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MUTATION AND THE //-INVARIANT

ROBERT MEYERHOFF & DANIEL RUBERMAN

1. Introduction

This paper investigates the effect of a certain type of cutting and past-
ing operation on geometric invariants of a hyperbolic 3-manifold. The
invariants which we discuss are the Chern-Simons invariant [4] and the
^-invariant [2]. These are both defined for any closed Riemannian 3-
manifold M\ the Chern-Simons invariant CS(AΓ) takes its values in the
circle R/Z, while the ^-invariant η(M) is a real number. The two numbers
are related as follows: 3CS(M) = 2η(M) (mod 1). Hence the ^-invariant
determines the Chern-Simons invariant, modulo 1/2. If M is a compact
hyperbolic manifold, then Mostow's rigidity theorem [9] implies that both
of these are in fact topological invariants of M. The Chern-Simons invari-
ant is defined, modulo 1/2, for finite-volume hyperbolic manifolds in [8].
The extension of Mostow rigidity to the finite volume case [11] implies
that the Chern-Simons invariant is a topological invariant in this case as
well.

If F is a surface embedded in a 3-manifold M, and φ is a diffeomor-
phism of F, then we can obtain a new manifold Mφ by cutting M along F
and regluing via φ. For an arbitrary Riemannian manifold, this topological
operation is likely to destroy any nice properties of the metric. In particu-
lar, there is no reason to expect any relation between invariants of the two
manifolds. However, in certain special cases, the cutting and pasting may
be done "geometrically." Let F be a surface of genus two and τ be the
involution of F indicated in Figure 1. If F is embedded in a hyperbolic
3-manifold, then cutting and pasting via τ may be done geometrically:

Theorem 1.1 (Ruberman [12]). Suppose thegenus-2 surface F is embed-
ded in the hyperbolic manifold M so that n\{F) injects into τt\(M). Then
the manifold Mτ is hyperbolic, and vo\{Mτ) = vol(Λf).
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FIGURE 1

The condition on the fundamental group is summarized by saying that
F is incompressible. The theorem also applies to certain noncompact sur-
faces and involutions. These are most easily described as the subsurfaces
of F: The once or twice punctured torus and the 3- or 4-punctured sphere
all sit inside of F so that they are invariant under τ. If any of these open
surfaces (or F itself) is properly embedded in a 3-manifold, then we will
call the operation of cutting and pasting using τ a mutation of M. The
more general version of the above theorem then states that a mutation Mτ

of a hyperbolic 3-manifold M of finite volume is hyperbolic, and has the
same volume as M. The terminology "mutation" comes from knot theory;
in that context a 2-sphere hitting a knot in four points can be 'mutated'
to produce a (potentially) different knot. This process is important in the
combinatorial classification of knots via their projections [5].

The main results of this paper are the determination of how the Chern-
Simons invariant and the //-invariant change under mutations of hyperbolic
manifolds1. The results concerning the //-invariant are valid for closed
manifolds and mutations along a genus-two surface. A special case of the
theorem concerning the //-invariant is:

Corollary 1.2. Let F be an incompressible, separating genus-2 surface in
the hyperbolic 3-manifold M, and Mτ the manifold resulting from mutation
along F. Then η(Mτ) = η(M).

In general (see Theorem 4.2) we show that the difference η(Mτ) - η(M)
is equal to a topological invariant of the embedding of F in M called
the signature of F in M. A corresponding result for the Chern-Simons
invariant holds more generally for manifolds of finite volume. In order

authors have recently computed the change in the ^/-invariant under general Rie-
mannian cutting and pasting along closed surfaces. These results are in our preprint, Cutting
and pasting and the η-invariant.
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to establish this, we need a definition of the Chern-Simons invariant for
manifolds with cusps. This is done modulo 1/2 in [8] using the "torsion
formula" developed in that paper. The torsion formula provides a method
of computing the Chern-Simons invariant of Λf mod 1/2 using a framing
of M defined in the complement of a link in terms of the torsion of the
components of the link. In §3 of this paper, we enhance the definition
of torsion in order to obtain a formula which gives the Chern-Simons
invariant exactly, and prove the invariance of the Chern-Simons invariant
under mutations of closed manifolds.

Using the enhanced torsion formula, we give a definition of the Chern-
Simons invariant of 3-manifolds with cusps, with respect to certain ho-
mology classes in the cusps. For a knot complement, the homology class
may be chosen to be a meridian, yielding a mod 1 Chern-Simons invariant
of a knot. Using this definition, we show the invariance under mutation
of the Chern-Simons invariant of knots.

2. Definitions and basic technique

Let M be a closed, oriented Riemannian 3-manifold. Then Chern and
Simons [4] define a certain 3-form, Q, on the oriented frame bundle,
F(M). Any orientable 3-manifold is parallelizable, so we can use sec-
tions of the frame bundle to pull Q back to M. Integrating s*Q over M
produces a real number; this number depends, a priori, on the choice of
section. Given one section, any other differs from it by a map from M
to SO(3); it is easily verified that the integral of the Chern-Simons form
changes by 8π2 times the degree of this map. Hence we can define the
Chern-Simons invariant:

= ^Js*Q (modi).

The ^/-invariant is defined in a completely different manner, and it is
surprising that the two invariants have anything to do with each other. The
definition of the ^-invariant was originally given for any odd-dimensional
Riemannian manifold by Atiyah, Patodi, and Singer [2] in terms of the
eigenvalues of the Laplace operator. They proved the following remarkable
formula, which the reader can take as a definition of η(M). If M is a
3-manifold, which is the boundary of a smooth 4-manifold W, then a
framing a on M gives a relative Pontrjagin number P\{W). Define the
signature defect δ(M,a) to be the integer ±/?i(W0-signature (w) T h e n
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From this formula we see the relationship between the ^/-invariant and the
Chern-Simons invariant mentioned in the introduction.

For purposes of computation, however, the definitions of the Chern
Simons invariant and ^/-invariant are sometimes awkward to use, because
of the necessity of keeping track of framings which may have little to do
with the geometry of the manifold. For example, the cutting and pasting
operation treated in this paper does not act particularly nicely with respect
to framings. To get around this sort of difficulty, the first author introduced
in his thesis [8] the device of using framings defined on the complement
of a link L in M with prescribed behavior near L. We remind the reader
that for any closed curve γ in a Riemannian manifold, there is the notion
[13, volume 3] of the torsion of the curve, denoted τ(γ). If the curve is a
geodesic, this is just the holonomy of an orthogonal vector field which is
parallel along the curve.

Definition 2.1. A singular frame field on M with singularities along L is
an orthonormal framing on M -L which has the following local structure
near each component K of L :

(i) In the limit, one vector (say e\) is tangent to K.

(ii) The vectors e^e^ determine an index ±1 singularity in the disk
transverse to K.

In a closed hyperbolic manifold, the following "torsion formula" [8]
shows how to compute the Chern-Simons invariant (mod 1/2) using a sin-
gular frame field:

where the sum is over the components γ of L, and the sign agrees with
the index of the singularity along γ. If the manifold is not closed, but
has finite volume, then there is still a way of defining a Chern-Simons
invariant if one restricts the framing in the cusps to have a certain special
form, called a linear frame field [8]. A (singular) frame field is linear in a
horoball neighborhood of a cusp if the ^-vectors are perpendicular to the
horospheres and point outwards, and the e\- and ^-vectors are parallel (in
the Euclidean metric) on each horosphere.

In [8], it is proved that the formula above defines an invariant of a
cusped hyperbolic manifold, provided that the singular framing is linear
in the cusps.

Remark 2.2. It was remarked, though not used, in [8] that the same
formula works if slightly more general frame fields are allowed at the cusps.
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The frame field allowed will have ^-vectors as above, but on each horo-
sphere, the e\, βι frame is merely homotopic to one which is parallel. We
will refer to these more general (singular) framings as homotopically lin-
ear frame fields. This extended definition is useful because it allows the
β\ -vectors to change direction in some region of a cusp (see Figure 2). To
avoid awkward phrasing we will often suppress mention of linearity of a
singular framing.

FIGURE 2. CHANGING e\

To illustrate the utility of the torsion formula, we will use it to compute
the effect of a mutation of a hyperbolic manifold on the Chern-Simons
invariant, mod 1/2. First we review the results of [12] which show how to
do mutations geometrically, resulting in a hyperbolic metric on Mτ.

Let Mf be the covering space of M to which the embedding of F lifts;
this is of course homotopy equivalent to F. One shows first that the in-
volution τ on F can be realized by an isometry τ of MF, which will be
an involution. Using least area surfaces, one finds a copy of F, isotopic
to the original embedding, so that its lift F to MF is invariant under the
isometry τ. Locally, F looks like F, so the restriction of τ to F yields an
isometry of F (with its induced metric). It follows easily from the con-
struction that if one cuts along this copy of F and reglues via this isometry,
then the resulting manifold, ΛF, has a complete hyperbolic metric. More-
over, any invariant, such as the volume, obtained by integrating a 3-form
over M will have the same value on Mτ, since the two are isometric off a
codimension-one subset.

It would follow easily that the Chern-Simons invariant is unchanged as
well, except that we need a framing on M which can be "cut and pasted"
to give a framing on Mτ. This would require a framing on M with the
property that its restriction to T*{M)\F = T*(F) Θ ε is invariant under
the natural action of τ on Γ*(F) Θ ε. It is easily seen that there are no
such framings, but we will show how to find a singular framing s with
this invariance property. Moreover, the singular locus L will intersect F
precisely at the fixed points of τ. Hence the singular framing s can be cut
and pasted to give a singular framing sτ on Mτ which agrees with s on
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the complement of F. We perform the computation of the Chern-Simons
invariant on Mτ in terms of this new framing sτ.

Whether or not the Chern-Simons invariant changes under mutation
depends on the number of fixed points of τ. Note that the number of fixed
points of τ and the number of boundary components of F have the same
parity. We will show (in Theorem 2.3) that the Chern-Simons invariant
is unchanged if this number is even, while (cf. Theorem 2.4) it always
changes if the number of fixed points is odd.

Theorem 2.3. Let M be a cusped hyperbolic 3-manifold and F an in-
compressible, boundary incompressible 4-punctured sphere, 2-punctured
torus, or genus-2 surface in M. IfMτ is the 3-manifold obtained by cutting
and pasting M via the mutation τ, then CS(Af) = CS(AΓ) (mod 1/2).

Proof. As discussed above, we show how to put a singular frame field
on the surface F which is invariant under the mutation, and then extend
it to get a singular frame field s on the rest of the manifold. The singular
locus of s on the manifold M will intersect F precisely in the two fixed
points of τ. We first give the argument in detail for the case when F is a
4-punctured sphere. The proof for the genus-2 surface is the same, except
that one does not have to worry about the cusps. Some small modifications
are needed to extend the argument to the case of a twice-punctured torus;
these are discussed at the end of the proof.

On F, we know what the singular frame field should look like at the
cusps and the fixed points (see Figure 3(a)). How can we extend this
equivariantly over the rest of FΊ Split F in half, as in Figure 3(b), to get
a fundamental domain for the action of τ. The framing on the boundary,
as drawn in Figure 3(b) represents the trivial element in πi(SO(3)), and
so extends over the fundamental domain. By construction, the framing on
the boundary glues up to give an equivariant framing on F.

Now we have to extend this frame field to a singular framing on all
of M. First we extend s in the cusps on M so that it is (homotopically)
linear there. This is easily done, using Remark 2.2. Choose a curve γ c M
which hits the surface in exactly the fixed points of τ. This may be done by
choosing an arc in F between the fixed points and pushing it off F in two
directions to get a simple closed curve. The obstruction to extending this
to a frame field on the rest of M is carried on a link L in the complement
of F u γ. As in [8, §4.2] the frame field may then be extended to a singular
frame field with singularities along Luγ.

Since the restriction of the singular framing s to F is invariant under
τ, it gives a new singular framing sτ on the mutated manifold Mτ. This
framing is not necessarily homotopically linear at the cusps. As one goes
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Near fixed
point
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FIGURE 3. FRAMING ON F

along a curve in a cusp transverse to F, the e\, ̂ -vectors rotate through a
full turn relative to the linear field. This will happen precisely when there
are two distinct cusps of M hitting F, and the mutation takes each cusp
to itself (see Figure 4).

cusp
torus T

sτon
cusp
torus T

FnT

FIGURE 4. NONLINEAR FRAMING AT CUSP

View the cusp as T2 x [0,oo), and let t be the coordinate in the In-
direction. We may assume that this nonlinear framing is constant in the
^-direction, which implies that the Chern-Simons integral on the cusp will
be zero. We will now change the framing on the cusp so that it becomes
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linear on T2 x [l,oo), and the cusp still contributes zero to the Chern-
Simons invariant. To do this, note that there is a singular framing on
T2 x [0,1] which is linear on T2 x 1, is our given framing on T2 x 0, and
which has a single singular curve. The singular curve can be chosen as a
geodesic in the Euclidean torus at height \\ such a curve has zero torsion.
The Chern-Simons integral over the rest of T2 x [0,1] can be computed to
be zero, as in [8, §4.1].

The integral of the Chern-Simons form over the rest of Mτ is unchanged.
The torsion term changes by ±π at each of the two fixed points. (For
future reference we note that the signs are opposite at the two fixed points.)
Therefore the torsion term does not change, mod 1/2, which says that the
Chern-Simons invariant is unchanged, mod 1/2.

There are two difficulties which occur in extending the argument to
apply to a 2-punctured torus. The first comes in the construction of the
invariant singular framing on F. As above, we specify the framing on the
boundary and cusps of a fundamental domain of τ, and then try to extend
over the rest of the fundamental domain. An Euler characteristic argument
shows that there is no such nonsingular extension for the twice-punctured
torus. In this case, there is a singular framing on the fundamental domain
with one more singular point in the interior of the fundamental domain.
Thus there is still a τ-invariant singular framing on F. The singular set
on F will now consist of the fixed points of τ, together with an additional
pair of points which are interchanged by τ.

The other part of the argument which causes difficulty is the extension
over the rest of M. For this, we need a link in M which passes through
the singular set on F and does not meet F otherwise. But since there are
an even number of singular points, this link can be chosen to be a trivial
link lying near the surface with one component passing through the pair
of singular points which are interchanged by τ. The proof proceeds as
above, and we conclude that the Chern-Simons invariant does not change
(mod 1/2). q.e.d.

If there is an odd number of singular points as is the case for the 3-
punctured sphere and punctured torus, then we get the surprising result
that the Chern-Simons invariant always changes by 1/4.

Theorem 2.4. A mutation along an incompressible 3-punctured sphere
or once-punctured torus in a hyperbolic 3-manifold changes the Chern-
Simons invariant by 1/4 (mod 1/2).

Proof. As in the previous theorem, there is an invariant singular fram-
ing on F for which the fixed points of τ are all singular points. (If F is the
punctured torus, then the fixed set and singular set coincide, whereas if F
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is the 3-punctured sphere, we must add a pair of singular points which are
interchanged by τ.) To extend this framing over M, we need a link L in
M hitting F in precisely the singular set. Since this set has an odd number
of points, this is possible exactly when F does not separate M.

However, an incompressible surface with an odd number of boundary
components in a manifold with torus boundary can never separate. This
is readily seen by considering the intersection with the boundary. (We are
indebted to Colin Adams for this remark.) Therefore, there is a simple
closed curve hitting F exactly in one point and hence a collection of curves,
each of which hits F precisely in a fixed point of τ. (In the case of a 3-
punctured sphere, we add a component to L going through the pair of
singular points interchanged by τ.) As in the proof of Theorem 2.3, the
torsion term in the Chern-Simons invariant will change by ±π for each
singular point. Since there is an odd number of singular points, the change
in the Chern-Simons invariant is π/(4π) = 1/4. q.e.d.

Since the mod 1/2 Chern-Simons invariant is a geometric (and therefore
topological, by Mostow rigidity) invariant of cusped hyperbolic manifolds,
we obtain:

Corollary 2.5. In the situation above, the manifold Mτ is not homeo-
morphic to M, preserving orientation.

For an interesting example, consider the Whitehead link. There is a
disk spanning one component which hits the other one in two points, and
thus results in a 3-punctured sphere in the link complement. A mutation
along this sphere will turn a Whitehead link with a right-handed clasp into
a left-handed one. The two link complements are homeomorphic via a
reflection, which reverses orientation. However, the corollary implies that
they are not homeomorphic preserving orientation, so we conclude that the
two links are not isotopic. By combining our cutting and pasting arguments
with some symmetry considerations, we can determine the Chern-Simons
invariants of some hyperbolic link complements. As an example, we show
how to calculate the Chern-Simons invariant of the complement of the
Borromean rings.

Proposition 2.6. The Chern-Simons invariant of the complement of the
Borromean rings is zero.

Proof Let Wh± denote the Whitehead link with a right- (or left-)
handed clasp, and X± be the respective link complements. Since X+
and X- are diffeomorphic via an orientation reversing diffeomorphism,
CS(ΛΓ+) = -CS{X-) (mod 1/2). On the other hand, their Chern-Simons
invariants differ by 1/4, since the links are related by a mutation of a
3-punctured sphere. Therefore CS(ΛT+) = 1/8 or 3/8 (mod 1/2).
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Borromean rings

(a) (b)

FIGURE 5

The complement of the Borromean rings is related to X+ in the following
simple way. Let Y be the two-fold cover of X+ which is trivial over one
component and nontrivial over the other. Then Y is the complement of the
link drawn in Figure 5(a). The Borromean rings complement is obtained
by a mutation of Y along the evident 3-punctured sphere. Now the Chern-
Simons invariant multiplies under finite covers (even in the cusped case),
so that CS(y) = 1/4. By Theorem 2.4, the Chern-Simons invariant of the
Borromean rings complement must then be zero.

Remark 2.7. In the next section, we will discuss the effect of mutation
on the Chern-Simons invariant, modulo 1, for surfaces where τ fixes an
even number of points. For use in those theorems, we observe that we
could choose the singular locus a little more carefully than we did in The-
orem 2.3. We do this by treating the problem of extending the invariant
singular framing on F to a singular framing on all of M in two stages.
Regard F a s F x O c F x [ - l , l ] , and try to extend the singular framing
on F to F x [-1,1], so that it is nonsingular on the boundary F x {-1,1}.
It is not hard to show (cf. [8, §4.1] that this can be done adding a single
meridian curve to each component of the singular link L which passes
through the singularities on F. Moreover, each component of L can be
banded to its meridian (cf. [8, §3.3] or the proof of Theorem 3.1) to obtain
a singular framing on F x [-1,1] with singular locus precisely L. Now,
as in the proof of Theorem 2.3, we can extend this singular framing on
F x [ - l , l ] over the rest of M, perhaps adding additional components to
the singular locus. What we have achieved is to make the singular locus on
M a split link, where the components which intersect F can be isotoped
to lie in disjoint balls.
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3. The extended torsion formula

We would like to extend the results of the previous section to give the
invariance of the Chern-Simons invariant (mod 1) under mutation. It turns
out that this stronger invariance holds for the genus-2 surface, and the
twice-punctured torus and 4-punctured sphere in some special cases. These
are exactly the surfaces where τ has an even number of fixed points.

The key point in our proof of Theorem 2.3 was that we could compute
the Chern-Simons invariant mod 1/2 using a singular framing. In this sec-
tion, we give a stronger version of the torsion formula which computes
the Chern-Simons invariant on the nose. For simplicity, we begin by de-
scribing this extended torsion formula in the closed case. The extension to
the case of cusped manifolds has some complications which are discussed
below.

One reason that the torsion formula of [8] only works mod 1/2 is that
the torsion of a curve is defined mod2π, and the contribution of the tor-
sion to the Chern-Simons invariant is ± ^ τ . Thus we would like to extend
the torsion to be defined modulo at least 4π. One way to define τ(γ) as
a real number is to use an orthonormal frame field e with the property
that restricted to γ, its β\-vector points along γ. Then τx(γ) = / e*α>23
is actually a real-valued invariant of γ and e, where we write ω, 7 for the
connection 1-forms in terms of the basis of the cotangent space dual to
the βi. This is the notion of torsion used by Yoshida [17] in his torsion
formula (see Theorem 4.1 below). For the applications to cutting and past-
ing, however, this is not quite right as we lose the flexibility of a singular
framing.

We compromise by using a frame field that is defined in a neighborhood
of the singular locus of a singular frame field to get a torsion which is
defined modulo 4π instead of as a real number. The frame field is defined
by a surface that the singular locus bounds. As discussed in [8], the singular
locus L of a singular framing on a 3-manifold M represents the obstruction
(in H\(M\Z2) = H2{M\Z2)) to framing M. Since M is frameable, the
obstruction vanishes and L is the boundary of a surface S.

We use S to give an orthonormal framing {eί) of M along L as follows.
The e\ -vector is tangent to L\ it does not matter which direction the e^s
point along the components of L. The ^-vector will be tangent to S and
point into S, and e?> is determined by the previous two and the orientation
of M. Note that this definition does not depend on S being orientable.
Given a component γ of L, extend this framing on γ to a framing e on a
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neighborhood of γ, and define

τx(V,S)= / ω 2 3 .
Jγ

As in [13, volume 3], the extension is only used to compute the components
ω/y of the connection; the integral turns out to be independent of the
extension. It is not hard to show that, modulo 4π, the sum

ΪCL

does not depend on the choice of surface S; we will usually eliminate the
" S " in the notation for τx. Note that one can change this integral by
multiples of 4π by choosing a surface which twists differently about γ. For
example, a round circle in S3 bounds both a disk and a Mobius band in
S3. These give extended torsions which differ by 4π.

In the case of a cusped manifold with a linear frame field, the singular
locus L is not necessarily a boundary. However, there is a surface with
boundary the singular locus and some other curves which lie in the cusps.
Such a surface may be extended to a surface with boundary L which goes
out to infinity in the cusps. In contrast to the closed case, the surface
may wind around the singular curves differently depending on how it goes
out into the cusps. For instance, consider a linear frame field on a knot
complement in S3 which has singular curve a meridian of the knot. One
surface with boundary the meridian and going out to oo in the cusp is a
meridian disk which is punctured by the knot. Another such surface is a
Seifert surface for the link formed by the knot and its meridian. In this
surface, the pushoff of the singular curve links the singular curve once, and
the extended torsions computed from these two surfaces differ by 2π.

One way out of this dilemma, which we adopt in this paper, is to choose,
in each cusp C, a mod 2 homology class γc (It may, of course be the
zero class.) Then we define the extended torsion of the singular locus as
above. However, we require the intersection of the surface with the cusp
C to carry the homology class yc Any two surfaces with this property will
wind around the singular locus the same amount, mod 2. It is then straight-
forward to show that the extended torsion is well defined mod 4π. The
essential point is that we can assume that the intersection of the surface
with a cusp is a product over a geodesic in the Euclidean torus bounding
the cusp; such a curve will have zero torsion. It is shown in [8, §4.3] that
if M is the complement of a knot in S3, there is a singular framing with
singular locus a meridian of the knot. In this case, the meridian disk pro-
vides the homology out into the cusp. Unless it is specified to the contrary,
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if the cusped manifold is a knot complement, we will take the curve γc to
be a meridian of the knot.

With this definition of the extended torsion, we can give an exact for-
mula for the Chern-Simons invariant in the closed case, and define the
Chern-Simons invariant (mod 1) for cusped manifolds, relative to some
choice of {ye}.

Theorem 3.1. Let s be a singular linear framing on a hyperbolic man-
ifold M with singular locus L. Suppose that L = dS where S hits the cusp
C in the homology class {γc} Then the number defined by the following
formula is an invariant of M and the set {γc} :

(modi).

Moreover, ifM is closed, this is the Chern-Simons invariant of M.

Note. The fact that we need to subtract 2π in this formula stems from
the fact that we can introduce extra components into L by the inverse of
the "elimination" move of [8]. If K is a hyperbolic knot in S3, then we
define the Chern-Simons invariant of K to be the (mod 1) Chern-Simons
invariant of its complement, computed relative to the homology class of a
meridian in the cusp by the above formula.

Proof Following the pattern of proof of the torsion formula of [8], we
show that the formula above is unchanged under three basic moves: (a)
isotopy, (b) band move (=crossing move of [8]) and (c) removal. In the
closed case, we can eliminate L (and get a nonsingular framing) by these
moves, and so see that the formula is exactly the Chern-Simons invariant.
In the cusped case, we can get from any L (and s) to another and so see
that the formula gives a well-defined invariant of the manifold.

Isotopy move. The proof that the formula does not change under an
isotopy of singular framings (and singular curves) is exactly as given in [8,
§3.2], once we observe that a surface can be dragged along in an isotopy.

Band move. In [8], only oriented band moves are considered. In other
words, band moves are done between components of L (or between a
component and itself) which preserve the orientation of L derived from the
e\ -vectors of the singular framing. This is not sufficiently general to derive
the torsion formula (even mod 1/2). However the effect of an unoriented
band move can be achieved by an oriented band move together with an
additional move which flips the direction of e\ on a single component γ
of L. (We are using the isotopy move implicitly throughout.) This is
illustrated in the sequence of pictures in Figure 6.
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FIGURE 6. UNORIENTED MOVE

The proof that the oriented band move does not change the formula is
similar to the proof in [8, §3.3]. In particular, it is shown there that

changes by 1/2 under an oriented band move. We may assume that the
band move takes place in a small ball and that the intersection of S with
that ball is a flat surface. Likewise, we may assume that the band is flat,
so that after the band move, a new surface is created which coincides with
the old one outside of the ball and is still flat inside the ball. Because the
surfaces are all flat, the summation Σ±τx is unchanged. However, since
the move was oriented, the number of components changes by 1. Because
we subtract 2π for each component of L, the whole formula is unchanged
(modi).

The flip move is performed by rotating the frame field by 180° (near the
singular locus) in the plane perpendicular to the ^-vector. A calculation
shows that the Chern-Simons integral over M - L does not change during
the course of this rotation. Therefore, the formula does not change.

Removal move. As in [8, §3.4] removing a small circle changes
the Chern-Simons integral by 1/2. But as in the discussion of the
oriented band move, the number of components changes by one, so
(4π)~ι ΣMτχ - 2π) changes by 1/2 as well, and so the whole torsion
formula is unchanged, q.e.d.
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Using this extended torsion formula, we can now show the invariance
of the Chern-Simons invariant under a mutation of a genus-2 surface.

Theorem 3.2. Suppose F is a genus-2 incompressible surface in the
closed hyperbolic manifold M. Then the Chern-Simons invariant of Mτ

is the same as that of M, modulo 1.
Proof The idea is the same as in Theorem 2.3: one starts with a singu-

lar framing (as in that theorem) whose singular locus L hits F precisely in
the fixed points of τ, and uses it to compute the Chern-Simons invariant
both before and after cutting and pasting. The Chern-Simons integrand
is the same after the mutation, so we must compute the change in the
enhanced torsion.

Orient F and M, arbitrarily, so that there are ± sides to F. Using
Remark 2.7, we may assume that the only components of L which hit F
are three curves C\, Cι, C3. Each of these bounds a disk £>z which intersects
F in an arc yz joining two fixed points of τ. The arc yz divides Z>z into
subdisks Df, with boundaries dDf = Cf U y, (see Figure 7(a)). Label the
subdisks so the D+'s are all on the (+) side of F.

By Remark 2.7, the other components of L will be disjoint from the
disks Di. Therefore there is a surface S with boundary L which consists
of the Di union some other components. The intersection Γ of S with F
will thus be some closed curves, and the arcs yz.

After cutting and pasting, the singular locus of the singular framing sτ

is the link U made from the pieces of L in Mτ. We need to find a surface
Sτ in Mτ with boundary U in order to compute the enhanced torsion. It
is only important to see the surface in a neighborhood of Lτ, for that is
where the surface defines the framing that is used to compute the torsion.
In particular, an immersed surface which is embedded near Lτ will do
as well for computing torsion, for it may be resolved into an embedded
surface without affecting its boundary.

To start in constructing the surface Sτ, we have the pieces of S in Mτ,
which hit F precisely in Γϋτ(Γ). Since τ acts trivially on mod 2 homology,
each closed component in Γ is homologous to its image under τ. Therefore
the closed components of Γ may be joined to their images under τ by
subsurfaces of F, pushed slightly to the (-) side. (If this is done carefully,
an embedded surface will result.) In finding the rest of S\ we may ignore
these closed components.

To build the rest of the surface, we use the fact that each yf U τ(y, ) is
a closed curve, and that the three closed curves taken together bound the
3-punctured sphere in F which is drawn in Figure 7(b). After cutting and
pasting, the pieces of S which hit the Cz consist of a homology from the
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(a)

(b)

(c)

FIGURE 7

Cz

+, say, to the γi9 and the D~ which run from the C~ to the images τ(y, )
in F (see Figure 7(c) above).

We build a new surface as follows. Near the C~, build a surface, using
the exponential map in the direction exactly opposite to the normal to C~
in D~. Extend the surface near γt into the (-) side of F. If the C, were
chosen to meet F perpendicularly, as is easy to arrange, these two pieces
of surface fit together smoothly near C, (see Figure 7(c)). The boundary
of the resulting surface is Lτ (in ΛF), plus (for each /) a curve lying on
the (-) side of F and parallel to yz- Uτ(y, ). But since

3

U n u Φ/)

bounds a subsurface of F, these extra boundary components can be filled
in on one side of F using a pushoff of this subsurface.
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The only possible change in the local framing near L under this opera-
tion comes from the last step in the construction of Sτ. But the induced
framing near Lτ in Mτ is exactly the same as in M, because of how we
made the surface Sτ lie on the other side of C~. Therefore, the extended
torsion of the singular locus is the same as measured in either M or Mτ.
Thus the Chern-Simons invariant is unchanged, q.e.d.

The same considerations enable us to determine the effect of mutations
on the Chern-Simons invariant in the cusped case as well. However, the re-
sult becomes awkward because of the necessity of specifying the homology
classes γc before and after the mutation. One case where this is relatively
canonical is the original operation of mutation of a knot in S3.

Given a knot K in S3, suppose that there is a 2-sphere meeting the K
(transversally) in four points. The sphere bounds a ball, which may be
removed and reglued by the involution τ of its boundary. The result is
S3 with a new knot, Kτ. There is a 4-punctured sphere F in the knot
complement M\ it is easy to see that the complement of Kτ is exactly
the manifold Mτ resulting from a mutation along F. Recalling that the
Chern-Simons invariant of a hyperbolic knot is defined (mod 1), relative
to its meridian as the curve γc in the cusp, we then have:

Theorem 3.3. IfK is a hyperbolic knot and Kτ a mutation ofK along
some A-punctured sphere, then CS{K) = CS(Kτ) (mod 1).

Proof. The proof is similar to that of 3.2, except that we have to think
a little more about the behavior of the framings and surfaces in the cusps.
The knot will hit the 2-sphere in S3 four times, so the cusp torus is divided
by the mutating surface into four annuli. By rotating the e\, eι vectors as
in Theorem 2.3, it can be arranged that the cut and pasted framing sτ is
still (homotopically) linear in the cusp of Λfτ.

The argument proceeds as in the previous theorem, until we get to the
step where the circle γ U τ(γ) has to be filled in by a surface. This circle is
of course essential in H\(F), but it is homologous to two of the cusps of
F by a 3-punctured sphere.

Adjoining this homology to the rest of the surface gives a new surface
Sτ with boundary U. But since the two cusps of/7 homologous to γUτ(γ)
go out to the same cusp of Mτ, the intersection of Sτ with the cusp is still
exactly a meridian of K\ as measured in Z2-homology. Therefore we can
use this surface to compute the extended torsion of LT, which is the same
as that of L, as in Theorem 3.2. We conclude, as in that theorem, that the
Chern-Simons invariant of K is unchanged by the mutation, q.e.d.

It is clear that further results about the Chern-Simons invariant of
cusped manifolds can be obtained by this method. For instance, mutation
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of links is defined exactly as for knots, and the Chern-Simons invariant
is an invariant of that operation. We leave further generalizations to the
untiring reader.

4. Mutation and the //-invariant

Our approach to the //-invariant will be through the formula of Yoshida.
Suppose s is a singular framing with singular set L, and α is a framing with
one vector, say β\, tangent to L. The difference between s and a defines a
map from M-L to SO(3); since the two differ by an element of SO(2) near
L, one gets a difference degree d(s, a) as an element of H^(SO(3), SO(2)) =
Z. Using the framing near L as in the previous section, Yoshida defines
the torsion of L with respect to α, τ(L, a) as a real number. Yoshida's
formula extends the Atiyah-Patodi-Singer formula for the //-invariant by
using a singular framing to compute the differential-geometric part:

Theorem 4.1 (Yoshida [ 17]). Let M be an orientedRiemannian 3-mani-
fold. Then

(4.1)

Using this formula, we will determine how the //-invariant changes un-
der mutation. The result may be stated in terms of the signature invariant
of a surface in a 3-manifold defined by D. Cooper in his thesis [6]. For
F a (closed) surface in a 3-manifold M, let K be the kernel of the inclu-
sion of H{(F;R) in H{(M;R). Orient both F and M. Then K supports a
"Seifert" form θ defined by Θ{a, b) = lk(α, b+). Here "Ik" denotes linking
number, and b+ is the pushoff of b in the positive direction given by an
orientation of F. The signature of F in M, σ(F c Λf), is defined to be
the signature of the symmetrized form θ + &. The main theorem proved
in this section is then:

Theorem 4.2. Let M be a closed, oriented hyperbolic ^manifold con-
taining an incompressible genus-2 surface F. Then the mutated manifold
Mτ is hyperbolic, and η(Mτ) = η(M) - σ(F c M).

We remark that the signature σ(F c M) depends [6] only on the homol-
ogy class carried by F. In particular, if F separates, then that homology
class is trivial. Thus Corollary 1.2 of the introduction is a direct corollary
of Theorem 4.2; however it will be established directly in the course of
proving Theorem 4.2. It is also useful to note that the signature is inde-
pendent of the orientation of F, and changes sign if the orientation of M
is changed.
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An important tool in identifying the difference η(Mτ) - η(M) as a sig-
nature is the "nonadditivity" formula of Wall [16]. This formula deals
with the following situation: An oriented 4-manifold W is the union of
two 4-manifolds W± along a codimension-zero submanifold Xo of their
boundaries (see Figure 8). If Xo were the full boundary of both W+ and
W- (and all the orientations were correct), then the signature σ{W) would
simply be σ{W+) + σ(W-). The nonadditivity formula gives the signature
of W in terms of the signatures of W± and another form defined in the
next paragraph.

x.

FIGURE 8

Write dW+ = Xl u z X% and dW_ = Xl u z X%. Wall [16] gives a con-
vention for orienting the X's and thus Z as well. Consider the subgroups
A,B, C of H\(Z) (real coefficients understood) defined by

C = ker[# 1 (Z)->#!(*+)] .

Let (•) denote the intersection form of Hχ(Z). On the vector space C Π
(A + B), Wall defines the form Ψ(c,c') = c a', where a' is chosen so
that a' + c' e B. He shows that the form Ψ is symmetric, and proves the
nonadditivity result:

Theorem 4.3. In the situation above, the signature of W can be calcu-
lated as

o(W) = σ{W+) + σ(W_) - σ(Ψ).

Actually, since Ψ vanishes if c or d is in the subspace (CnA) + (CnB),
Ψ induces a (nonsingular) form on the quotient

Cn(A + B)
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with the same signature.

As in the previous sections, a large part of the work in proving Theorem
4.2 goes into understanding what happens to the framings when we cut
and paste. The involution τ acts on the tangent bundle of F, and hence
on T*(F) θ ε, preserving the section into ε. If F is embedded in a 3-
manifold M, then a framing of the tangent bundle of M yields a framing
of Γ*(F) θ ε. The action of τ on the tangent bundle of M yields an action
on framings, which we denote asa-> τ*(α). We would like to compare a
with τ*a on F.

For reference, take a copy of the genus 2 surface embedded in R3.
Choose a framing ao on R3, say the one which is parallel in R3 to the
framing at the origin, and restrict it to F. The framings ao and τ*(αo) are
not equal; however, they are homotopic. The two differ by a π-rotation in
the xy-plane, so a homotopy between them is given by rotation of π t in
the xy-plane.

Any other framing of the tangent bundle of M restricted to F can be
constructed from ao by multiplying the frame at each point by an element
of SO(3). Homotopy classes of maps F to SO(3) are given by Hι {F; Z2) =
(Z 2) 4.

Lemma 4.4. For any framing a of the tangent bundle ofM restricted to
F, τ*(α) is homotopic to a.

The lemma follows easily from the facts that c*o ^ τ*(αo) and that τ*
acts by the identity on Hι(F\Z2). However, to frame the cut and pasted
manifold Mτ, and understand the effect on the terms in Yoshida's formula
(4.1), we will need to exhibit specific homotopies.

Rather than enumerate the framings in terms of cohomology classes, we
will use their Poincare duals in H\(Fm

9Z2). If z e H\(F\Z2) is represented
by a simple closed curve Z, then the corresponding framing az can be
drawn as follows. Choose a tubular neighborhood U = Z x I of Z. Outside
of U, the framing az will agree with αO As t goes from 0 to 1 in Z x I,
rotate the framing in the xy-plane by 2π /.

Now any homology class in H\(F;Z2) has a representative Z which is
a simple closed curve. Moreover, it is possible to choose one which is
invariant under τ. The curve Z will necessarily go through two of the
fixed points of τ on F. A homotopy of framings as from az to τ*(αz) is
represented in the following pictures. Outside of U, the framing at time s
will be az (= αo) rotated by π s in the xy-plane. Figure 9 shows C/xI, with
the framing az on the inner surface U x 0 and τ*(αz) on the outer surface
I / x l . The β\-vector will be vertical in d(U x I), and so is suppressed in
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•Γ

FIGURE 9

the picture. Also, since we have an oriented frame, it suffices to draw only
one vector, say e-i.

On dU x I, the framing must agree with the framing on the rest of F,
so it is described by a rotation of π - s.

It suffices to give an extension of the framing over the disk D = z0 x I x I
for some point ZQ e Z. For any other point (z',t9s)9 we will choose the
frame parallel (in R3) to that at (z0, t,s). Note that this is already true on
the boundary of U x I. Choose zo to be a fixed point of τ on Z. Then we
have the picture in Figure 10.

1

FIGURE 10

The disk D is divided into two subdisks, D\ and D2, where t is less
than or greater than \, respectively. On the line L = z0 x \ x I, extend
by rotating by -π s. The framing on dD\ thus extends easily over Dx by
letting it be parallel along the slope 2 lines. On dD2, the framing rotates
by ±4π in the xy-plane as one goes around the boundary. This is twice
the generator of πi(SO(3)), and so is trivial. Hence the framing may be
extended over Dι as well; it is not important what the choice of extension
is.
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The homotopy of framings described by the above process has two im-
portant properties. One is that on the fixed set of τ, the ex -vector is always
normal to F. The other is that except on Z x ΰ 2 , the rotation of the
framing is in the xy-plane throughout the homotopy.

With the homotopy at in hand, we are ready to calculate the change in
the //-invariant under mutation.

Proof of Theorem 4.2. By [12], there is a genus-2 surface isotopic to F,
with the property that cutting and pasting along F can be done geometri-
cally. As in the proof of Theorem 2.3, choose a singular framing s whose
restriction to F is invariant under τ. By construction, the singular locus
L will hit F orthogonally in fix(τ), and the algebraic intersection number
of L and F will be zero. Hence, as in 2.3, the singular framing on M may
be cut and pasted to give a singular framing sτ on Mτ.

Unfortunately, there is no way to arrange a nonsingular framing a so
that it may be directly cut and pasted to give a framing on Mτ. This is
remedied with the use of the homotopy described in the previous para-
graphs. Let N = F x I be a tubular neighborhood of F in M, which we
may identify with a tubular neighborhood in R3 of some standard embed-
ding of F. We may assume that the framing a on N is one of the framings
az for z G H1(F\7J2) By construction a has the property that its frames
are parallel (in R3) along the I-fibers in N. We may also assume that the
intersection of L with N is fix(τ) x I, by choosing the tubular neighborhood
close enough to F.

Define the framing aτ on Mτ as follows. On M — N, use the framing α.
On N, replace the framing a = az by the framing which is at on F x {t}.
Since aγ = τ*(α) and τ 2 = Id, the framing on dN matches up with that
on d(M - N) to give a framing aτ on Mτ. Since the homotopy at kept
the e\ -vector normal to F at all the fixed points of τ, the framing aτ still
has the property that its e\ -vector is tangent to the singular locus for the
singular framing sτ. Hence we can use aτ and sτ in Yoshida's formula
(4.1) to compute the //-invariant of Mτ. We will show that except for
signature defect δ(M, a), the value of each of the terms in his formula is
unchanged when we replace M by Mτ, and the framings s and a by sτ and
aτ, respectively. The signature defect changes by exactly σ(F c AT).

As in the proof of Theorem 2.3, the integral of sτ* of the Chern-Simons
form over Mτ — Lτ is the same as the corresponding integral over M — L.
The torsion term is also easy to understand. As one goes from 0 to 1
in L Π N, the framing aτ rotates by π perpendicular t o L n i V relative to
a. Therefore, the torsion τ(Lτ,aτ) differs from τ(L,a) by a sum Σ ± π .
There is one term in the sum for each component of L n N, and the sign
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is determined by the orientation of L compared to the orientation of the
fibers of N. But by construction each component of L hits F algebraically
zero times, so the total change in the torsion term is zero.

The other two terms in Yoshida's formula are topological in nature.
We discuss the "difference degree" d(s,a) first. This term is defined as
follows. Off of the link L, the difference between s and a defines a map
from M - L to SO(3). Since the ^-vector of a is tangent to L, and s
has a special singularity near L, one can regard the difference as a map
from (M - v(L),dv(L)) to (SO(3),SO(2)). (Here v is a small tubular
neighborhood of L.) The fundamental class of (M - v, dv) thus defines a
homology class in //3(SO(3),SO(2)). Since this group is isomorphic to Z,
we get an integer, called the difference degree.

The change in the difference degree d(sτ, aτ) - d(s, a) can be calculated
on the part of Mτ where aτ differs from a, i.e., on N. Since aτ differs from
a by an element of SO(2) except on the solid torus Z x D2, an excision
argument identifies the change in the difference degree with the element
of //3(SO(3), SO(2)) given by the difference between aτ and α o n Z x D2.
But the difference between the two framings is constant in Z, by con-
struction. Therefore the difference between the two factors through a map
{D2,dD2) — (SO(3),SO(2)). Thus its degree is zero, and the difference
degree term in Yoshida's formula remains unchanged.

Finally, we come to the effect of cutting and pasting on the signature
defect δ(M,a). Since the Pontrjagin class is an invariant of the stable
tangent bundle, one can show that the signature defect can be defined
using a framing of the stable tangent bundle of the 3-manifold M. The
calculation of the change in the signature defect divides into two cases,
according to whether the surface F separates M or not. In the separating
case we will show that the ^/-invariant is unchanged. Since the signature
of a separating surface is zero, this implies the theorem in the separating
case.

So suppose first that F separates M into two pieces A and B. We will
view the tubular neighborhood N of F as being a collar of F = dA, with
F x { l } corresponding to dA. According to [1], the 2-dimensional spin-
cobordism group is Z2, detected by an Arf invariant. Moreover, one can
verify that any two spin-structures which are cobordant actually are related
by a diffeomorphism. View F as embedded in S3 in a standard way, with
S3 - F the union of two unknotted handlebodies Ha and Hb. Now the
spin structure on F obtained by viewing F as a submanifold of the framed
manifold (Λf, α) is evidently null-bordant. Hence we can identify F (the
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submanifold of M) with its copy in S3 in such a way that the spin structure
corresponding to a0 extends over both of the handlebodies Ha and Hb.

Since the 3-dimensional spin-cobordism group is trivial, there is a spin
4-manifold Wa with boundary AUFHa, and similarly for B. This manifold
should be regarded as a spin-cobordism, relative to F x I, from A to Ha.
Take a handlebody decomposition for Wa which is a product along F x l .
By surgery on Wa, if necessary, we may assume that there are only 2-
handles in the handlebody decomposition.

Putting together the manifolds Wa and Wb along F x I, we obtain a spin-
cobordism W from (M,a) to S3. Since W is spin, there is no obstruction
to extending the framing a on M to a stable framing on W. We may also
assume that on the submanifold Nxl, the stable framing is identified with
the framing a\N. The stable framing on W induces a stable framing on
S3, which we will call β. By definition, the Pontrjagin class of W, relative
to the stable framings on its boundary components, is trivial. Hence the
signature defect of (M, a) is determined by the equation

δ(M,a) = δ{S3,β)-σ{W).

The manifold W may be cut and pasted by τ x id|i to give a cobordism
Wτ from Mτ to the result of cutting and pasting S3. Since the involution τ
extends over the handlebody Ha, it is easily verified that (S3)τ = S3. Since
we assumed that on N x I we had the framing a\N, the same technique that
framed Mτ shows that Wτ will be stably framed. S3 gets a stable framing
βτ by the exact same process. Hence the signature defect of (Mτ,aτ) can
be calculated from Wτ. In particular, we see that the defect of M changes
by the formula

δ(M,a) - δ{M\aτ) = δ(S3,β) - δ(S3,βτ) + σ{Wτ) - σ{W).

We will treat the signature terms and the δ(S3,β) terms separately.
To understand why the signature of Wτ is the same as that of W, recall

that by construction, the manifolds Wa and Wb are gotten from A and B
by adding 2-handles. Hence W has a handlebody decomposition, starting
from S3, with only 2-handles, where the attaching circles of the handles
miss F. Since Wτ is obtained by cutting and pasting the cobordism W,
it too has a handlebody decomposition of the same type. In fact, the
attaching circles of the handles for Wτ can be viewed as follows. When
we perform the diffeomorphism of (S3)τ back to S3, the circles which were
inside the handlebody (say Ha) over which we extend τ get flipped over
with Ha. These flipped over circles, plus the ones in Hb, form the attaching
link for W\
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Orient the attaching circles, arbitrarily. The intersection form of W is
given by the matrix of linking numbers between the attaching circles, with
the framings on the diagonal. Now the extension of τ over Ha has the
property that it acts by - 1 on homology. It follows easily that the linking
numbers between two circles which are both on one side of F is the same
both before and after the mutation; the same applies to the framings of the
circles. However, the linking number between circles on opposite sides of
F gets its sign changed. Hence if we change the orientation of the circles
in Ha, the linking matrix is unchanged. Therefore the signature of Wτ is
the same as the signature of W. (This may also be seen by applying Wall
nonadditivity (4.3) as in the nonseparating case below.)

The signature defect of a framing on S3 can be understood as follows.
Let βo be the stable framing of S3 which extends over the ball B4. For
any other stable framing /?, the defect δ(S3,β) is then just the difference
degree d(βo,β) e π3(SO) = Z. Therefore the change in the signature
defects between the stable framings β and >ffT is exactly their difference
degree. But the proof that the other difference degree term (d(s9a)) was
unchanged under mutation applies, mutatis mutandis, to show that the
difference degree is zero in this case.

The other case, in which the surface does not separate, is more compli-
cated. Instead of a cobordism to S3, we will use a cobordism to F x Sι,
Regard M as the union of F x I with a 3-manifold N. As above, since
the 3-dimensional spin-cobordism group is zero, M is the boundary of a
spin-manifold V. By making a corner at F, we may regard V as a spin-
cobordism, relative to the boundary, from N to F x I. Gluing V together
with F x I x I, we get a spin-cobordism W from M to F x S{, which
contains a copy of F x pt xl. As in the previous case, we will show that
δ(F x S1, α) = δ{(F x Sι)τ, α τ). This is complicated somewhat by the fact
that (F xSι)τ ^ F xS\ but is instead Sι xτF.

We will get aroundJhis problem by transferring to the double cover
FΊΓS1 = F x S{ = {F x S{)τ. Let g and h be the covering translations of
FxS1 over FxS1 and F xτ Sι respectively. Recall that a free involution /
on a 3-manifold N has a /^-invariant ρ{N, t) defined by Atiyah and Singer
[3]. If the involution extends to a free involution on a 4-manifold V, then

For both involutions g and A, it is easy to see that p = 0. For in both cases,
the involutions extend over S^xfeenus-l handlebody), and one calculates
directly that all the relevant signatures are 0.
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Now suppose that F x Sx =d(V), where the double cover extends over
V. Then we may use V to calculate the signature defect of F x Sι with
respect to the framing α, and V to calculate the defect with respect to
the pulled-back framing a. It is easy to see that the relative Pontrjagin
class multiplies under covers, when we use the pull-back framing on the
boundary upstairs. From this, we obtain

δ(F x S\ά) - 2δ(F x S\a) = 2σ(V) - σ(V) = p{F x S[,g) = 0.

Similarly, we obtain that δ(F x S 1 , ? ) =zJ-^(F χ τ S\aτ). But one can
verify directly that the framings a and aτ on F x Sι are isotopic, and
therefore have the same δ. Thus we conclude that δ(F x Sι,a) =
δ((FxS{))\aτ).

The more interesting part is that the signature of W changes under
cutting and pasting by the formula a(Wτ) = σ(W) - σ(F c M). As it
turns out, this depends only on the fact that τ* = - / on H\{F). In order
to derive this formula, we use Wall's nonadditivity formula, Theorem 4.3.
In Figure 11, we draw all the different boundary pieces.

w

w = v

Fxl

FIGURE 11

Write W as the union W+ Uχ0 W_, where W_ = F x I x I and W+ =
V. The second I-coordinate represents height in Figure 11, and the first
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coordinate represents front to back distance. Then Xo = F xOxI]JF x
1 x I, and the rest of dW- is X- = F x I x 1 [ ] F x I x 0. Similarly X+ is
F x\]\N. The surface Z where the form Ψ lives is four disjoint copies
oiF:

Z = F xOxOjjF x l x O j j F x O x l J j F x l x l .

Z is oriented so that F x O x O and F x 1 x 1 have the same orienta-
tion, and the other two components are oppositely oriented. With these
identifications, we can compute σ(Ψ).

From now on, all coefficients will be real. Let ΪQ and i\ be the inclusions
HX{F) -+ HX(F x 0 x 1) -> Hι(N) and HX(F) -> H{(F x 1 x 1) -> H{(N)
respectively. Then we can identify the subspaces A,B, C of the nonaddi-
tivity formula as

A = {(x9-x9y9-y):x9y eH{(F)}9

B = {(x9y,-x9-y):x9y e H{(F)},

C = {{x9-x,yθ9yι):x,yo9yι e H{{F),ioyo = i

An easy exercise shows that C Γ\(A + B) = (C ΠA) + (C Π B), so that
for W, before we cut and paste, we have

o(W) = σ(Fx!xl) + σ(V) = σ(V).

After the mutation, however, the situation changes.

The cut and pasted manifold Wτ is obtained by gluing W- to W+ along
Xo, using the identity on F x 0 x I, and T o n F x l x I . Thus in computing
σ(Wτ), the subspaces A and B are unchanged, but with our identification
of Jfi(Z), the kernel Hλ(Z) -> H{(X+) becomes

Cτ = {(x,x,yo,yi):xe H{(F), ioyo =

To identify the space Cτn{A+B), start with an element c = (x, x9yo,y\)
e Cτ and try to find a and b such that c + a = b. It is easy to see
that a necessary condition is that -2JC = yo + JΊ I n fact this condition
is sufficient as well, for we can set a = (0,0, ^{y0 - y{)9 \{y\ - yo)) and
b = (x9 x, -x, -x). The form Ψ on C n {A + B) may be identified in the
following way: Cτ Γ\(A + B) is isomorphic to the vector space

U = {(yo,y\):ioyo =
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Under this isomorphism, the form Ψ is

o,yι)ΛyΌ,y[)] = (χ,χ,yo,yi) ^(O9o,y'o-y[,y[ -y'o)

(( / ό) + CV

(The signs come from the differing orientations of the components of Z.)
The second term in the final equation is symmetric. Since the whole form
Ψ is symmetric, the first term which is antisymmetric, must automatically
vanish. (This may of course be verified directly.) Hence we obtain 2Ψ =

(yo /i +y'o-y\)'
Recall that the signature of F in M is defined to be the signature of the

symmetrized Seifert form θ + θ ' on K = keτ[Hχ(F) -* H{{M)]. Identify F
in M with F x 1/2 x 1, then the zb-pushoffs are given by z'o, i\ respectively.
Define a homomorphism f:U —• K by /(^o^i) =y\-yo- ^ n e a sY Mayer-
Vietoris calculation shows that / is onto.

Claim, (θ + θ*)(/(c), A*)) = Ψ(c, c').
Proof of Claim. By definition, θ(/(c), /(c')) = l k ^ - y0, W - y'oV),

where -h is the pushoff corresponding to the 0-direction. Choose a ho-
mology Do from /Q^O to 'IJ^I i n ^" Then a null-homology Z) for (y\ - yo)
in M is composed of Do, together with a product tube 7o running from
j o C f x 1/2 x 1 to F x 0 x 1, and a tube Tx starting at y\.

Using this null homology, we calculate the linking number:

- yo, (y'ι - y'o)+) = D • (y[ - y ' 0 ) + = To • (y[ - y ' 0 ) + = y 0 • (y[ - y'o).

Therefore

( θ + &)(f(c), f(c')) = y0 • y\ +y'0-yι= 2Ψ(c, c').

Finally, it is easy to see that for any c e ker(/), we have Ψ(c, c') = 0 for
all d. It follows from this that eτ(Ψ) = σ ( θ + θ') = σ(F c M). Therefore

σ(Wx) =
= σ{V) - σ(F cM) = σ{W) - σ(F c M).

Thus the signature defect changes by σ(F c M); since all the other terms
in Yoshida's formula are unchanged, this completes the proof of Theorem
4.2.

As remarked in the introduction, the ^-invariant of a 3-manifold M
determines the Chern-Simons invariant modulo 1/2. With a little more
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information about M, one can determine CS(AΓ) from η(M). Atiyah-
Patodi-Singer define S(M) to be the signature (modulo 2) of any spin-
manifold which M bounds, and prove:

Proposition 4.5 [3]. The Chern-Simons and η-invariants are related by
the congruence \η{M) = CS(Af) (mod 1/2). Moreover, they are equal
(mod 1) if and only ifS(M) is even. In other words,

^ = CS(M) + jS(M) (modi).

They also remark that S{M) may be calculated as the number of 2-
primary summands of Hχ(M\Z). Using this proposition, it is easy to
recover the result of §3 that the Chern-Simons invariant does not change
under mutation along a closed genus-2 surface F.

Corollary 4.6. If F is a genus-2 surface in the hyperbolic manifold M,
then CS{Mτ) = CS(Af).

Proof. In the proof of Theorem 4.2, we constructed a spin-cobordism
W of M to S3 (or Sι x F) according to whether F separates M or not. By
construction, cutting and pasting W gave a spin-cobordism of Mτ to S3

(or Sι x τ F respectively). It is easy to calculate that S = 0 for S3, Sι x F,
and 5" x τ F. Therefore S{M) = σ{W), and S{Mτ) = σ(H^τ) (mod2).

The proof of Theorem 4.2 shows that η(Mτ) = η(M) = σ{W) - σ{Wτ)
and therefore that η(Mτ) - η(M) = S{Mτ) - S(M) (mod 2). Hence, by
Proposition 4.5, the Chern-Simons invariant changes by

CS(Mτ) - CS(M) = |(//(M τ) - η(M)) + ^(S(Mτ) - S(M)) = 0 (mod 1).

q.e.d.

To conclude, we illustrate these calculations with an example of how the
^-invariant can change, leaving the Chern-Simons invariant unchanged.

Example 4.7. According to a theorem of Papadopoulos [10], any auto-
morphism of the homology of a surface which preserves the intersection
pairing is induced by a pseudo-Anosov [7] homeomorphism. Let φ be
a pseudo-Anosov homeomorphism of a genus-2 surface whose action on
homology is described by a block sum of matrices:

0 θld 2 χ 2 .

Then M = mapping torus of φ is a hyperbolic manifold [14], [15], and
its first homology is Z θ coker[0>* - /] , which is easily calculated to be Z 4 .
Hence S(M) is zero, and \η(M) is the same (mod 1) as the Chern-Simons
invariant. On the other hand, the homology of Mτ is Z θ coker[$!>*τ* - / ] .



130 ROBERT MEYERHOFF & DANIEL RUBERMAN

Using the fact that τ* = -/ , one calculates that Hx{Mτ) = ZΘZ2ΘZ2ΘZ4.
Therefore S(M) = 1, and \η{M) differs (mod 1) from the Chern-Simons
invariant.

On the other hand, we can compute the change in the ^/-invariant by
using Theorem 4.2. It is straightforward to calculate the signature of F in
M from the matrix description of the action of φ on homology. The kernel
of the map on homology is isomorphic to Z, and is generated by a single
element y such that lk(y,y+) = 1. Therefore the signature σ(F c M) is
1, and the ^/-invariant changes by 1, while the Chern-Simons invariants of
M and Mτ are the same.
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