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EINSTEIN METRICS
ON PRINCIPAL TORUS BUNDLES

McKENZIE Y. WANG & WOLFGANG ZILLER

0. Introduction

The goal of this paper is to describe a new class of Einstein metrics and
discuss their geometrical and topological properties.

The building blocks for these examples are Kahler-Einstein manifolds
with positive first Chern class. Let (M, g) be such a manifold. Then there
exists a positive integer q such that C\ (M) = qa and a is an indivisible
class in H2{M\1).

Theorem 1. Let (Mi, gi), i = 1, ,m, be KάhlerΈinstein manifolds
with C\(Mi) > 0 and c\(Mi) = q^ai with α, indivisible. Let P be the total
space of a principal torus bundle over B = M\x -x Mm whose characteristic
classes in H2(B; 2) are integral linear combinations ofa\, , am. Then P
carries an Einstein metric with positive scalar curvature iffπ\(P) is finite.

The condition that n\{P) be finite is necessary for the existence of an
Einstein metric with positive scalar curvature by the theorem of Bonnet
and Myers. In the special case of circle bundles we get

Corollary 1. Every nontrivial circle bundle over M\x- x Mm whose Eu-
ler class is an integral linear combination ofau , am carries an Einstein
metric with positive scalar curvature.

In the case of these circle bundles we also show that the Einstein metric
we obtained is uniquely determined up to scaling by the property that the
projection P —• M\ x x Mm is a Riemannian submersion with totally
geodesic fibers and that the metric on the base is a product of Kahler-
Einstein metrics. In general, the metric on the base will not be Einstein.

In the special cases of circle bundles over PιC x P2C and over PιC x
PιC x PιC, these Einstein metrics were discovered independently by the
physicists R. DΆuria, Castellani, Fre, and van Nieuwenhuizen [3], [7] in
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an attempt to construct a Kaluza-Klein supergravity theory in dimension
11.

If m = 1, one obtains the existence of an Einstein metric on the unit
circle bundle of the canonical line bundle over a Kahler-Einstein manifold
with c\ > 0, which is due to S. Kobayashi [16].

Until recently, the only known Kahler-Einstein manifolds with C\ > 0
were the compact homogeneous Kahler-Einstein manifolds, which occur
as adjoint orbits of a compact Lie group [2, Chapter 8]. These include the
compact hermitian symmetric spaces, and, in particular, PnC, the most
fundamental example. In [25], [17], Koiso and Sakane constructed the
first nonhomogeneous Kahler-Einstein manifolds with C\ > 0, which are
certain S 2 bundles over products of Kahler-Einstein manifolds. Recently
Tian [28] proved that there are Kahler-Einstein metrics on the Fermat
hypersurfaces in Pn+ιC of degree n and n + 1 (which have positive first
Chern class), and Tian and Yau [29] constructed Kahler-Einstein metrics
on the del Pezzo surfaces P2C#k(-P2C) for 3 < k < 8. In both cases,
except for the del Pezzo surface with k = 3, the isometry group is finite.

Apart from the above Kahler-Einstein manifolds, the only known non-
homogeneous compact Einstein manifolds with positive scalar curvature
are the cohomogeneity one examples constructed by Berard Bergery [1]
(see also [24]), which are not Kahler.

In our examples, if each (Af/, gi) is a homogeneous Kahler-Einstein man-
ifold, then the Einstein metric on P is also homogeneous. We shall see that
even these new homogeneous Einstein metrics have many interesting prop-
erties. More generally, we prove in §3

Theorem 2. With Mi and P as in Theorem 1, we have coh(P) =
ΈX=\ coh(Af/), at least if the topology ofP is sufficiently complicated.

For circle bundles, the condition on the topology of P is that ΣΊLi bf
should be sufficiently large, where the Euler class e(P) = Σz6/α/. We
suspect that Theorem 2 actually holds in almost all cases. Using the above
nonhomogeneous Kahler-Einstein manifolds we obtain

Corollary 2. There exist Einstein manifolds with positive scalar curva-
ture and any given cohomogeneity.

If we use the examples of Tian and Yau, we obtain
Corollary 3 There exist odd-dimensional Einstein manifolds with pos-

itive scalar curvature and one-dimensional isometry group.
Einstein metrics are the critical points of the total scalar curvature func-

tional on the space of metrics with volume 1. Hence it is interesting to
examine the set of Einstein constants for Einstein metrics of volume 1.
We will prove
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Theorem 3. For a fixed base M\ x x Mm, if we normalize the Einstein
metrics on the total spaces of the principal torus bundles in Theorem 1 to
have volume one, then for any sequence of principal torus bundles, no two
of which are equivalent by an automorphism of the fiber, the sequence of
Einstein constants converges to 0.

In §2 we examine the topology of the total spaces of some of these torus
bundles. In general, for two different torus bundles over M\ x x Mm,
the total spaces have different homotopy types. Hence one gets, in all
but finitely many dimensions > 7, infinitely many homotopy types for
Einstein manifolds with positive scalar curvature, which can be chosen to
be either all homogeneous or all nonhomogeneous. The only previously
known examples of this type were the seven-dimensional homogeneous
manifolds S U ^ / S 1 (see [30]).

We will examine the total spaces Mζ'f of the circle bundles over PPC x
PqC with Euler class e = kax + la2, where αi, a2 are generators in H2 of
each factor. One easily sees that Λffcf is simply connected iff (fc,/) = 1,
which we will assume from now on. We show that

(a) If 2 < p < q, then Af£'f is homeomorphic (or diffeomorphic) to

(b) M£f all have the same integral cohomology ring, but if p > 4 then

Af£*f is homeomorphic (or diffeomorphic) to Mζfv iff (|fc'|, |/'|) is a per-

mutation of (|fc|, |/|).

However, in the remaining cases, i.e., 1 = p < q, the total spaces are
frequently diffeomorphic. More precisely,

(a) Mx

k>) is diffeomorphic to S2 x S3 for all kj.

(b) Mx

k*
q

±v q > 1, is diffeomorphic to S2 x S2<?+1 if q is odd or if q and

k are even, and diffeomorphic to the nontrivial S2q+{ bundle over S2 if q

is even and k is odd.

(c) Mx

k'
q

±2, q > 1, is diffeomorphic to one of the three nontrivial P2g+ιR

bundles over S2. The bundle type is independent of k if q is odd and

depends on the parity of k if q is even.

(d) More generally, if we fix q and |/|, then there are only finitely many
diffeomorphism types among the manifolds M^.

Together with Theorem 3, we obtain

Corollary 4. On S2 x S2q+{, the nontrivial S4q+ι bundle over S2, and
some nontrivial P2<?+1R bundles over S2, there are infinitely many noniso-
metric Einstein metrics with positive scalar curvature.
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Moreover, since on the moduli space of Einstein metrics of volume 1
on a fixed manifold the scalar curvature functional is constant on each
component, it follows from Theorem 3 that

Corollary 5. The moduli space of Einstein metrics for the manifolds in
Corollary 4 has infinitely many components.

These are the first examples of a moduli space with infinitely many
components. In the cases of negative and zero Einstein constant no such
examples are known. In general, the moduli space of Einstein metrics
on a compact manifold is known to have at most countably many compo-
nents, while the moduli space for Kahler-Einstein metrics can have at most
finitely many components. We do not know whether any of the compo-
nents of the moduli spaces for the manifolds in Corollary 4 contain more
than one point.

In the examples of Tian and Yau, except for the del Pezzo surfaces with
k = 3 or 4, one obtains nontrivial deformations of the Kahler-Einstein
metrics from nontrivial deformations of the complex structures. For our
principal circle bundles over products of these manifolds, the deformations
on the base always give rise to deformations of the Einstein metrics on the
total space. In general, we do not know if these deformations are trivial
or not. However, using the proof of Theorem 2, we can at least show that

Corollary 6. If P is the total space of a circle bundle as in Corollary 1
with Euler class e(P) = Σι^/πι*αi» t^ιen tfΣibf is sufficiently large, any
nontrivial deformation of the Kahler-Einstein metric gi on Mi gives rise to
a nontrivial deformation of the corresponding Einstein metric on P.

But we were not able to find examples among our manifolds whose
moduli space of Einstein metrics contains infinitely many components of
positive dimension.

On p. 19 of [2] the question was raised whether the total scalar curvature
functional satisfies a Palais-Smale condition in the sense that a sequence
of metrics whose deviation from being Einstein goes to zero must contain
a subsequence converging to an Einstein metric. Our examples show that
this is in general false, since the sequence of Einstein metrics on any of
the manifolds in Corollary 4 cannot have a convergent subsequence.

Next we observe that the total spaces P of the circle bundles over
PpCxPqC are in fact homogeneous spaces and each Einstein metric from
Corollary 1 is homogeneous. When infinitely many of these total spaces
are diffeomorphic or homeomorphic, we will see that the transitive actions
are in general all inequivalent. More specifically, we have

Corollary 7. For the manifolds P in Corollary 4, there exist infinitely
many isomorphic but nonconjugate maximal compact subgroups ofΌiff(P)
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{resp. Homeo(P)) that act transitively on P. Moreover, these subgroups are
the connected isometry groups of the Einstein metrics on P coming from
Corollary 1.

Previously no examples were known where a given Lie group acts tran-
sitively on a manifold in more than one way.

After we obtained the topological conclusions mentioned above about
the M£'f we asked a number of topologists for the homeomorphism and
diffeomorphism classifications of these manifolds. M. Kreck and S. Stolz
[18] succeeded in doing this for the circle bundles over PιC x P2C. The
surprising fact is that the homeomorphism and diffeomorphism classifica-
tions do not agree. For example, if / = 0 (4), / = 0,3,4 (7), and / Φ 0,
then λfl'f is homeomorphic to M^ iff k = kf (2/2) and diffeomorphic to
M^2 iff k = k' (2 28/2). Moreover, in this particular case the number
of smooth structures on these manifolds is the maximum possible 28 and
they are all obtained via connected sum with exotic 7-spheres.

This gives a surprising answer to a problem posed by W. C. Hsiang and
W. Y. Hsiang [11], who asked whether two homogeneous manifolds that
are homeomorphic must be diffeomorphic.

Combining the results of Kreck and Stolz with ours, one gets

Corollary 8. There exist manifolds P in dimension 1 such that for each
exotic 1-sphere Σ, P#Σ admits infinitely many nonisometric Einstein metrics
which lie in different components of the moduli space of Einstein metrics.
Furthermore, each P#Σ admits infinitely many inequivalent transitive ac-
tions by the same compact Lie group, and the above Einstein metrics have
these subgroups o/Diffeo(P#Σ) as connected isometry groups.

Finally, we examine our examples in two other contexts. We will show
that if one considers the total spaces of a sequence of our principal torus
over a fixed base and normalizes the Einstein metric so that the Einstein
constant is 1, then this sequence of total spaces collapses in the sense of
Gromov and converges in the Hausdorff topology to the base manifold.
The limit metric on the base is a product of the Kahler-Einstein metrics
but in general will not be Einstein. We will also examine our example
in connection with a pinching theorem of Cheeger [4], [5] for symmetric
spaces.

1. Existence of Einstein metrics

We first discuss the Einstein condition for a general class of metrics on
principal bundles, and then specialize to torus bundles.
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Let π: P —• B be a smooth principal G-bundle where G is a connected
Lie group acting on P on the right. Given a Riemannian metric ( , )B
on B, a left-invariant metric ( , )c on G, and a principal connection θ
for π: P ^ B, one can define (X,Y)P = {π*X,π*Y)B + (Θ(X),Θ(Y))G.
This makes π into a Riemannian submersion with totally geodesic fibers
isometric to G with the above left-invariant metric. Conversely, if π: P —•
5 is a Riemannian submersion with totally geodesic fibers, then all fibers
of π are isometric. If the fiber metric is a left-invariant metric on G,
then ( , )p arises exactly by the above construction. Note that G acts via
isometries of ( , )p iff ( , ) G is a bi-invariant metric.

We will denote by βf and ^ respectively the horizontal and vertical
distributions of the Riemannian submersion π: P —• B. In general, X,
Y, Z will denote horizontal tangent vectors on P and U, V, W vertical
tangent vectors. Let Ω be the curvature form of the principal connection
θ. Then the metric ( , )/> is Einstein with constant E iff

(1.1') θ is Yang-Mills with respect to ( , ) B and ( , ) G ,

(1.2') =E(Θ(U),Θ(V))G,

(1.3') RicB(π.ΛΓ, π.Γ) - i ^(Ω(X,X,), Ω(7,X,))G =

where {X/} is an orthonormal basis of horizontal tangent vectors at the
point in question. Notice that if ( , ) G is bi-invariant, then (1.3') becomes
an equation on B, and (1.2') is invariant under the right action of G.
(1.1') is equivalent to Ric/>(2^,^) = 0. The above equations follows
from O'Neill's formulas for a Riemannian submersion [21], and more
details can be found in [2, pp. 236-250]. The O'Neill tensor A in our
situation is related to Ω by Θ(AXY) = -^Ω(X, Y).

In general, the existence of a Yang-Mills connection is already a diffi-
cult problem, and (1.2'), (1.3') are even more restrictive, since they cou-
ple together the metrics on B, G, and the connection θ. The only pre-
viously known solutions of these equations include (i) bi-invariant and
left-invariant Einstein metrics on certain compact Lie groups G viewed as
principal //-bundles over G/H, where H are suitable closed subgroups of
G (see [13], [6], [31]), and (ii) Einstein metrics on principal circle bundles
over Kahler-Einstein manifolds with positive scalar curvature whose Euler
class is a rational multiple of the first Chern class of the base (see [16]).
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In (ii) notice that there is a unique simply connected circle bundle, and all
other circle bundles are covered by it.

Solution (ii) suggests a natural simplification of (1. Γ)-( 1.3') by assuming
that G is an r-dimensional torus T. Then, any left-invariant metric is bi-
invariant and flat, so RicG = 0. But more importantly, and curvature
ω = dθ is the pull-back of a closed 2-form η on B, and the difficult Yang-
Mills condition is replaced by the harmonicity of η. More precisely, the
Einstein conditions become

(1.1) η is a harmonic Revalued form on B with respect to ( , )#,

(1.2) I J2(η(XhXj)9 U)G(η{XhXj), V)G = E(U9 V)G9

ij

(1.3) Ricβ(X, Y) - I Yjiη^Xi^η^XiYiG = E{X, Y)B,
i

where {Xj} is an orthonormal basis of tangent vectors at an arbitrary point
p in 5, X, Y are tangent vectors at p, and U, V G t. Even these equations
for r = 1 seem difficult to solve in general. So we will specialize further to
a class of torus bundles over products of Kahler-Einstein manifolds with
positive first Chern class. We consider for simplicity the case of circle
bundles first.

Let (Af, g) be a Kahler-Einstein manifold with positive scalar curvature,
or, equivalently, C\(M) > 0. A theorem of S. Kobayashi [16] says that M
is simply connected, and hence H2(M; Z) has no torsion. We can therefore
write C\(M) = qa, where a e H2(M\T) is indivisible, and q is a positive
integer. Let ω(X9 Y) = g{JX9 Y) be the Kahler form, and p(X9 Y) =
Ric^/Λf, Y) the Ricci form. Then p is harmonic and [p] — 2πc\(M). In
the following we will normalize the metric g on M so that [ω] = 2πa.
Since Ric^ = E g implies p = E ω, this is equivalent to choosing E = q.

Now let (Mi, gt•), i - 1, , m, be Kahler-Einstein manifolds with c\ (Mi)
> 0 and real dimension m. Write C\(Mi) = #/ αz with α, indivisible, and
normalize gi such that [ω, ] = 2πα, , or, equivalently, Ric^z = q{ ^, . We
consider principal circle bundles P over B = M\ x - x Mm. They are
classified by their Euler class e(P) in H2(B; Z). Let 7ΓZ: 5 ^ Mz denote the
projection onto the /th factor.

(1.4) Theorem. L /̂ (Aff ,ft), / = 1, ,m, fo? Kahler-Einstein mani-
folds with Cχ(Mi) > 0 as above, and π: P -> B = M\ x - x Mm be a
principal circle bundle whose Euler class is e(P) = Σ biπ*aif bi e Z. Then,
if e(P) Φ 0, P carries an Einstein metric with positive scalar curvature
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uniquely characterized up to homothety by the requirements that π is a Rie-
mannian submersion with totally geodesic fibers and that the metric on B
is of the form X\g\ _L _L xmgm for some choice ofx\,- ,xm.

Proof For the metric on B we choose a product metric (, )B = X\ gm -L
••• -L Xmgm, where x\9-- 9xm are positive constants to be determined
later. The connection θ on P has to be chosen such that dθ = π*η with
η harmonic. Since ωz is the unique harmonic representative in 2πα, with
respect to Xigi, and since [η] = 2πe(P), we need to choose η = Σ&/π*ω/.
This uniquely determines θ up to gauge equivalence. Indeed, if θ' is any
connection, then dθ' = π*ηf with [ηf] = [η]9 and hence η' - η = da. But
then θ = θ' - π*(α) satisfies dθ = π*η. Next, if θ, θ' are two connections
with dθ = dθ' = π*η, then θ-θ' = π*β for some closed 1-form β on B. In
our case Hι(B; R) = 0, and hence β = df. Then the gauge transformation
G/iP^P given by x *-> jce//(π(Jc)) satisfies G}θ = (97.

Finally we choose the metric on the fiber such that it becomes a circle
of length 2πp. Then (1.2) becomes 2p2\\η\\2 = 4E. Since cθi{X,Y) =
gi(JX,Y), we have 2||ω/|||. = Λ, , and hence 2||ω, | | ^ . = π, /x?. Since
»/ = Σibiπ*ωi, we have

(1.5) Ά

Similarly, to evaluate (1.3), we choose X, Y tangent to A//, and using

,- = Qi gi we obtain

We may assume that all the 6f are nonzero; for otherwise, after permut-
ing the Mi, the total space P actually splits as P' x Mk+ {x x Mm, where P'
is a principal circle bundle over M\X---xMk with Euler class £ ^ = 1 6/7r*αz

and bi Φ 0, I < i < k. If an Einstein metric can be constructed on Pf,
then clearly one can be constructed on P.

We now substitute p2 from (1.5) into (1.6) and obtain

With the new variable 5/ = i//(JC/-E), this becomes

m / U \ 2 /h \ 2

(1-7) (^-1)Σ«(|) (|)
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or, equivalently,

These equations imply in particular that

(1.8)

Ifwe multiply each equation in (1.7) by n}and add, we get Σ «,($/-1) = 2.
Hence (1.7) is equivalent to the system

(1.9a) (bj/qj)2sj/(Sj - 1) = c for some c> 0 for all j,

(1.9b) Σnj(Sj-l) = 2.

Observe that on 1 < s < 2, s2/(s - 1) is monotone and decreases form
00 to 4. Hence for each c with c(qj/bj)2 > 4 for all j , there exists a unique
solution of (1.9a) with 1 < Sj < 2. If c is very large, all Sj will be close to
1 and so Σnj(sj - 1) < 2. As c decreases, all Sj increase monotonically.
For some value of c, the largest component Sj will be equal to 2, at which
point Σnj(sj - 1) > 2 since Πj > 2. Therefore, there exists a unique
value of c with Σnj(sj ~ 1) = 2, and hence a unique solution s\, ,5m

of (1.9). q.e.d.
We now generalize (1.4) to principal Tr bundles. A principal Tr bundle

π: P -^ B is classified by r elements β\, ,β r e H2{B\Z). Tr comes with
a canonical decomposition Tr = Sι x -xS1, and hence the Lie algebra ir

has a canonical basis {e\, , er}. βi can be described as the Euler class of
the orientable circle bundle P/Tr~ι -> B where Tr~ι c Tr is the subtorus
with the /th 5 1 factor deleted. If A is an automorphism of Tr

9 we can
change the action of Tr on P via this automorphism to get a new principal
Tr bundle. This automorphism gives rise to a new decomposition of Tr

into a product of circles, and hence to a new basis e\ = A^e^ where 4̂ is
an integral matrix with det A = 1. This new Γ r bundle has characteristic
classes β[, • , # , where # = {Aτ)J>βj.

If 0: P —• t r is a principal Γ r connection with curvature Ω = dθ = π*η,
we can write /; = ΣΆiei^ and then [?//] = 2π^/. In the spectral sequence
for the bundle T -* P -+ B, the generators in Hι(Tr\T) transgress to βh

and hence π{(P) is finite iff Hι(P;Z) = 0, which holds iff Hι(B;l) = 0
and β\, , βr are linearly independent in H2{B\ Z) (in particular they are
not torsion classes). Since we want to construct Einstein metrics on P with
E > 0, we need π\(P) finite by Bonnet-Myers.
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(1.10) Theorem. Let (M/,^ ), 1 < i < m, be Kάhler-Einstein manifolds
with C\ (Mi) > 0, and π: P —> B = M\x - x Mm be the principal Tr bundle,
r < m, with characteristic classes βι = Σ™={ bijπ*aj, i = 1, ,r, where
bij G 1. Then if B - (bij) has maximal rank, there exists an Einstein
metric on P with positive scalar curvature such that π is a Riemannian
submersion with totally geodesic flat fibers and such that the metric on the
base is a product of the Kάhler-Einstein metrics.

Proof We again normalize the metric gt on A/} such that [ω, ] = 2πα/
and choose ( , )B = X\gι JL J- xmgm- If σf : -P/ —• 2ί is the principal
circle bundle with e(Pi) = /?/, then there exists a principal connection θj
on Pi, unique up to gauge equivalence, such that dθi = π*(X^^=1 bijCύj).
π: P —• B is then the pull-back bundle via the diagonal map Δ:

P

B

— •

Δ

Pi

B

x

1
X

• X

σ,x

• X

Pm
•xσr

B

We let θ be the principal connection on P given by the pullback of θ\ x
• x 0Γ. Then dθ = Ω = π*η with η = J2[=ι η^k and ηk = Σ™=γ bkjωj.
The 2-form η is harmonic with respect to the metric (, )#. We now choose
an arbitrary left-invariant metric on the torus Tr, given by a symmetric
matrix hki = {ek,ei)τr- As before, (1.2) and (1.3) become

(1.11) f ^ f
ι=l Xi

( \ \ 2 ) Qi 1 Y " h k l b k i b l i - F i - l . . . m
X i Z 1=1 Xi

The first equation determines the metric on the torus in terms of the xi9

which we will substitute into (1.12) to obtain a system of m equations for
t h e JC/.

We also introduce the auxiliary Euclidean vector space Rm with or-
thonormal basis {/i, ,fm} Define the vectors V\, , vr e Rm by vk =
Σjbij(y/n~j/Xj)fj and the matrix Qki = (vk,vj). Since the matrix B has
maximal rank, the Vj are linearly independent, and hence det Q Φ 0. (1.11)
now reads Qkι = 4Ehkl and hence hkl = 4EQkl. For each multi-index /,
1 < j \ < - - < jr < m, we let fj = fjι Λ Λ fjr and then

(1.13) d e t β = {v\ Λ Λ ^ v i Λ Λv Γ ) = ^2(v\ Λ Λ ί ; r j / ; ) 2 .
j
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Similarly,

hi = 4EQkl

= 4E(detQ)-l(-l)k+l(v{ Λ Λ β7 Λ Λ υr,

'"(Vι Λ'-Λϋk/\ Λυr,fl)],

where / runs over all ordered multi-indices of length r - 1. Thus we obtain

{Vhfi)(V\ Λ Λδ/Λ ΛvΓ,//)
Ί2

since the expression in [ ] is up to a sign the Laplace development of
(v\ Λ Λ vr,fj), J = I U {/}, according to column /, and hence is 0 if
iel.

We now introduce as before the new variable Sj = qj/{XjE) and define

m

aj = (v{ Λ ΛϋΓ,//)2, where vk =

Then (v\Λ'-Λvr,fj)
2 = ajs) where^5 = ^ ' "sjr Hence (1.12) becomes

2.E

or

(1.15) ni{Si — I) 2^,aJsj ~ ^ 2-^ ajSJ>

or equivalently,



226 McKENZIE Y. WANG & WOLFGANG ZILLER

If we write J,i e J as /, / where / = / U (/), then we get

We can assume that for each / there exists a multi-index / with / <£ / and
aij > 0, since otherwise (1.15) implies 57 = 1 and we can reduce the system
of equations. Hence we get

(1.16) i < j . < i + iL or — -

and Σni(si - 1) = 2r. It follows that (1.15) is equivalent to

(1.17a) ——-—— Y^ dijsj — c for some c > 0, i = 1, •• ,m,

(1.17b) V/i/(s/-l) = 2r.

Let ^-(j) = {sf/[ni(Si-1)]}E/,/^/^/,/^/2 T h e n Ψ = (ψw ,Ψm) defines
a c o n t i n u o u s m a p o f A = {(s\, - 9 s m ) \ S i > 1} t o B = { { x \ 9 - 9xm\Xi > 0 } .
In A we define the open simplex Δ = {s e A\ Σni(sι: ~ 1) = ^Λ a n d the
closed simplices Δε = {(s\, ,sm)\ Σ ni(si ~ 1) = 2r, ^ > 1 + ε} for ε > 0.
We wish to show that ψ(A) intersects the diagonal D = {(x, 9x)\x >
0} c 5. For this puφose we will show that for each sufficiently small
ε > 0, ψ: <9Δε -> B\D ~ Sm~2 has nonzero degree. Indeed, it is clear that
for ε sufficiently small, ψ(dAε)nD = 0 and to see that ψ\dAε has nonzero
degree, we define the homotopy ψι\

Ψi = [(1 " t)s

with ψΌ = ψ and ^/ = 1/(57 - 1) For sufficiently small ε > 0, ψ'ζdAe) Π
D = 0 for all /, 0 < ί < 1. Since y/1 is a homeomorphism of A onto 5, it
follows that ψ: dAε —• B\D has degree ±1. Hence (1.17) has at least one
s o l u t i o n (s{9 - 9 s m ) .

Remark. Notice that if two principal torus bundles differ by an auto-
morphism of Tr, the corresponding Einstein metrics we constructed are
isometric to each other.

2. Topological properties and group actions

In this section we examine some of the topological and symmetry prop-
erties of our Einstein manifolds.
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If m = 1, it follows easily that the total space of the circle bundle P is
simply connected iff c\ (P) = a. The circle bundle P with c\ (P) = ka is
just P/lk where lk cSι.

If m = 2 and C\(P) = ka\ + la2, then P is simply connected iff k and
/ are relatively prime. Assuming this, one can also describe P as the base
space of another circle bundle as follows. Let Pi be the total space of the
circle bundle over Λ// with C\{Pϊ) = α,. P, is simply connected and P\ x Pi
is a Γ 2 bundle over M\ x M2. On Λ x P2 we have the S1 action given
by eiΘ(x,y) = (eilθx,e~ikθy). Since k and / are relatively prime, this Sι

action is free, and the quotient (Pi x P2)/S\ which is necessarily simply
connected, becomes a T2/Sι ~ Sι bundle over M{ x M2 = (P\ x Pi)IT1.
The Euler class is easily seen to be ±(ka\ + la2), the sign depending on
the isomorphism S{ « T2/Sι.

More generally, one can describe the simply connected principal Tr

bundles over Mr x x Mm in a similar fashion. Let P\ x x Pm be
the principal Γ m bundle over M\ x x Mm and Tm~r c Γ m be a com-
pact subtorus. Then (f lx x Pm)/Tm-r is a Tm/Tm-r « Γr-bundle. The
actual structure as a principal Γ r -bundle depends on the isomorphism cho-
sen, and two different isomorphisms give rise to principal bundles which
differ by an automorphism of Tr (i.e., an element of SL(r, Z) if a basis of
ir is chosen as in §1).

We specialize now to the simplest examples with m = 2. Let M\ x
M2 = PPC x PQC; then αz generates //2(M/;Z), so every principal circle
bundle over M\ x M2 has Euler class of the form ka\ + la2 and hence is
one of our examples. We denote the corresponding total spaces by Mζ'f.
Of course, in the notation of the previous paragraphs, P\ = S2p+ι and
p2 = s2«+ι, so Mζ'f = {S2p+ι x S2(ί+{)/Sι if (k,l) = 1, where Sι acts via
eiθ{x,y) = {eilθx,e-ikθy). Clearly, SU(p-h 1) x SU(# + 1) acts transitively
on Mζ'f.

From now on we will assume that (k, I) = 1 and 1 < p < q. Since for
k = 0 (resp. / = 0) we get PPC x S2g+ι (resp. S2p+ι x PqC) we will also as-
sume that k, I Φ 0. In the following we examine the topological properties
of these spaces, beginning with their cohomology rings and characteristic
classes.

(2.1) Proposition.

(a) H*(M™\1) = 2[χ2,y2q+ι]/((iχy+\χq+\χp+ιy,y2).

(b) The total Stiefel-Whitney class is w{M™) = (1 + lx)p+x{\ + kx)«+ι

and the total Pontrjagin class is p(Mjff) = (1 + / 2 J C 2 ^ + 1 ( 1 + k2x2)^\ So,
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in particular

™) = (ί(p +l) + k(q+l))x (mod2),

Proof. One can derive this from the Gysin sequence of the Sι bundle,
but a simpler argument is as follows.

One has the commutative diagram of fibrations

S2p+\ χ

I id I τ, I τ2

χ S2q+\ _ ^ ppC χ pqC J^ βςl χ

coming from the S{ bundle σx and the Sι x Sι bundle σι. The inclusion
S{ -+ SιxSι is given by eiθ »-> (eilθ, e~ikθ) and induces the map τ 2 : BSι ->
5 5 1 x BSι. If we let H*(BSι\2) = l[s] and Λr*(55'1 x 55 1 ,/) = l[tut2l
then τjίίi) = Is and τ ^ ^ ) = -fc s 02 is just the product of the two circle
bundles S 2 ^ 1 ^ P?C and 5 ^ + 1 -^ P^C. τ{ is the bundle defining Mff.
If we set H*(S2p+{ x S2*+1;Z) = Λ(M,V), it follows that the only nonzero
differentials in the spectral sequence of π 2 are given by dip+iiu) = tp

{

+ι and
diq+2{v) = t\+{. By naturality, the differentials in the spectral sequence of
7Γi are given by d2P+i(u) = (ls)p+ι and diq+iiv) = (-ks)q+ι. From this the
cohomology ring structure follows easily.

To prove (b), we observe that the above argument also implies that τ*
sends the generator in H2(PPC; Z) to Ix and the generator in H2(PqC\ T) to
(-k)x. Furthermore, the tangent bundle of Mζ'f splits into the direct sum
of the bundle along the fibers and the pull-back under τ\ of the tangent
bundle of PPC x PqC. The vertical bundle is trivial, a trivialization given
by the Sι action. Hence characteristic classes of M%'f are the pull-back
under τ* of the characteristic classes of PPC x PqC. This implies (b).

In particular we have

£f Q) = H*(P'C x

H*{MPJ;2) = H*(PpC x

\T) = H*{PpC x

but in all other cases the cohomology has some torsion.
The Pontrjagin classes are by definition diffeomorphism invariants and

by Novikov the rational Pontrjagin classes are homeomorphism invariants.
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Notice that p\ is rationally nonzero ifF/7 > 2 and pi iff p > 4. Hence we
obtain

(2.2) Corollary, (a) For 2 < p < q, M£*f is homeomorphic (or diffeo-

morphic) to M™, iff\k\ = \k'\ and \l\ = |/'|.'

(b) For p > 2 there are infinitely many homeomorphism types among
the manifolds Mζ'f, which all have the same integral cohomology ring. If
p > 4, then M^f is homeomorphic (or diffeomorphic) to M^fv iff(\k\, |/|)
is a permutation of(\k'\, \l'\).

Hence we obtain examples of infinitely many homotopy types of Ein-
stein manifolds in every odd dimension > 7 and also examples of infinitely
many Einstein manifolds with the same integral cohomology ring but dif-
ferent homeomorphism types.

In contrast to the above results, we find the following different behavior
when p = 1.

(2.3) Proposition, (a) M^j are all diffeomorphic to S3 x S2.

(b) M{

k'
q

±{ is diffeomorphic to S2 x S2q+ι ifq is odd or ifq is even and k

is even. Ifq is even and k is odd, M^q

±ι is diffeomorphic to the total space

of the unique nontrivial S2q+{ bundle over S2.

(c) M^2 is diffeomorphic to a nontrivial P2q+{R bundle over S2, which
for q odd is independent of k and for q even depends on the congruence
class ofkmoάA.

(d) If we fix q and |/|, there are only finitely many diffeomorphism types
among the manifolds M^f.

Proof (a) M^j is a compact simply connected five-dimensional spin
manifold, and hence we can apply the classification for such manifolds
by Smale [26]. They are determined up to diffeomorphism by H2(M;2).
By (2.1), H2(Mι

kj) = 1 and hence they are all diffeomorphic to S2 x S3.
Surprisingly, it seems to be difficult to find an explicit diffeomorphism.

(b), (c). The S{ action on S2p+{ x S2q+{ can be divided out in two

stages. First we divide by Z/ c Sι to get S2p+ι x Lj^+ 1, where L*q+ι is the

associated lens space. The residual circle action is given by eiθ(u, [v]) =

(eiθu,[e~i{k/l)θv]). Hence Mζ'f has been written as the associated fiber

bundle to the standard Hopf bundle S2p+ι -> P?C with fiber L^ + 1 having

circle action eiθ[v] = [ei{k/l)θv].

If p = 1 and |/| = 1, we get an S 2 ^ 1 bundle over S2 whose classifying
map is given by / : Sι -+ SO{2q + 2), f(eiθ) = diag(i?(±fcθ), , R{±kθ))9

where R(θ) is a 2-dimensional rotation through angle θ. It follows that
/ represents the element (q + \)k (mod2) in πi(SO(2# + 2)) = Z2, which
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proves (b) since by [12] there are precisely two homotopy types among the
total spaces of these sphere bundles.

If p = 1 and |/| = 2, we get a P2q+ιR bundle over S2. The structural
group of this bundle is SO(2#+2)/±Id, and the classifying map is / : eiθ »->
diag{R{±kθ), ,R(\kθ))/ ± Id. Recall that πi(SO(2ήr + 2)/ ± Id) = Z4

if q is even and Z2 Θ T2 if q is odd. Since (kj) = 1, k must be odd
and hence / is nonzero in π\. To determine whether [f] depends on
k or not, we lift / to a path in Spin(2# + 2) from Id to an element of
Z(Spin(2#+ 2)) ~ πi(SO(2#+ 2)/±Id). One easily shows that the rotation
R(jkθ) in the β\ - e2 plane lifts to

= cos(\kθ) + sin(\kθ)eιe2.

Hence for θ = 2π we get ik~xβ\β2. It follows that the lift of / ends at
i(k-\)(q+\)ω^ where ω is the volume element in Spin(2# + 2). This proves
(c).

(d) To prove (d), we apply the classification results of Sullivan (see
[27, Theorem 13.1 and the proof of Theorem 12.5]). They imply that if
a collection of simply connected closed manifolds of dimension > 5 all
have isomorphic integral cohomology rings, the same rational Pontrjagin
classes, and if their minimal model is a formal consequence of their ra-
tional cohomology ring, then there are only finitely many diffeomorphism
types among them. For more details, especially about the role of the inte-
gral lattices Sullivan defined, see [19], Proposition 2.1]. Hence (d) follows
from (2.1), because 7/*(A^f;Q) = H*(S2 x S2q+X\Q) implies that the
minimal model is clearly formal, q.e.d.

Analogous calculations can easily be made for the principal torus bun-
dles over P^C x P^C x x PkmC with similar results. We obtain in par-
ticular even-dimensional examples with analogous properties as the above
odd-dimensional ones. We mention specifically below only the following
results:

The T2 bundles over PPC xPqCx PrC with simply connected total space

can be described as M{f^ = {S2P+{ X S2q+ι x S2r+ι)/S\ where S{ acts via

eiθ(x,y,z) = (eikθx,eilhy,eisθz) and gcd{k,l,s) = 1.
All T2 bundles over PιC x PιC x PιC have the same integral coho-

mology ring and vanishing Pontrjagin classes. They are most likely all
diffeomorphic to 5 3 x 5 3 x 5 2 .

If p = q = r > 1, the integral cohomology ring is independent of k, /, s,
but the Pontrjagin classes imply that most of them are not homeomorphic
to each other and not homeomorphic to Mp

kfv x S2p+{.
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If p < q < r, the cohomology ring defends only on k, d = gcd(kp+l,lg+l)
and kp+ι/d. Hence we obtain infinitely many homotopy types in all even
dimensions > 14. If p = 1, Sullivan's theorem again shows that if we fix k
and d then there are only finitely many diffeomorphism types among the

The remainder of this section is devoted to studying the homogeneous
structures on

The spaces M%*f can be written as the homogeneous spaces

U ( p + l ) x U ( g + l )

•Uki

where Ukl is the subgroup

0h 0 \ //
0 eilθ)'\00 e~ιk

and the isotropy representation is given by \®[μp®\®φ-ι]n®[\®μq®&\R9

where Φ is the usual one-dimensional representation of the circle. In
this form, the ineffective kernel is a circle Zkh The semisimple subgroup
SU(p + 1) x SU(tf + 1) also acts transitively on M£f with finite ineffective
kernel. When infinitely many of the Af£*f are diffeomorphic or homeo-
morphic, then it is interesting to compare the transitive group actions. For
example, some of the effective semisimple transitive groups Gkj are listed
below in Table 1. For each fixed smooth (resp. topological) manifold M
and effective abstract group G, we ask when the various transitive actions
are equivalent group actions and when they are conjugate as subgroups of
the diffeomorphism (resp. homeomorphism) group.

Table 1

underlying smooth manifold M effective transitive
abstract semisimple group G

A(i) S2 x S2*+ 1 ^ Mk

q

±v k even, q > 1 SO(3) x SU(# + 1)

A(ii) S2 x S2<*+1 £* Ml*±ι, k odd, q odd > 1 (SU(2) x SU(# + 1))/Δ(Z2)

B S2 xτS
2«+ι £ M{

k>
q

±v k odd, q even SU(2) x SU(# + 1)

C(i) S2xS3^ Mx

k>], k, I odd SO(4)

C(ii) S2xS3^ Ail*}, one of k, I even SO(3) x SU(2)
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(2.4) Proposition, (a) If M^f is diffeomorphic {or homeomorphic) to

Ml?!,, q > 1, and ifGkj is isomorphic to Gklj>, then the actions are equiva-

lent iff\I\ = |/'| andk = k', and as subgroups of Όif[(M) (resp. Homeo(M)),

they are conjugate iff\k\ = \k'\ and |/| = |/'|.

(b) In cases C(i), or C(ii), the actions ofG on Mλ

k\ and Mx

k}v are equiv-

alent iff\k\ = \k'\ and \l\ = \l'\, and as subgroups ofΏiff(S2 x S3) {resp.

Homeo(52x53)) they are conjugate iff {\k\, \l\) is a permutation 0/(|fc'|, |/' |).

Proof The proposition follows easily from the following two facts.
First, if G acts transitively and effectively on M in two ways then the
two actions are equivalent iff for some point in M the isotropy groups
are conjugate in G. Second, if i\: G —• Diff(Λf) and i2: G —• Diff(Λf)
are two embeddings, then i\{G) and h{G) are conjugate in DifF(Af) iff the
isotropy subgroups of some point in M are conjugate by an automorphism
of G. The automorphism is outer iff the transitive actions i\ and i2 are
inequivalent. This can be seen as follows. Let Φ e Diff(M) be such that
h{G) = Φi\{G)Φ~ι. The association g •-• g1 given by ii{g') = Φi\{g)Φ~γ

is an automorphism a of G. If Xo G M and Hi are the corresponding
isotropy subgroups, then for h e Hu since Φ(JCO) = h(go)xo for some

Φ{i\{h)x0) = Φ(xo) = ii(go)xo = i2{a{h))Φ{x0) = Ϊ2(<*

It follows that Ad(g^"{)a(H\) = H2. The converse is obvious and the result
is the same if Diff(A/) is replaced by Homeo(Λf). q.e.d.

As was remarked, the spaces M^f have G'kl = (U(2) x \J{q + l))/Zk{

as effective transitive groups, and fckj ζ G'kl is a maximal semisimple
subgroup. So statements analogous to (2.4)(a),(b) hold for G'kι. In the
following, we will show that except in special cases, G'k; are not contained
in any larger compact connected group which acts effectively and transi-
tively on M^9 i.e., they are maximal compact connected subgroups of
Όiff{M[

k>j) and Homeo(Λ^ f).

(2.5) Proposition. Suppose that {k, I) = 1 and kl Φ 0. Then the maxi-
mal compact connected Lie groups which can act transitively and effectively
on Mkf are

(a) G'kl = (U(2) x υ{q + l))/Zkι = (SU(2) x SU(^ + 1) x S{)/Nkl for
some finite normal subgroup Nkh

(b) SO(3) x SO(2? + 2) when / = ±1.

When I = ±1, the groups in (a) cannot be conjugate to a subgroup of
SO(3) x SO(2<? + 2) in Όiff{S2 x S2(*+{) or Homeo(52 x
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Proof. Let M = Λf^'f and G' be a compact connected Lie group acting
almost effectively and transitively on M with isotropy group H'. M is
simply connected, π2M = Z, and for k > 3, π^M = πk(PιC x P*C) =
T Γ ^ ^ θ π ^ 2 ^ 1 . Recall that the rank of M, r{M) = Σ?=ι dimβ[π2*+i(Λ/)®
Q], is two in this case. Then [23, Theorem 3, p. 159] says that there is
a compact ideal g c g' consisting of at most two simple ideals such that
the corresponding connected Lie subgroup G also acts transitively on M.
(We depart from usual convention here and call a one-dimensional abelian
ideal simple as well.) Furthermore, if f) = f/Πg, there is a subalgebra α c g ,
α Π ί) = 0, [α, ί)] = 0 such that g' = g θ α, (/ = I) θ α, f) c 9 and α c f/ is
embedded diagonally in g' = gθα. Oniscik calls (g', fj;) a simple extension

Of(fl,f>).
Since simple extensions are easy to enumerate, we assume now that

M = G/H, where g has at most two simple ideals. Oniscik in [23] has
classified the rank 2 compact homogeneous spaces. We shall make use of
these results.

We claim that no simple compact connected group can act transitively
on M. To prove this, we may assume that G is simply connected since
M is, and since π2M « Z, it follows that π\H = Z. But π^G = Z and
π2H = 0, so πi(G/H) cannot be Z 0 Z = π3M if q = 1. If q > 1,
7Γ3Λ/ = Z, and the homotopy exact sequence fovH->G-+ G/H implies
that n^H —• πβG is the zero map. This, together with π\H = Z, shows
that // = S 1. Now πkG = πk(G/H) for fc > 3, so r(G) = 2. But r{G)
is the rank of G as a Lie group and so G - SU(3), Sp(2), or G2. Since
πk{M) = πk{S3) θ πk(S2(i+ι) = πk(G) for k > 3, it follows easily that all
three possibilities for G can be ruled out.

It follows easily from π\M = 0 and the above that g is semisimple.
There are now two further cases.

(a) M is a product of two rank 1 homogeneous spaces. From the rational
cohomology of M, one sees that if M = M\ x M2, then H*(M\\Q) =
H*(S2'M) and //*(M2;β) = H*(S2«+ι;Q). By Table 2 in [23] and the
facts π2M = 2 and H\M\Έ) = l/\l\2, it follows that M = S2 x S2«+1,
where S 2 = SO(3)/SO(2) and S2q+ι can be written as any homogeneous
space of the simple groups which can act transitively on it.

(b) The cases given by Theorem 11 in [23]. By dimension reasons we
need only consider I-IV. II to IV can be ruled out by comparing the
homotopy groups of M and G/H as we did when G was assumed to be
simple. The remaining case is the following: g = gi θ 92, ϊ) = ϊ)i θ \xn θ
f)2 with \)i c flj, U12 embedded diagonally in gi Θg2> and r(G////z) = 1.
Again by comparing homotopy groups we see that the only possibilities are
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(«u(2)Θ«u(ί + 1), RΘβu(ήf)), q > 1, and (su(2)Θsp(±(#+ 2)),
# even.

The proposition follows immediately from examining simple extensions
of the possibilities in (a) and (b). q.e.d.

If we have a subfamily of {M^f} which consists of diffeomorphic mani-
folds, one may consider Gj^-homogeneous metrics on M^'f. It is clear that
these make Mx

kή —• PιC x PqC into a Riemannian submersion with totally
geodesic fibers, and are special cases of the metrics we constructed in § 1. So
the Einstein metrics in (1.4) for these special cases are G'kl-homogeneous.
(See (3.1) for a more general result.) By (2.5) the connected isometry
group is Gkl, hence by (2.4) we see that these Einstein metrics are isomet-
ric iff \k\ = \k'\ and |/| = |/'| for q > 1, and iff (|fc|, |/|) is a permutation of
(\k'\, I/'I) for q = 1. This already gives the existence of infinitely many non-
isometric Einstein metrics with positive scalar curvature on the manifolds
in (2.3).

Remark. While we are not studying homogeneous Einstein metrics in
this paper, we note that the uniqueness statement in (1.4) and the fact that
the Einstein metrics in (1.4) for the manifolds M£'f are G'k ^homogeneous
yield examples of homogeneous spaces whose scalar curvature functional
on the space of volume 1 homogeneous metrics have a unique critical point.
On the other hand, the scalar curvature functional is neither bounded from
above nor from below (see §2 of [32]).

3. The cohomogeneity of the Einstein metric

If (Af, g) is a Riemannian manifold, we define its cohomogeneity, de-
noted by coh(Af, g), to be the codimension of a principal orbit of the action
of the isometry group I(M, g) on M. Then (Af, g) is Riemannian homo-
geneous iff coh(Af, g) = 0. In this section we study the cohomogeneity of
the Einstein metrics we constructed in § 1.

(3.1) Proposition. In Theorems (1.4) and (1.10), if the base manifolds
(Mj,gj) are homogeneous KάhlerΈinstein manifolds, then the Einstein
metrics ( , )P constructed on the total spaces are also homogeneous. More
generally, the action of the connected isometry group G* of the metric _L Xjgj
on the base lifts to an effective action of a suitable finite covering group G
on P which commutes with the Tr action. Furthermore, G x Tr acts via
isometries of{ , )P and hence coh(P, (,)/>)< ΣyLi coh(Af/, gj).
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Proof. Since (Mj,Xjgj) is Kahler the connected isometry group G* =

I°(Mj,gj) is a subgroup of the identity component of the group of au-

tomorphisms of (Mj9Jj) (see [2, 2.125]), and so G* acts in a natural

way on T0Λ(Mj) preserving the hermitian inner product induced by gj

and Jj. This in turn induces an action of G* on the canonical line bun-

dle h^nJ{T^x{Mj)) which again preserves the induced hermitian metric.

Hence there is an effective action of G* on PJ, the associated principal Sι

bundle of the canonical line bundle, which commutes with the Sι action.

The principal Sι bundle Pj corresponding to α ; is the universal cover of

PJ, and the covering transformations are just 1/qjZ c Sι. The action of

G* on PJ is easily seen to lift to an effective action of a suitable finite cover

Gj of G* on Pj. Moreover, this action of Gj commutes with the right Sι

action on Pj since the Sι action on Pj covers the Sι action on PJ.

Consider π: Px x x Pm -+ M{ x x Mm. Let G = ΠJli GJ G

acts effectively on Px x x Pm, and commutes with the action of Tm «
(Sx)m on Pγ x x Pm. We saw in §2 that the principal Tr bundle P over
M\ x x Mm with characteristic classes βk = Σ™=\ bkj7i*aj, 1 < k < r,
can be described as the quotient (P\ x x Pm)/Tm~r for an appropriate
(m - r)-dimensional subtorus Tm~r c Tm, with its reaction given by an
isomorphism γr & Tm/Tm~r. So there is an almost effective action of
G x Tr on P. It follows that the codimension of a principal orbit of the
GxTr action on P is less than or equal to the codimension of a principal
orbit of the G* = Πjli G] action on M{ x -xMm.

Finally, we consider Riemannian metrics on P. Recall that in § 1 we con-
structed a principal connection θ on P with curvature dθ = π*η, where
η = (ηι, ,ηr) and η^ = Σ*jLι bkjΠj ωj- Since ω ; is the Kahler form of
(Mj, gj), η is a G*-invariant harmonic 2-form (with respect to any product
metric _L {Xjgj)). Using the normalized Haar measure of G, we may av-
erage θ: θ' = fGg*θdμ(g). Then dθ' = π*η, and so, as in §1, θ' is gauge-
equivalent to θ. Any Riemannian metric on P formed by using _L Xjgj on
the base, a left-invariant metric on Tr, and θ' will be G-invariant. Hence
a finite quotient of G x Tr is a subgroup of the connected isometry group
of the Einstein metric ( , )pwe constructed in §1. q.e.d.

Next we will examine when coh(P, (,)/>)> ΣyLi coh(Λ/7 , gj), or, equiv-
alently, when all isometries of (P, (, )/>) come from isometries of the base.
This is of course not true for any Riemannian submersion, as can be seen
in the case of the Hopf fibration S3{\) -• S2(\). Nevertheless, we suspect
that this is the case for all of our principal torus bundles except the de-
generate cases where P is a product of r Pj's and (m - r) Af/'s. However,



236 McKENZIE Y. WANG & WOLFGANG ZILLER

we succeed in proving this only when the topology of the torus bundles is
sufficiently complicated.

The idea of the proof is the following. Since isometries of ( , )/> must
take geodesies to geodesies, we assume that ( , )/> has the property that
the shortest nontrivial closed geodesies lie in the fibers and span the fibers
in the sense that for every p e P the tangent vectors of all shortest closed
geodesies passing through p span the tangent space of the fiber. It follows
that every isometry must map fiber to fiber, and hence descends to an
isometry of the base. This implies that coh(P, ( , )P) > coh(Λf,!_ Xjgj).
If the topology of the bundle is complicated enough, then the Einstein
condition implies that the diameter of the torus is small and hence the
vertical tangent space must be spanned by short closed geodesies. The
difficult part of the proof is showing that the closed geodesies of ( , ) P

which do not lie in the fibers have to be longer.

We recall first some generalities about geodesies on the total space of
a Riemannian submersion with totally geodesic fibers. (See, for example,
[20] and [2].)

Let (F,gF) -> (M,g) Λ (B,gB) be such a submersion with O'Neill
tensor A. (We assume of course that g is complete.) For any curve σ
in B and x in M above σ(0), there is a unique horizontal lift σ of σ
to x. The horizontal lifts of σ induce an isometry of π~ι(σ(0)) onto
π~{(σ(s)) denoted by τ<j|[0,s]. Let γ(s) be a unit speed geodesic in P. If
γ(0) is vertical, then γ is a geodesic in a fiber for the metric gf. If y(0)
is horizontal, then γ(s) is horizontal for all the s and so γ projects to a
geodesic of (B9gs)> We are interested in the case where y(0) is neither
vertical nor horizontal. Let c(s) = π o γ(s) and a(s) = T^j^^fy^)). If
β(t,s) = τ c | [ 0 f J ] |(α(0), then γ(s) = β(s,s) and γ = β + βs. Notice that for a
fixed t, β{t,s) is just the horizontal lift of c to a(t), and for a fixed s, β{t9s)
is just the image of a in π~ι(c(s)) by the isometry τ. Since [βt9βs] = 0, the
geodesic equation for γ gives Vβtβt + 2Vβ(βs + Vβsβs = 0. Note that Vβsβs

is horizontal because 2^Vβsβs = Aβsβs and for horizontal vectors X, Y,
AχY = -AyX. Since the fibers are totally geodesic, Vβtβt is vertical and
Vβtβs is horizontal. For a vertical vector V we define the skew-symmetric
endomorphism Lγ of the horizontal space by (LV(X), Y)P = -(AχY9 V)P.
Hence Vβtβs = Lβt(βs) and the geodesic equation splits into

(3.2) V A A = 0 and Vβsβs + 2Lβt(βs) = 0.

The first equation says that a(s) is a geodesic in the fiber. It follows that
\βt\9 \βs\ and hence \c(s)\ are constant. The second equation in general
does not descend to an equation on B for c.
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Next, we specialize to a Riemannian submersion of the form (P, (, )P) Λ
(5, (, )B) where P is a principal Tr bundle, and (, )P is constructed using
a principal connection θ, ( , ) B , and a left-invariant metric (hkι) on Γ r.
Let d0 = π*η and ^ = Σk=ι ηkek, where {^, ,er} is the standard basis
for t « Rr, as in § 1. Let W e t, JF = Σ t u ^ , and TF be the vertical field
on P induced by the one-parameter group exp(tW). Then

(LW(X),Y)P = ^(η(πa ^

Let η'k be the linear operator associated to ηk via ( , )#. Then the second
equation in (3.2) becomes

(3.3) Vdc

where θ(βt) = Σr

k=[ akek. Note that the ak are constants because θ(βt{s, s))
= β(rfτC|[0f5](ά(j)) = 0(ά(.s)) = 0(ά(O)), so that α enters into (3.3) only
through the constants ak given by θ(ά(0)) = Σk=ι akek- Furthermore, the
least period of the closed geodesic γ is, in general, a multiple of the least
period of c. We will now bound the minimal period of periodic solutions
of (3.3) from below under suitable hypotheses for the principal Sι and
torus bundles considered in (1.4) and (1.10). We assume that ( , )/> is the
Einstein metric with E = 1 we constructed. We will treat the case of Sι

bundles in detail first, and then indicate the changes for the case of Tr

bundles, r > 2.

(3.4) Theorem. Let π: (P,( , )P) -• (M{ x •• x Mm,± Xjgj) be the

principal S{ bundle with Euler class Σ>=i ^iπ)ai Φ 0 *Λ (1-4), where (, )P

is the Einstein metric with E = 1. IfΣbj is sufficiently large, then

coh(Λ(, )p)

Proof. In view of (3.1), it is only necessary to prove that coh(P, (, )P)>
Σ"=\ coh(Mj, gj), which would follow if the shortest nontrivial closed geo-
desies of ( , )/> are the fiber circles. Let γ be a unit speed closed geodesic
of ( , )/>. Its projection c onto the base consists of closed curves c, in
Mi. Its projection a to the fiber through y(0) has 0(ά(O)) = aeR, where
ap = \ά(0)\F and the fibers have length 2πp. Since

η(X, Y) = (η'(X), Y)B = ΣbJπ*ωj(X> r ) = ΣbJSΛJΛπJX)>πJY)>

j J

it follows that η'(X) = Σj(bj/χj)JΛπjX)- H e n c e (3 3) becomes

(3.5) VtjCj + p\ά(O)\F(bj/Xj)Jj(Cj) = 0 , \ < j < m .
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It is possible that some of the Cj are point curves, but since γ is not vertical,
the least period of γ is divisible by the least periods of all those Cj which do
not reduce to point curves. Observe that since \y\ — 1 = |ά | 2 + ΣyLi lόΊ2>
(1.8) implies that there exists a constant A > 0, depending only on the Πj
and qj, such that \έj\gJ < A, 1 < j < m, and 2\ά\r < A for all nonvertical
unit speed closed geodesies γ of (, )/>. Therefore, if Σ tf *s l a r £ e enough,
p will be arbitrarily small by (1.5), and our proof will be complete if we
can show that if 2\ά\r < A then the least period of all nontrivial periodic
solutions of (3.5) with \Cj(0)\gj < A is bounded from below by a positive
constant. In fact, (1.5) and (1.8) imply that

So it remains to prove
(3.6) Lemma. Consider the equation V̂  c + σJ(c) = 0 on a compact

Kάhler manifold (N, g), where σ is a positive constant and J is the complex
structure. Given A > 0, there is an Lo > 0 such that for all σ < A and all
nontrivial periodic solutions of the equation with |c(0)| < A, the least period
ofc is greater than or equal to Lo.

Proof The equation is not invariant under reparametrization. Indeed,
if cχ(s) = c(λs), then cχ satisfies Vdλcλ + λσJ(cλ) = 0. So we consider the
equation

(3.7) Vyy + J(y) = 0,

and then translate the results back using c(s) = y(σs) and c(0) = crj>(0).
For v e TPN, we let yv(t) be the unique solution of (3.7) with initial

conditions yv(0) = p and yυ(0) = v. We will prove that

(*) there is a neighborhood U of the zero section of TN such
that the least period of all nontrivial periodic solutions yv

of (3.7) with v e U are bounded from below by a positive
number.

This fact implies that for any compact set K c TN, there exists a positive
lower bound for the least period of all nontrivial periodic solutions yv of
(3.7) with veK.

On the other hand, if vt e TN, \VJ\ —• oo, and yVι are periodic solutions
of (3.7), then the unit speed reparametrization y*.(t) = yVi(t/\Vi\) satisfies
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As / —• oo, y*. converges to a nontrivial closed geodesic of (N,g). Since
the lengths of the nontrivial closed geodesies of (TV, g) are bounded from
below by a positive constant, there are positive constants K and L{ such
that a periodic solution yυ of (3.7) with \v\ > K has least period > L\/\υ\.
By the previous paragraph, there is a positive constant L2 such that a
nontrivial periodic solution yυ of (3.7) with \υ\ < K has least period > L2.

Set Lo = min((Lι/A), (L2/A)). \ϊ σ < A and c is a nontrivial periodic
solution of (3.6) with |c(0)| < A, let y(ή = c(t/σ). Then |j>(0)| = |£c(0)|
and y is a nontrivial periodic solution of (3.7). The least period of c = £
(least period of y) > £ min(L2,L{σ/\c(0)\) > min((L{/A), (L2/A)) = L0>
0. Thus the proof of (3.6) is complete once we prove (*).

For this, choose p e N and for any time / consider the map ft,p(v) =
yv(ί): TPN —• N. Exactly as in the analysis of the differential of the expo-
nential map, we consider the variation field Z along a solution y of (3.7)
for a one-parameter variation of y through solutions. The analog of the
Jacobi equation is VyVyZ + R(Z,y)y + (VzJ)y + /(V^Z) = 0. Now

£s τs = z(t),
where we regard ysυ(t) as a variation of the constant solution y{t) = p
with variational field Z. So the equation Z satisfies is obtained from the
modified Jacobi equation by passing to the limit as s —> 0. Clearly, the
tensorial terms in y drop out, and Vj>Z (resp. VyVyZ) tends to Z' (resp.
Z") with Z(0) = 0 and Z'(0) = υ. So Z " + J(Z') = 0. We can compute
det((ί//J,p)o) by using an orthonormal basis {?;/} of eigenvectors of / ® C
and explicitly solving Z" + J(Z') = 0 with Z(0) = 0 and Z'(0) = υh Then

( 1 ~ V )

Since the eigenvalues of / are ±y/^ϊ with multiplicity equal to the complex
dimension of N, there is an interval [t\9t2] with t2 >2t\>Q such that if
t € [ίi,*2L det((ύf//,p)o) ^ 0. Using first the inverse function theorem, and
then the compactness of N and [tγ, t2], we can find a neighborhood U of
the zero section of TN such that ftφ is injective on TPNΓ\U for all /? G N
and all / G [t\,t2]. Now suppose that v e U. If yv is a nontrivial periodic
solution of (3.7) with least period L < t\, then there is an integer n so that
nL is a period of yv lying in [t\J2] because (t\ - t2)/L > 1, so the interval
[t\/L, t2/L] must contain an integer. Hence t2 > 0 is a lower bound for L,
proving (*). q.e.d.

Next, we turn to principal torus bundles P over M{ x x Mm. We

assume that the characteristic classes of P are βk = Σ ^kj^^h ^ <k <r,
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r > 2, and that ( , )/> is the Einstein metric with E = 1 in (1.10). For a
unit speed closed geodesic of ( , )/> we define c and a as before. Aside
from finding a positive lower bound for the least period of nonvertical
closed geodesies y, we must also ensure that all the eigenvalues of the left-
invariant metric (hkι) determined by the Einstein condition could be made
sufficiently small by making /?, "complicated" in a suitable sense.

Equation (3.3) becomes

Xj)Jj(Cj) = 0, \ < j < m .

We analyse first the constant ΣkiaιhikΦkjlXj) = σj Let Uj be the vector
Σ,rk=\(bkj/Xj)ek and a be the vector Σk=ι akek. Then |σ ; | = \(a,W/)H <
\a\τr\ιij\τr. But (1.12) can be rewritten as ^IW/IΓ'

 = (Qj/χj) - 1 < 1 by
(1.16). So \σj\ < 2\a\Tr. Because

\γ\ = 1 = |ά(0)|2 + Σ lό (0)|2 = \a\\r
j

there is again a constant A > 0 depending only on the Mj and not on P
such that 2\a\τr < A and |c ;(0)|^ < A, 1 < j < m. We may therefore
appeal to Lemma (3.6) again to get the lower bound for the least period.

It remains to examine when the eigenvalues of (/*£/) can be made small.
Since {hki) is positive definite, this is equivalent to making \x(H) small.
By (1.14),

Λ -ΛfyΛ - Λt;Γ|
2

AC Σk \wι Λ * Λ % Λ Λ wλ2

Λ

for some constant C depending only on the Mj, and wk are the rows of
Φij) viewed as vectors in Rm. Dividing by the lengths, we get

Λ ' ' ' Λ έ^Wk^ A ' " A

where ε(wk) is the unit vector wk/\wk\. Since we assume that (by) has
maximal rank, the vectors ε(w\), ,e(wr) are linearly independent, and
so |ε(^i) Λ Λ ε(wk) Λ Λ ε(wr)\ and \ε(w\) Λ Λ ε(wr)\ are never 0.
Consider the manifold of (ordered) r-frames of unit vectors in Rm, Ur(Rm).
The r functions
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are continuous, so they are bounded from above and below on any compact
subset K of Ur(Rm). If K contains rational r-frames (i.e., frames whose
vectors have rational coordinates) with arbitrarily large denominators after
being put in lowest terms, then the corresponding \τ(H) can be made as
small as we please. Hence, we have

(3.8) Theorem. Let π:(P,(, )/>) -> (M{ x x Mm, ± Xjgj) be the prin-

cipal Tr bundle with characteristic classes βk = Y,jbicjn*aj as in (1.10),

where ( , )p is the Einstein metric with E = 1, r > 2. For every se-

quence Pn of these principal Tr bundles with \w^\ —> oo, 1 < k < r, and

(ε{w\n))i ' ,ε(w{

r

n))) lying in a compact subset ofUr(Rm), there is an N

such that for all n > N,

Remark. As an example to show that some condition is necessary in
(3.8), consider

I 0 h b4 . . . bm

θ 1 b> b4 - . bm )

The corresponding T2 bundles are inequivalent under the action of SL(2, Z).
However,

Σk \w{ Λ Λ wk Λ Λ Wr\
2 _2 1 + Σ tf

\wι Λ Λw r |
2 ~ 1 + 2 £ b ) '

which tends to 1 as Σ bj —• oo.

Finally, we indicate how one proves Corollary 6 in the introduction.
First, we observe that if we have a deformation of the Kahler-Einstein
metric gi on Af, , then the solution p,X( of the Einstein condition (1.9)
does not depend on gi as long as the corresponding Kahler class ωz satisfies
[ωz] = 2πα/. Hence the length of the fiber is constant and can be chosen
arbitrarily small by choosing Σ/ bf arbitrarily large. Second, we observe
that the uniform lower bound in Lemma (3.6) still exists for a smooth
compact family of complex structures on iV (with corresponding Kahler
metrics). Hence, the fibers will be the shortest nontrivial closed geodesies
for the Einstein metrics on P. This implies that two metrics on P are
isometric iff the corresponding metrics on the base are isometric, thus
proving Corollary 6.
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4. Geometric applications

I. Einstein constants. We first examine the Einstein constant in our
examples.

(4.1) Theorem. Consider a sequence of principal Tr bundles as in(\Λ 0)
and normalize the Einstein metrics to have volume 1. If the bundles are
inequivalent under the action ofSL(r,l) on principal Tr bundles, then the
Einstein constants converge to 0.

Proof The volume of P is the product of the volume of the base
and the volume of the fiber. If we normalize the metrics so that E = 1,
then (1.16) implies that the volume of the base is universally bounded
from above and away from 0. So vol^) behaves like the volume of
the fiber, i.e., det(λ//). But (1.13) implies that det(/z/7) behaves like
l/|u>iΛ Λ?/;r|

2, where Wi is the /th row in the matrix B = (Z?/y), viewed as
a vector in Euclidean m-space. Hence vol(P) —• 0 iff \w\ Λ Λ wr\ -> oo.
Or, equivalently E —• 0 iff \w\ Λ Λ wr\ —• oo.

We claim that \w\ Λ Λ wr\ has only oo as an accumulation point for
a sequence of principal Tr bundles as in (1.10) which are inequivalent
under the action of SL(r,Z). Recall from §1 that A e SL(r,Z) acts on B
by multiplying B on the left by {A1)"1. Assume that |ιui Λ Λ wr\ has a
positive finite accumulation point, so that for some subsequence |wi Λ Λ
wr\ is bounded. Notice that \w{ Λ Λ wr\ is unaffected if we multiply B
by (A*)*1. By interchanging the Af, if necessary, we can assume that the
first r columns of B form a nonsingular matrix C. The determinant of C
must remain bounded, for otherwise it would contradict the boundedness
of \w\ Λ Λ wr\. So we may assume, after passing to a subsequence, that
det C is constant. But integer matrices with a fixed determinant fall into
only finitely many orbits of SL(r, Z). Hence we can further assume that C
is a constant matrix. The boundedness of \w\ Λ Λ wr\ implies that the
coefficients of the terms e\ Λ - l\exA Άer l\e}^ in w\ Λ Λwr are bounded
for all 1 < / < r, r + 1 < j < m. But then the corresponding entries Bij of
B are all bounded, a contradiction.

II. Collapsing. In [10, Chapter 8], Gromov defined the following con-
cept of collapsing. If (Xi9 gή is a sequence of Riemannian manifolds, they
are said to collapse if there exists a constant Λ such that the sectional cur-
vatures satisfy |i£(£, )| < Λ and the injectivity radius tends to 0. Consider
a sequence of principal Tr bundles as in (1.10) with Einstein metrics nor-
malized so that E = 1 and such that the bundles are inequivalent under
the action of SL(r, Z). By (4.1) the volumes of the metrics tend to 0, and
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so the injectivity radii go to 0. To show that these Einstein manifolds
collapse, we need to derive a universal curvature bound.

(4.2) Proposition. Given the base B = M{x- x Mm and any principal
torus bundles P over B as in (1.10), let us normalize the Einstein metrics
on P so that E = 1. Then there exists a constant Λ depending only on B
such that the sectional curvatures of these Einstein metrics satisfy \K\ < Λ.

Proof For a Riemannian submersion, one can express (R(A,B)C9D),
where A, B, C, D are either horizontal or vertical, in terms of the curvature
of the base and fiber and in terms of the O'Neill tensors A and T and their
covariant derivatives (see [2, 9.28]). It suffices to show that (R{A,B)C,D)
is universally bounded, where A, B, C, D are either horizontal or vertical
unit vectors, because (R(ei,ej)ek,eι) is then bounded for an orthonormal
basis {ez}, which implies that the matrix of the curvature operator R with
respect to the basis {e, Λ ef\ has universally bounded coefficients, so that
the sectional curvatures K(A ΛB) = {R{A ΛB),AΛ B) for \AΛB\ = l are
universally bounded.

If we assume that the fibers are totally geodesic, then we need to bound,
besides the sectional curvatures of the base and the fiber, the expressions
(AXY9AZZ')9 (AXU,AYV), ((VχA)γZ, V) and ((VVA)XY9 V), where X, Y,
Z, Z' are horizontal unit vectors and (7, V are vertical unit vectors. For
the first two expressions, it is sufficient to bound |^4χΓ|2 since {AXU, Y) =

-(U,AχY).
For metrics on the total space of a principal (/-bundle as described at

the beginning of § 1, one easily shows that

((VVA)XY, V)P = i([0(C/),Ω(ΛΓ, Y)], Θ(V))G + ±(Ω(X, 7), Θ{VVV))G

- (LV(X)9LV{Y))P + (Lu(Y),LV(X))P

= - |(Ω(X, Y),Θ([U9 V]))G - {Lu(X)9Lv(Y))p

+ {Lu{Y)9Lv{X))p,

where Lu(X) is the skew-symmetric operator defined by (Lv(X),Y)p =
\{Θ(U), Ω{X, Y))G, and the last equality holds iff ( , ) G is bi-invariant.

For our torus bundles, the fibers are flat and by (1.16) the curvatures
of the base metrics are universally bounded. Moreover, Ω = π*n, so
V^Ω = n*(Vxη) = 0, since η is parallel with respect to any metric of
the form _L xz gz on the base. Thus it is sufficient to bound (η(X9 Y), V)G

for unit vectors X, Y e TB and F e § . But E - 1 and (1.2) implies
that ΣijkiηiXi,Xj)9Vk)Q = 2\\η\\2 is universally bounded, and hence so is
(η(X9Y)'9V)G. q.e.d.
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We return to the examination of the Einstein metrics on the total spaces
of our sequence of torus bundles. Notice that by Myers' theorem, since
E = 1, the diameters of these Einstein manifolds are bounded. So by
[10, 5.3, the remark at the bottom of p. 66, and 3.8], we conclude that
a subsequence of these manifolds converge in the Hausdorff topology to
a limit metric space. Using (4.2) above and 8.30 in [10] we see that this
limit metric space must have strictly smaller dimension. For circle bundles,
since the fiber shrinks to a point, 3.5b in [10] implies that the limit metric
space is Mi x x Mm with distance induced by some product metric
± Xigi, Xi > 0, which, in general, need not be Einstein. In the case of
torus bundles, the same is true if the diameter of the fiber goes to 0. For a
condition which guarantees this, see (3.8). In general, a sequence of torus
bundles converges to a torus bundle of lower dimension.

These examples of collapsing are also interesting in connection with a
theorem of Fukaya [9] stating that if {X^gi) converge in the Hausdorff
topology to a smooth manifold (B,g), then there exist fibrations π\\ Xi —•
B whose deviation from being a Riemannian submersion goes to zero as
/ —• oo. In our examples we can choose the total spaces of the circle bundles
to be all diffeomorphic. Hence we obtain a sequence of metrics on a fixed
manifold M converging to (B, g) such that the fibrations π, : M —• B are
all topologically distinct.

III. Pinching theorems. In [4], [5] Cheeger defined a distance between
Riemannian manifolds and proved some pinching theorems using this dis-
tance.

Let (Af, g) and (Af, g') be two Riemannian manifolds. Given an isome-
try /: TPM —• TP>M' one defines a natural correspondence γ —• / between
broken geodesies on M starting at p and broken geodesies on Af' starting at
p' using parallel translation along the geodesies as in the Cartan-Ambrose-
Hicks theorem. This defines an isometry Iy\[^t]' Ty^t)M —> Γ^Af' using
parallel translation along γ and / . Let

p{M,M')= inf sup \\R-I-{(R')l
P>P'J γ,L(ϊ)<Λ

p*(M,M') = inf sup {||Λ - Iγ'
ι(R')l

where \A is the supremum of the first conjugate distance over all geodesies
in M. The Cartan-Ambrose-Hicks theorem states that for two compact
simply connected manifolds M and Af', p(M,Mf) = 0 iff M is isometric
to AT.
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Cheeger then showed that if M is a compact simply connected symmet-
ric space whose cut-locus has codimension > 3, then there exists a δ > 0
such that a simply connected compact manifold M' with p(M,Mf) < δ is
piecewise-linearly homeomorphic to M, and if p*(M,M') < δ, then M'
is diffeomorphic to M. Our examples will show that the condition that
the cut-locus of M has codimension > 3 is necessary in this and other
theorems in [4], [5].

We illustrate this using M£'f equipped with the submersion metric in-

duced by the product of the round sphere metrics on S2p+ι x S2q+ι. To

study p and p*, we need the following.

(4.3) Proposition. Let (M, g) be a compact Riemannian manifold and
7ΓZ : (M,g) —• {B[,gi) be a sequence of Riemannian submersions with ver-
tical distributions 2 .̂ IfTi-^^as vector spaces, as i —• oo, then (5, , g{)
converges to (Bo, go) in the Cheeger distance p and p*.

Proof Fix a point p e M and let pt = m(p),%i = <^±. The orthogonal
projections β% —• <%o at p e M induce isometries τ, : TPiBi —• T̂ -Bo For
any broken geodesies 70 at po, the corresponding broken geodesies y, in /?,
starting at p, lift to broken ^ horizontal geodesies 7/ in Λf starting at p.
These j>z converge, as i —> 00, to a broken ^0 horizontal geodesic in Λf.
Furthermore, in M as well as in 5/, the parallel translations along these
geodesies also converge. By the O'Neill formulas, the curvature tensor on
Bi is described in terms of the curvature tensor on M and the O'Neill
tensor Ai for π/. Since A[ —• Ao smoothly as i -> 00, it follows that
p(Bi,Bo) —̂  0. One easily derives a similar formula for VΛ, which then
implies that p*(Bi,B0) -> 0. In fact the same is true for Vmi? for all
m > 1. q.e.d.

We now apply this to the manifolds λf£'f with metric induced from the
product metric on S2p+ι x S2q+ι. If we fix / and let k —• 00, the vertical
distributions for the circle actions on S2p+ι x S2g+ι converges to the one
for k = 1, / = 0. Hence, Λ* = A^f converges to Λ̂  = 5 ^ + 1 x PqC in the
metric p*. Actually, since N\ and N\ are both homogeneous, there exists
for every x e N^ and y G ^ an isometry /: TXN^ —• ΓyiVi such that
||Λ - 7"1 (i?')ll is small. Similarly, if we fix k, then Λ^ = Mfcf converges to
N2 = PPC x S2q+ι. N\ and Nι are symmetric spaces whose cut-loci have
portions of codimension 2. By (2.1) the cohomology ring of Nι

2 depends
on / and these examples therefore show that the condition on the cut-
locus in Cheeger's theorem is necessary. For the Nf, the cohomology ring
is the same for all k, but they all have distinct homeomorphism types if
p > 2. If p = 1, we can choose a subsequence of Njf which consists of
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diffeomorphic manifolds. For example, if / = 1 and k is even then all N%
are diffeomorphic to S2 x S2q+ι. Hence we obtain a sequence of metrics
on S2 x S2q+{ converging in the Cheeger distance p* to a product metric on
S3 x PqC. By contrast, in the Hausdorff topology they converge towards
a product metric on S 2 x P^C. When q = 1, we obtain a sequence of
irreducible metrics on S3 x S2 converging in p* to a product metric on
S 3 x S2.

In [5] Cheeger also proves that if M is either a symmetric space whose
cut-locus has codimension > 3 or a symmetric space such that some charac-
teric number is nonzero, then there exist constants z'o, δ such that p(M', M)
< δ implies that the inactivity radius of M' is > ΪQ. In each case our ex-
amples show that the extra condition is necessary. He also proves that if
M is a symmetric space with some nonzero characteristic number, then
there exists a δ > 0 that p(M, M1) < δ implies that H*(M'; k) is a subring
of H*(M\k) for every field k. The examples Nι

2 show that this is false in
general.

In [14], Katsuda showed that there is a positive constant δ(n,A,υ,D)
such that if (Mn

9 g) is a complete Riemannian manifold of dimension n
with |AΓ(Af)| < Λ2, vol(Λf) > υ, diam(M) < D and \VR\ < δ, then M
is diffeomorphic to a locally symmetric space. Again, our examples show
that the positive lower bound v is a crucial hypothesis.

Remark. In [8] Eschenburg constructed the first nonhomogeneous ex-
amples of Riemannian manifolds with positive sectional curvature by ex-
hibiting a sequence of free biquotient actions of S{ on SU(3), isometric in
some left-invariant metric, whose vertical spaces converge to the vertical
spaces of the S{ action given by some closed subgroup Sι c SU(3). By
Aloff-Wallach, the homogeneous spaces S U ^ / S 1 admit metrics of posi-
tive sectional curvature, so the quotients of SU(3) by the biquotient actions
eventually have positive sectional curvature also. Eschenburg also proved
that his examples are not homotopy equivalent to any homogeneous space.
(4.3) implies that the Eschenburg examples converge in the p* topology to
the Aloff-Wallach examples, and hence a manifold p* -close to a homoge-
neous space need not be homogeneous.

Finally, we consider the Einstein metrics with E = 1 on a sequence
of spaces M{\. If {(//,-fc/)} c R2 converges to a ray through the ori-
gin with rational slope -ko/lo = lim/^oo -fc////, where fe0, h are in lowest
terms, then by (1.9) it is clear that the solutions for (bι,b2) = {ki9U) also
converge smoothly to a solution for (61,62) = (*o>A)) Since the M^'j
are homogeneous, it follows easily that they converge in the distance /?* to



EINSTEIN METRICS ON PRINCIPAL TORUS BUNDLES 247

jζjJo equipped with the Einstein metric. Again, one can compare the situ-
ation with that of Hausdorff convergence. On the other hand, if {(//, -fc, )}
converges to a ray through the origin with irrational slope, then something
interesting also occurs. In this case, the closed circle subgroups of T2 by
which we divide S2p+ι x S2q+ι converge to a dense one-parameter sub-
group, and so we can no longer form the quotient. However, locally the
Einstein condition still makes sense, and the solutions depend smoothly on
the slope -k/l = -61/62 by (1.9). Thus we obtain an example of an Ein-
stein metric on an open set such that no covering of it admits an extension
to a complete Einstein metric.
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