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CONVERGENCE OF THE RICCI FLOW
FOR METRICS

WITH INDEFINITE RICCI CURVATURE

MAURO CARFORA, JAMES ISENBERG & MARTIN JACKSON

Abstract

Hamilton's Ricci flow convergence theorems generally deal with metrics
whose Ricci curvature is positive semidefinite. Here, we exhibit a non-
trivial class of three-dimensional Riemannian metrics with Ricci curva-
ture of indefinite sign for which the Ricci flow converges.

Recent work of Hamilton [5], [6] shows that for all 3-dimensional Rie-
mannian geometries (Σ3, g) with positive Ricci curvature, the "Ricci flow"
generated by the (heat-like) equation

0) Q-tgij = -2Rij+ 3 gijr

(for r := fvRdμ/ fΣ3 dμ, the average of the scalar curvature R over Σ3)
converges asymptotically in parameter time t to a metric of constant posi-
tive curvature. The nature of the proof of this result has led to speculation
that for Riemannian geometries with Ricci) curvature of indefinite sign, the
Ricci flow would generally not converge. The product geometry S2 x Sι

9

whose Ricci flow approaches a singular "pinching" geometry, provides an
example of the expected behavior.

Here, we consider a class of 3-dimensional geometries, all with non-
definite or negative Ricci curvature, for which the Ricci flow does indeed
always converge. This class, which we shall label ^ , is fairly specialized.
All its members are topologically Γ 3 (3-torus) and all are invariant under
a freely acting T2 isometry group. (There are a few other orthogonality
conditions which characterize &\ we spell them out in §1.) The class is
nontrivial, however, and as we shall prove in §2, all metrics in & converge
(under Ricci flow) to a flat metric on Γ3.

The convergence proof, though fairly intricate in detail, has a single
theme: showing that the scalar curvature R decays sufficiently rapidly as
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/ —• oo. We work with the scalar curvature because, in ^-metrics, it essen-
tially controls all of the curvature. The proof (as detailed in §2) proceeds
by first showing that R decays uniformly at the rate C\/(C2 + t) (here and
elsewhere, Cinteger denotes some positive constant). This guarantees that
the metric goes flat, but we need faster decay to prove convergence. To get
this more rapid decay, we establish that the areas of the T2-orbits (of the
isometry group) converge as t —> oo and thence the lengths of the orthogo-
nal Sι paths converge as well. This allows us to do the remaining analysis
on Sι, with a finite (converging) total perimeter length for all time. Using
various estimates on the circle to simplify the evolution equation for i?,
we are able to show that the volume average of R decays exponentially and
then with a few more estimates we show that R uniformly decays to zero
exponentially. Smooth convergence of the metric then follows.

An interesting feature of the Ricci flow of the & metrics is that for
them—unlike the Ricci-positive metrics studied by Hamilton—the limit
metric is not easily predicted. The Ricci flow generated by (1), we recall,
is "normalized" so that it preserves total volume of (Σ3, g) along the flow.
Since for a given compact manifold Σ3 there is generally at most one con-
stant positive curvature metric of a given fixed volume, the limit of the
Ricci flow of a Ricci-positive metric on such a manifold is fixed. There
are, however, many flat metrics of a given volume on Γ3, and the Ricci
flow of a & metric may converge to any one of them.

One possible consequence of this (continuous) family of possible Ricci
flow limits is that for some metrics on Γ 3 (or on other topologies which
allow flat metrics) the Ricci flow may not converge to a single flat metric
but instead may "quasiconverge" to a one-parameter family of them. Bits
of our proof, and some results of Gray son and Hamilton [4], support this
possibility. We comment on it and other issues related to attempts to
extend our results in §3.

While our results should be useful in furthering the general understand-
ing of Ricci flow, the motivation for our work comes from general rela-
tivity. We are interested in setting up a program for approximating the
evolution of cosmological spacetime solutions of Einstein's equations via
the development of a procedure for "smoothing" sets of initial data for
such spacetimes [1]. The Ricci flow could be an important part of this
smoothing. As a testing laboratory for this study, we are examining the
fairly well-understood "Gowdy" [3] spacetime models. The initial data for
the "polarized" Gowdy models involve metrics of the class &. Hence it is
important to our program that the Ricci flow for & metrics converges.
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1. The ^-metrics and their Ricci flow equations

Here, we define the class of metrics ( " ^ metrics") with which we shall
be working, set up coordinates in which to study them, calculate their
curvatures, and write out the equations which govern their Ricci flow.

Definition (^-metrics). For each (Σ3, g) € «y, we require the following.
(a) Σ3 = T\
(b) g is invariant under a free T2 action on Γ3.
(c) The killing vector fields generating the T2 action may be chosen to

be (globally) orthogonal and independent.
(d) The areas of all the T2 orbits are the same.
(e) Each line in the one-dimensional congruence of paths orthogonal to

the T2 orbits is closed (a circle).
All of these properties together allow us to pick periodic coordinates

(x,y, θ) so that1 dx and dy are the killing fields generating the T2 isometry,
and the metric takes the form

~w(2) g = e2adθ2 + ef[ewdx2 + e

where a is a function of θ, W is a function of θ, and / is a constant (all
three will also be functions of t when we consider the Ricci flow of g).

Since θ is the only noncyclic coordinate, all of our analysis is done on
the circle parametrized by θ. Hence it is useful to define the arc-length
parameter s on this circle,

(3) 5(0)= / eadθ,
Jo

with the corresponding arc-length one-form

(4) ds = eadθ

and arc length vector field

(5) ds = e~adθ.

In terms of these, we have simple expressions for the vector calculus quan-
tities on Σ3; e.g. for any scalar Ψ on Σ3 we find

(6) VΨ VΨ=(<95Ψ)2 and VΨ = <95

2Ψ.

Note also that, so long as we choose x e [0,1) and y e [0,1), the volume
3-form dμ on Σ 3 may be effectively treated as a 1-form

(7) dμ = ea+fdθ

use the notation dx = d/dx etc., here and throughout the paper.
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with integration over x and y understood. For convenience in doing
Fourier series below, we shall let the range of θ be 0 to 2π.

From (2), we readily calculate the curvature of the ^ metrics. Since
the Ricci curvature of a 3-dimensional Riemannian manifold determines
all of its curvature, we list only that (in coordinate basis):

(8a) Ree = -{e2a(dsW)2,

(8b) RχX = -\

(8c) Ryy = \ef~wdjW.

The other components are zero. Contracting, we get the scalar curvature

(9) R = -%(dsW)2

9

and its spatial average

(10) r := f Rdμ I/dμ = e* f -\{dsW)2ds IVol[Σ3].

Note that R is negative semidefinite. If, for some g, R vanishes every-
where on the circle, and W is smooth, then one finds that all components
of the curvature (8) vanish, and the metric is flat. (This is a familiar result
for Riemannian metrics on Γ3.)

We now apply the Ricci flow equation (1) to the & metrics. First,
we note that the flow preserves the & class. Specifically it preserves the
killing fields, the off-diagonal components of the metric remain zero under
the flow, and the function / remains spatially constant. The Ricci flow
then manifests itself as evolution equations for the three functions:

(Ha) ft/=fr,

(lib) Bta = \{dsW)2 + \r9

( l i e ) dtW = d}W.

These equations and the asymptotic behavior of their solutions are the
focus of the rest of this work.

Before discussing our main result and how its proof goes, we note a
commutation relation which we will use quite often: Let Ψ be any smooth
scalar functional of the metric components. Then using (5) and (1 lb) we
find

(12) dtdsψ = ds(dtψ) - (dta)dsψ
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2. The main result and its proof

Our main result is the following

Theorem. Let g be any ^ metric which is everywhere C2. Then the
Ricciflow g{t) of g converges (as t —• oo) to aflat metric g^.

Proof. The short and long time existence results of Hamilton [5] apply
to the 9~ metrics (as well as to any 3-dimensional Riemannian metric); so
for any chosen & metric the Ricci flow exists, and continues, as long as the
curvature is well behaved. Hence we focus on controlling the curvature—
particularly the scalar curvature—and using it to prove convergence for /,
α, and W. We proceed (as outlined in the introduction) in five steps:

(A) j decay of R. Here, we show that there exist positive constants C\
and Cι such that

(13) _ Z C | _ <*(*,,)<<>,

so the scalar curvature decays uniformly to zero.

(1) To avoid unnecessary signs and factors of 1/2, we shall work with
(dsW)2 rather than R itself. Using the commutation relation (12), we find
that the evolution of (ds\V)2 is given by

(14) dt[(dsW)2] = A(dsW)2 - 2(AW)2 - [(dsW)2 + fr](dsW)2.

Recall that Δ = d2; here and below, we shall use whichever is useful in
clarifying the argument at hand.

(2) To obtain from (14) an inequality controlling the evolution of
Ma\Sι[(dsW)2], we rely on the following result, adapted from Hamilton
(see [6, Chapter 3])

Lemma 1. Let D be a compact set, and let the function Ψ: D x R-+ R
be a smooth solution of a partial differential equation of the form

(15) dtΨ = F[Ψ,x,t],

where F is a functional ofΨ, ofx e D, and oft e R. Let m(t) be a solution
of the ordinary differential equation

(16) jtm = E[mJl

where E is a function ofm and ofteR which satisfies the condition

(17) E[m,t]> Sup F[Ψ,x,t) for m > Max[Ψ].
(Maxi,[Ψ]) D
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(Here "Sup(MaXD[ψ]) F" means that we are to find the least upper bound ofF
evaluated at all x and Ψ(x) for which Ψ(x) = MaxD[Ψ].) Then ifm(0) >
Maxz)[Ψ(;c,0)], we have

(18) m(t)>Sup[Ψ(x,t))]
D

for all time t.
(3) Applying this lemma to (14), with Ψ = (dsW)2, we are led to con-

sider the quantity

(19) H := Sup U{dsW)2 - 2(AW)2 - \(dsW)2 + \λ (dsW)2} .
Maxsl[(dsW)i] I L ό J )

At any maximum point sm2i\ of (dsW(s))2, we have

(a)
Δ(dsW(smax))2 < 0,

(b) ( §

Using these, we find that the quantity in (19) satisfies the inequality

(20) | [ 2 |

Thus we are led to integrate the ordinary differential equation

(21) ^ - m = _ | m 2 ?

which has the solution

(22) m(t) = — ^ 2 _ . , for m0 = m(0).

(4) The conclusion of the lemma produces the result

(23) (dsW)2(θ,t)< . m

2° ,
1 + 3 mot

so long as we choose mo > MaxS\[(dsW)2(θ,0)]. Hence (dsW)2 uniformly
decays to zero, and consequently R = -\(dsW)2 does as well.

(5) Note that besides giving us this asymptotic decay result, this analysis
(especially (20)) shows that Max5i (ds W)2 monotonically decreases in time.
This will be useful in step (D) below.
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(B) Convergence of the T2 orbit area and the Sι perimeter length. It fol-
lows readily from (lla) and (13) that f(t), which monotonically decreases
in time, is bounded from below by /(0) - C3ln(l + C4t) for constants
C3 > 0 and C4 > 0. This allows for the possibility of a logarithmic blow-
up. Here, however, we show that in fact f{t) converges to a finite value.
Since the orbits of the T2 isometry group (parametrized by x and y) have
area e+f, and since the perimeter lengths of the orthogonal paths are given
by

(24) [ ds = <rfv.

where V = j dμ is the volume of the whole space, a constant under Ricci
flow, convergence of f(t) implies convergence of these quantities. The
convergence of Jsι ds will be useful in steps (C) and (D) below.

(1) Long time existence for a(θ, t) allows us to infer that, for finite
values of t, A = d2 is strictly (and uniformly) elliptic. Hence we may
apply the maximum principle to (lie) and thereby deduce that W(θ,t) is
uniformly bounded, for all time, above and below:

(25) Min[W(0,0)] < W(θ, t) < Max[W(θ,0)].

For reasons which will become apparent below, we wish to temporarily
replace W(θj) by

(26) ω(θ,ή:=W(ΘJ)-Wm + η,

where Wm := Mi%i[H^(θ,0)], and η is some positive constant. We see
that ω(0, t) is a positive quantity, bounded from below by η and from
above by WM-Wm + η, where WM := MaxSι[W(θ,0)]. We also note that
{/, a, ω} satisfies the Ricci flow equations (11) iff {/, a, W} does also.

(2) We choose an integer n such that

(27) n{Ά~ 1 } > (WM -Wm + η)2.

We then calculate

(28) dtω
n = Aωn - n(n - l)ωn~2(dsω)2

from which we obtain

dλl ω"dμ] = ί Wωn)-n{n-\)ωn-2{dsω)2

dsω)2dμ/v)^ dμ

(29) < " ^ / (dsω)2dμ/v f ωndμ.
2* Jsi I -As1
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Achievement of this inequality motivates the choice of n. Integrating (29),
we find

(30)

ί ωn(θ,ήdμ< \ί ωn{θ,0)dμ

xexp [ " 2 7 ^ ' (Jsι(dsω(θ,a))2dμ^ rfα] .

(3) We know that ωn(θ, t) is bounded from below by η > 0 for all t. It
follows that the argument of the exponential function must be bounded;
specifically, we must have

for all values of /. Since the left-hand side of (31) is a monotonically
increasing function of t, we conclude that

(32) Urn ί \ ί {dsω)2dμ\ =L
t-¥θθJo Us* J

for some finite number L.

(4) The evolution equation for /, written in terms of ω, is

(33)

From this, we obtain

(34) ί ^

so / converges. The convergence result for fsι ds immediately follows.
(C) Exponential decay of r. In this step, we show that r, the spatial

average of the scalar curvature, decays exponentially to zero. For conve-
nience, we shall work with

(35) 7(0:= / {dsW)2ds

rather than r. Note that

(36) r = __L^//.

Since ef is bounded above and below for all time, exponential decay of I
guarantees the same for r.

(1) We calculate

(37) ΐ / = - (AW)2ds-\ f {dsW)2ds-\ ί {dsW)2rds.
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Our aim is to be able to deduce from (37) that / satisfies the inequality
j-tI < C5I for some C5 > 0. The key step in this deduction follows from
part (a) of the following.

Lemma 2. Let h: Sι —• Rbe smooth and bounded. Assume that fsi h ds
= 0. Then there exists a pair of constants Cβ > 0 and CΊ > 0, depending
only upon the length L = fsι ds, such that

(38) (a) f h2ds<C6 [ (dsh)2ds,
Jsι Jsι

(39) (b) Max|Λ|<C7 / (dsh)2ds\
Ί 1 / 2

\

Proof. Both (a) and (b) are easily proven using Fourier series expan-
sions for h and dsh on the circle. It is important, in comparing the expan-
sions so as to obtain the inequalities, to note that the "zeroth" term in the
expansion vanishes since it is proportional to / h ds. So, for example, we
have

h—y an exp in -=-s

. . 2πi ^ Γ. 2π 1
dsh = —j- 2^ nan exp in — s .

From ParsevaΓs, we get

ιn\
2 and / \dsh\2ds = ^Tn\an\

2.ί

Result (a) clearly follows. Similarly we get (b). q.e.d.
(2) We wish to apply part (a) of this lemma to the function h = (dsW).

(Clearly the necessary condition fsι h ds = 0 is satisfied.) With some bit
of rearrangement, and using the boundedness above and below of L(t) =
fsι ds, we get

(40) -2 ί (AW)2ds < - C 8 ί {dsW)2ds = -C87

for some C% > 0.
(3) If we plug result (40) into (37), and use the negativity of the term

- i fsι {dsW)4 ds, we find that / satisfies

(41) T t 1 - ^
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Since ef is bounded below for all time, we deduce from (36) that there
exists Cg > 0 such that -\r < Cgl for all time. Hence (41) becomes

(42) ^ / < - C 8 / + C 9 / 2 .

(4) Generally, equation (42) admits nondecaying solutions. However,
since we know from step (A) that I(t) < Cio/(1 + Cut), it follows that for
some to, we have

(43) C8 - C9/(ί0) > 0.

Hence, at to,

(44) ^/(*o) < - ( C 8 - C9I(to))I(to) < 0,

so for all t > to, I(t) is decreasing. It follows that for some Cγι > 0,

(45) ^ J < -C12/.

So I{t) exponentially decreases to zero. Exponential decay of r is then a
consequence, as argued above.

(D) Exponential decay of R. Here, we use the exponential decay of r
(and /) to show that R uniformly converges to zero exponentially. For
convenience, we continue work with (dsW)2 rather than R = -\{dsW)2.

(1) Equation (37) may be rewritten as

if (dsW)2ds+ f (AW)2ds
(46) d t J s ι Js*

= -χ / {dsW)Us- / (AW)2ds--rI.

If we apply part (b) of Lemma 2 to h = ds W in the second term of the
left-hand side of this equation, and use -3 fsι(dsW)Ads < 0, then (46)
takes the form

^ f / (dsW)2ds\ +C 1 3 [Max(a^)]
(47) dt LAs J L 5> J

<- f {d}W)2ds-\r f {dsW)2ds.
Js* 3 JS\

We may now use part (a) of Lemma 2, together with the knowledge that
r decays exponentially, to argue that, for sufficiently large time to, the
right-hand side of (47) is negative (or zero). We then have, for t > to,

(48) j - f {dsW)2ds + C13 [Max(cw] < 0.
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(2) Let us choose any T > t0. If we integrate (48) over t, from t = T to
t -> oo, we get

(49) < f (dsW)2(T)ds- lim [ (dsW){t)ds

(3) While (49) seems to indicate uniform exponential decay of (dsW)2,
in principle it allows for high amplitude blips so long as they are sufficiently
short in duration. These blips are prevented, however, by the monotonic
decay result of step (A). To show that, we argue as follows:

(4) Let us use the notation M(t) := MaxSι(dsW)2(t), so that (49) reads

(50) / M(ήdt<Cl6e-c"τ.
JT

Now pick any τ > T + 1. Using (50) we find

(51) f M{t)dt= ί M(t)dt- ί M{t)dt
Λ-i Λ-i Λ

By the mean value theorem, there must be some T € [τ - 1, τ] such that

(52) Af(T) < Cxle~c^.

Since, by step (A), we know that M(t) monotonically decreases, we have

(53) M(τ) < M{Ύ) < Cxle~c^.

Hence, for sufficiently large Γ, we have exponential decay of Max^i (dsW)2.
(5) Since (dsW)2 is finite for all finite t, we may always find a constant

Ciβ such that for all t>0 and all θ e Sι,

(54) (dsW)2(ΘJ)

which implies uniform exponential convergence of {dsW)2 to zero. Uni-
form exponential convergence of R to zero immediately follows.

(E) Convergence of the metric. In this final step, we show that
lim,_+oo a(θ, t) and l im,-^ W(θ, t) exist, and are smooth on Sι. To do this,
we first need to establish the boundedness (for all time) of AW = d2W
and dsa.

(1) Using the commutation relation (12), we calculate

(55) dt(AW) = A(AW) - [2(dsW)2 + \r]AW
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and also

(56) dt(dsa) = -[{(dsW)2 + \r]dsa + AWdsW.

(2) We wish to apply Lemma 1 to (55) for Ψ = AW. Allowing \r to
perhaps dominate 2(ds W)2 at maxima of (AW), but noting that both decay
exponentially, we find that

(57) Sup {A{AW) - [2{dsW)2 + Ir]AW} < Ci9e'Cmt
 (MBX[AW]\ .

M [ Δ H η \ Sι )

Then, as discussed in Lemma 1, we are led to integrate

(58) dtn = C

we get

(59) n{t) β
20

where A is a constant determined by initial conditions. From this we
deduce that AW(θ,t) is uniformly bounded from above, for all time, by
some constant B\. A similiar argument shows that AW(θ,t) is uniformly
bounded from below by a constant B2. So we have

(60) B2 < AW(Θ, t) < B{ for all 0, t.

(3) By means of the boundedness of AW just established, we now apply
Lemma 1 to (56), with Ψ = dsa. Using the result

Sup {-[x

Ί
M

(61)
a]

(

we are led to integrate

(62) dtP = C2\e

This has a bounded solution, and eventually we find that

(63) B4 < dsa(θ, t) < B3 for all 0, t,

for certain constants 5 3 and B4.
(4) The right-hand side of the evolution equation (1 lb) for a(θ, t) uni-

formly converges to zero. Convergence for a(θ, t) is then a consequence.
More explicitly, we argue as follows: From steps (A) and (C), we have

(64) -C25e-C^ < ^a(θ, t) < C25e~c^.
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Choose ε > 0. Then if we pick t\ and t2 such that

(65, , , , , 2 > 7 . :

we have

(66) |α(0,ί,)

for all θ e Sι. Hence by the Cauchy criteria, there exist aoo(θ) such that

(67)

with the convergence being uniform.
Since a(θ, t) is continuous on Sι for all t, a^θ) is also continuous.
To show that tfoo(#) is differentiable, it is sufficient to show that dsa(θ, t)

converges uniformly. Now, from (63) we know that dsa(θ, t) is uniformly
bounded. It then follows from (56) that for some C2η > 0 and C2g > 0,

(68) -C21e~m < dt(dsa) <

An argument like that just done for a(θ,t) shows that lim^oo dsa(t, θ)
exists. It follows that dsaoc(θ) exists.

Similiar arguments may be made for higher derivatives of a(t, θ)\ so we
conclude that tfoo(0) is smooth.

(5) The equation of evolution for W(θ,ή is

(lie) dtW(θ,t)=AW(θ,t)9

where

(69) AW = d?W = e-la\d]W - dθadθW].

Since a(θ,t) and dsa(θ,t) are well behaved for all t, and have uniform
limits as t —• oo, the laplacian Δ of (69) is uniformly and strictly elliptic
for all t, with limit Δoo.

Standard theorems for the heat equation [2] guarantee that if the lapla-
cian is as well behaved as this, then for suitable critical data, (lie) has a
unique smooth solution W(θ,t) with

(70) lim
t—κx>

where W^θ) is a solution of the laplace equation

(71) AooWoo(θ) = 0.

The only solutions of (71) on the circle are

(72) WΌc(0) = constant,
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so the limit metric is smooth.

One easily verifies that the various derivatives of W(t, θ) converge uni-
formly to zero, thereby agreeing with (72). This completes the proof of
our theorem.

3. Conclusion

It would be nice if we could extend these results to a larger class of
metrics. We have made a small step in that direction by relaxing condition
(c) in the definition of the ^-metrics, allowing the killing vector fields to
be nonorthogonal (but still necessarily independent). The metrics of this
new class—the most general that we need for our study of Gowdy Γ 3

spacetimes and their smoothing—all may be cast into the form
(73)
g = e2adθ2 + ̂ [(cosh W + cos V sinh W) dx2 + 2(sin V sinh W) dx dy

+ (cosh W- cos Fsinh W)dy2],

where / , a, and W are as in the & class, and V is a function of θ (if
V = 0, then the metric of (73) lies in class SΓ). We find that step (A), at
least, of our proof readily extends to this larger class. Hence the curvature
of the Ricci flows of these metrics necessarily decays to zero. We have not
yet determined whether we have convergence, however.

The possibility that these Ricci flows fail to converge is stimulated by the
study of the (homogeneous) nil geometries by Grayson and Hamilton [4].
The Ricci flows of these, they find, do not converge but rather approach
one-parameter families of flat metrics (we call this quasi-convergence).
Perhaps the Ricci flows of some of the metrics (73) do the same thing.
This question is presently under investigation.

A more general class we plan to study consists of all Riemannian man-
ifolds (Σ3, g) such that (a) Σ 3 is a two-torus bundle over the circle S1, and
(b) g is invariant under the T2 action along the fibers. Our conjecture
is that for all metrics in this larger class we have either convergence or
quasi-convergence. We hope that some of the techniques used here will
apply in studying this problem.
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