)$

$$
\begin{aligned}
=\left(n+2 p^{\prime}\right)\{[& \eta^{\prime \prime} \frac{m \rho^{2}(z)}{(\log m)^{2}} \frac{m^{2}}{(\log m)^{4}} \partial \rho^{2} \wedge \bar{\partial} \rho^{2} \\
& \left.+\eta^{\prime} \frac{m \rho^{2}(z)}{(\log m)^{2}} \frac{m}{(\log m)^{2}} \partial \bar{\partial} \rho^{2}\right] \log \left(\frac{m \rho^{2}(z)}{(\log m)^{2}}\right) \\
& +2 \operatorname{Re}\left[\eta^{\prime} \frac{m \rho^{2}(z)}{(\log m)^{2}} \frac{m}{(\log m)^{2}} \partial \rho^{2}(z) \wedge \bar{\partial} \log \rho^{2}(z)\right] \\
& \left.\left.+\eta \frac{m \rho^{2}(z)}{(\log m)^{2}} \partial \bar{\partial} \log \rho^{2}(z)\right)\right\}
\end{aligned}
$$

Either $\eta^{\prime \prime} m \rho^{2}(z) /(\log m)^{2}<0$ or $\eta^{\prime} m \rho^{2}(z) /(\log m)^{2}<0$ only if $\frac{1}{2} \leq$ $m \rho^{2}(z) /(\log m)^{2} \leq 1$, i.e., $(\log m)^{2} /(2 m) \leq \rho^{2}(z) \leq(\log m)^{2} / m$. For m
sufficiently large, $\partial \bar{\partial} \rho^{2}(z) \geq 0$ for $\rho^{2}(z) \leq(\log m)^{2} / m$. We will always use C to denote a constant independent of m. Hence

$$
\partial \bar{\partial} \psi \geq \frac{-m C\left(n+2 p^{\prime}\right)}{(\log m)^{2}} \frac{2 \pi}{\sqrt{-1}} \omega_{g} \quad \text { for } \rho(z)>0
$$

which implies that there is a decreasing sequence $\left\{\psi_{l}\right\}$ with $\lim _{l \rightarrow \infty} \psi_{l}$ $=\psi$, and for any unit vector v of type $(1,0)$ at any point of M we have

$$
\begin{align*}
\left\langle\partial \bar{\partial} \psi_{l}\right. & \left.+\frac{2 \pi}{\sqrt{-1}}\left(\operatorname{Ric}\left(h^{m}\right)+\operatorname{Ric}(g)\right), v \wedge \bar{v}\right\rangle_{g} \\
& \geq m\left(1-\frac{C\left(n+2 p^{\prime}\right)}{(\log m)^{2}}\right)\|v\|_{g}^{2} . \tag{1.8}
\end{align*}
$$

Put $w=(1 / 4) \bar{\partial}\left(\eta\left(m \rho^{2}(z) /(\log m)^{2}\right) z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} e_{L}^{m}\right)$, and by applying Proposition 1.1 we obtain an L-valued section u, solving $\bar{\partial} u=w$, and

$$
\begin{equation*}
\int_{M} \frac{\|u\|_{h^{m}}^{2}}{e^{\psi}} d V_{g} \leq \frac{1}{m\left[1-\frac{C\left(n+2 p^{\prime}\right)}{(\log m)^{2}}\right]} \int_{M} \frac{\|w\|_{h^{m}}^{2}}{e^{\psi}} d V_{g} \tag{1.9}
\end{equation*}
$$

where the norms $\left\|\|_{h^{m}}\right.$ are induced by h^{m} and g. For m large, $C\left(n+2 p^{\prime}\right) /(\log m)^{2} \leq \frac{1}{2}$, so

$$
\begin{aligned}
& \int_{M}\|u\|_{h^{m}}^{2} e^{-\psi} d V_{g} \\
& \leq \frac{1}{8 m} \int_{M}\left|\eta^{\prime} \frac{m \rho^{2}(z)}{4(\log m)^{2}}\right|^{2} g^{i \bar{j}} \rho^{2}(z)_{i} \rho^{2}(z)_{\bar{j}}\left(\frac{m^{2}}{(\log m)^{4}}\right) \\
& \cdot\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2} a^{m} e^{-\psi} d V_{g} \\
& \leq \frac{C}{(\log m)^{2}} \int_{\frac{2(\log m)^{2}}{m} \leq \rho^{2}(Z) \leq \frac{4(\log m)^{2}}{m}}\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2} a^{m} e^{-\psi} d V_{g} .
\end{aligned}
$$

From the definition it follows that $\psi(z)=0$ for $\rho^{2}(z) \geq(\log m)^{2} / m$, and by (1.4) and Taylor expansion we have

$$
\begin{align*}
a(z) & =1+\frac{\partial^{2} a}{\partial z_{i} \bar{\partial} z_{j}}\left(x_{0}\right) z_{i} \bar{z}_{j}+O\left(|z|^{3}\right) \tag{1.11}\\
& =1-|z|^{2}+O\left(|z|^{3}\right) \geq\left(1-\frac{1}{2}|z|^{2}\right) \quad \text { for }|z| \text { small }
\end{align*}
$$

where we have used the fact that $g_{i \bar{j}}\left(x_{0}\right)=-\left.\left(\partial^{2} / \partial z_{i} \bar{\partial} z_{j}\right) \log (a(z))\right|_{z=x_{0}}=$ $\delta_{i j}$. Hence, by (1.10) and (1.11) and the nonpositivity of ψ we obtain, for m large enough,

$$
\begin{align*}
\int_{M} & \|u\|_{h^{m}}^{2} d V_{g} \\
& \leq \frac{C}{(\log m)^{2}} \int_{2 \frac{(\log m)^{2}}{m} \leq \rho^{2}(z) \leq \frac{4(\log m)^{2}}{m}}\left|z_{1}^{p_{1} \cdot} \cdot z_{n}^{p_{n}}\right|^{2}\left(1-\frac{1}{2}|z|^{2}\right)^{m} d V_{g} \\
& \leq \frac{C}{(\log m)^{2}}\left(\frac{(\log m)^{2}}{m}\right)^{n+p}\left(1-\frac{(\log m)^{2}}{m}\right)^{m} \\
& =O\left(\frac{1}{m^{8 p^{\prime}+2 n}}\right) . \tag{1.12}
\end{align*}
$$

Thus $\left(1-(\log m)^{2} / m\right) m=e^{m \log \left(1-(\log m)^{2} / m\right)} \leq e^{-(\log m)^{2} / 2}=m^{-(\log m) / 2}$ for m large.

Put $\widetilde{S}(z)=\eta\left(m \rho^{2}(z) /(\log m)^{2}\right) z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} e_{L}^{m}-u(z)$. By (1.10) and the definition of ψ, we have $u(z)=O\left(|z|^{2 p^{\prime}}\right)$ at x_{0}, so at x_{0}

$$
\widetilde{S}(z)=z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}+O\left(|z|^{2 p^{\prime}}\right)
$$

Now using the same argument as in (1.12) yields

$$
\begin{aligned}
\|\widetilde{S}\|_{h^{m}}^{2}= & \int_{M}\left|\eta\left(\frac{m \rho^{2}(z)}{(\log m)^{2}}\right)\right|^{2}\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2} a^{m} d V_{g} \\
& +2 \operatorname{Re}\left(\int_{M}\left\langle\eta\left(\frac{m \rho^{2}(z)}{(\log m)^{2}}\right) z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} e_{L}^{m}, u\right\rangle_{h^{m}} d V_{g}\right)+\|u\|_{h^{m}}^{2} \\
= & \int_{\rho^{2}(z) \leq(\log m)^{2} / m}\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2} a^{m} d V_{g}+O\left(\frac{1}{m^{4 p^{\prime}+n}}\right)
\end{aligned}
$$

Define $S(z)=\widehat{S}(z) /\|\widehat{S}\|_{h_{m}}$. Then S is the holomorphic section needed.
Those sections constructed by Lemma 1.2 are called peak sections of the line bundle L^{m}.

2. Taylor expansions of the peak sections

In this section, we will evaluate $\lambda_{\left(p_{1}, \cdots, p_{n}\right)}$ to obtain the Taylor expansions of the peak sections constructed in the last section.

Lemma 2.1. Let $\left(p_{1}, \cdots, p_{n}\right)$ be an n-tuple of integers, and $p=p_{1}+$ $\cdots+p_{n}$. Then

$$
\begin{gathered}
\left(\frac{\sqrt{-1}}{2}\right)^{n} \int_{\rho(z) \leq \log m / \sqrt{m}}\left|z_{1}^{p_{1}}, \cdots, z_{n}^{p_{n}}\right|^{2}\left(1-|z|^{2}\right)^{m} \\
\cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \\
=\frac{\pi^{n} p_{1}!\cdots p_{n}!m!}{(p+n+m)!}+O\left(\frac{1}{m^{2 p^{\prime}}}\right) \quad \text { for } m \text { large. }
\end{gathered}
$$

Proof. This follows from a straightforward computation and the fact that $\left[1-(\log m)^{2} / m\right]^{m}=O\left(1 / m^{2 p^{\prime}}\right)$.

Denote by $\left\{R_{i j k k l}\right\}_{1 \leq i, j, k, l \leq n}$ the bisectional curvature tensor of the Kähler metric g in local coordinates $\left(z_{1}, \cdots, z_{n}\right)$. Then

$$
\operatorname{Ric}_{i \bar{j}}(z)=\sum_{k=1}^{n} R_{i \bar{j} k \bar{k}}(z), \quad r(g)(z)=\sum_{k=1}^{n} \operatorname{Ric}_{k \bar{k}}(z),
$$

where $r(g)$ denotes the scalar curvature of g.
Lemma 2.2. Let μ be a positive function on R^{1}. Then

$$
\begin{gathered}
\left(\frac{\sqrt{-1}}{2}\right) \int_{\rho^{2}(z) \leq(\log m)^{2} / m} z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} \bar{z}_{1}^{q_{1}} \cdots \bar{z}_{n}^{q_{n}} \mu\left(\rho^{2}(z)\right) \\
\cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}=0
\end{gathered}
$$

for $\left(p_{1}, \cdots, p_{n}\right) \neq\left(q_{1}, \cdots, q_{n}\right)$.
Proof. Using polar coordinates, the above integral is equal to

$$
\begin{gathered}
\int_{S^{2 n-1}}\left(\frac{z_{1}}{|z|}\right)^{p_{1}} \cdots\left(\frac{\bar{z}_{n}}{|z|}\right)^{p_{n}}\left(\frac{\bar{z}_{1}}{|z|}\right)^{q_{1}} \cdots\left(\frac{\bar{z}_{n}}{|z|}\right)^{q_{n}} d \sigma \\
\cdot \int_{0}^{\log m / \sqrt{m}} t^{2 n-1+p+q} \mu\left(t^{2}\right) d t
\end{gathered}
$$

where $q=q_{1}+\cdots+q_{n}$, and $d \sigma$ is the standard measure on $S^{2 n-1}$. But $\left(z_{1} /|z|\right)^{p_{1}} \cdots\left(z_{n} /|z|\right)^{p_{n}}$ and $\left(\bar{z}_{1} /|z|\right)^{q_{1}} \cdots\left(\bar{z}^{n} /|z|\right)^{q_{n}}$ are the eigenfunctions
of the Laplacian on $S^{2 n-1}$ and are induced by harmonic functions on $C^{n} ;$ moreover, they are orthogonal to each other when $\left(p_{1}, \cdots, p_{n}\right) \neq$ $\left(q_{1}, \cdots, q_{n}\right)$. Hence the lemma follows.

Lemma 2.3. We have the following expressions:

$$
\begin{aligned}
\lambda_{(2,0, \cdots, 0)}^{-2}= & \frac{m!}{(m+n+2)!}\left[R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)-r(g)\left(x_{0}\right)+n^{2}+m+6 n+10\right] \\
& +O\left(\frac{1}{m^{n+4}}\right), \\
\lambda_{(1,0, \cdots, 0)}^{-2}= & \frac{m!}{(m+n+1)!}\left[1+\frac{1}{2(m+n+2)}\left(-r(g)\left(x_{0}\right)+n^{2}+3 n+2\right)\right] \\
& +O\left(\frac{1}{m^{n+3}}\right), \\
\lambda_{(0,0, \cdots, 0)}^{-2}= & \frac{m!}{(m+n)!}\left[1+\frac{1}{2(m+n+2)}\left(-r(g)\left(x_{0}\right)+n^{2}+n\right)\right] \\
& +O\left(\frac{1}{m^{n+2}}\right) .
\end{aligned}
$$

Proof. By (1.3),

$$
\begin{equation*}
\operatorname{det}\left(g_{\alpha \bar{\beta}}\right)=1-\operatorname{Ric}(g)_{i \bar{j}} z_{i} \bar{z}_{j}+b(z, \bar{z})+O\left(|z|^{4}\right) \tag{2.1}
\end{equation*}
$$

where $b(z, \bar{z})$ is a homogeneous polynomial in z_{i} and \bar{z}_{j}, and $\operatorname{deg} b(z, \bar{z})=3$. Since $-\partial \bar{\partial} \log a=2 \pi \omega_{g} / \sqrt{-1}=\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} d z_{\alpha} \wedge d \bar{z}_{\beta}$, using (1.3) and (1.4), we have the Taylor expansion

$$
\begin{align*}
a(z)= & 1-|z|^{2}+\frac{1}{4} \sum_{i, j, k, l=1}^{n} R_{i \bar{j} k \bar{l}}\left(x_{0}\right) z_{i} \bar{z}_{j} z_{k} \bar{z}_{l}+\frac{1}{2}|z|^{4} \tag{2.2}\\
& +d(z, \bar{z})+O\left(|z|^{6}\right)
\end{align*}
$$

where $d(z, \bar{z})$ is a homogeneous polynomial of degree 5 in z_{i} and \bar{z}_{j}. Set

$$
\begin{array}{r}
\lambda_{(2,0, \cdots, 0)}^{-2}=\int_{\rho^{\prime}(z) \leq \log m / \sqrt{m}}\left|z_{1}\right|^{4} a^{m} \operatorname{det}\left(g_{\alpha \bar{\beta}}\right)\left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \\
\cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}
\end{array}
$$

$$
\begin{aligned}
& =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \int_{\rho(z) \leq \log m / \sqrt{m}}\left|z_{1}\right|^{4} \\
& \times\left[1-|z|^{2}+\frac{1}{4} \sum_{i, j, k, l} R_{i \bar{j} k \bar{l}}\left(x_{0}\right) z_{i} \bar{z}_{j} z_{k} \bar{z}_{l}\right. \\
& \left.+\frac{1}{2}|z|^{4}+d(z, \bar{z})+O\left(|z|^{6}\right)\right]^{m} \\
& \cdot\left(1-\operatorname{Ric}(g)_{i \bar{j}}\left(x_{0}\right) z_{i} \bar{z}_{j}+b(z, \bar{z})+O\left(|z|^{4}\right)\right) \\
& \cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \\
& =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \int_{|z| \leq \log m / \sqrt{m}}\left|z_{1}\right|^{4} \\
& {\left[\left(1-|z|^{2}\right)^{m}+m\left(1-|z|^{2}\right)^{m-1}\right.} \\
& \cdot\left(\frac{1}{4} \sum_{i, j, k, l} R_{i \bar{j} k \bar{l}}\left(x_{0}\right) z_{i} \bar{z}_{j} z_{k} \bar{z}_{l}+\frac{1}{2}|z|^{4}+d(z, \bar{z})\right) \\
& \left.+\left(1-\frac{1}{2}|z|^{2}\right)^{m-2} O\left(m|z|^{6}+m^{2}|z|^{8}\right)\right] \\
& \cdot\left(1-\operatorname{Ric}(g)_{i \bar{j}}\left(x_{0}\right) z_{i} \bar{z}_{j}+b(z, \bar{z})+O\left(|z|^{4}\right)\right) \\
& \cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n} \\
& =\left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \int_{|z| \leq \log m / \sqrt{m}}\left|z_{1}\right|^{4} \\
& {\left[\left(1-|z|^{2}\right)^{m}\left(1-\operatorname{Ric}(g)_{i \bar{j}}\left(x_{0}\right) z_{i} \bar{z}_{j}+b(z, \bar{z})\right)\right.} \\
& +m\left(1-|z|^{2}\right)^{m-1} \\
& \left(\frac{1}{4} \sum_{i, j, k, l} R_{i \bar{j} k \bar{l}}\left(x_{0}\right) z_{i} \bar{z}_{j} z_{k} \bar{z}_{l}+\frac{1}{2}|z|^{4}+d(z, \bar{z})\right) \\
& \left.+\left(1-\frac{1}{2}|z|^{2}\right)^{m} O\left(|z|^{4}+m|z|^{6}+m^{2}|z|^{8}\right)\right] \\
& \cdot d z_{1} \wedge d \bar{z}_{1} \wedge \cdots d z_{n} \wedge d \bar{z}_{n} .
\end{aligned}
$$

By applying either Lemma 2.1 or Lemma 2.2 to the integral of each term, obtain

$$
\begin{aligned}
\lambda_{(2,0, \cdots, 0)}^{-2}= & \left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \\
& \cdot \int_{|z| \leq \log m / \sqrt{m}}\left[\left|z_{1}\right|^{4}\left(1-|z|^{2}\right)^{m}\right. \\
& -\sum_{i=1}^{n} \operatorname{Ric}(g)_{i \bar{i}}\left(x_{0}\right)\left|z_{1}\right|^{4}\left|z_{i}\right|^{2}\left(1-|z|^{2}\right)^{m} \\
& +m\left|z_{1}\right|^{4}\left(1-|z|^{2}\right)^{m-1} \\
& \times\left(\frac{1}{4} \sum_{i=1}^{n} R_{i \bar{i} \bar{i}}\left(x_{0}\right)\left|z_{i}\right|^{4}\right.
\end{aligned} \quad \begin{aligned}
&\left.\left.\quad+\sum_{i<j} R_{i \bar{i} j \bar{j}}\left(x_{0}\right)\left|z_{i}\right|^{2}\left|z_{j}\right|^{2}+\frac{1}{2}|z|^{4}\right)\right] \\
& d z_{1} \wedge d \bar{z}_{1} \cdots d z_{n} \wedge d \bar{z}_{n}+O\left(\frac{1}{m^{n+4}}\right) \\
&=\frac{2 m!}{(m+n+2)!}\left(1+\frac{1}{2(m+n+3)}\right. \\
&\left.\cdot\left(R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)-r(g)\left(x_{0}\right)+n^{2}+5 n+6\right)\right) \\
&+O\left(\frac{1}{m^{n+4}}\right)
\end{aligned}
$$

Similarly, one can compute $\lambda_{(1,0, \cdots, 0)}^{-2}$ and $\lambda_{(0, \cdots, 0)}^{-2}$.
We end this section by summarizing the above into the following.
Proposition 2.1. We have for a point x_{0} in M, a local coordinate $\left(z_{1}, \cdots, z_{n}\right)$ with the properties stated in (1.3), and a local frame e_{L} of L with properties stated in (1.4). Let $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ be a unit vector in C^{n}. Then for m large enough, there are holomorphic peak global sections S, S_{μ}, and $S_{\mu^{2}}$ of L^{m} such that at x_{0},

$$
\begin{align*}
& S(z)=\sqrt{\frac{(m+n)!}{m!}}\left[1+\frac{1}{2(m+n+1)}\right.\left(r(g)\left(x_{0}\right)-n^{2}-n\right) \tag{2.3}\\
&\left.+O\left(\frac{1}{m^{2}}\right)\right] \cdot\left[1+O\left(|z|^{8}\right)\right]
\end{align*}
$$

$$
\begin{array}{r}
S_{\mu}(z)=\sqrt{\frac{(m+n+1)!}{m!}}\left[1+\frac{1}{2(m+n+2)}\left(r(g)\left(x_{0}\right)-n^{2}-3 n-2\right)\right. \tag{2.4}\\
\left.+O\left(\frac{1}{m^{2}}\right)\right] \cdot\left[\sum_{i=1}^{n} \mu_{i} z_{i}+O\left(|z|^{9}\right)\right],
\end{array}
$$

$$
\begin{align*}
S_{\mu^{2}}(z)= & \sqrt{\frac{(m+n+2)!}{2 m!}\left[1+\frac{1}{4(m+n+3)}\right.}\left(r(g)\left(x_{0}\right)-R_{\mu \bar{\mu} \mu \bar{\mu}}\left(x_{0}\right)\right. \tag{2.5}\\
& \left.\left.-n^{2}-5 n-6\right)+O\left(\frac{1}{m^{2}}\right)\right] \\
& \cdot\left[\left(\sum_{i=1}^{n} \mu_{i} z_{i}\right)^{2}+O\left(|z|^{10}\right)\right],
\end{align*}
$$

where $R_{\mu \bar{\mu} \mu \bar{\mu}}\left(x_{0}\right)=\sum_{i, j, k, l} R_{i j k k l} \mu_{i} \bar{\mu}_{j} \mu_{k} \bar{\mu}_{l}$. Moreover, those sections of L^{m} satisfy two equations in (1.5) for $p^{\prime}=4$.

Proof. Without loss of generality, we may assume that $\mu=(1,0, \cdots$, $0)$. Then the proposition follows from Lemmas 1.2 and 2.3 for proper p^{\prime}.

3. The proof of Theorem A

We adopt the notation of the last section. The m-multiple of the polarization L induces an embedding $\varphi_{m}: M \rightarrow C P^{N m}$, where $N_{m}+1=$ $\operatorname{dim}_{C} H^{0}\left(M, L^{m}\right)$. Such an embedding is not canonical and is up to Aut $\left(C P^{N_{m}}\right)$. We define φ_{m} by choosing an orthonormal basis $\left\{S_{0}^{m}, \cdots\right.$, $\left.S_{N_{m}}^{m}\right\}$ of $H^{0}\left(M, L^{m}\right)$, i.e., $\varphi_{m}(x)=\left[S_{0}^{m}(x), \cdots, S_{N_{m}}^{m}(x)\right]$ in $C P^{N_{m}}$ for any point x of M. Although this φ_{m} is not uniquely defined and is up to $U\left(N_{m}+1\right)$, we observe that the pull-back metric $g_{m}=\frac{1}{m} \varphi_{m}^{*} g_{\mathrm{FS}}$ is uniquely defined. This observation is important and will often be used in the following proof of Theorem A. Let ω_{m} be the associated Kähler form
of g_{m}. Then

$$
\begin{align*}
\omega_{m} & =\frac{\sqrt{-1}}{2 \pi m} \partial \bar{\partial} \log \left(\left|S_{0}^{m}\right|^{2}+\cdots+\left|S_{N_{m}}^{m}\right|^{2}\right) \\
& =\frac{1}{m} \operatorname{Ric}\left(h^{m}\right)+\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left(\left\|S_{0}^{m}\right\|_{h^{m}}^{2}+\cdots+\left\|S_{N_{m}}^{m}\right\|_{h^{m}}^{2}\right) \tag{3.1}\\
& =\omega_{g}+\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left(\left\|S_{0}^{m}\right\|_{h^{m}}^{2}+\cdots+\left\|S_{N_{m}}^{m}\right\|_{h^{m}}^{2}\right) .
\end{align*}
$$

We should clarify the meaning of $\partial \bar{\partial} \log \left(\left|S_{0}^{m}\right|^{2}+\cdots+\left|S_{N_{m}}^{m}\right|^{2}\right)$, since $S_{i}^{m} \quad\left(0 \leq i \leq N_{m}\right)$ is no longer a function and its euclidean norm is meaningless. Here in the local frame e_{L}^{m} of $L^{m}, S_{i}^{m}=f_{i}^{m} e_{L}^{m}$ for a holomorphic function f_{i}^{m} as a form, and $\partial \bar{\partial} \log \left(\left|S_{0}^{m}\right|^{2}+\cdots+\left|S_{N_{m}}^{m}\right|^{2}\right)=$ $\partial \bar{\partial} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)$ is independent of the choice of the local frame e_{L}^{m} of L^{m}.

The proof of Theorem A is local in nature. It suffices to estimate the differences of g_{m} and g, and their derivatives, in a pointwise manner. Fix a point x_{0} at M. Choose the local coordinate $\left(z_{1}, \cdots, z_{n}\right)$ at x_{0} and a local frame e_{L} of L at x_{0} such that (1.3) and (1.4) are satisfied. For each $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right) \in C^{n},|\mu|^{2}=1$, define $y_{\mu}=\sum_{i=1}^{n} \mu_{i} z_{i}$ and $Y_{\mu}=\partial / \partial y_{\mu}$, where Y_{μ} is a local holomorphic vector field of M at x_{0}. It is well known that the sectional curvature tensor is dominated by the holomorphic sectional curvature. Thus in order to prove Theorem A, it is sufficient to prove that

$$
\begin{align*}
\max & \left\{\left|g_{m}\left(Y_{\mu}, Y_{\mu}\right)-g\left(Y_{\mu}, Y_{\mu}\right)\right|\left(x_{0}\right)\right. \\
& \left|D_{Y_{\mu}} g_{m}\left(Y_{\mu}, Y_{\mu}\right)-D_{Y_{\mu}} g\left(Y_{\mu}, Y_{\mu}\right)\right|\left(x_{0}\right) \\
& \left|D_{Y_{\mu}}^{2} g_{m}\left(Y_{\mu}, Y_{\mu}\right)-D_{Y_{\mu}}^{2} g\left(Y_{\mu}, Y_{\mu}\right)\right|\left(x_{0}\right) \tag{3.2}\\
& \left.\left|R_{\mu \bar{\mu} \bar{\mu}}\left(g_{m}\right)-R_{\mu \bar{\mu} \mu \bar{\mu}}(g)\right|\left(x_{0}\right)\right\} \\
& =O(1 / \sqrt{m})
\end{align*}
$$

where $O(1 / \sqrt{m})$ denotes a quantity dominated by C / \sqrt{m} with C independent of x_{0} and μ, and the covariant derivative D is taken with respect to the metric g.

By (1.3) and the definition of g_{m}, one can easily see that (3.2) is equivalent to

$$
\begin{aligned}
& \max \left\{\left|\frac{1}{m} \frac{\partial^{2}}{\partial y_{\mu} \partial \bar{y}_{\mu}} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{n}\right|^{2}\right)-1\right|\left(x_{0}\right),\right. \\
& \left|\frac{1}{m} \frac{\partial^{3} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial y_{\mu}^{2} \partial \bar{y}_{\mu}}\right|\left(x_{0}\right) \\
& \left|\frac{1}{m} \frac{\partial^{4} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial y_{\mu}^{3} \partial \bar{y}_{\mu}}\right|\left(x_{0}\right), \\
& \\
& =O\left(\frac{1}{\sqrt{m}}\right),
\end{aligned}
$$

where the $\left\{f_{i}^{m}\right\}$ are local representations of $\left\{S_{i}^{m}\right\}$ in the frame e_{L}^{m} of L^{m}. It suffices to prove (3.3). First we investigate the orthogonal discrepancy among the sections in the chosen basis $\left\{S_{i}^{m}\right\}$ and those sections constructed in either Lemma 1.2 or Proposition 2.1.

Lemma 3.1. Let S be a holomorphic global section constructed in either Lemma 1.1 or Proposition 2.1. Then it is known that

$$
S(z)=\sqrt{\frac{(p+n+m) 1}{p_{1}!\cdots p_{n}!m!}}\left(1+O\left(\frac{1}{m^{p^{\prime}}}\right)\right)\left(z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}+O\left(|z|^{2 p^{\prime}}\right)\right) e_{L}^{m}
$$

at x_{0}, where $p^{\prime} \gg p$. Let T be another section of L^{m} with $\|T\|_{h^{m}}=1$, which contains no term $z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}$ in its Taylor expansion at x_{0}. Then

$$
\begin{equation*}
\langle S, T\rangle_{h_{m}}=O\left(\frac{1}{m}\right) \tag{3.4}
\end{equation*}
$$

where $\langle,\rangle_{h^{m}}$ is the inner product on the linear space $H^{0}\left(M, L^{m}\right)$ induced by the metric h^{m}. Furthermore, if T contains no term $z_{1}^{q_{1}} \cdots z_{n}^{q_{n}}$ with
$q_{1}+\cdots+q_{n}=p$, then

$$
\begin{equation*}
\langle S, T\rangle_{h^{m}}=O\left(1 / m^{3 / 2}\right) \tag{3.5}
\end{equation*}
$$

Proof. We prove only (3.5), since the proof for (3.4) is almost the same. By (1.5) and Schwartz inequality we obtain
$\langle S, T\rangle_{h^{m}}=\left(\frac{\sqrt{-1}}{2 \pi}\right)^{n} \int_{|z| \leq \log m / \sqrt{m}} f_{S} \cdot \bar{f}_{T} a^{m} \operatorname{det}\left(g_{\alpha \bar{\beta}}\right) d z \wedge d \bar{z}=O\left(\frac{1}{m^{p^{\prime}}}\right)$,
where $d z \wedge d \bar{z}=d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}, S(z)=f_{S}(z) e_{L}^{m}$, and $T(z)=f_{T}(z) e_{L}^{m}$ in a neighborhood of x_{0}. From (1.6) it follows that

$$
f_{S}(z)=\frac{\sqrt{(p+n+m)!}}{m!p_{1}!\cdots p_{n}!}\left[z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}+O\left(\frac{1}{m^{\left(p^{\prime}-1\right) / 2}}\right)\right]
$$

for $|z| \leq \log m / \sqrt{m}$. By taking p^{\prime} large enough, we only need to prove

$$
\begin{align*}
I & =\int_{|z| \leq \log m / m} z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} \cdot \bar{f}_{T} a^{m} \operatorname{det}\left(g_{\alpha \bar{\beta}}\right) d z \wedge d \bar{z} \tag{3.6}\\
& =O\left(\frac{1}{m^{(n+p+3) / 2}}\right)
\end{align*}
$$

Substituting (2.2) and (2.1) in the integrand on the left-hand side of (3.6), we obtain

$$
\begin{aligned}
I= & \int_{|z| \leq \log m / \sqrt{m}} z_{1}^{p_{i}} \cdots z_{n}^{p_{n}} \cdot \bar{f}_{T}(z)\left[1-|z|^{2}+\left.\left.\frac{1}{4} \sum_{i, j, k, l} R_{i \bar{j} k \bar{l}} z_{i} z\right|_{j} z_{k} z\right|_{l}\right. \\
& \left.+\frac{1}{2}|z|^{4}+O\left(|z|^{5}\right)\right]^{m} \cdot\left(1-\sum_{i, j} \operatorname{Ric}(g)_{i \bar{j}} z_{i} \bar{z}_{j}+O\left(|z|^{3}\right)\right) d z \wedge d \bar{z}
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{|z| \leq \log m / \sqrt{m}} z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} \cdot \bar{f}_{T}(z) \\
& \cdot\left[\left(1-\sum_{i, j} \operatorname{Ric}(g)_{i \bar{j}} z_{i} \bar{z}_{j}\right)\left(1-|z|^{2}\right)^{m}\right. \\
& \left.+\left(\frac{m}{2}|z|^{4}+\frac{m}{4} \sum_{i, j, k, l} R_{i \bar{j} k \bar{l}}\left(x_{0}\right) z_{i} \bar{z}_{j} z_{k} \bar{z}_{l}\right)\left(1-|z|^{2}\right)^{m}-1\right] d z \wedge d \bar{z} \\
& +\int_{|z| \leq \log m / \sqrt{m}} z_{1}^{p_{1}} \cdots z_{n}^{p_{n}} \cdot \bar{f}_{T}(z)\left(O\left(m|z|^{5}+|z|^{3}\right)\right) a^{m} d z \wedge d \bar{z} .
\end{aligned}
$$

By Lemma 2.2 and the assumption that the Taylor expansion of $f_{T}(z)$ at x_{0} has no term $z_{1}^{q_{1}} \cdots z_{n}^{q_{n}}$ with $q_{1}+\cdots+q_{n}=p$, one easily sees that the first integral above is zero. Thus by Schwartz inequality we have

$$
\begin{aligned}
|I| & \leq C\left[\int_{|z| \leq \log m / \sqrt{m}}\left|z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}\right|^{2}\left(m^{2}|z|^{10}+|z|^{6}\right) a^{m} d V_{g}\right]^{1 / 2}\|T\|_{h^{m}} \\
& =O\left(\frac{1}{m^{(p+n+3) / 2}}\right) .
\end{aligned}
$$

Without loss of generality, we may assume that $\mu=(1,0, \ldots, 0)$. Then $y_{\mu}=z_{1}$. Since the metric g_{m} is independent of the choice of the orthonormal basis $\left\{S_{0}^{m}, \ldots, S_{N_{m}}^{n}\right\}$ of $H^{0}\left(M, L^{m}\right)$, by an orthogonal transformation we may further assume that

$$
\begin{aligned}
& f_{i}^{m}(0)=0 \text { for } i \geq 1 \\
& \frac{\partial f_{i}^{m}}{\partial z_{j}}(0)=0 \text { for } i \geq j+1, j=1,2, \ldots, n \\
& \frac{\partial^{2} f_{i}^{m}}{\partial z_{1}^{2}}(0)=0 \text { for } i \geq n+2
\end{aligned}
$$

Lemma 3.2. Under the above assumption on the orthonormal basis $\left\{S_{0}^{m}, \ldots, S_{N^{m}}^{m}\right\}$, we have the following estimates:
$\left|f_{0}^{m}\left(x_{0}\right)\right|=\sqrt{\frac{(n+m)!}{m!}}\left[1+\frac{1}{2(m+n+1)}\left(r(g)\left(x_{0}\right)-n^{2}-n\right)\right.$
(i)

$$
\begin{aligned}
&\left.+O\left(\frac{1}{m^{2}}\right)\right] \\
& \frac{\partial f_{0}^{m}}{\partial z_{i}}\left(x_{0}\right)= O\left(m^{n / 2-1}\right), \\
& \frac{\partial^{2} f_{0}^{m}}{\partial z_{1}^{2}}\left(x_{0}\right)=O\left(m^{(n-1) / 2}\right), \quad \frac{\partial^{3} f_{0}^{m}}{\partial z_{1}^{3}}\left(x_{0}\right)=O\left(m^{n / 2}\right), \\
&\left|\frac{\partial f_{1}^{m}}{\partial z_{1}}\left(x_{0}\right)\right|=\sqrt{\frac{(n+m+1)!}{m!}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \cdot\left[1+\frac{1}{2(m+n+1)}\left(r(g)\left(x_{0}\right)-n^{2}-3 n-2\right)+O\left(\frac{1}{m^{2}}\right)\right] \\
& \frac{\partial^{2} f_{1}^{m}}{\partial z_{1}^{2}}\left(x_{0}\right)=O\left(m^{(n-1) / 2}\right), \quad \frac{\partial^{3} f_{1}^{m}}{\partial z_{1}^{3}}\left(x_{0}\right)=O\left(m^{n / 2}\right)
\end{aligned}
$$

(iii) $\quad \frac{\partial^{2} f_{i}^{m}}{\partial z_{1}^{2}}\left(x_{0}\right)=O\left(m^{(n-1) / 2}\right) \quad$ for $i=1,2,3, \ldots, n$;
(iv) $\left|\frac{\partial^{2} f_{n}+1^{m}}{\partial z_{1}^{2}}\left(x_{0}\right)\right|=\sqrt{\frac{2(m+n+2)!}{m!}}\left[1+\frac{1}{4(m+n+3)}\left(r(g)\left(x_{0}\right)\right.\right.$

$$
\left.\left.-R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)-n^{2}-5 n-6\right)+O\left(\frac{1}{m^{2}}\right)\right] .
$$

Proof. The proof of (i) is almost the same as that of (ii), so we omit it. Let us first prove (iii) and (iv). Use Lemma 1.1 to construct holomorphic sections T_{1}, \ldots, T_{n} of L^{m} satisfying (1.5) and (1.6) for $\left(p_{1}, \ldots, p_{n}\right)=$ $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0, \ldots, 0,1)$, respectively. There are constants $\beta_{i j}\left(1 \leq i \leq n, 0 \leq j \leq N_{m}\right)$ such that

$$
\begin{gather*}
\sum_{j=0}^{N_{m}}\left|\beta_{i j}\right|^{2}=1 \tag{3.8}\\
T_{i}=\sum_{j=0}^{N_{m}} \beta_{i j}, S_{j}, \quad i=1,2, \ldots, n \tag{3.9}
\end{gather*}
$$

By (3.7), $\beta_{i j}=0$ for $j<i$. Applying Lemma 3.1 to T_{i}, S_{j}, and $\sum_{j=n+1}^{N_{m}} \beta_{i j} S_{j}$, we conclude from (3.7) that for large p^{\prime} in Lemma 1.1,

$$
\begin{align*}
& \beta_{i j}=O(1 / m) \text { for } i=1,2, \cdots, n ; i<j<n+1 \tag{3.10}\\
& \quad \sqrt{\left|\beta_{i n+1}\right|^{2}+\cdots+\left|\beta_{i N_{m}}\right|^{2}}=O\left(1 / m^{3 / 2}\right) \text { for } i=1,2, \cdots, n .
\end{align*}
$$

Take derivatives on both sides of (3.9), and use the fact that $\left(\partial^{2} f_{T_{i}} / \partial z_{1}^{2}\right)\left(x_{0}\right)=0$ (if we take p^{\prime} large in the construction of T_{i}, by Lemma 3.1), where $T_{i}=f_{T_{i}} e_{L}^{m}$ at x_{0}. One then obtains

$$
\begin{equation*}
0=\sum_{j=1}^{N_{m}} \beta_{i j} \frac{\partial^{2} f_{i}^{m}}{\partial z_{1}^{2}}\left(x_{0}\right), \quad i=1,2, \cdots, n \tag{3.11}
\end{equation*}
$$

It follows from (3.8) and (3.10) that $\left|\beta_{i i}\right|=1+O\left(1 / m^{2}\right)$. Inductively, one solves (3.11) for $\left(\partial^{2} f_{i}^{m} / \partial z_{1}^{2}\right)\left(x_{0}\right), i=1,2, \cdots, n$, and $\left(\partial^{2} f_{i}^{m} / \partial z_{1}^{2}\right)$ $\cdot\left(x_{0}\right)=\left(\partial^{2} f_{n+1}^{m} / \partial z_{1}^{2}\right)\left(x_{0}\right) \cdot O\left(1 / m^{3 / 2}\right)$.

By using Proposition 2.1 to construct $S_{\mu^{2}}$ and proceeding as above, we have

$$
\begin{aligned}
& \frac{\partial^{2} f_{n+1}^{m}}{\partial z_{1}^{2}}\left(x_{0}\right)=\frac{\partial^{2} f_{\mu^{2}}}{\partial z_{1}^{2}}\left(x_{0}\right)\left[1+O\left(\frac{1}{m^{2}}\right)\right] \quad\left(S_{\mu^{2}}=f_{\mu^{2}} e_{L}^{m}\right) \\
&=\sqrt{\frac{2(m+n+2)!}{m!}} {\left[1+\frac{1}{4(m+n+3)}\left(r(g)\left(x_{0}\right)\right.\right.} \\
&\left.\left.-R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)-n^{2}-5 n-6\right)+O\left(\frac{1}{m^{2}}\right)\right] .
\end{aligned}
$$

Hence (iii) and (iv) follow.
By similar arguments, one can prove that $\left(\partial^{3} f_{1}^{m} / \partial z_{1}^{3}\right)\left(x_{0}\right)=O\left(m^{n / 2}\right)$. To finish the proof of (ii), it remains to evaluate $\left(\partial f_{1}^{m} / \partial z_{1}\right)\left(x_{0}\right)$. For this purpose, we simply take the section S_{μ} constructed in Proposition 2.1 for $\mu=(1,0, \cdots, 0)$, and express it in terms of $\left\{S_{i}^{m}\right\}$ as follows:

$$
S_{\mu}=\sum_{j=0}^{N_{m}} \beta_{j} S_{j}^{m}, \quad \sum_{j=0}^{N_{m}}\left|\beta_{j}\right|^{2}=1
$$

One sees immediately that $\beta_{0}=0$ and $\beta_{j}=O\left(\frac{1}{m}\right)$ for $j \geq 2$ by Lemma 3.1, so we obtain the evaluation of $\left(\partial f_{1}^{m} / \partial z_{1}\right)\left(x_{0}\right)$ required in the statement of (ii).

Now we are ready to prove the estimate (3.3). We split the proof into the following four lemmas, and note that we may assume $y_{\mu}=z_{1}$.

Lemma 3.3. With the above notation and assumptions, we have

$$
\frac{1}{m} \frac{\partial^{2} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1} \bar{\partial} z_{1}}\left(x_{0}\right)-1=O\left(\frac{1}{m}\right)
$$

Proof. By (3.7) and Lemma 3.2 (i), (ii), we have

$$
\begin{aligned}
& \frac{1}{m} \frac{\partial^{2} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1} \bar{\partial} z_{1}}\left(x_{0}\right) \\
& =\frac{\left|\partial f_{1}^{m} / \partial z_{1}\right|^{2}}{m\left|f_{0}^{m}\right|^{2}}\left(x_{0}\right) \\
& =\frac{1}{m}(m+n+1)\left[\frac{1+\frac{1}{2(m+n+2)}\left(r(g)\left(x_{0}\right)-n^{2}-3 n-2\right)+O\left(1 / m^{2}\right)}{1+\frac{1}{2(m+n+1)}\left(r(g)\left(x_{0}\right)-n^{2}-n\right)+O\left(1 / m^{2}\right)}\right]^{2} \\
& =1+O\left(\frac{1}{m}\right)
\end{aligned}
$$

Lemma 3.4. With the above notation and assumptions, we have

$$
\frac{1}{m} \frac{\partial^{3} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{2} \bar{\partial} z_{1}}\left(x_{0}\right)=O\left(\frac{1}{m}\right)
$$

Proof. By (3.7) and a direct computation, we obtain

$$
\begin{aligned}
& \frac{1}{m} \frac{\partial^{3} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{2} \partial \bar{z}_{1}}\left(x_{0}\right) \\
& =\frac{\left(\partial^{2} f_{1}^{m} / \partial z_{1}^{2}\right)\left(\overline{\partial f_{1}^{m}} / \overline{\partial z_{1}}\right)}{m\left|f_{0}^{m}\right|^{2}}\left(x_{0}\right) \\
& \quad-\frac{2\left|\partial f_{1}^{m} / \partial z_{1}\right|^{2} \operatorname{Re}\left(\left.\left(\partial f_{0}^{m} / \partial z_{1}\right) f\right|_{0} ^{m}\right)}{m\left|f_{0}^{m}\right|^{4}}\left(x_{0}\right)
\end{aligned}
$$

Then the lemma follows from Lemma 3.2 (i), (ii).

Lemma 3.5. With the notation and the assumptions as in Lemma 3.3 and 3.4, we have

$$
\frac{1}{m} \frac{\partial^{4} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{3} \bar{\partial} z_{1}}\left(x_{0}\right)=O\left(\frac{1}{\sqrt{m}}\right)
$$

Proof. By (3.7) and a complicated, but straightforward, computation, we obtain

$$
\begin{aligned}
& \frac{1}{4} \frac{\partial^{4} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{3} \bar{\partial} z_{1}}\left(x_{0}\right) \\
& \quad-2 \frac{\partial^{3} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{2} \partial \bar{z}_{1}}\left(x_{0}\right) \cdot \frac{\partial f_{0}^{m} / \partial z_{1}}{m f_{0}^{m}}\left(x_{0}\right) \\
&-2 \frac{\partial^{2} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\left.\partial z_{1} \partial z\right|_{1}}\left(x_{0}\right) \\
& \quad \frac{\left.\bar{f}_{0}^{m} \mid f^{m}\right)\left.0\right|^{2}\left(\partial^{2} f_{0}^{m} / \partial z_{1}^{2}\right)\left(x_{0}\right)-\left(\bar{f}_{0}^{m}\right)^{2}\left(\partial f_{0}^{m} / \partial z_{1}\right)^{2}}{m\left|f_{0}^{m}\right|^{4}} \\
&+\frac{\left(\partial^{3} f_{1}^{m} / \partial z_{1}^{3}\right)\left(\partial f_{1}^{m} / \partial z_{1}\right)}{m\left|f_{0}^{m}\right|^{2}}\left(x_{0}\right) \\
&-\frac{\left(\partial^{2} f_{1}^{m} / \partial z_{1}^{2}\right)\left(\overline{\partial f_{1}^{m} / \partial z_{1}}\right)\left(\partial f_{0}^{m} / \partial z_{1}\right) \overline{f_{0}^{m}}+f_{0}^{m}\left(\partial^{2} f_{0}^{m} / \partial z_{1}^{2}\right)\left|\partial f_{1}^{m} / \partial z_{1}\right|^{2}}{m\left|f_{0}^{m}\right|^{4}}\left(x_{0}\right) .
\end{aligned}
$$

Then this lemma follows from Lemmas 3.3 and 3.4, and (i), (ii) of Lemma 3.2.

Lemma 3.6. With the notation and assumptions as in the above lemmas, we have

$$
\left|\frac{-1}{m} \frac{\partial^{4} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}^{m}\right|^{2}\right)}{\partial z_{1}^{2} \partial \bar{z}_{1}^{2}}-R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)\right|=O\left(\frac{1}{m}\right) .
$$

Proof. By a straightforward computation and (3.7), we obtain

$$
\begin{aligned}
I I= & \frac{1}{m} \frac{\partial^{4} \log \left(\left|f_{0}^{m}\right|^{2}+\cdots+\left|f_{N_{m}}\right|^{2}\right)}{\partial z_{1}^{2} \partial \bar{z}_{1}^{2}} \\
= & -4 \operatorname{Re}\left(\frac{\left(\partial^{2} f_{1}^{m} / \partial z_{1}^{2}\right)\left(\overline{\partial f_{1} / \partial z_{1}}\right) f_{0}^{m}\left(\overline{\partial f_{0}^{m} / \partial z_{1}}\right)}{m\left|f_{0}^{m}\right|^{4}}\right) \\
& +4 \frac{\left|\partial f_{1}^{m} / \partial z_{1}\right|^{2}\left|\partial f_{0}^{m} / \partial z_{1}\right|^{2}}{m\left|f_{0}^{m}\right|^{4}} \\
& +\frac{1}{m}\left(\frac{\sum_{i=1}^{n+1}\left|\partial^{2} f_{i}^{m} / \partial z_{1}^{2}\right|^{2}}{\left|f_{0}^{m}\right|^{2}}-\frac{2\left|\partial f_{1}^{m} / \partial z_{1}\right|^{4}}{\left|f_{0}^{m}\right|^{4}}\right)
\end{aligned}
$$

By Lemma 3.2(i), (ii), the first two terms on the right-hand side are both of order $O\left(1 / m^{2}\right)$. By Lemma 3.2(iii), we have $\sum_{i=1}^{n}\left|\partial f_{i}^{m} / \partial z_{1}^{2}\right|^{2}=$ $O\left(m^{n-1}\right)$, and therefore

$$
\left.\begin{array}{rl}
I I= & \frac{1}{m}\left(\frac{\left|\partial^{2} f_{n+1}^{m} / \partial z_{1}^{2}\right|^{2}}{\left|f_{0}^{m}\right|^{2}}-\frac{2\left|\partial f_{i}^{m} / \partial z_{1}\right|^{4}}{\left|f_{0}^{m}\right|^{4}}\right)+O\left(\frac{1}{m^{2}}\right) \\
\quad \text { (by Lemma 3.2 again) }
\end{array}\right] \begin{aligned}
&=\left.\frac{1}{m} 2(m+n+2)(m+n+1) \quad+O\left(\frac{1}{m^{2}}\right)\right] \\
& \cdot\left[1+\frac{1}{2(m+n+3)}\left(r(g)\left(x_{0}\right) \cdot-R_{1 \overline{1} 1 \overline{1}}\left(x_{0}\right)-n^{2}-5 n-6\right)\right. \\
& \cdot\left[1+\frac{1}{2(m+n+1)}\left(r(g)\left(x_{0}\right)-n^{2}-n\right)+O\left(\frac{1}{m^{2}}\right)\right]^{-1} \\
&-2(m+n+1)^{2}\left(1+\frac{1}{2(m+n+2)}\left(r(g)\left(x_{0}\right)-n^{2}-3 n-2\right)\right. \\
&\left.+O\left(\frac{1}{m^{2}}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1+\frac{1}{2(m+n+1)}\left(r(g)\left(x_{0}\right)-n^{2}-n\right)+O\left(\frac{1}{m^{2}}\right)\right)^{-2} \\
& \quad+O\left(\frac{1}{m^{2}}\right) \\
& =-R_{1 \overline{1} 11}\left(x_{0}\right)+O\left(\frac{1}{m}\right) .
\end{aligned}
$$

The estimate (3.3) follows from Lemmas 3.3-3.6. Hence Theorem A is proved. Obviously, Theorem B follows from Theorem A.

Remark. It is likely that one can estimate the difference between g_{m} and g up to higher derivatives, but one should have a neater method. For Riemann surfaces we can show that g_{m} converges to g in C^{3}-topology by computations analogous to the above ones.

4. Generalizations to noncompact manifolds

It is easy to see that the previous proof for Theorem A is local in nature. This makes us believe that some generalizations of it should be possible for noncompact Kähler manifolds. Let X be a complete Kähler manifold with Kähler metric g and let L be a line bundle on X with a hermitian metric h and Ricci curvature $\operatorname{Ric}(h)$ greater than $\varepsilon \max \left\{\omega_{g},-\operatorname{Ric}(g)\right\}$ for some $\varepsilon>0$. Denote by $H_{(2)}^{0}\left(X, L^{m}\right)$ the space of all L^{2}-integrable holomorphic global sections of the line bundle L^{m}. This space is a Hilbert space with a natural inner product induced by the hermitian metric h^{m}. Choose an orthonormal basis $\left\{S_{i}^{m}\right\}_{i \geq 0}$ of $H_{(2)}^{0}\left(X, L^{m}\right)$.

Lemma 4.1. For each local frame e_{L} of L at any point X in X, write $S_{i}^{m}=f_{i}^{m} e_{L}^{m}$. Then $\sum_{i=0}^{\infty}\left|f_{i}^{m}\right|^{2}$ is a smooth function near x.

Proof. Each f_{i}^{m} is holomorphic near x. Then by the Cauchy integral formula (cf. [5]), it suffices to prove that $\sum_{i=0}^{\infty}\left|f_{i}^{m}\right|^{2}$ is locally uniformly bounded at x. First we observe that for a holomorphic section S in $H_{(2)}^{0}\left(X, L^{m}\right)$ with $\|S\|_{h^{m}}=1$, there is a neighborhood U of x and a constant C which is independent of S, such that $S=f e_{L}^{m},|f|^{2}$ is bounded by C in U. Now for any $N>0$, take an orthogonal transformation σ from $U(N+1)$ such that if $\sigma=\left(\sigma_{i j}\right)_{0 \leq i, j \leq N}$ and $T_{i}=\sum_{j=0}^{N} \sigma_{i j} S_{j}^{m}$, then
$T_{i}(x)=0$ for $i \geq 1$. Since σ is orthogonal,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|f_{i}^{m}\right|^{2}(x) & =\frac{1}{\left\|e_{L}^{m}\right\|_{h^{m}}^{2}(x)} \sum_{i=0}^{n}\left\|S_{i}^{m}\right\|_{h^{m}}^{2} \\
& =\frac{1}{\left\|e_{L}^{m}\right\|_{h^{m}}^{2}(x)} \sum_{i=0}^{n}\left\|T_{i}\right\|_{h^{m}}^{2}=\left|\frac{T_{0}}{e_{L}^{m}}\right|^{2}(x) \leq C+\infty
\end{aligned}
$$

Thus the lemma is proved.
By this lemma, one can define a positive, d-closed, $(1,1)$-current ω_{m} on X in the following way: At any point x in X, define

$$
\begin{equation*}
\omega_{m}(x)=\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left(\sum_{i=0}^{\infty}\left|f_{i}^{m}\right|^{2}\right)(x), \tag{4.1}
\end{equation*}
$$

where $S_{i}^{m}=f_{i}^{m} e_{L}^{m}$ in a neighborhood of $x \quad\left(\left\{S_{i}^{m}\right\}\right.$ is the basis as in Lemma 4.1.) Formally, we can write

$$
\omega_{m}=\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left(\sum_{i=0}^{\infty}\left|S_{i}^{m}\right|^{2}\right)
$$

Since $\operatorname{Ric}(h) \geq \varepsilon \max \left\{\omega_{g},-\operatorname{Ric}(g)\right\}$ for some $\varepsilon>0$, it follows from the standard L^{2}-estimate of the $\bar{\partial}$-operator (Proposition 1.1) that for any compact set $K \subset X, \omega_{m}$ will be regular (1,1)-form in K for m large enough. By the same arguments as in the proof of Theorem A, one can prove the following.

Theorem 4.1. Set X, L, g, and h as above. Then for any compact set K of X, there are constants m_{0} and C, depending only on the geometry of K in M, such that for $m>m_{0}, \omega_{m}$ is regular in K and so induces a Kähler metric g_{m} on K, and

$$
\begin{equation*}
\max _{M}\left\{\left\|g_{m}-\operatorname{Ric}(h)\right\|,\left\|D g_{m}-D \operatorname{Ric}(h)\right\|\right\} \leq C_{K} / \sqrt{m} \tag{4.2}
\end{equation*}
$$

where the covariant derivative D is taken with respect to g, and $\|\cdot\|$ is a norm on tensors induced by g. In the case that (X, g) is a complete Kähler-Einstein manifold with $\operatorname{Ric}(g)=-\omega_{g}$, and $L=K_{X}$ is the canonical line bundle, we have in the compact set K

$$
\begin{align*}
\max _{K} & \left\{\left\|g_{m}-g\right\|,\left\|D g_{m}\right\|,\left\|D^{2} g_{m}\right\|,\left\|R\left(g_{m}\right)-R(g)\right\|\right\} \\
& \leq C_{K} / \sqrt{m} \text { for } m>m_{0} \tag{4.3}
\end{align*}
$$

where $R\left(g_{m}\right)$ and $R(g)$ are curvature tensors of g_{m} and g, respectively. Furthermore, if the metric g has bounded curvature tensor, and the injectivity radius at each point is bounded from below by a uniform constant
$c>0$, then C_{K} in (4.2) or (4.3) can be taken independent of the compact set K.

Remark. As a corollary of Theorem 4.1, one can prove that for any strictly pluriharmonic function φ on the unit ball $B_{1}(0)$ of C^{n}, the function φ can be approximated up to its third derivatives in the ball $B_{1 / 2}(0)$ by functions of the form $\lambda \log \left(\sum_{i=1}^{N}\left|f_{i}\right|^{2}\right)$, where the $\left\{f_{i}\right\}$ are holomorphic functions on $B_{1}(0)$.

5. The proof of Theorem \mathbf{C}

In this section, we will use Theorem 4.1 to prove Theorem C. We start with the following lemma.

Lemma 5.1. Let X be a quasiprojective manifold with a complete Kähler metric g, where $\operatorname{Ric}(g) \leq-\lambda \omega_{g}$ for some $\lambda>0$. Let \bar{X} be a smooth compactification of X. Then for each m, the space $H_{(2)}^{0}\left(X, K_{X}^{m}\right)$ is of finite dimension, and any holomorphic section S in $H_{(2)}^{0}\left(X, K_{X}^{m}\right)$ can be extended to be a meromorphic section of $\left(K_{\bar{X}}\right)^{m}$ on \bar{X} with poles along D and the order less than m.

Proof. It suffices to prove the second statement. Fix a Kähler metric \bar{g} on \bar{X} induced by the Kähler form ω given in the statement of Theorem C. Put $\bar{h}=\left(\operatorname{det}\left(\bar{g}_{\alpha \bar{\beta}}\right)\right)^{-1}$; then \bar{h} is a hermitian metric on $K_{\bar{X}}$. Let h be the hermitian metric on K_{X} induced by g on X, and put $e^{\varphi}=h / \bar{h}$. Then by $\left.K_{\bar{X}}\right|_{X}=K_{X}$ we have

$$
\begin{equation*}
\int_{X}\|S\|_{h^{m}}^{2} e^{(m-1) \varphi} d V_{\bar{g}}=\int_{X}\|S\|_{h^{m}}^{2} d V_{g}<+\infty \tag{5.1}
\end{equation*}
$$

Put $D=\bar{X}-X$; then D is a divisor in \bar{X}. Let $\operatorname{Sing}(D)$ be the singular points of D, and $\operatorname{codin}_{\bar{X}}(\operatorname{Sing}(D)) \geq 2$. By Hartog's theorem (cf. [5]), we only need to extend S across the regular part of D, i.e., across $D-\operatorname{Sing}(D)$. Take any point x in $D-\operatorname{Sing}(D)$. Then there is a neighborhood U_{x} of x in \bar{X} such that $U_{x} \cap X \approx \Delta^{*} \times \Delta^{n-1}$, where $\Delta=\left\{z \in C^{1}| | z \mid<1\right\}$, and $\Delta^{*}=\Delta \backslash\{0\}$. Thus there is a complete hyperbolic metric g_{x} on $U_{x} \cap X$. This metric g_{x} is actually the product metric of those Poincaré metrics on Δ or Δ^{*}. Moreover, if z_{1} is the local defining function of $D \cap U_{x}$, then for a smaller neighborhood V_{x} of x in U_{x},

$$
\begin{equation*}
\bar{h}\left|z_{1}\right|^{2}\left(-\log \left|z_{1}\right|\right)^{2} \leq C h_{x} \quad \text { in } V_{x} \cap X \tag{5.2}
\end{equation*}
$$

where C is a positive constant, and h_{x} is the hermitian metric on $\left.K_{\bar{X}}\right|_{U_{x} \cap X}$ induced by g_{x}.

On the other hand, by our assumption on $\operatorname{Ric}(g)$ and Yau's generalized Schwartz lemma [14], the volume form of g uniformly dominates that of g_{x} on $U_{x} \cap X$, i.e.,

$$
\begin{equation*}
e^{\varphi} \bar{h}=H \geq C(\lambda) h_{x} \quad \text { on } U_{x} \cap X \tag{5.3}
\end{equation*}
$$

where $C(\lambda)$ is a positive constant depending only on λ and n.
Now by (5.1), (5.2), and (5.3), one easily sees that S can be extended to be a meromorphic section of $K_{\bar{X}}$ possibly with poles along D and the order less than m.

Let D be as above and write $D=\sum_{i=1}^{l} D_{i}, D_{i}$ smooth $(i=1,2$, $\cdots, l)$. Let T_{i} be the defining section of D_{i}. Then by Lemma 5.1, there are integers $p_{i}^{m}, 0 \leq p_{i}^{m} \leq m-1$, such that for each S in $H_{(2)}^{0}\left(X, K_{X}^{m}\right), T_{1}^{p_{1}^{m}} \cdots T_{l}^{p_{l}^{m}} S$ can be extended to be a holomorphic section of $K_{\bar{X}}^{m}+\sum_{i=1}^{l} p_{i}^{m} D_{i}$. Define

$$
\bar{\omega}_{m}=\frac{\sqrt{-1}}{2 m \pi} \log \left(\sum_{j=0}^{N_{m}}\left|S_{j} \prod_{i=1}^{l} T_{i}^{p_{i}^{m}}\right|^{2}\right)
$$

where $N_{m}+1=\operatorname{dim}_{C} H_{(2)}^{0}\left(X, K_{X}^{m}\right)$. Then $\bar{\omega}_{m}$ is a positive, d-closed, (1,1)-current on \bar{X}, extending ω_{m} on X. Moreover,

$$
\begin{aligned}
\int_{X} \bar{\omega}_{m} \wedge \omega^{n-1} & =\frac{1}{m}\left(K_{\bar{X}}^{m}+\sum_{j=0}^{l} p_{j}^{m} D_{j}\right) \cdot[\omega]^{n-1} \\
& \leq\left(K_{\bar{X}}+D\right) \cdot[\omega]^{n-1}<+\infty
\end{aligned}
$$

where $[\omega]$ is the cohomological class represented by ω.
It follows from Theorem 4.1 that

$$
\int_{X}(-\operatorname{Ric}(g)) \wedge \omega^{n-1} \leq\left(K_{\bar{X}}+D\right) \cdot[\omega]^{n-1}<+\infty
$$

so that part (2) of Theorem C is proved.
Note that we also proved that $\bar{\omega}_{m}$ converges weakly to a positive, d closed, $(1,1)$-current $\bar{\omega}$ extending $-\operatorname{Ric}(g)=\operatorname{Ric}\left(K_{X}\right)$.

Choose a hermitian metric h_{i} for the line bundle $\left[D_{i}\right](i=1,2, \cdots, l)$ to obtain

$$
\begin{aligned}
\bar{\omega}_{m}= & -\operatorname{Ric}(\bar{g})+\sum_{i=1}^{l} \frac{p_{i}^{m}}{m} \operatorname{Ric}\left(h_{i}\right) \\
& +\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log l\left[\sum_{j=0}^{N_{m}}\left(\|S\|_{h^{m}}^{2} \prod_{i=1}^{l}\left\|T_{i}\right\|_{h_{i}}^{2 p_{i}^{m}}\right)\right] .
\end{aligned}
$$

Define $\bar{\omega}_{m, \varepsilon}$ by

$$
\begin{aligned}
\bar{\omega}_{m, \varepsilon}= & -\operatorname{Ric}(\bar{g})+\sum_{i=1}^{l} \frac{p_{i}^{m}}{m} \operatorname{Ric}\left(h_{i}\right) \\
& +\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left[\varepsilon+\sum_{j=0}^{N_{m}}\left(\|S\|_{h^{m}}^{2} \prod_{i=1}^{l}\left\|T_{i}\right\|_{h_{i}}^{2 p_{i}^{m}}\right)\right] .
\end{aligned}
$$

By Theorem 4.1, one can choose a sequence $\left\{\varepsilon_{m}\right\}, \lim _{m \rightarrow \infty} \varepsilon_{m}=0$, such that on each compact set K of $X, \bar{\omega}_{m, \varepsilon_{m}}$ converges uniformly to $-\operatorname{Ric}(g)$. On the other hand, by a straightforward computation, $\bar{\omega}_{m, \varepsilon_{m}}$ is bounded from below by $\operatorname{Min}\left\{0,-\operatorname{Ric}(\bar{g})+\sum_{i=1}^{l}\left(p_{i}^{m} / m\right) \operatorname{Ric}\left(h_{i}\right)\right\}$. Since $0 \leq p_{i}^{m} \leq m-1$, by Fatou's lemma we obtain

$$
\begin{aligned}
0 & <\int_{X}(-\operatorname{Ric}(g))^{n} \leq \varlimsup_{m \rightarrow \infty} \int_{X} \omega_{m, \varepsilon_{m}}^{n} \\
& =\varlimsup_{m \rightarrow \infty}\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} \frac{p_{i}^{m}}{m} C_{1}\left(D_{i}\right)\right)^{n} \\
& =\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)\right)^{n}<\infty,
\end{aligned}
$$

where $p_{i}=\varlimsup_{m \rightarrow \infty} p_{i}^{m} / m, 0 \leq p_{i} \leq 1$. Hence Theorem C is proved.
Before we end this section, we give an improved version of Theorem C in the case $n=2$ for later use. For example, by using this improved version of Theorem C and some tricks for solving complex Monge-Ampere equations, one can prove that the volume of a complete Kähler-Einstein metric on a quasiprojective surface is always a rational number. In fact, one should be able to prove that the volume is an integer.

Theorem 5.1. Let X be a quasiprojective surface with a complete Kähler metric g and $-\operatorname{Ric}(g) \geq \varepsilon \omega_{g}$, and let \bar{X} be a compactification of X. Then the positive, d-closed, $(1,1)$-current $-\operatorname{Ric}(g)$ can be extended to
a positive, d-closed, (1,1)-current $\bar{\omega}_{g}$ on \bar{X} such that it represents a cohomological class $C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)$ in $H^{1,1}(\bar{X}, C) \cap H^{2}(\bar{X}, Z)$, where $p_{i} \leq 1$ and $\bar{X}-X=\bigcup_{i=1}^{l} D_{i}, D_{i}$ irreducible. Moreover
(1) $0<\int_{X}(\operatorname{Ric}(g))^{2} \leq\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i l=1}^{l} p_{i} C_{i}\left(D_{i}\right)\right)^{2}$.
(2) For any irreducible effective curve E in \bar{X},

$$
\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)\right)[E] \geq 0
$$

and >0 if E is not contained in $\bigcup_{i=1}^{l} D_{i}$, where $[E]$ denotes the cohomology class of E in $H^{2}(\bar{X}, Z)$. In particular, $C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{1} C_{1}\left(D_{i}\right)$ is numerically effective.

Remark. According to the terminology of algebraic geometry, such a divisor $K_{\bar{X}}+D$ is numerically positive.

Proof. For each $m>0$, choose an orthonormal basis $\left\{S_{i}^{m}\right\}_{0 \leq i \leq N_{m}}$ of $H_{(2)}^{0}\left(X, K_{X}^{m}\right)$. Define $p_{i}^{m}=\max _{0 \leq j \leq N_{m}}$ \{order of the pole of S_{j}^{m} along $\left.D_{i}\right\}, i=1,2, \cdots, l$, where we regard the zero of S_{j}^{m} as the pole with negative order. Lemma 5.1 can be applied here to conclude that $p_{i}^{m} \leq m-1$ for $i=1,2, \cdots, l$. Let T_{i} be the defining section of the divisor D_{i}. Then the holomorphic section $\left\{\left(\prod_{i=1}^{l} T_{i}^{\left.p^{m}\right) i}\right) S_{j}^{m}\right\}_{0 \leq j \leq N_{m}}$ of $K_{\bar{X}}^{m}+\sum_{i=1}^{l} p_{i}^{m} D_{i}$ has no divisor as common zero along D. Define a positive, d-closed, $(1,1)$-current $\bar{\omega}_{m}$ on \bar{X} as before by

$$
\begin{equation*}
\bar{\omega}_{m}=\frac{\sqrt{-1}}{2 m \pi} \partial \bar{\partial} \log \left(\prod_{i=1}^{l}\left|T_{i}^{2 p_{i}^{m}}\right| \cdot \sum_{j=0}^{N_{m}}\left|S_{j}^{m}\right|^{2}\right) \tag{5.4}
\end{equation*}
$$

By $0<\int_{\bar{X}} \bar{\omega}_{m} \wedge \omega$, where ω is a positive Kähler form on \bar{X}, we have a uniform lower bound for all $p_{i}^{m} / m \leq 1 \quad(i=1,2, \cdots, l)$, in fact,

$$
\begin{equation*}
-\int_{\bar{X}} C_{1}\left(K_{\bar{X}}\right) \wedge \omega \leq \operatorname{Ric} p_{i}^{m} m \int_{\bar{X}} C_{1}\left(D_{i}\right) \wedge \omega \tag{5.5}
\end{equation*}
$$

By taking a sequence of $\{m\}_{m \geq 0}$, we may assume that $p_{i}=\lim _{m \rightarrow \infty} p_{i}^{m} / m$ exists for each i. Since $\int_{\bar{X}} \bar{\omega}_{m} \wedge \omega \leq\left(C_{1}\left(K_{\bar{X}}\right)+\sum\left(p_{i}^{m} / m\right) C_{1}\left(D_{i}\right)\right) \cdot \omega$ is bounded uniformly from above, $\bar{\omega}_{m}$ converges weakly to a positive, d closed, $(1,1)$-current $\bar{\omega}_{g}$, which extends to $-\operatorname{Ric}(g)$ by Theorem 4.1. As in the proof of Theorem C, one sees

$$
\begin{equation*}
0<\int_{X}(\operatorname{Ric}(g))^{2}=\int_{X} \bar{\omega}_{g}^{2} \leq\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)\right)^{2} . \tag{5.6}
\end{equation*}
$$

Note that $\bar{\omega}_{g}$ represents the cohomological class $C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)$. For each irreducible curve E, since $\left\{\prod_{i=1}^{l}\left(T_{i}^{p_{i}^{m}}\right) S_{j}^{m}\right\}_{0 \leq j \leq N_{m}}$ has no common zero divisor along D for m large enough, the restriction of the $(1,1)$-current $\bar{\omega}_{m}$ to E as current is well defined and

$$
\begin{equation*}
0 \leq \int_{E} \bar{\omega}_{m}=\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} \frac{p_{i}^{m}}{m} C_{1}\left(D_{i}\right)\right) \cdot[E] . \tag{5.7}
\end{equation*}
$$

By taking the limit, one sees $\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)\right) \cdot[E] \geq 0$. It is also easy to see from (5.7) that $\left(C_{1}\left(K_{\bar{X}}\right)+\sum_{i=1}^{l} p_{i} C_{1}\left(D_{i}\right)\right) \cdot[E]>0$ if E is not contained in D.

Remark. In the joint work [12] by S. T. Yau and the author, we prove that the quasiprojective manifold X admits an "almost" complete KählerEinstein metric with negative Ricci curvature if $X=\bar{X}-D$ with D normal crossing and $K_{\bar{X}}+D$ positive in X and numerically positive in \bar{X}. Note that such a metric which we constructed on X should be complete. This makes us believe that all p_{i} in Theorem 5.1 are actually equal to one.

6. A final remark

Let (M, g) be a compact Kähler manifold with positive first Chern class and the metric g naturally polarized by the ample anticanonical line bundle K_{M}^{-1} on M, i.e., ω_{g} represents $C_{1}(M)$. There is an unsolved problem of E . Calabi whether or not M admits a Kähler-Einstein metric with positive scalar curvature. In general, there are obstructions to the existence of such a Kähler-Einstein metric. They were found by Matsushima [8], Futaki [4], Donaldson [3], and Uhlenbeck and Yau [13] . However, in [11] a numerical criterion is given for the existence of Kähler-Einstein metrics on M. Such a criterion is expressed in terms of a holomorphic invariant $\alpha(M)$. We will recall the definition of this invariant later. This $\alpha(M)$ is an analogue of the conformal invariant in the study of Yamabe's equation [1], [10].

Let G be a maximal compact group in the automorphism group $\operatorname{Aut}(M)$ of M, and let the metric g be G-invariant. Define

$$
\begin{aligned}
& P_{G}(M, g)=\left\{\varphi \in C^{2}\left(M, R^{1}\right) \left\lvert\, \omega_{g}+\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi>0\right.\right. \\
&\left.\sup _{M} \varphi=0, \varphi \text { is } G \text {-invariant }\right\}
\end{aligned}
$$

Then we define

$$
\begin{equation*}
\alpha(M)=\sup \left\{\alpha \mid \exists C_{\alpha}>0 \text { s.t. } \forall \varphi \in P_{G}(M, g), \int_{M} e^{-\alpha \varphi} d V_{g} \leq C_{\alpha}\right\} \tag{6.1}
\end{equation*}
$$

Although the definition of $\alpha(M)$ depends on the choice of the metric g and the maximal compact group G, the number $\alpha(M)$ does not. In [11], the author proved that M admits a Kähler-Einstein metric with positive scalar curvature whenever $\alpha(M) \geq q n /(n+1)$, where n is the complex dimension of M. So a natural question arises: How do we estimate $\alpha(M)$ from below? Theorem B throws light on it.

Define

$$
\begin{aligned}
P_{m}(M, g)= & \left\{\varphi \in C^{\infty}\left(M, R^{1}\right) \sup _{M} \varphi=0, \varphi \text { is } G\right. \text {-invariant and } \\
& \exists \text { a basis }\left\{S_{i}^{m}\right\}_{0 \leq i \leq N_{m}} \text { of } H^{0}\left(M, K_{M}^{-m}\right) \text { such that } \\
& \left.\omega_{g}+\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi=\frac{\sqrt{-1}}{2 m \pi} \log \left(\sum_{i=0}^{N_{m}}\left|S_{i}^{m}\right|^{2}\right)\right\}
\end{aligned}
$$

where $N_{m}+1=\operatorname{dim} H^{0}\left(M, K_{m}^{-m}\right)$ and m is large.
A direct corollary of Theorem B is that we can confine ourselves to $\bigcup_{m_{0}}^{\infty} P_{m}(M, g)$ in the definition (4.1) of $\alpha(M)$, where m_{0} is large. Precisely, we have

Proposition 6.1. The holomorphic invariant $\alpha(M)$ is equal to

$$
\begin{align*}
& \sup \left\{\alpha \mid \exists C>0 \text { s.t. } \forall \varphi \text { in } P_{m}(M, g) \text { with } m \geq m_{0}\right. \tag{6.2}\\
& \left.\qquad \int_{M} e^{-\alpha \varphi} d V_{g} \leq C\right\}
\end{align*}
$$

This proposition turns the estimate of $\alpha(M)$ into the evaluation of some rational integrals. But it is still hard to deal with the estimate since we must compute infinitely many integrals. So we propose the following approach. One can define, for m large,

$$
\alpha_{m}(M)=\sup \left\{\alpha \mid \exists C>0 \text { s.t. } \forall \varphi \subset P_{m}(M, g), \int_{M} e^{-\alpha \varphi} d V_{g} \leq C_{1}\right\}
$$

Each $\alpha_{m}(M)$ is a holomorphic invariant of M, and obviously, $\alpha(M) \leq$ $\inf _{m} \alpha_{m}(M)$.

Question 1. Does $\alpha_{m}(M)=\alpha(M)$ for m sufficiently large?

The Kähler metric g induces a hermitian norm $\|\cdot\|$ on K_{M}^{-m}. Let S_{m} be the unit sphere in $H^{0}\left(M, K_{M}^{-m}\right)$ with respect to the induced hermitian norm $\|\cdot\|_{m}$. Then one can check that

$$
\begin{align*}
\alpha_{m}(M)=\sup \{\alpha \mid C> & 0 \text { s.t. for any global section } S \text { in } \tag{6.3}\\
& \text { the sphere } \left.S_{m}, \int_{M}\left(1 /\|S\|_{m}^{2}\right)^{\alpha / m} d V_{g} \leq C\right\}
\end{align*}
$$

This interpretation indicates that the invariant $\alpha_{m}(M)$ reflects to some extent how bad the singularities of the divisors of M are cut by the global sections of K_{M}^{-m}.

For fixed $\alpha>0$, the integral $\int_{M}\left(1 /\|S\|_{m}^{2}\right)^{\alpha / m} d V_{g}$ defines a function on S_{m}. Note that this function may take the value infinity. The Fatou lemma implies that this function, denoted by F_{m}, is upper semicontinuous.

Question 2. Is F_{m} continuous on S_{m} ? Or, more weakly, can the supreme of F_{m} on S_{m} be achieved on S_{m} ?

In the case that M is a complex surface with positive first Chern class and m small, we can affirm Question 2 by some direct, but complicated, computations of rational integrals. The affirmation of these equations will make the evaluation of $\alpha(M)$ much more tractable.

Added in proof. Lemmas 1.2 and 2.3 also yield the following result. Let $\|\cdot\|$ be a hermitian metric on an ample line bundle L on M such that its curvature form ω is a Kähler form on M. Then for large $m, \sum_{i=0}^{N_{m}}\left\|S_{i}\right\|_{m}^{2}$ is equal to $[(m+n)!/ m!](1+0(1 / m))$, where $\|\cdot\|_{m}$ is the induced hermitian metric on L^{m} by $\|\cdot\|$, and $\left\{S_{i}\right\}_{0 \leq i \leq m}$ is an orthonormal basis of $H^{0}\left(M, L^{m}\right)$ with respect to the induced inner product by $\|\cdot\|_{m}$ and ω.

References

[1] T. Aubin, The scalar curvature, Differential Geometry and Relativity, Math. Phys. Appl. Math., V. 13, Reidel, Dordrecht, Holland, 1976, 5-18.
[2] E. Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, (S. T. Yau, ed.), Princeton Univ. Press, Princeton, NJ, 1982.
[3] S. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1-26.
[4] S. Futaki, An obstruction to the existence of Einstein-Kähler metrics, Invent. Math. 73 (1983) 437-443.
[5] P. Griffith \& J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[6] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, NJ, 1973.
[7] K. Kodaira \& J. Morrow, Complex manifolds, Holt, Rinehart and Winston, New York, 1971.
[8] Y. Matsushima, Sur la structure du group d'homeomorphismes analytiques d'une certaine varietie Kaehlerinne, Nagoya Math. J. 11 (1957) 145-150.
[9] D. Mumford, Stability of projective variables, Enseignement Math. 23 (1977).
[10] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984) 291-309.
[11] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$, Invent. Math. 89 (1987) 225-246.
[12] G. Tian and S. T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Math. Aspect of String Theory (Proc. 1986 conference held at UCSD) (S. T. Yau, ed.) World Sci. Publishing Co., Singapore, 1987.
[13] K. Uhlenbeck \& S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) 257-293.
[14] S. T. Yau, A general Schwartz lemma for Kähler manifolds, Amer. J. Math. 100 (1978) 197-203.
[15] ___ Nonlinear analysis in geometry, Enseignement Math. 33 (1986) 109-158.

