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ANALOGS OF LEFSCHETZ THEOREMS
FOR LINEAR SYSTEMS

WITH ISOLATED SINGULARITIES

B. G. MOISHEZON

In [6] we briefly described the construction of the first examples of
(orientation preserving) homeomorphic and not diffeomorphic surfaces of
general type. This construction depended on the existence of "big mon-
odromy diffeomorphism groups" for some classes of algebraic surfaces,
which can be deduced from results of Ebeling ([3], [4]) on isolated sin-
gular points. To relate "local" and "global" in our context we need some
analogs of classical Lefschetz theorems on homologies and vanishing cy-
cles.

In the present article we give a detailed construction of homeomorphic
and not diffeomorphic surfaces of general type (§4). We also provide the
proofs of all necessary facts on homologies and vanishing cycles of complex
algebraic varieties which cannot be found in the literature. Our exposition
of these facts is such that it can be used for future references. (In future
development of Donaldson theory we expect more examples and a better
understanding of homeomorphic and not diffeomorphic surfaces of general
type.)

This article is actually a result of some very fruitful discussions with R.
Friedman to whom I would like to express my gratitude.

All homology groups which we consider have integral coefficients.

1. Vanishing cycles for holomorphic maps

Let / : W —> T be a holomorphic map of connected complex manifolds
W and T.
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Definition 1. Let

S(f) = {XG W\dfx is not surjective},

q(f) = {x e S(f)\f\s(f) is quasifinite at x, that is x is

an isolated point in (f\s{f))~ιf(x)}-

Remark. S(f) is a closed complex subvariety in W, and q(f) is open
in S(f). Thus q(f) is a locally closed complex subvariety in W\

Assume that / : W —• T is proper and surjective. Let m = dime W —
dim c Γ.

Definition 2. Let

W ) = / W U «*(/) = /(«(/))•
Sb(f) is a proper subvariety in Γ, so that T-Sb(f) is connected and also

open dense in T. It is well known that f\w-f-i{sb{f))' w ~ f~ι(sb(f)) -*
Γ - S^(/) is a C°°-bundle. Denote £, = f~l(t) for all ί. For any tu t2 e
T - Sb{f) and any path y in T - S/,(/) connecting ^ with ί2 we denote by
ψγ a diffeomorphism Et{ —»- J?/2 induced by 7 and by ŷ ,* = Hm(ψγ).

Take v e q(f) and let 5 = /(v). By definition of q(f) the point υ is an
isolated singularity of f~ι(s), which is a local complete intersection since
W and T are nonsingular. Taking small neighborhoods Uυ of v in W and
C/j of s in Γ with / ( ί ζ ) = Us we can consider / | ^ : i ζ —• ί75 as a local
deformation of (f~{{s) Γ\Uv,v). We can embed f\^v: Uυ -+ Us in a versal
family of deformations of (f~ι(s) Π t/v,τ;) (see [7]). Denote this versal
family by Fυ: U^ —• t//". So we identify t/y with a closed analytic subset
in Up, Uv with f-l(Us) and / | f t : Uυ -^ Us with

Let Dυ = {τ e C/Γl^tΓ1^) i s singular}. It is known that Z)̂  is irre-
ducible, of codimension one, and that for all nonsingular points τ e Dv,
F~{(τ) has only one singular point which is a nondegenerate quadratic
singularity. Denote D'v = {τ e Dv\τ is nonsingular}, and let cτ, τ € D^, be
the singular point of F~{(τ).

For any τ 0 € D'v there exists a small neighborhood dτo of τ 0 in Up such
that Vτ € dτo - dτo n £>v on / ^ ( τ ) a (closed) Milnor fiber correspond-
ing to CTQ is defined (see [7]). Denote such a Milnor fiber by Λ/(τ,cτo).
cτo is a nondegenerate quadratic singularity, so Hm(M(τ,cτo)) is infinite
cyclic. Choosing a generator in Hm(M(τ,cτo)) we get the so-called van-
ishing cycle in M(τ,cτo). Denote it by δ(τ,cτo). The class δ(τ,cτo) can be
represented by a smooth m-sphere on Int(Af (τ, cTo)) which we shall denote
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by δ(τ,cτQ). Taking a loop γ(τo,cτQ) representing the "positive" generator
of 7i\(dτo — dτo Π Dv,τ) and considering the corresponding "monodromy"
in Fv: Up —• Up we get a diffeomoφhism θ(τ, cτo): M(τ, cτo) -> Af(τ, cτo)
which is identity on dM(τ,cτo). Extending this diffeomorphism by iden-
tity to F~ι(τ) -+ Fv-

{(τ) we get θ~(τ,c τ o) € DiffC^"1^)) which we shall
call a Dehn twist of i^~! (τ) defined by δ(τ, cτo). We should remember that
θ ~ (τ, cTo) is identity outside a regular neighborhood of δ(τ, cτQ) in T^"1 (τ),
and that θ ^ (τ, cτo) is well defined up to homotopy by cτo and τ sufficiently
close to τ 0 in Up.

Considering small closed balls Bp in Up with the center s and 5 ^ in Up
with the center Ϊ; such that F~ι(τ) is transversal to dBp for any τ e Bp,
we can replace C/p by lnl(Bp) and t/,p by F~1 (Int 5 p ) n Int(J5^). Thus
we will have well-defined boundaries for Up, Up, F~ι(τ) Vτ e Up. In
particular we will have a trivial C°°-bundle

and a C°°-bundle

F υ : U~ Ud(Fυ-
ι{Up)) - F - 1 (/)„) - £/Γ - Dv

consistent with a trivial C°° -bundle structure for

For all τ e Up - Dv we denote F~ι(τ) U ̂ ( F ^ ^ τ ) ) (in older notation
F~ι(τ) Π JB^P) by Λf(τ,v)9 and call it a Milnor fiber corresponding to v.

For all τi, T2 G ίTp - Dυ and any path 7 in Up - Dv connecting τ\ with
T2 we denote by ψp a diffeomorphism induced by γ from Af(τi,v) to
M(τ2, v) which is an identity on the boundary with respect to a trivializa-
tion of Fυ\d(F-i(u~)) chosen above.

Fix T\ e Up - Dv. Take any τo G D'v and any simple path γ from τo to
τi with γΓ)Dv = τo. Considering as above a small neighborhood dτo of τo in
ί75^ and τf eγf)(dτo -dτonDυ) we get a Milnor fiber M(τ',cτo) c Af(τ;, v)
and a smooth sphere <ϊ(τ',cτo) representing a vanishing cycle in M(τ',cτo).

Let y; be part of γ from τ' to τ\\ we can assume that γ' is a simple
path. Denote ί (τ i ,c T o ;/) = ψy(δ(τ',cτo)). We shall say that δ(τucτQ'9y')
represents a vanishing cycle in Af (τi, υ) which is an element Hm{M{τ\ 9υ))
denoted by δ(τ\,τo;γ). Extending θ^(τ / ,c τ o ) by identity to a diffeomor-
phism of M(τ',v) and denoting it again by θ ~ (τ',cTo) we define a Dehn
twist of Af(τi, υ) determined by δ(τi,cTo; / ) as follows:
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Denote by Λ^ (τ\,υ) the set of all vanishing cycles {δ(τ\, τo; γ)} obtained
for all τo G D'v and paths γ from τo to τ\ as above.

For any compact C°°-manifold X with the boundary dX we denote by
DJlap(X,dX) the group of homotopy classes of diffeomorphisms of X the
mapping class group of X, which is identity on the boundary. When dX =
0 we denote this group by 9Jίap(3£), mapping class group of X.

Each e~(d(T',cTo;y')) defines uniquely an element in SDtap(Aί(τi,v),
dM(τ\,υ)) which depends only on the choice of τo and γ. We denote this
element by θ~(τi,τ o ;y) and call it the Dehn twist defined by a smooth
sphere δ(τ\,cτo\γ') representing a vanishing cycle in M(τ\,v).

Denote by G~(τuv) the subgroup of ^2φ{M{τuυ),dM(τuv)) gener-
ated by Dehn twists θ ^ (τi, To; y) corresponding to all choices of τo and γ as
above. G~ (T{,V) acts naturally on Hm(M(τ\,v)) and on the set Λ^ (τ\,v)
of all vanishing cycles in M(τ\9υ).

From the irreducibility of Dv it follows that G*(τ\,v) acts transitively
on Λ~(τi,t;); actually A^ (τ\,υ) is a G^(τi,ι;)-orbit in Hm(M(τ\,v)) (see

Now take τ{ G Us - Sb(f) = Us - Dv n Us. From Af(τi,v) c EXχ

and the corresponding im: Hm(M(τ\,v)) —• Hm(Eτι) we obtain the set
Λ(τi,v) = im(A^ (τ\,v)). Elements of Λ(τi,?;) we call vanishing cycles
induced by v on the neighboring fiber.

Using M(τ\,v) c Eτι we extend by identity each Θ~ (τi, τo; y) as above
to an element of 2Dΐap(l?τi), which we denote by θ(τ\9v\γ). θ(τ\,v;γ)
defines an automorphism of Hm(Eτχ). We denote the last automorphism
by 0(τi, τo; y) and call it the Picard-Lefschetz transformation defined by the
vanishing cycle δ = im(δ(τ\9τo\γ)). It is convenient to write θ$ instead of

0(τi,τo;y).
It is known that θs is defined by the formula

θδ(z) = Z + (_l)(m+l)(m+2)/2(z . δ)$

Now take a n y / G Γ - Sb(f). For any s e qb{f), v e q(f), f(υ) = s, and
any simple path Γ connecting s with t such that Γ Π Sb(f) = s we can
choose X\ G Γ — s sufficiently close to s, and denoting by P the part of Γ
from τi to t we define the set

Elements of A(t,v,Γ) we call vanishing cycles on Et induced by v and Γ.

Using elements θ(τ\,υ;γ) e fflap(ET]) defined above, we define ele-

ments θ{t,v;γ,Γ) G 27tap(2sf) by

θ(t,υ',y,Γ) = Ψr>
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If δ is an element of A(τ\9υ) corresponding to θ(τ\9υ
m

9γ)9 and δt =
Ψτ>*(δ) e A(t,υ,Γ), we define the Picard-Lefschetz transformation θδt e
Aut(Hm(Et)) by θδt{z) = z + (-l)C"+OC«+2)/2(z . g ^ lχ i s c l e a r t h a t ^ i s

induced by a diffeomorphism of Et corresponding to θ(t, υ\ γ, Γ).

Definition 3. Denote by A(t) the union of A(t,υ,Γ) for all υ G q(f)
and all Γ in T connecting f(υ) with t and such that ΓnSb(f) = f{υ). We
call the elements of A(ή the vanishing cycles in Et. For any δt e A(ή we
have a Picard-Lefschetz transformation θδt corresponding to δt.

Remark. Remember that each θδt is induced by a diffeomorphism of
Eu a "Dehn twist" corresponding to a smooth ra-sphere δt representing
the class δt e Hm(Et).

Denote by G(t) (resp. G(t, v Γ)) the subgroup of Aut(Hm(Et)) generated
by all θδ( e A{ή (resp. by all δt e A(t,υ\Γ)).

It follows from above that G(t,υ;Γ) acts transitively on A(t,v;T). In
particular, each Λ(ί,v;Γ) belongs to a single G(t)-orbil in A(ή.

Denote by Ψ,: π{(T - Sb(f), t) -»• Au\(Hm(Et)) the homomorphism de-
fined by the C°°-bundle structure on f\w-f-^sb(f)): w ~ f~l(sb(f)) ^
T - Sb(f) (a "monodromy homomorphism" of / : W -+T).

Proposition 1. Assume that q(f) is connected and that ImΨ, belongs to
G(t). Then A(t) belongs to only one G{t)-orbit in Hm(Et).

Proof

Claim 1. Vv e q(f) let Uv and Uf^v) be small neighborhoods respec-
tively in W and T considered above. Then Vvo € q(f) there exists an open
neighborhood QVQ in q(f) such that

(l)QVocf-ι(Uf{Vo))
(2) w G β,o and t e (Uf{Vo) - U/{VQ) n S6(/)) n (t/ / ( υ ) - Um n ^ ( / ) ) ,

Λ(/, f) and Λ(ί, v0) belong to one and the same G(/)-orbit in Hm(Et).

Proof Let FVo: U~ -• t/^Wo) be a versal family for (£/(Vo) Π UVo, v0) such

that C//(t;0) can be identified with a closed analytic subset in Ufi ^ UVo with

^; l(t//(, 0)) a n d f\ΰvo

: K -+ Uf(Vo) with FVo\0vo:F-'(Uf{Vo)) - t / / ( ? ) .

Denote A;o = ̂ ί / ) n ̂ o Taking LJVo smaller we can assume that \/υ e DVo

3 neighborhoods Y~ of v in C/~, r ^ ; ) of /(v) in Uf{v)y Ϋv of z; in Uv

and r / ( i ; ) in C//(t;) such that ^ , ( 1 ^ ) = Yf{v) and Fυ\Y-: Y~ -+ Yf{υ) is a

versal family for (Ef{v) n ίζ,^), 1/(V) is a closed analytic subset in Yfw

Ϋv coincides with (Fv\Y-)'ι(Yv)9 and Fv\Yy: Ϋv -• ϊ/ ( ι ;) coincides with

/lft)

: ^ "^ Yf(v)'
Take any /i G Yf(V) - Yf(V) Γ\Sb{f). Then from the definition of A(t,υ)

it follows that A^{tuv) cA~(t\,υ0) and G~(t\,υ) c G^(ίi,υ 0).
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Since G*(t\9υ) (resp. G*(t\9vo)) acts transitively on A^(t[,υ) (resp.
on Λ^ (t\,υo))9 we see that Λ~ (t\9v) and Λ^ (t\9υo) belong to one and the
same G~ (t{,v0)-orbit in Hm(M{tuv0)).

The mapping im\ Hm(M(t\9vo)) -> Hm{Etχ) induces a homomorphism
G^(t\9vo) in G(/i). Thus we see that A(t\9υ) and A(t\9vo)9 which are zw-
images of Λ~ (t\9υ) and Λ^ (t\9υo)9 belong to one and the same orbit of

G(tx) in Hm(Etx).
Now let QVo = UVQ Πq(f) = UVo n 5(/), and recall that ?(/) is open

in S(f). Denote U'f{υ) = Uf{v) - Sb(f) Π ί//(i;), and take any υ e QVo and
ί G C/}(|;) Π Ĉ /(,,) Considering for v the point ίi as above we can assume
also that t\ € t/j.(Vo) (Ί t/| ( t ; ). Let y7 be a simple path in t/y (Vo) Π C/y ( v )

connecting /i with ί.
From our definitions it follows that A(t9υ) = ψγι A(t\9υ)9 A(t9υo) =

ψγ'*A(t\9υo)9 and that the isomorphism ψγ>* induces an isomorphism from
G(t\) to G(t). Thus A(t9υ) and A(t,v0) belong to one and the same orbit
of G(t) in Hm(Et). q.e.d.

We continue to use the notation Uf^v) = U/^) - t//(W) Π Sb(f) for υ e

Ctoim 2. Let vuv2 e q{f), U e t/}(Vi), ί2 e C/}(W2). Then 3 a path in
T-Sb{f) connecting t\ with ί2 such that ψy*{A{t\9V\) and Λ(ί2j^2) belong
to one and the same (?(/2)-orbit in Hm(Etl).

Proof, Let γ be a path in q(f) connecting v\ with v2, and recall that
?(/) is connected. Using open neighborhoods Qυ constructed in Claim 1
above we get an open covering {QViυ e γ} of y in q(f). Take from it a
finite open covering {Qvu)9l = 1, ,p} such that υ^ = v\9 v^p) = υ2 and
V/G{l,- , p - l } , Q ^ n β ^ D ^ Θ .

In each Qv(n Π G^+D, / G {1, ,p - 1}, choose a point w^. Clearly

f(w®) e Uf{v(l)) Π UAυiM)) (Claim 1(1)),

so

O G £/>(t l ϊ(/))nt/;( | | (/))nt/;( |>(/+I)Γ By Claim 1 Λ(ίW,tί;(/))andA(ί(/),t;(/))
(resp. A(tV\wW) and Λ(^,ι;( / + 1 0) belong to one and the same G{t{l))-
orbit in Hm(Etil)). Thus Λ(^,v ( / ) ) and Λ(ί^,v(/+1)) belong to one and
the same G(/(/))-orbit in Hm(Etw). Let ί(0) = ^ and t{p) = t2. So we get
the sequence {6ι\ / = 0,1, ,/?}. It is clear that V/ € (0,1, ,p - 1) the
points /(/), ί(/+1) G U'f{v(l+l)y Let y(/) be a simple path in U'f{v(l+l)) connecting

6l) with /(/+1). From the definition of A(t9υ) it follows that
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Let v(°) = υx. By ψy{ιr{G{t^)) = G{t«+V) we see that
and Λ(^/+1), v^ι+^) belong to one and the same G^/+1))-orbit in Hm(EtU+[)).

Similarly, if γ = γ(0) o γ(l) o o γ(p - 1), then ψγ*(A(t(°\υM)) and
A(t^\v^) belong to one and the same G(t{p))-oτbit in Hm(Et(P)).

Now recall that v^ = υu t{0) = t\, v^ = v2, and t&) = t2. q.e.d.
Consider now any t e T - Sb(f) and any δ\9δ2 6 Λ(f). From the

definition of A(t) it follows that for each δi (i =1,2) there exist Vj e q{f),
ti in t/}(υ), path Γ' in Γ - S^/) connecting /,- with ί and δ[ 6 A(ti,Vi)
(C Hm{Eti)) such that ίf = yty (<?/). Using Claim 2 we see that there
exists a path γ in T - Sb(f) connecting t\ with t2 such that ^ y (Λ(ίi,t;i))
and A(t2,V2) belong to one and the same G(/2)-orbit in Hm(Eh). Let Γ =
Γ'-1 0 7 0 Γ'2. From Λ(ί,υ/,Γ^) = ^r;*A(i/,i;/) (/ = 1,2) it follows that
Ψ(Γ)(Λ(ί, V\9Γ{)) and A(t,υ2,Γ2) belong to one and the same G(0-orbit in
Hm{Et). By our assumptions Ψ(Γ) G G(0 So A ^ v i , ^ ) and Λ(ί, v2,Γ2),
and in particular δ\ and 2̂ belong to one and the same orbit of G(t) in
Hm{Et). q.e.d.

Assume now that dim c T = 1. Consider again v e q{v), s e q^if),
f(υ) - s, small neighborhoods Us ofs in Γ, ί ζ of v in fΓ and a versal fam-
ily F w : U* —> Up such that Us can be identified with a closed analytic sub-
set in Up, Uυ vnύiF-ι(Us) andf\ϋυ: ϋυ - t/s

As above denote Dv = {τ e Up \F~ι(τ) is singular} and D'v the nonsin-
gular part of Dv. Let Z = DV-D'V. If Z ^ 5 we say that y[0) = /I&: & -•
C/5 is stable. It is equivalent to say that υ is a nondegenerate quadratic
singularity in f^l(s).

Assume Z 3 s. Because Up and Us are nonsingular, Us Π Z = s and
c o d i n g Z > 2, there exists a nonsingular 2-dimensional complex analytic

subset Us

{2) in Up such that &i2) = F-{(US

{2)) is nonsingular, i75

(2) D US

and C/j2) n Z = 5. Taking all neighborhoods smaller we can assume that

fyj2) = JJS x Δ, where Δ is an open disc in C1, that U^2) = Uυ x Δ, Δ 3 (0),

embeddings Us c ί7J2) and £ζ c U^2) coincide with Us x 0 c Us x Δ and

t/t; c tA, x Δ, and that

( s ) s
proj

is commutative.
Let g = Fv\ui2): u£] - U^ and, VA € Δ, fw = ^ | f t x A : & xλ ^ £/, xλ.

Let Cι; = A; Π t/j2 ). Since Z n Us

{2) = s (= s x 0), we conclude that
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VA G Δ - 0, fa has only "stable singularities", that is, on each singular
fiber of /μ) corresponding to a point of Cv Π (Us x A) there is only one
singularity which is nondegenerate quadratic. We call g: Uy2) —• £/j2) a
stabilizing family for / | ^ : Uυ ^ Us and each faΛΦ 0, we call a stabilizer
of / | # (= y[0)) F°Γ Λe uniformity of notation in the case when / | ^ is
stable, we can take g = (/|#υ) x Id.

Consider Uv as an open set in Cn (n = dim c W) and Us as an open set
in C1. Let Dr be a small (closed) ball in ϋv centered at v and of radius r.
Taking a positive p <C r we get a closed disc Δ^ centered at s and of radius
p such that:

(i) Vt e Ap - s, f@*(t) has no singularities in Dr, and f^ι(s) has only

one singularity v in Z)r;

(ii) W G Δ,, /(ό/(0 intersects transversally with S*n~l = dDr.

Fixing a point Uo G SΔ^ we identify f^ι(uo) Π D r with a Milnor fiber

Af(w0>v) of fa over w0.
Let ^ : Uv x Δ —• ί75 x Δ be a stabilizing family of fa (as above). Taking

a positive ε < p and replacing Δ by a disk Δe,o centered at (0) and of
radius ε we can see the following:

(iii) VA G Δε?0, f(λ) has no critical points in f^ι(dAp x A);

(iv) VA G Δeo and W G Δ^ x A, Z^1 intersects transversally with

S?"~ι xλ = dDrxλ.
Denote N(f{λ),u0) = f^(u0 x A) n (Z)Γ x A), ΛΓ(^)) = /"/(Δ^ x λ)n

(£)rxA), ΛΓ(̂ ) = g-ι(ApxAεβ)n(DrxAε,o), and by/?: N(g) -+ Δe,0 the natu-
ral projection. Clearly N(fa, UQ) coincides with the Milnor fiber M(uo, v)
of fa o v e r wo From (iii)-(iv) it follows that p: N(g) —> Δ ε 0 is a (trivial)
C°°-bundle, so that we can identify (diffeomorphically) p: N(g) —> Δε5o

We can choose a trivialization of p: N(g) —• Δ ε 0 so that

g-ι(uoxAε,o)n(DrxAε,o) (= \J f^(uoxλ)n(Drxλ))
λ€Δ ε , 0

will be a subproduct of N(fa) xΔε0. Choosing a trivialization of p:
—• Δεo we denote corresponding projection N(g) —• N(fa) by <y
N(fa). Denote by qχ\ N(fa) —• N(fa) the diίfeomoφhism defined by
the chosen trivialization of p : ΛΓ(g) -• Ae,0, ̂  = ίU(y;A))

Take A G Δ ε 0 - (0) and let a be a critical value of fa in Ap x A. Con-
nect a with uo x A in Ap x A by a simple path y: [0,1] —• Ap x A avoiding
other critical values of fa. Let c(a) be the critical point of fa in f^H&).
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Because c(a) is a nondegenerate critical point of fa (λ φ 0), there ex-

ists a continuous map φγ: S"~ι x [0,1] -• N(fa) such that Vμ e [0,1],

φγ(S»-> x μ) C f{-λ)

ι(γ(μ)) Π tft/fo), ^ - i x 0) = c(a), and Vμ G [0,1],

μ 7^0, φγ(S"-{ xμ) is a smooth (n - l)-sphere in lnt(f~)

ι(γ(μ))Π(Dr x A))

which for μ sufficiently close to (0) represents a generator of Hn-{ (Milnor

fiber of c(a) over y(μ))9 and Im(py) is a smooth /7-disk in N(fa) with the

boundary equal to ^ ( S " - 1 x 1 ) C ^ A ) , M 0 ) ( = ^ 1 ( y ( l ) ) Π i V ( ^ ) ) ) .
Denote Δa,y>Mo = Im(^y) and call Δa5),5Mo a relative Lefschetz cycle in

N(fa) (corresponding to a, γ9 uQ).

Clearly <9Δa?7)Mo represents a vanishing cycle in f^Muo x λ).

Definition 4. We say that a smooth «-disk Δ(w0) is a relative Lefschetz
cycle in (N(f{0)), N(fa9 UQ)) if in some N(fa)9 λ^0, there exists a relative
Lefschetz cycle Δa,y,Wo such that Δ(w0) = Qλ(\,γ,u0) (or Δ(M0) =
Evidently ΘA(UQ) represents a vanishing cycle in f ι

Denote

= U (y;i)ιw
Apxλ

= U (g-ι(t,λ)n(dDrxλ))
A€Δe,0

From (iv) above it follows that each N'(fa,uo) is a C°°-manifold,
fw\N'(fw): ^ ; ( ^ ) ) ^ AP i s a C°°-bundle with the typical fiber N'(fa, uΌ),
and g\N'{g) N'(g) -^ Δ^ xΔ £ o is a C°°-bundle with the typical fiber

We can choose trivializations of p: N(g) —• Δε j0 (see above), of
f(θ)\N>(f(O)y. N'ifio)) -• Δ^ and of gU'(^: ^ ' (^) -* Δ^ x Δε,0, so that af-
ter identifying N(g) with N(f{0)) x Δe>0, ^'(7(0)) with N'{f{0), u0) x Δp and
ΛΓ'(^) with Λ '̂(yjO)5 wo) x Δ^ x Δε>0 we will get that (N'(f{0), u0) x Δ^) x Δe>0

will be a subproduct of N(fa) x Δεjo*

After choosing such trivializations we also have for each λ e Δεo a triv-

ialization of fa\N'(fw)- N'(fa) -• Δ^ x A such that ^ λ : iV(/w) ^ ^(/(0))

(obtained from N(g) = N(f{0)) x Δε,0

 P-^J iV(y[0))) transforms it to the

chosen trivialization of f(0)\N>(f{0))' N (fto)) -• Δ,.

Proposition 2. ΓΛ r̂̂  exwto α .yί/i/ίe number of relative Lefshetz cycles

Δι(uo)9 ' 9Δv(uo) in N(f{0)) (that is, smooth n-discs in ΛΓ(/(0)) with

Δ/(M 0 ) Π Λ^(yjO)? wo) = dAi{u0), / = 1, , i/, ^αcΛ dAi(u0) represents a van-

ishing cycle in f^fiuo)), such that N{fi0)) can be retracted to N(f{0)9 u0) u

(U/Li Δ/(wo)) Moreover, this retraction can be chosen so that on N'(fo)) it
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coincides with a retraction ofN'(f^)) to Nf{f{O),uo), corresponding to the

chosen trivialization of f(θ)\N>(fm): N'(f(0)) -• Δp and a retraction ofAp to

Mo-

Proof. Take λ e Δεo - 0 and let aw- ,au be all the critical val-
ues of fa in Δ^ x λ. Choose a system jγ, , γv of simple paths in
Ap x λ connecting <Zi, ,au with uo x λ and meeting only at uo x λ.
For / = 1, ••• ,v let Δ' (w0) = Δtf/̂ wo (relative Lefshetz cycle in N(f{λ))
corresponding to fl/,y/, Wo). Then there exists a retraction of N(f^) to
N(f(λ),uo) U (U/LiΔ/(wo)) which on Nf(f{λ)) coincides with a retraction
of N'(f(λ)) to Nf(f^),uo), corresponding to the chosen trivialization of
f(λ)\N'(f(λ)): W'C/μ)) -^ Δ^ x A and a retraction of Δ^ to wO

Applying the diffeomorphism qλ: N(f^) —• N(f^) and observing that
Qλ(N(f(λ) x wo)) = N(f{0),u0), and each ήrλ(ΔJ (M0)) is a relative Lefschetz
cycle in (N(f^), N(f^, M0)), we obtain from the retraction above a retrac-
tion of N(f(Q)) satisfying all the conditions of the proposition, q.e.d.

Going back to / : W —> T (dime T — 1) let us assume that there is a
closed submanifold Y in W such that f(Y) = T, f\γ: Y -+ T is a C°°-
bundle and 7 n 5(/) = 0.

Take ί G T - Sb(f) and connect 5 (e %(/)) to t by a simple path Γ in
TvnthΓr\Sb(f) = s.

Considering again 7V(/<0)) and N(β°\ u0) (= A/(M0, ^), the Milnor fiber
corresponding to v and uo), assume that UQ = Γ n dΔ^ and denote by P
the part of Γ from w0 to ί.

f\f-HΓ)' f-ι(Γf) - P is a C°°-bundle, and /|/-, (P)ny: Λ H Π n y -
P is a C°°-subbundle of it. Take a trivialization of f~ι(Γ) -> P such that
it will give also a trivialization of f~ι(Γ) Γ)Y -> P . Let Π: / " H Γ ) -^ ^
(= f-\t)) be the corresponding projection. Then Π(f-{(Γ)nY) = YΠEt.

Take N(fi°>) small enough so that N(βo>>) r\Y = 0. Let Δ(M0) be a
relative Lefshetz cycle in (N(fiV), N(β°\u0)). Then A(u0) Π f-χ(u0) =
dA(uo) is a smooth (Λ - l)-sphere representing a vanishing cycle in EUQ =
/-^wo). Denote

Δ(wo,Γ) =A(uo)U(Π-ι(U(dA(uo)))).

Because Δ(w0) is a smooth «-disk, Δ(w0) πΠ'^Π^Δίwo))) = <9Δ(«o), and
Π-^ΠίaΔίMo))) is diffeomoφhic to Sn~ι x [0,1], we see that Δ(wo,Γ) is
an «-disk in W. Clearly Δ(M O ,Γ) ΠY = 0, Δ(M O ,Γ) Π £/ = 5Δ(M O ,Γ) and
9Δ(wo,Γ) is a smooth (n - l)-sphere representing a vanishing cycle in Et.

Definition 5. We call any A(uo,Γ) obtained as above a relative Lef-
schetz cycle in (W9Et) or (W - Y9Et - Et Π Y).
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Proposition 3. Let f\W -+ T and Y c W be as above. Assume that
T is topologically an open 2-disc, and that S{f) = q{f), that is, the fibers
off have only isolated singularities. Let toeT- Sb{f) and Eh = f~ι{to)-
Then there exists a finite number of relative Lefschetz cycles Δ(1), , Δ(//) in
{W-Y,Eto-EtonY) {that is, smooth n-disks in W-Y with A{i)Γ)Eto = <9Δ(/)

(HO), / = 1, ,μ, each <9Δ(z) represents a vanishing cycle in Eto) such that
W can be retracted to Eto u (Uf=i ^(/)) Moreover, this retraction can be
chosen so that on Y it coincides with a "trivial retraction" ofYtoYn Eto

{= (f\γ)~ι{to)) corresponding to a trivialization of f\γ\ Y —• T and a
retraction of T {topologically a 2-disc) to t0. In particular, W-Y can be
retracted to {Eto - Eto Γ)Y)U ((J?=1 Δ(/)).

Proof Let a\9 , aμ be all the critical values of / in Γ, for each / =
1, ,μ let dxbe a small disc centered at αz, and let a\ be a point on dd[.
Let ΓJ , / = 1, , μ, be simple paths in T - \fi={ di connecting the α 's with
to and meeting only at tQ. First we retract W to /"HU/LiίΠ u ^ ) ) so t h * t
on Y we use a retraction corresponding to a trivialization of f\γ: Y —• T
and a retraction of T to ULi(Γ/ u rf/)

Next, using Proposition 2 we retract each f~ι{di), i = 1,•• ,μ,
to /~ ! ( α /) U ((J7=iΔ;(α/)) respecting "trivial retraction" on 7, where
Δ7(α ) are some relative Lefschetz cycles in (/~1(d I),/~1(αJ)). Thus, we
get a retraction of f-{{\JU(Γi u * ) ) to /"HU/LiΓ Ou
(U/Li UyLi Δy(Λ{)), respecting a "trivial retraction" on Y.

To finish, use a trivialization of /"HU/Li Γ/) ~> U/Li Γ/ respecting the
chosen trivialization of f\γ\ Y —• Γ, a retraction of /""HU/Li Γ' ) to £ / o

corresponding to this trivialization and a retraction of \Jf=ι Γ' to to, and
the definition of relative Lefschetz cycles in (W - Y, Eίo - Y n EtQ).

2. Linear systems of "Lefschetz type"

Let X be an ^-dimensional compact complex manifold, Σ) a base point
free linear system on X, and CPN the parameter space for Σ). Denote,
V/ € CP^, by £"/ the divisor in D corresponding to t, and the graph of J)
by Ĥ  = {(JC, ί ) e ί x C ^ | X € £,}.

Let / : ϊΓ -• PN, p: W -* X be the natural projections. From the fact
that Σ) is base point free, it easily follows that W is nonsingular. In fact,
p: W -• X is a holomorphic C / ^ " * -bundle over X.

Denote S{D) = S{f), Sb{D) = S*(/), ?(Z)) = «(/) and qb{D) = qb{f).
V/ G CPN we naturally identify ^ with f"ι(t). As in §1 (see Definition
3) we define for any Et, t e CPN - Sb{D), the set A{t) e Hn-ι{Et), the
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elements of which we call vanishing cycles in Et. We shall write Λ/>(ί)
instead of A(ή. We also define the subgroup GD(t) c Aut(Hn-ι(Et))
generated by Picard-Lefschetz transformations θδ, δ e AD(ή: θδ(z) =

z + (-l)"(»+ι)/2(z,δ)δ. It follows from §1 that each δ e AD(t) can be rep-
resented by a smooth (n - l)-sphere δ in Et, and that each θ$ is induced
by an orientation preserving diffeomorphism of Et, a "Dehn twist" defined
b y ί .

Proposition 4. Assume that f(S(D) - q{D)) has codimension > 2 in
CPN. As in §7, we denote by

Ψ,: πι(PN - Sb(D),t) - Aut(J/π-i(£,))

the natural homomorphism corresponding to the C00-bundle f\w-f-^sb{d)):

W - f-\Sb{D)) - , PN - Sb(D). Then

ImΨ, C GD(t).

Proof. Take a generic line L in CPN. Since codim^ f(S{D) - q{D)) >
2, we have Lnf(S(D) - q(D)) = 0. That means that any singular element
Es of the pencil T)L = {Eht e L} has only isolated singularities.

Using local versal families of isolated singularities (as in §1) it is easy
to show that any local monodromy automorphism of Hn-\{Et>)9 where Et*
is in a neighborhood of Es with only isolated singularities, is a product
of Picard-Lefschetz transformations (and their inverses) corresponding to
some vanishing cycles, that is an element of G/)(ί/)

We get that V loop Γ in L - L Π S b ( / ) starting at some t0 e L-LΓ\Sb{f)
the corresponding Ψ(Γ) e GD{t0). Because π\(L - L n Sb(f),t0) ->
π\(CPN - Sb(f), to) is surjective for a generic line L in CPN, we see that

ImΨt0CGD(t0).

Proposition 5. Let Σ) be a base point free linear system on X with q(Ί))
connected and codimc/>* f(S(D) -q(D))>2. Then for t e CPN - Sb(D)
the set AD(t) (vanishing cycles in Et) belongs to only one G^{t)-orbit in
Hn-x{Et).

Proof The proof follows immediately from Propositions 1 and 4.
Let [D] be the complex line bundle on X and let V be the linear subspace

in H°(X,#x[D]) which defines 5). For any subvariety Γ c i w e define
the linear system S)|y, the restriction of J) to Y, by the line bundle [D]\γ

and the linear subspace in H°{Y9#γ[D]\γ) which is the image of V under
the restriction homomorphism:

H°(X,0x[D]) - H°(Y,0y[D]\Y).
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Definition 6. We say that a linear system Σ) on X is of Lefschetz type
if the following conditions are satisfied:

(a) Σ) is infinite and base point free;

(b) codim(/(S(2)) - ?(£>))) in CP^ (the parameter space of D) is > 2;

(c) in the case dim c X > 2, for a generic 2s, € Σ) the linear system Ί)\Et

on £, is of Lefschetz type.

Let Σ) be a linear system of Lefschetz type on X. Because Σ) is base point
free, any generic Et e Σ) is nonsingular (Bertini's theorem). Moreover, if
L is a generic line in CPN, and Ί)L is the pencil in Σ) parametrized by L,
then it follows from (b) above that any singular element Es e Σ)L has only
isolated singular points. In the case dime X > 2, taking a generic Et e D
we get from (c) and (a) above that Σ%, is infinite and a base point free
linear system on Et. Thus two generic Et, Et> e Σ) intersect transversally at
nonempty EtC\Ev by applying Bertini's theorem to Σ%,. In particular, for a
generic pencil Ί)L in Σ) the base point set BL is nonempty and nonsingular,
and Wi,/2 € L the corresponding £",,, 2?/2 intersect transversally at BL =
EtιΠEί2.

Andreotti and Frankel proofs of the First and Second Lefschetz theo-
rems can be used almost without changes to prove similar theorems for
linear systems of Lefschetz type.

Proposition 6. Let Σ) be a linear system of Lefschetz type on X, £Όo be
a nonsingular {generic) element ofΊ), X1 = X - Eoo, Eo be another generic
element in Σ), and Ef

0 = £Ό - E0Γ\ £Όo. Then:

(1) there exist smooth n-discs Δ( i), , Δ^) in X', such that Vi = 1, , v,
Δ(/ ) Π^ό = 9Δ(/), 9Δ(/) represents a vanishing cycle in Eo (Δ(/) is transversal
to Ef

0 at Δ(/) Π ^ ) , and a retraction ofX1 to E'o u (U/Li Δ(o),

(2) X' is homotopically equivalent to an n-dimensional complex.

Proof (1) Let Ί)L be the pencil in Σ) containing 2?o and £Όo (^ the
parameter line of Ί)L), B = EonEoo be the base point set of Σ), WL c X x L
be the graph of J ) L i n I x L, and / L : WL^L9φ: WL -• X be the natural
projections. It is easy to see that ^ is the blowing-up of X with center B,
so that φ\wL-φ-\(B): W L - Ψ~ι{B) -* x ~ B i s a n isomorphism. Let (0),
(oo) G i b e the points corresponding to E^ and E^y To prove (1) we
apply Proposition 3 (§1) with T = L- (oo), r0 = (0), W = WL - / " ^ ( o o ) ) ,
7 = ^-^Λ) - ί^-1^) Πf[ι{(oo)), and / = / L | ^ _ / L - . ( ( O O ) ) .

(2) To prove (2) we apply induction on the dimension of X and observe
that EQ = Eo - EQΠEOO = Eo - B, where B is a generic element of a system
of Lefschetz type Ώ\Eo on Eo. q.e.d.
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Let D be a linear system of Lefschetz type on X, and E a nonsingular
element of Σ).

Definition 7. A relative Lefschetz cycle in (X, E) is a smooth «-disc Δ
on X (n = dime X) with the following properties:

( a ) Δ n £ = 9Δ and dA represents a vanishing cycle in E;
(b) Δ is transversal to E at each point of Δ n E.
We also say that an element δ e Hn-\{E) is a good vanishing cycle in E

if 3 a relative Lefshetz cycle Δ in (X, E) such that dA represents δ.
Denote by ir the canonical homomorphism

Hr(E) - Hr(X).

Proposition 7 (1st Lefschetz Theorem; cf [1]). Vr < n - 2, ir is an
isomorphism and in-\ is an epimorphism.

Proof (cf. [1]). We use Proposition 6 with E^ = E and Xf = X - E.
Then it follows from Proposition 6(2) that Hr(X') = 0 Vr > n + 1. Thus
by the Lefschetz Duality Theorem

Hr(X,E) = 0 V r < Λ - l .

Now use homology exact sequence for (X,E).
Proposition 8. (1) (2nd Lefschetz Theorem; cf [2]) Ker(/π_i) is gener-

ated by good vanishing cycles in E.
(2) Hn(X, E) is generated by relative Lefschetz cycles in (X, E).
(3) Any element z € Hn(X) can be represented by a cycle of the following

form:

i=\

where m, e 1, all Δ(/) are relative Lefschetz cycles in (X,E), and y is an
n-chain in E with dy = ^ = 1 w, 9Δ(, ), y representing a relation between
vanishing cycles δi = dA^, i = 1, , μ.

Proof (1) Using Proposition 6 we can repeat word by word the Andre-
otti-Frankel proof of the 2nd Lefschetz Theorem (see [2, §6, Theorem 3];
our Proposition 6 replaces Theorem 1 of [2].)

(2) Consider

Hn(X) - Hn(X,E) - , Hn-{(E) .-> Hn-X(X).
Jn On In-1

Take any a e Hn(X,E), and let b = dn(a). Since b e Ker/π_i, it follows
from part (1) of the proposition that we can write b = Σu

i=x miδi, where
nti e 1, and each δi is a good vanishing cycle in E. Thus there exist relative
Lefschetz cycles Δ(/)) / = 1, , u, in (X, E) such that each δi - dA^.
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Let ax = fl-ΣJLi mΛn τ h en da{ = βfl-ΣίLi m& = b~ΣU mfo =
0, and so there exists z e Hn(X) such that a{ = jn(z).

Let {£",, t e CPι} be a generic pencil in S containing £". Denote £o = £>
and let E^ be another nonsingular element of {Et, t e CP1}, and 5 =
£, Π E. Let Φ: ΛΓ -• X be the blow-up of X with center 5, B = Φ " ^ ^ ) ,
and £/ be the proper transform of Et in X. Because Φ|^ : Et -+ Et is an
isomorphism, we identify EQ with £Ό a n d ^oo with £Όo. Let 5 ^ = EQQ nB,
let

Hn(B) Λ Hn^iBoo)

be parts of Thom-Ghysin sequences for (X,£Όo) and (B^Boo) respectively.
Let $?„ = Hn(Φ). It follows from Theorem 2 of [2] that φn is surjective.
Thus for z above 3z e Hn(X) with z = φn(z). Consider the following
commutative diagram of canonical homomorphisms:

Hn(B) Λ Hn^Boo)

/ σ

ftW HniX-E^Eo)
hi / P (=Φ.)

It is easy to see that q and //Λ_2 are surjective by using B = B x CP1 and
Proposition 7 for (EQCBOQ), SO there exists y E Hn(B) such that σ(z) =
μn-2Q(y)> Since σ/Λ(y) = μn-2Q(y), we get σ(z) = σ?Λ(y). Let Zx =
z - ?Λ(j;). Then σ(Zi) = 0 and so 3w e Hn(X - E^) such that Zx = l(w).

Thus jnψniZi) = jnΨnHβ) = PJniβ).
It follows from Proposition 6 that J/Π(ΛΓ - £«,, £Ό) is generated by rela-

tive Lefschetz cycles, say Δi, , Ap, in (X - E^ - 2?, £"0 - £b ΠB). Clearly
each Δj = Φ(Δ ;), j = 1, ,/?, is a relative Lefschetz cycle in (ΛΓ,is).

Since jπ(t&) e //«(^ - £00,^0) we can write j«(ώ) = Σy=i ^A/, with

all ΛJ G Z. Thus pjπ(t&) = Σ^=i */A/, and jnφn(Z{) = Σ ^ i Λ Δy. Because

z = Zi +/ r t(^), we have

β! = Λ ( z ) =jnφn(z) =Jn<Pn(Zi)

7=1
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Proof. Consider the commutative diagram:

We see that jnφnιn(y) = Jninμnφ'n(y) = 0 since jnin = 0. q.e.d.

Now we continue to prove Part (2) of Proposition 8. From the above

we get a{ = Yfj=x ΠJAJ and a = ax + Σ/Li m/Δ(/) = γfj=ι ΠjAj + ΣH^i mAi)

where all rij, ra, e Z and all Δy,Δ(, ) are relative Lefschetz cycles in (X9E).

(3) Part (3) follows immediately from (2) and the exact sequence:

Hn(E) -+ Hn(X) -* Hn(X,E)
In jn

3. Sequences of finite cyclic coverings

Proposition 9. Let X be an n-dimensional compact complex manifold,
S an{n-\ )-dimensional complex submanifold ofX, and f: Y -* X a finite
cyclic covering of X ramified at S.1 Let 5) be a linear system of Lefschetz
type on X {Definition 6) such that Ί)\s is a linear system of Lefschetz type
on S. Then /*© is a linear system of Lefschetz type on Y.

Proof Use induction on d i m c ^ . It is clear that f*Ί) is infinite and
base point free. Let ΏL be a generic pencil in D, and L the parameter line
of D/,. Let s G L and c e f*Esn f~ι(S). We can assume that there exist
complex analytic coordinates y\, ,yn in a neighborhood of c on Y, and
X[, ,xn in a neighborhood of f(c) in X such that locally / is given by
xιr = yh i = 1, . 9 n - 1, xn = y™ (m > 1), xn = 0 is a local equation of
S at /(c). Let F(xi, ,.*„) = 0 be a local equation of Es at f(c). Then
/*£•, in a neighborhood of c has local equation F(yu- ,yn_uy™) = 0,
and c is singular on f*Es iff

Since yπ(c) = 0, this system of equations is equivalent to

f £ ( 0 = 0, / = ! , • • • , Λ - l ; or | £
'We consider only totally ramified cyclic coverings (e.g. / ι(S) ~ S).
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This shows that a point a e f*Es is singular on f*Es iff f(a) is a singular
point of Es or of Es\s.

Because Ί)L\S is a generic pencil in J) | 5 , and Ί) and 2)|s are of Lefschetz
type, we see that singular points of Es and Es\s (s e L) must be isolated,
that is, f*Es has only a finite number of singular points. Thus f*Ώ satisfies
condition (b) in Definition 6 the definition of Lefschetz type linear systems.

To check (c) of this definition for / * £ , we must take a generic E{ el)
and show that f*Ί3\f*E{ is of Lefschetz type on f*E\. Since Ί)\s is of
Lefschetz type, E\ \$ is nonsingular, that is, E\ is transversal to S. Thus
S\ = Eι ΠS and f*E\ are nonsingular, and f\ = f\fEχ '• f*E\ —y E\ is
a finite cyclic covering of E\ ramified at S\. Let Σ>i = Ί)\E{. TO use the
induction where E\ will replace X, we have to check only that Ί)ι\s{ is
of Lefschetz type on S\, or ̂ \snE{ is of Lefschetz type o n S n £ i . But
2)|sn£, = (®U)kn,s Since 3)|5 is of Lefschetz type on S and E\CiS is
a generic element of %>\s, we have that (SlsJ^ns is of Lefschetz type on

Eι ns.
Proposition 10. Let f:Y-+Xbe a finite cyclic covering of n-dimen-

sional compact complex manifolds ramified at a complex submanifold S of
X. Assume that S is an element of a linear system of Lefschetz type on X.
Vfc, denote by φ^: Hk{Y) —> Hk(X) the canonical homology homomorphism
corresponding to f. Then V/c = 1, , n — 1, φk is an isomorphism, and φn

is an epimorphism.
Proof Let S = f~ι(S), X' = X - 5, T = Y - S and / ' = f\γ.: T ->

A"'. From Proposition 6(2) it follows that X' is homotopically equivalent
to an ^-complex. Since f: Y1 —> X' is a nonramified covering, Yf is
homotopically equivalent to an rc-complex. In particular Hk(Y - S) = 0
Vfc > n + 1. By the Lefschetz Duality Theorem Hk(Y,S) = OVk < n - I,
and for the same reasons, Hk(X,S) = 0 Vfc < « - 1.

C/tf j'm 1. The canonical homomorphism

ψn:Hn(Y,S)^Hn(X,S)

is an epimorphism.
Proof We can find a (closed) tubular neighborhood ΓS of S in X such

that / " * (ΓS) is a tubular neighborhood of S in 7. Denote Γ5 - / " ι (Γ5),
and by ψnj the canonical homomorphism Hn(Y,TS) -> Hn(X,TS); let
τ: //n(X, Γ5) -• Hn(X,S) be the canonical isomorphism.

Clearly it is enough to show that ψnj is an epimorphism.
It follows from Proposition 8(2) that H»(X,S) is generated by relative

Lefschetz cycles, say Δ(1), ,Δ(l/), in (X,S). Since each Δ(/) is transversal
to S, we can assume that each Δ;

(/) = Δ(/) -Δ ( / ) nInt(Γ5) is a smooth n-disc
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in X - S with <9Δ'(/) c dTS. Due to the fact that / | y _ 5 : Y - S -> X - S

is a nonramified covering we can lift each Δ ^ to a smooth rc-disc Δ(Z)

in Y - S with <9Δ(/) c dTS. Because / | A ( ) : Δ ( z ) -> Δ'(/), / = l, - ,i/, is a

homeomorphism, we see that each Δ(, ) represents an element of Hn(Y, TS)

with ψn,τ{\i)) = Δ'(/) in Hn(X, TS). Thus τψnJ(A{i)) = Δ ( 0 in / / „ ( * , S).

Because Δ ( 1 ) , , Δ(z,} were generators of Hn(X9 S), ψnj is an epimorphism.

q.e.d.
Clearly f\§: S —• S is an isomorphism. Consider the following commu-

tative diagrams:
(( )α)
HH(S) k Hn{Y) k HH(Y,S) ^ HH-{{S) '"- HH-X(Y) ^ ! ^ . - i ^ S )

in Jn On ln-l Jn-l

Hk{Y,S) 6+ Hk_,(S) '*-' Hk_ι{Y) J& Λit_,(r,5)
((*)^) in iλ*-i In-: I ψk-\

Hk(X,S) - Λίt-i(S) .-» W*-iW . - Λt_,(ΛΓ,S)

Claim 2. ψk-\ is an isomoφhism for k < n — 1.
ΛΌO/ Taking fc < n - 1 in (*)^, and using Hk(X,S) = Hk-{{X,S) =

Hk(Y,S) = Hk_{(Y,S) = 0 (for fc < n - 1) we get that ik_x and 4-i
are isomorphisms in (*)β ("1st Lefschetz Theorem"). Since λk_x is an
isomorphism, we conclude that φk-\ is an isomorphism for k <n — 1.

C/α/m 3. ί?n_i is an isomoφhism.
Proof. Consider (*)α. Because in-\ is surjective (Hn-\(X,S) = 0),

φn-ι is an epimoφhism, so we have to prove that K e r ^ _ i = 0. Take any
a G Ker$!>„_!. Since Hn-\(Y,S) = 0, ιn-\ is surjective. Thus 3b e Hn-\(S)
with ιn-\{b) = a, and 0 = φn-Jn-\(b) = in-\λn-\{b). Furthermore, Ξc G
Hn(X,S) with 9Λ(c) = AΛ_i(6). Since ψn is surjective from Claim 1 above,
3c{ G Hn(Y,S) with ^ Λ ( d ) = c and dnψn(c{) = λn-ι(b), or λn-ιdn(d) =
λn-\(b). But A«_i is an isomoφhism, so dn(c\) = b. Hence

Claim 4. φn is an epimoφhism.
Proof. Take any a G Hn(X). Because ψn is surjective from Claim 1,

3b G Hn{Y,5) with ^Λ(6) = jΛ(α). Since^-i^ίfc) = dnΨn(b) = dnjn(a) =
0 and λn-\ is an isomoφhism, we get dn(b) = 0. Thus 3c G Hn(Y) such
that * = jn(c), and yn(fl - ^(c)) = ψn(b) - ψnjn(c) = ψn(b) - ψn{b) = 0.
Further, 3c\ G Hn(S) with a - φn(c) = /π(ci). Since λn is an isomoφhism,
3c2 G //π(5) withAw(c2) = cx. Now we have a-φn{c) = inλn(c2) = (pn
and α = φn(c + /π(c2)). Hence φn is an epimoφhism.
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Corollary of Proposition 10. Let z be any primitive element in Hn(X, Z).
Then f*z is a primitive element in Hn(Y, 1).

Proof. Since z is primitive, 3 an element a e Hn(X) with z(a) = 1. By
Proposition 10, <pn: Hn(Y) -+ Hn(X) is surjective. Thus 3ά e Hn(Ϋ) with
Mά) = φn(ά) = a, and

So f*z is primitive.
Let X be an ̂ -dimensional nonsingular projective algebraic variety, X c

CPN, and 2) be the linear system of hyperplane sections of X. Assume that
X does not belong to any hyperplane of CPN. Let S\, , Sk be subvarieties
of codimension one on X such that V/Ί, , 7'/ G {1,2, , k}, S^ Π ΉSj,
is nonsingular and |JjLi Sj has only normal crossing singularities.

Let mi, , Hi* be positive integers such that Sj is divisible by m7 in
PicX for any y = 1, , k. Define inductively finite morphisms α,: Xj —•
X, j = 0,- ,k, as follows: Xo = X, α0 = Id, and if α/_i: JT/_i —• X is
defined, let )ff;: Xj —• ^Γ/_i be the cyclic covering of degree m7 ramified at
α~\(Sj), αj = α7 _i o ^ .

Denote J)y = α*Σ), inverse images of divisors of D, and by D ,̂singx5 Vx G
X, the set of elements of Σ) which pass through c and are singular at x.
®jc,singjc is a linear subsystem of Ί).

Proposition 11. Assume that V x e ί ίλe //near system Dosing * w /n/ί-
n/ίe α«ί/ base point free in X — x. Let Et be any nonsingular element in
5)*» Aok(t) C Hn-\(Et) be the set of vanishing cycles in Et, and Gok(t) be
the subgroup of A\x\{Hn-\(Et)) generated by all Picard-Lefschetz transfor-
mations {θs,δ e ADk(t)}. Then ADk(t) belongs to only one GDk{t)-orbit in
Hn-χ{Et).

Proof Denote by T = CPN* the parameter space of 2). Let Et e 2) be
the element of 2) corresponding to t Vί E Γ. As in §2 denote the graph of
ΏbyW = {(x,t) eXxT\xe Et}. Let f.W^Tandp.W^Xbe the
natural projections. It is easy to see that W is nonsingular, and actually
p: W —• X is a holomorphic CPN~ι -bundle over Z.

Set Wk = W xx Xk, denote the canonical projections by gk: Wk —• W
and p*: fKfr -* ̂ , and set fk = fo gk: Wk ̂  T. It is clear that Wk =
{(ά,t) eXkx T\ά e Et}. We claim that q(Tfk) = q(fk) is connected.2 To
see this we have to use the following two claims.

Claim 1. Let Y be any nonsingular algebraic variety in CPn. Denote
by <^, W G Γ = CP^*, the hyperplane in CPN* corresponding to t, and
by ^r,fl, Vα G F, the dim Γ-dimensional linear subspace in CPN which is

2The simplified proof of this statement was suggested by the referee.
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tangent to Y at a. Let us say that %H is tangent to Y at a eY if %l D &γta>
Denote τγ = {(a, t) eY x T\X[ is tangent to Y at a}, and by pγ: τy -• Y
the natural projection. Then pγ\ xY —• Γ is a holomorphic projective
bundle over Y.

Claim 2. (Using the notation of the proposition). Denote by / the set
consisting of X and all Sj^- Ή SJe. Then

cei

The proofs of these two claims are standard. In the proof of Claim 2
we have to use that V3 e Xk the map a^: Xk -+ X can be defined locally
by: Xi —> xf', α, > 1, integers, / = 1, , n.

For any C e / (see Claim 2) denote #c = q(fk)ngk

ι(τc). Because ί (Λ)
is open in S{fk), each # c is open in g^1 (τc). From Claim 2 it follows that
q{fk) - Ucei Qc- Since p | τ c : τc —• C is a projective bundle, we get that
gkl(τc) ^ akl(C) i s a projective bundle and in particular Vό G α^^C),
Pk\ά) n ^ 1 ( τ ^ ) i s a complex projective space. So if p^ι{ά) Πqc ^ 0 ,
then pk

ι(ά) Π qc is a nonempty Zariski open subset in p^x{a) n g^^τc)
and thus irreducible and connected. In particular, when p^ι{ά) Πqc φ®,
there is only one connected component of qc intersecting p^x{a). Denote
this component by qc,ά

Clearly all connected components of qc (for qc φ 0) can be represented
as qc ~b for some b e AT*. From the assumptions of our proposition it easily
follows that qx Φ 0 . Thus qx is connected; it is a nonempty Zariski open
subset in the projective bundle g^ι(τχ) over Xk. So to show that q(fk)
is connected, we have to prove only that for each qc~b the intersection

Take any qch and let b = α*(έ). Because Dbύn%b is infinite and base
point free on X - b, there exists Eto e D such that Eto B b, and b is the
only singularity of EtQ. Then ^ has only isolated singularities, and b is
one of them. Thus we get {b,t0) € <?(/), (Mo) € τ^, and so (b9to) e qx.
Since JTo must be tangent to X at b, it is also tangent to C at 6, that is,
(6, fo) € τ c . So (έ, r0) € ^ ( τ c ) Π ̂ (/) = ^ c which implies (b, t0) G qch.
Hence ^ c ^ n ^ φ 0.

So we have proved that q(fk) = qφk) is connected.
By Proposition 9, S* is a linear system of Lefschetz type in Af*. Thus

codimτfk(S(Όk) - Q{®k)) > 2 Because <7(Σ)̂ ) is connected, it follows
from Proposition 5 that V/ € Γ - 5^(2)^), Λ©^/) belongs to only one
GΌk(t)-ovb\\ in Hn_x(Et). q.e.d.
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Assume now that d i m c ^ = 3, b2(X) = 1, and that for a nonsingular
Et € T>k and the canonical class K£t, K\ φ 0. Let /: H2(Et) -* J72(**)
be the canonical homomorphism for Et «-> Xk, and w: H4(Xk) —> H2(Et)
be the "intersection homomorphism". From the adjunction formula it
follows that 3e E /^(A^) such that κ(e) = KEr

For any vanishing cycle δ e H2(Et) we have (K^ δ)^ = (e i(δ))χk = 0.
Denote by (Λ^) the maximal rank-one submodule in H2(Et) containing
Kg, and by Aut(H2(Et), (Kg()) the group of all intersection preserving
automorphisms a of H2(Et) such that Vz E ( ^ ) , α(Z) = Z. From
(K£t ί ) = 0V vanishing cycles <J E // 2 (^) it follows that V0 € G^W
and Vz G ( ^ ) 0(z) = z. Thus Gj>k(t) c A u t ί / ^ ί ^ ) , ^ ) ) .

Denote by Ff the submodule in H2(Et)/(Tor) generated by all elements
of Λsfc(f) (all vanishing cycles in H2(Et)). Let ffγt be the group of all
automorphisms of Vt preserving the intersection pairing. Evidently there
is a natural homomorphism of G®k(t) in <9γt.

From Proposition 11 and b2(X) = 1 it follows that b2(Xk) = 1 and thus
bt(Xk) = 1. Kl Φ 0 implies now that e generates H4(Xk) ® Q.

Let z E // 2 (^) be such that (z tf£/)& = 0. Thus 0 = (z w(e))£/ =
(i(z) e) and /(z) = 0 in H2(X) (g> Q. Using also ΛΓ| / O w e get the
orthogonal decomposition:

H2(Et) Θ Q = (Ker / ® Q) ® ( ( ^ ) 0 Q).

From this decomposition and the Proposition 8(1) it follows that if the
image of Gχ>k (/) in ffyt has a finite index, then G%k (t) is a subgroup of finite
index in Aut(//2(^), (KEι)).

On the other hand, by results of Ebeling (see [3], [4]), G®k(t) will have
a finite index in <fy(Et) when the following conditions are satisfied:

(1) Σ) has an element Es with only isolated singularities, one of which
has in its versal local deformation the so-called ^ Ί 2 (Arnold) singularity
(it is given by z 3 + y3 + x4 = 0 (see [3]).

(2) ADk(ή belongs to only one GDk(t)-oτbit in Hn-ι(Et).
Proposition 12. Assume as in Proposition 11 that Vx E X, Acting* w

infinite and base point free in X-x. Assume also (as above) that dime X —
3, b2(X) = \,Kl φθ and that there exists Es in Σ) such that all singularities
of Es are isolated and one of them has in its versal local deformation the
so-called %2 singularity (locally of the form z 3 +y3 + x4 = 0). Then GDk(t)
is a subgroup of finite index in Aut(H2(Et), (Kgt)).

Proof The proof follows from remarks above (Ebeling's results) com-
bined with Proposition 11.
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Proposition-Example 13. Let X = CP3, 2 be the linear system of all
quadrics in CP3, and S\, ,5* be k nonsingular surfaces in CP3, such
that each Sj{ D'-nSj) is nonsingular and \Jk

j={ Sj has only normal crossing
singularities. Let {mi, ,mjc} be positive integers such that mj divides
degSy, j = 1, ,/c. Define inductively α,-: Xj —> X, j = 0, •• ,k, as
follows: Xo = X, ao = Id, and if OLJ-\ : Xj-\ —• X is defined, let βj: Xj —•
Xj-ι be the degree mj cyclic covering of Xj-\ ramified at a~\(Sj), α, =

α/_i o /?7. L ^ S)/t = ak®> and let Et be a generic element in 2)*. Assume
that 3j0 e {1, ,k} such that mjo > 3 and d e g ^ > 4. Then GDk(t) is a
subgroup of finite index in Aut(H2(Et), (Kgt)).

Proof We shall use Proposition 12. Take any x e X. Considering all
quadric cones in X = CP 3 with the vertex at x, we see that Dx^n%x is
infinite and base point free in X - x. Without loss of generality we can
assume that 70= 1 •

Let (JCO : X\: Xi: xi) be homogeneous coordinates in X = CP3, A = x* +
X2χo> Q> F> G ^ e s o m e generic homogeneous polynomials in (XQ : x\: x2: JC3)
with the following properties:

(a) degβ = 2, degi7 = mi - 4, degG = mi - 2;
(b) {*i = x2 = 0} Π {(2 = 0} Π {G = 0} = 0;
(c) {Λ = 0} Π {F = 0} Π {Q = 0} Π {G = 0} = 0;
(d) {JCI = x2 = 0} Π {Q = 0} Π {F = 0} = 0.
Using Bertini's Theorem we can see that for generic F, Q, G as above

and a generic A, the surface of degree mi given by

in CP 3 is nonsingular.
Denote by Es = {Q = 0} and let β\: X\ —• X be the finite cyclic covering

of degree mi of X = CP3 ramified at Suλ. Let S u = { 5 U n ^ } . Then
5ΊfΛ is a curve on £ 5 which has two singular points, say a\,a2, of type
x4 + y3 = 0 (they are the points of £*5 n {xi = x2 = 0}). 5 l f A is the branch
curve of the cyclic covering β\\β-uEy β^l(Fs) —»• Es.

Let £",,! = βϊ\Es), bi = βϊ\ai\ i = 1,2. Clearly at each bi9 i = 1,2,
JEij has the singularity locally given by zm] = y3 -f x4. Since we assume
that mi > 3, this singularity has in its local versal family the singularity

zm, + εz3 = y3» + χ4 Qε | ^ i) equivalent to z3 = y3 + x4, that is type 2^2

singularity.
Now choose generic surfaces 5*2,̂ , 9S^ in CP 3, άegSj^ = mj, such

that each SJuλ n ••• Π 5/^, j \ , - Ji € {1, ,/c}, is nonsingular and
that (Jy=i 7̂,/i has only normal crossings. Deforming given SΊ, ,5^ to
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^ U J >Sk,λ we see that it is enough to prove the proposition in the case
Sj = Sjyχ. Since in this case all conditions of Proposition 12 are satisfied,
GDk{t) is of finite index in Aut^CE*), (K£t)).

4. Examples of (orientation preserving) homeomorphic and not
dίffeomorphic simply-connected algebraic surfaces of general type

Using a new invariant of S. Donaldson the following theorem was re-
cently proved by R. Friedman and J. Morgan (see [6, §3]).

Theorem (R. Friedman-J. Morgan). Let S\ and S2 be two simply-
connected algebraic surfaces of general type. Suppose:

(i) orientation preserving diffeomorphisms ofSj {j =1,2) induce a sub-
group of finite index in Aut(H2(Sj), (KSj));

(ii) pg(S\) andpg(S2) are even;
(iii) Ksj - itjkj, where Πj e 1+, kj e H2(Sj, 1) is a primitive cohomology

class, and n\ φ n2.
Then S\ and S2 are not orientation preserving diffeomorphic.
We shall apply this theorem to some abelian Galois coverings of CPι x

CPι with branch loci having only normal crossing singularities. More
explicitly let Yo = CPι x CP 1, l{ = pt xCP 1, l2 = CP1 x pt, and C = h+l2.
Let {x\,x2, - "} be a sequence of positive integers. Define finite coverings
gk(x\,- 9xk) = gk Y(x\,'' ,Xk) -* 0̂ as follows:

Let go = Id. Assume that gk-\ is already defined. Let fk: Y(x\, •• ,xk)
—• Y(JCI , , xk-1) be a triple cyclic covering of Y(x\, , xk-\) (for k = 1
of YQ) with nonsingular branch locus Bk linearly equivalent to g£_ j (
Let gk = gk-\ 'fk-

Lemma. Let Yk = Y(x\, ,xk), and Ck = g£C. Then

(3) the index τ(Yk) = -16 • 3*" ι (Σt i xf);

(4) χ(Yk) = 1 +pg(Yk) = 3k(ΣlχXi - l)2 + 2 3k-ι(ΣlιXΪ).
Proof Use induction on k. The lemma is true for Yo = Y{0) by taking

"all X/"=0. Assume it is true for Yk_ι (k> 1).
Since Kγk = f^Kγk_{ +\f£Bk and by the inductive assumption Kγk_ϊ =

ti 2xkCk =

Using Cl = 2 - 3k we get
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This proves (1) and (2) of the lemma. From KYk = f^Ky^ + \fkBk it
follows also that c\(Yk) = 3c2(Yk^) + 4Kγk_t • Bk + \B2. Using c2(Yk) =
lc2(Yk_i) - 2ci(Bk) and -2cx{Bk) = 2{KYk_{ + Bk) • Bk we get

= \{c2{Yk)-2c2{Yk))

_,) + 4tfn_, Bk + \B\ - 6c2(y f c_,) - AKYk_x • Bk - 4B2

k]

t_,) - 2c2(Yk_ι)) - \B2

k] =

By inductive assumption τ{Yk^ι) = —16 3A~2(23f=Γ1

I xf). Because Bk =
-ιQxkC), we have B\ = lk~x • 9 -x\ • 2 and -\B\ = -16 3k~ιx2. Thus

τ(Yk) = -16 S^HΣt",1 ̂ 2) - 16 lk~l4

This proves (3) of the lemma. Since

i(ff - τ) = ilc? - ^(c? - 2c2)] = ̂ j(3c? - cf + 2c2) = ̂ ( c f + c2) = z,

we have

It is easy to see that each Yk is simply connected. So χ(Yk) =
Remark 1. From (1) of the lemma it follows that each Y(x\, ,Xk) is

an even 4-manifold, and from (2) and (3) we can deduce that if {#i, , x^}
and {y\,- - ,yι} are two sequences of positive integers, then the corre-
sponding Y(x\, " ,xk) and Y(y\, ,yι) are (orientation preserving)
homeomorphic iff

by using πi(y(xi, ,xk)) = πi(y(yi, ,;>/)) = 0 and the results of M.
Freedman [5].

We can reformulate the conditions above as follows: Y(x\, ,xk) and
" ' 5y/) are (orientation preserving) homeomorphic iff

(a) λ: = / (mod2);

(b) Σ = , Xi = X'-V'HΣlj-i yj) ~ 3 ( / - ' ) / 2 + 1; and



ANALOGS OF LEFSCHETZ THEOREMS 71

Remark 2. From (4) of the lemma it follows that pg(Y(x\,- ,Xk)) is
even iff £ * = 1 xι is even.

Remark 3. Taking in Proposition-Example 13 (see §3 above) all nij,
j = 1, •' ,k, to be equal to three, identifying YQ = CP1 x CP1 with a
generic element E of the linear system 2) of all quadrics in X = CP3, and
choosing appropriate hypersurfaces S\, , S^ in CP3 (see Proposition-
Example 13) with SjΠE e \3XJC\, C <E \h + 12\ c E = Yo, we obtain
finite coverings α,-: Xj —• X such that Y{x\9- ,Xt) = α̂ Γ *(£"), and ^ =
gk(xι>' ' ,Xk)'- Y(xi,- ,Xk) ~> γo coincides with otk\a-ι{E): a~l(E)-+E.
Assume 3/0 £ (1, ,k) such that xz 0 > 2. Then d e g ^ > 6 and we get
from the Proposition-Example 13 that orientation preserving diffeomor-
phisms of Y{x\, ,Xk) (= a^ι(E)) induce a subgroup of finite index in

Aut(H2(Y(xι, ~ ,xk))ΛKγiχu~-*)))
Remark 4. From the Corollary of Proposition 10 (see §3) it follows that

g£C belongs to a primitive cohomology class in H2(Y(xu , x k ) , Z).
Proposition 14. Let m be any nonnegative integer, and {l\, ,lm} any

sequence of m positive integers with Σ'JLi h wen (for m = 0 we take the
empty set). Let y\ = yi = y$ = y$ = 1, ys = 6 and V/ = 1, ,m,
y5+j = lj; χ{ = 2, xι = 10, X3 = 16 and V/ = 1, , m, x^j = 3/7. Take
k = m + 3, I = m + 5. Then the corresponding Y{x\, , x^), Y(y\, • ,yι)
are (orientation preserving) homeomorphic and not diffeomorphic simply
connected (minimal) algebraic surfaces of general type.

Proof Let us first check that Y(x\, , Xk) and Y(y\, ,yι) are (orien-
tation preserving) homeomorphic. Use Remark 1 above. Let M = jyjL\ lj
and iV = Σ™={ lj. We see that in our case I - k = 2 and

£ * = 1 Xi = 2 + 10 + 16 + 3 Σ LI lj = 28 + 3M;

ΣjΓ = { yj = 1 + 1 + 1 + 1 + 6 + Σ7= i lj = 10 + M.

Thus condition (b) in Remark 1 is equivalent here to 28 + 2>M = 30 +
3M - 3 + 1 which is true. We also have:

£ * = 1 χf = 4+ 100 + 256 + 9E;

m=i /,? = 360 + 97V,

Σjj^y) = i +1 +1 +1 + 36 + Σ!JLι lj = w + N-

Condition (c) of Remark 1 is equivalent here to 360 + 9N = 9(40 + ή)
which is true. Thus our Y(x{, - ,X) and Y(yw- ,yι) are (orientation
preserving) homeomorphic.

Now let Si = Y(x\, , xk), S2 = Y(y\, ,yfi. To prove that Sx and S2

are not diffeomorphic we use the theorem of R. Friedman and J. Morgan
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mentioned above. We have to check that S\ and S2 satisfy conditions (i),
(ii), (iii) of that theorem. From Remark 3 above it follows that S\ and S2

satisfy condition (i).
Because M = Σ™=1 /,- is even, £ * = 1 xt = 2S + 3M and γjj={ y}r = 10 + M

are even. Thus by Remark 2 above Pg(S\) and pg{S2) are even numbers.
So condition (ii) is satisfied.

To check (iii), let KSj = njPj, where nj e Z+, and Pj e H2(Sj,l) is a
primitive cohomology class. Denote h\ - gk{x\, - >χk)' S\ —• Yo, and
h2 = gk{y\," 9yi)' S2 -• Yb Using Remark 4 above we see that h*C is
primitive in H2(Sj,2), j = 1,2. Thus by (1) of the lemma above we get
that n{ = 2((Σ^f=1 JC/) - 1) = 2(28+ 3 M - 1) and n2 = 2(10 + M- 1), that
IS Λli = 3«2 So «i 7̂  «2
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