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STABILITY OF HARMONIC MAPS
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1. Introduction

Harmonic maps [6] φ between Riemannian manifolds (Af, g) and (N, h)
are the critical points of the Dirichlet energy integral

\dφ\2d\o\.
M

When M and N are Hermitian manifolds Lichnerowicz [9] observed that
the energy E decomposes into two parts E' and E" corresponding with the
parts of the differential dφ acting in holomorphic and antiholomorphic
tangents. The difference E' - E" can be expressed in terms of the Kahler
forms ωM and ωN as

E'(φ)-E"(φ)= [ (φ*ωN,ωM)dvol,
JM

and this is a homotopy invariant provided that ωM is coclosed and ωN

is closed. In this case maps for which either E" or E1 vanishes are abso-
lute minima of the energy in their homotopy class and hence are stable
harmonic maps. They are of course the holomorphic and antiholomor-
phic maps between M and N. For simplicity we shall refer to them as
±holomorphic maps. These remarks apply in particular to the case where
M and N are both Kahler manifolds.

In general we shall say that a harmonic map φ is (weakly) stable if the
second variation of the energy is nonnegative:

for all smooth variations φt of φ, where v = ψo. It may be conjectured
that there are no other stable harmonic maps between Kahler manifolds
besides the iholomorphic ones. The problem has recently received a lot
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of attention, and when M is a closed Riemann surface and N a Hermitian
symmetric space a number of results are known. It is clear that we should
assume N is irreducible, otherwise we can find trivial counterexamples by
taking a map which is holomorphic into one factor and anti-holomorphic
into another. If N has nonpositive curvature, then all harmonic maps are
stable, and if M is not simply-connected there are harmonic maps which
are not ±holomorphic. Thus from now on we shall concentrate on target
manifolds which have metrics of positive curvature. In the following our
Hermitian symmetric spaces are all assumed to be compact with simple
isometry group; these are the irreducible Hermitian symmetric spaces of
compact type, and we shall refer to them as the compact simple Hermitian
symmetric spaces.

The simplest case to consider is maps from S2 to CPn. An affirmative
answer is given by Siu-Yau [19] and in the physics literature [21] where
this is studied as the nonlinear σ-model. For Riemann surfaces of nonzero
genus Siu [16] extended this result under the assumption of sufficient ram-
ification of φ. However Burns and de Bartolomeis [2] have shown that no
such assumption is necessary. (See also Lawson-Simons [8] for an analo-
gous result in the context of minimal currents in CPn.)

For targets other than CPn Siu [17] has used a curvature condition
to show that all stable harmonic maps from S2 into the classical irre-
ducible Hermitian symmetric spaces are ±holomorphic, and Zhong [22]
has checked that the curvature condition holds also for the exceptional
spaces. This case-by-case checking can be avoided by using the formula of
Moore [10] for Hφ. This has been done by Burstall, Rawnsley and Salamon
[3] to give a uniform proof that the stable harmonic maps from S2 into
any irreducible Hermitian symmetric space are ±holomorphic. This last
method also describes all the stable harmonic 2-spheres in all irreducible
symmetric spaces.

In fact no assumption on the genus of the Riemann surface is necessary
and the range can be any compact simple hermitian symmetric space. We
shall give a proof of the following:

Theorem 1. Let φ: M -> N be a stable harmonic map of a closed Rie-
mann surface into a compact simple Hermitian symmetric space. Then φ
is ±holomorphic.

Our method is based on that of Lawson and Simons, which derives a
curvature condition by averaging over certain gradient vector fields. The
assumption of stability then leads to a simple algebraic condition on the
differential of φ. Differentiating this condition allows us to conclude that
an open set in the domain carries a Hermitian structure with coclosed
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Kahler form. If the domain has dimension four, this form is then neces-
sarily closed and globally defined giving:

Theorem 3. Let φ: M -> N be a stable harmonic map from a real ana-
lytic four-dimensional Riemannian manifold M to a compact simple Her-
mitian symmetric space N, and suppose that there is a point where dφ has
rank at least three. Then M has a unique Kahler structure J with respect
to which φ is holomorphic.

Ohnita and Udagawa [12] have also obtained Theorem 1 using the
Lawson-Simons method, but referring to a study of the curvature of Hermi-
tian symmetric spaces due to Borel [1] and Calabi-Vesentini [5] to deduce
the result. However our analysis of the algebraic condition provides more
information, and allows us to obtain results for stability of maps from
projective spaces generalizing Ohnita [11] for projective spaces as target.

Theorem 5. Let φ: CPn —• N be a stable harmonic map into a compact
simple Hermitian symmetric space. Then φ is ±holomorphic.

2. Variational formulas

The first part of the proof is valid for a general class of homogeneous
Kahler manifolds as target and any domain, so in this more general context
we shall begin by discussing the second variation of the energy:

Hφ{V,V) = (JφV,V),

where (u,υ) = fM(u9v)dvol, and the Jacobi operator Jφ is given by

with Ric^(ί ) = ΣiRN(v>dφ{ei))dφ(ei) for a local orthonormal frame
eu ',emonM. Ric^ is an endomorphism of the pull-back of the tangent
bundle of N and is a generalization of the Ricci tensor.

Let 0 denote the Lie algebra of Killing vector fields on N. Then since
isometries preserve the energy, the fields l e g will satisfy JφX = 0.

Now suppose TV is Kahler, and consider the vector fields JX (gradient
fields when N is Hermitian symmetric). We define a quadratic form Q on
0by

Q(X,X) = Hφ(JX,JX) = (JφJX9JX).

We suppose that g has an inner product with the following property: At
each point of N the tangent space can be identified with a subspace of g,
the orthogonal of the isotropy subalgebra. This allows us to view Jx as an
endomorphism of g by extending it as zero on the isotropy subalgebra. We
require this extension to be skew symmetric for every x in N. We shall
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refer to such homogeneous Kahler manifolds as admissible. They include
those manifolds with g semisimple such as generalized flag manifolds and
Hermitian symmetric spaces (the negative of the Killing form will provide
such an inner product). We fix such an inner product and denote the sum
of the eigenvalues of Q with respect to the inner product by Tr Q.

Lemma 1. If N is an admissible homogeneous Kahler manifold, then

Proof Take any point x e N and pick an orthonormal basis for g of
the form Zi, ,Z^, X\,- ,Xn, JX\,- •• ,JXn withZi, ,Z* a basis for
the isotropy subalgebra of x. Thus the latter all vanish at x. Since JφX = 0
for a Killing field and / commutes with V on a Kahler manifold we have

JφJX = JV*VX - Ricφ(JX)

(1) = JJφX + /Ric f (AT) - Ric'(/Jr)

Using the above formula for JφJX we see that summing over the other
terms in the basis we get pair-wise cancellation showing that in fact the
integrand of Tr Q vanishes identically.

Lemma 2. If φ is a stable harmonic map of a Riemannian manifold
into an admissible homogeneous Kahler manifold N, then

(2) [Ricφ,J] = 0.

Proof. If φ is stable then Q is nonnegative, but its trace is zero by
Lemma 1 and hence Q is zero. Thus Hφ(JX,JX) = 0 for all Killing
fields. On the other hand Hφ(Y,Y) >0 for all vector fields and so we have
the Cauchy-Schwartz inequality

Hφ(JX, Y)2 < Hφ(JX, JX)Hφ{Y, Y) = 0.

Thus Hφ(JX, Y) = 0 for all vector fields and hence JφJX = 0. Then (1)
and the fact that the Killing fields span the tangent space at each point
imply the lemma.

It is possible to average over Killing fields in the domain instead of the
range. This gives a condition satisfied by stable harmonic maps from a
Hermitian symmetric space to any Riemannian manifold. In [11] Ohnita
derives such a condition by using a standard minimal immersion. In fact
the two points of view are equivalent and yield Lemma 3 below. To state
the lemma we assume M is Hermitian symmetric and for x e M consider
the map Ax:S

2p -> t (ί the Lie algebra of the stabilizer K of x, p its
orthogonal complement) defined by

) = [X,JMY].
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A is clearly ϋf-equivariant and surjective since [p, p] = t, because g = t -f p
is simple. Hence the adjoint A" is injective and gives rise to a copy of
the adjoint representation of ϊ in S2p. The components of A relative to a
basis of t are symmetric bilinear forms on p. Likewise the components of
Vdφx relative to a basis of Tφ^X)N are also symmetric bilinear forms. The
condition on a stable harmonic map is the following:

Lemma 3 (Ohnita). Let φ.M —> TV be a stable harmonic map of a
compact simple Hermitian symmetric space into any Riemannian manifold.
Then at each point ofM the components of A and the components ofVdφ
are mutually orthogonal

Proof We write φ as the composition φ = φ id and use the formula
of Ohnita and Pluzhnikov [13] for the Jacobi operator of a composition:

Jφ{dφ{X)) = dφ(JiάX) -2J2 Vdφ(Xh VXιX).

If X is a Killing field then J\&JMX — 0 as in the proof of Lemma 2 since
the identity map of a Kahler manifold is holomorphic, hence stable. If we
now define a quadratic form on the Lie algebra of Killing fields of M by

= Hφ(JMX,JMX)

M

and if M is hermitian symmetric, then given any point we can pick a
basis for the Killing fields such that each basis element or its covariant
derivative vanishes there. Thus (3) shows Q has trace zero. Now the
argument proceeds as in Lemma 2 to deduce that when φ is stable we
have

for all Killing fields X. If we identify p with TXM then the covariant
derivative can be written as the bracket [Λf/,(1 - P)X], where P is the
projection onto p. A short calculation now shows

Σvd9(Xi,Xj)(A{XhXj)9X) = 0

and hence the result.
An application of this result will be made in §4. For now we turn to the

examination of (2) in the case where the range is Hermitian symmetric.
Fix x e N and let Q = ϊ + p be the corresponding symmetric or Cartan
decomposition which satisfies

[t,t]ct, [ί,p]cp, [p,p]ce.
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Then p may be identified with the tangent space at x9 and Jx extends as
zero on t to give a derivation of 9. From this point of view the curvature
of N is given by

RN(X, Y) = -ad[X, Y], X,Yep.

Suppose that x = φ(y), and let β\9 ,em be an orthonormal basis for
TyM. Put

ψi = dφ{βi\ (pi e ρ;

then
Ric^ = - ^ ad #>/ ad (pi.

Since J is a derivation, it has the form ad j for some element j of t and
so

[Ric^, /] = - ^ [ a d ψi ad φi9 ad ; ]

= - ]|P ad φι•- [ad φt, ad j] + [ad ψi, adj] ad ψi

= ~ Σ a d ^" a d I^' ' ̂  + a d ^ 1 ' •/! ' a d Vi

= ^ ad ψi - ?id(Jφi) + ad(/p, ) ad ̂ , .

On the other hand, consider [dφ <i^', / ] :

.dφ',J]X =

If we identify End(p) with p (8) p c g <8> g via the Killing form, then

(5) [dφ dφ1, J] = -

Finally, we define a linear operator Γ : g x ^ End(g) by

T(a®β) = adα adβ,

and conclude that

T([dφdφί,J]) = -[Ricφ,J].

Proposition 1. If 2 is simple, then T has kernel contained in /\2 9.
Proof. See the appendix.
Corollary 1. Ifφ is a stable harmonic map into an irreducible Hermitian

symmetric space of compact type, then [dφ dφ1, J] = 0.
Proof. Since φ is stable, [Ricφ,J] = 0, so T[dφ dφ1, J] = 0. But (5)

shows that [dφdφ1, J] lies in the symmetric part of g®g, hence Proposition
1 gives the result.
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3. Applications

We now examine the condition on φ given by the lemma. Since dφdφ*
and dφ have the same image, it follows that the image of dφ is /-stable
and hence of even dimension.

Suppose dφ is somewhere injective, and let U c M be the open set of all
such points. Then φ is locally a diffeomorphism of U with a submanifold
of N which is necessarily a complex submanifold. Hence / transports to
U to give it an integrable complex structure J = dφ~xJdφ with respect to
which φ is holomorphic. Further

(Jdφ'YiX) = (dφ-ιJdφdφΎ,X) = {dφ'JY^X)

= ~{Y,JdφX) = -{dφΎ,JX).

Since dφ is injective, dφ1 is surjective and hence / is Hermitian. This
shows:

Corollary 2. Under the assumptions of Corollary 1 with dφ somewhere
injective, (U, J) is a Hermitian manifold with respect to the metric on M,
and φ is a holomorphic map:

(6) dφ J = Jdφ.

Theorem 1. Let φ: M —• N be a stable harmonic map of a closed Rie-
mann surface into a compact simple Hermitian symmetric space. Then φ
is ±holomorphic.

Proof Either dφ has everywhere rank zero (and so φ is constant and
we are done) or else dφ has rank two on a nonempty open set U. Then
Corollary 2 implies φ is holomorphic with respect to / . Since both J and
JM are Hermitian and the domain is 2-dimensional, J - ±J at each point
of U and hence at least one of these signs holds on a nonempty open set.
Then φ is holomorphic or antiholomorphic on an open set and everywhere
by Siu's Unique Continuation Theorem [18]. q.e.d.

We continue with our deductions from Proposition 1: Covariantly dif-
ferentiating (6) we have

Vdφ - J + dφ VJ = VJ - dφ + J Vdφ.

Since N is Kahler, VJ = 0. Taking the trace,

hi) + dφ((VeιJ)ei) = Σ J ' Vdφ(ehei) = 0,

since φ is harmonic. Using the symmetry of Vdφ and the fact that we
can take an orthonormal basis of the form e\, h\, , we see that the first
summation on the left-hand side is also zero. Since φ is an immersion, we
conclude

TraceV/= 0.
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This can be reformulated in terms of the Kahler form as:
Corollary 3. The Hermitian structure (U, J) has coclosed Kahler form.
Theorem 2. If φ M —• N is a stable harmonic immersion of a Rie-

mannian manifold into a compact simple Hermitian symmetric space, then
M is even dimensional, admits a complex structure which is Hermitian for
the given metric, and has coclosed Kahler form, φ is holomorphic for this
complex structure, and φ is an absolute energy minimizer in its homotopy
class. IfM has a given Hermitian structure with coclosed Kahler form, and
φ is homotopic to a ±holomorphic map for this given structure, then φ is
itself ±holomorphic.

Proof. The open set U above is now all of M, so Corollaries 2 and 3
give M the Hermitian structure with coclosed Kahler form with respect
to which φ is holomorphic. The result of Lichnerowicz cited above now
implies φ is an absolute energy minimizer in its homotopy class. The last
part of the theorem is standard, q.e.d.

If U has dimension 4, then a Kahler form is anti-self-dual with respect
to the orientation defined by the complex structure and coclosed if and
only if closed. Hence

Corollary 4. If dim M = 4, then (U, J) is a Kahler manifold.
In general we know little about the set U. Suppose however that the

Riemannian structure on M is real analytic and U is not empty. Then φ
is real analytic and so U is a dense open set whose complement is a real
analytic subvariety. We cannot assert that U is connected, nevertheless we
claim that in this situation J extends to all of M.

Theorem 3. Let φ:M —• TV be a stable harmonic map from a real ana-
lytic four-dimensional Riemannian manifold M to a compact simple Her-
mitian symmetric space N, and suppose that there is a point where dφ has
rank at least three. Then M has a unique Kahler structure J with respect
to which φ is holomorphic.

Proof. By our previous remarks we have a nonempty open set U which
is dense in M on which / is defined by the condition that φ be holomor-
phic, and J is Kahler, by Corollary 4. We have only to show that J extends
to M. The fact that U is dense then guarantees the other properties extend
from U to M. Take a point x in M\U and a geodesically convex disc D
around x, D Π U is nonempty, so pick a point y in it and consider Jy.
Construct an almost complex structure / ' on D by parallel transport of Jy

along the unique geodesic joining y to each point of D. J' is real analytic
and agrees with / at least on a convex neighborhood V of y in U Π D as
a result of J being parallel. Since φ is holomorphic with respect to / on
U, it is holomorphic with respect to / ' on V. But φ and / ' are both real
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analytic, hence φ is holomorphic with respect to / ' on all of D. Thus we
have both

dφ-J = JN d φ , d φ f = JN d φ

on D Π U. Since dφ is injective on U, it follows that J' and / agree on
DnU. It is now easy to see that these extensions of / all fit together to
give a globally defined / on all of M.

Corollary 5. Let φ:M —• N be a stable harmonic map from a real
analytic Riemannian 4-manifold to a compact simple Hermitian symmetric
space. Then M not Kάhlerian implies that dφ has rank everywhere less than
or equal to 2.

There are topological restrictions on a compact 4-manifold for it to ad-
mit a Kahler structure (it must be orientable, have even first betti number
and nonzero second betti number) so this corollary is quite restrictive.

In [2] Burns and de Bartolomeis obtained results on the stability of
harmonic maps of Kahler surfaces into CPn by employing the twistor space
on the domain. By assuming that the rank is somewhere maximal we can
obtain similar results for arbitrary compact simple Hermitian symmetric
range. The result follows from:

Proposition 2. Let (Af, g) be a Riemannian 4-manifold with two Kahler
structures J' and J". then either J' and J" commute or they generate a
2-sphere of Kahler structures so that M is Ricci-flat. In the case where they
commute there are two possibilities: If they define the same orientation then
J' = ±J", while if they are oppositely oriented then M is covered by a
product ofRiemann surfaces with J' given by the product complex structure
and J" by reversing one of the factors.

Proof. We use the following well-known and easily verified facts. / '
and / " are elements of so(4). If they are oppositely oriented, they com-
mute and belong to different simple factors. If they belong to different
simple factors, then they are oppositely oriented and commute.

If / ' and / " have the same orientation and commute, they necessar-
ily belong to the same simple factor which has rank one. Hence they are
proportional so / ' = ±J". If they have the opposite orientation and com-
mute, then F = Jf J" has two-dimensional eigendistributions which are
preserved by the Levi-Civita connection. Hence both eigendistributions
define parallel foliations by complex curves, and M is covered by a prod-
uct of the form described in the proposition. This leaves us with the case
where / ' and J" do not commute and so have the same orientation. It
follows that at any point they belong to the same simple factor of so(4) and
so generate an su(2) subalgebra. This is obviously stable under covariant
differentiation, so we are in the situation of SU(2) holonomy.
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Corollary 6. Let M be a compact connected Kάhler surface with real
analytic metric, and let φ: M —• N be a stable harmonic map into a compact
simple Hermitian symmetric space with rank somewhere greater than two.
Then either φ is ±holomorphic or M is covered by a product of Riemann
surfaces and the lift ofφ is holomorphic on one factor and antiholomorphic
on the other. The only remaining possibility is that M is Ricci flat and φ
is holomorphic with respect to another of the 2-sphere of complex structures
carried by M.

Proof By Theorem 3 there is a Kahler structure J on M with respect
to which φ is holomorphic. The analysis in Proposition 2 now gives the
result.

4. Maps from symmetric spaces

In [11] Ohnita studies a class of maps from Kahler manifolds into Rie-
mannian manifolds which he calls pluriharmonic, namely, they are maps
φ for which the (1,1) part of the second fundamental form β = Vdφ is
zero. In [15] these were called (1, l)-geodesic maps by analogy with β = 0
for totally geodesic maps. It is shown in [15] that a map is (1, l)-geodesic
if and only if it is harmonic whenever it is restricted to any germ of a
Riemann surface in the domain. Ohnita has proven

Theorem 4. Let φ: CPn —> N be a stable harmonic map where N is any
Riemannian manifold. Then φ is (1, \)-geodesic.

Proof. Since CPn is a compact simple Hermitian symmetric space,
Lemma 3 implies that β has components which are orthogonal to the
image of A*. But it is easy to see that in this case the image of A* is the
set of bilinear forms of type (1,1) (they coincide precisely with the adjoint
representation of K) and hence the result.

Lemma 4. Let φ.M —• N be a (1, \)-geodesic map from a generalized
flag manifold of a compact simple Lie group equipped with any invariant
Kahler metric into any Riemannian manifold. Then ^*Λ(2'0) = 0.

Proof Since the complex structure is invariant, the (1,0) parts of
Killing vector fields are holomorphic. Thus let X, Y be Killing fields and
let Xf, Y1 denote their (1,0) parts. Then

) = φ*h(X',Y').

But if Z is any (0,1) vector, we have

Zφmh{X', Y1) = h(Vzdφ(X'), dφ(Y')) + h(dφ(X')9 Vzdφ(Y')).
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However φ (1, l)-geodesic implies

Vzdφ{X') = dφ(VzX
f),

which is zero since X1 is holomorphic. Hence φ*h(X', Y') is a holomor-
phic function, and therefore a constant. But the Killing fields on a flag
manifold are Hamiltonian when the manifold is considered as a homo-
geneous symplectic manifold with respect to its Kahler form. Since the
flag manifold is compact, any Hamiltonian function necessarily has criti-
cal points, and all Killing fields have zeros. Thus φ*h(X', Y') = 0. This
proves the lemma since the Killing fields span the tangent spaces at every
point.

Remark. Ohnita's proof uses a Bochner-type vanishing theorem and is
valid on any Kahler-Einstein manifold with positive scalar curvature. On
a flag manifold we have a cone of invariant Kahler metrics with Einstein
metrics on the axis, so the above gives an alternative proof of Ohnita's
result in the case of a flag manifold.

Lemma 4 implies that φ*h is a (1,1) form and so may be viewed as an
exterior 2-form ω on M given by ω(X, Y) = φ*h(X, JMY).

Lemma 5 (Ohnita). Under the same conditions as in Lemma 4 the 2-
form ω is closed.

Proof. Since ω is of type (1,1) and real we only have to show that the
part of dω of type (2,1) is zero. Thus if X, Y are (1,0) vectors and Z is
(0,1), then we have

idω(X, Y, Z) = Xφ*h(Y, Z) - Yφ*h(X, Z) - φ*h([X, Y], Z)

= φ*h(VxY,Z) + φ*h(Y,VxZ) - φ*h(VγX,Z)

- φ*h(X, VyZ) - φ*h([X, Y], Z) - φ*h(VxZ, Y)

+ <p*h(VYZ,X)

= 0. q.e.d.

Suppose the 2-form ω is nowhere of maximum rank. If m — dim Λf,
then we have ωm = 0 and hence the cohomology class [ω]m also vanishes.
But for a compact simple Hermitian symmetric space the cohomology in
degree two is generated by a single form whose mth power is nonzero,
hence [ω] = 0. Since ω is a nonnegative (1, l)-form, ω = 0 and φ is
constant. Thus we have proved

Lemma 6. A (I, \)-geodesic map of a compact simple Hermitian sym-
metric space is an immersion on a nonempty open set.
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Combining Theorem 4, Lemma 6 and a result of Udagawa [20], Ohnita
[11] then shows that when N - CPn, φ must be iholomorphic. We shall
prove that this result remains true when the target is any compact simple
Hermitian symmetric space.

From Theorem 4 and Lemma 6 we have an open set U on which φ
is an immersion, and if φ is stable as a harmonic map then we have the
Hermitian structure J on U from Corollary 2 when TV is a compact simple
Hermitian symmetric space. Hence we have

Proposition 3. If φ: CPn -+ N is a nonconstant stable harmonic map
into a compact simple Hermitian symmetric space, then φ is (I, \ygeodesic
and is an immersion on a nonempty open set U, and J is a Hermitian
structure on U with respect to which φ is holomorphic.

Now consider any Hermitian symmetric space M and a second Hermi-
tian structure J defined on an open set £/, but compatible with the standard
metric on M. This is the case in Proposition 2 with M = CPn. We can
view / as a section over U of the twistor space Z = J(M, g) of complex
structures on the tangent spaces of M compatible with the metric. Z itself
carries a natural almost complex structure, and the fact that / is integrable
forces its image to lie in the zero set of the Nijenhuis tensor on Z. This
set has been completely determined by Burstall and Rawnsley who use it
to show [4, Theorem 5.6] that any Hermitian structure on a simple Hermi-
tian symmetric space necessarily commutes with the invariant Hermitian
structure:

Proposition 4. Let M be a compact simple Hermitian symmetric space,
and let JM denote its standard invariant complex structure. If J is a second
Hermitian structure defined on an open set in M, then J and JM commute.

Theorem 5. Let φ: CPn —> TV be a stable harmonic map into a compact
simple Hermitian symmetric space. Then φ is ±-holomorphic.

Proof. Let M = CPn. By Proposition 3 it is enough to show that
/ = ±JM. We claim that J is in fact parallel on U. To see this we observe
that since / and JM commute, we can diagonalize them simultaneously.
That is, if V denotes the (1,0) vectors for JM and T+ the (1,0) vectors
for J, then there are orthogonal subbundles V and W of TUC such that

V = V+W, T+ = V + W.

Since J is integrable we have VZΓ+ c T+ VZ e T+, and since JM is
parallel we thus have

(7) VzFcK, VzWcW VZeT+.

Differentiating dφ / = JN dφ gives
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Since φ is (1,1 )-geodesic by Theorem 4, the first two terms in the above
equation have vanishing (1,1) part, and since φ is an immersion on U we
obtain

Hence VyV c Γ+. But JM being parallel implies the left-hand side is in
V so VyV c V.

A similar argument shows VwW c W, and combining these with (7)
we deduce that both V and W are parallel. Thus / is a Kahler complex
structure on U with respect to the Fubini-Study metric on CPn. Since
CPn is isotropy irreducible and JM spans the center of the holonomy Lie
algebra at each point, it follows that / = ±JM at some point and, by
parallel transport, a constant sign holds on a nonempty open set. Thus
φ is iholomorphic on a nonempty open set and hence on all of CPn by
Siu's Unique Continuation Theorem [18].

Alternatively, J is a horizontal section of a twistor bundle Gr{V) over
CPn. But when 0 < r < n, the horizontal distribution has an integrability
tensor [14] which is sufficiently nondegenerate that any horizontal map
has rank at most two. This cannot happen for a section and hence r is 0
or n. The two extreme values correspond to V or W are zero and hence
J = ±JM.

Appendix

Proof of Proposition 1. Consider the map T: g <g> Q —> Endg given by

T(A®B) =

Our aim is to show T is injective on the symmetric part S2g of g ® g. Fix
an invariant inner product ( , ) on g, and let X[ be an orthonormal basis.
Then

iA>x
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But

J 2 = I Σ^χi ® 1 + 1 ® ad JΓ,)2

® 1 - l®(adΛΓ, ) 2

where C, denotes the Casimir operator of g in the /th tensor power of the
adjoint representation. Hence

(T(A ® 5)X, 7) = ±({C2 - d ® 1 - 1 ® Ci}(Λ ® ̂ ) , A- ® Y),

from which it follows that T has the same kernel as C2 - C\ ® 1 - 1 ® C\.
This allows us to use representation theory to study T.

Since 9 is simple, its adjoint representation is irreducible, so Schur's
Lemma [7, p. 26] implies C\ is a multiple of the identity. We can scale
the inner product to make this multiple equal to 1 (this corresponds with
taking ( , ) to be the negative of the Killing form). Hence

T = C2 - 2.

The invertibility of T thus reduces to whether or not 2 is an eigenvalue of
C2. This we shall determine in the next lemma using the structure theory
of simple Lie algebras (see [7]):

Lemma A. Let Q be a simple Lie algebra, and Cι the Casimir operator
on S2$ defined by the Killing form. Then 2 is not an eigenvalue.

Proof. Fix a Cartan subalgebra α and a positive root system. Let 0
be the highest root, and 2p the sum of the positive roots. Since θ is the
highest weight of g, any highest weight of S2$ has the form θ + a for some
root a [7, p. 142].

On the other hand, in any irreducible representation of highest weight λ,
the Casimir operator C has eigenvalue (λ + 2p,λ) [7, p. 134]. Thus C\ has
eigenvalue (θ + 2p, θ) = 1, and Cι will have eigenvalue (0 + a + 2/?, θ + α)
on the above eigenspace. Let

A = (θ + a + 2p, θ + a) - 2 = 2(α, 0) + (α + 2p, a) - (0 + 2p, 0).

If a = 0, then A = 2|0|2 which is certainly nonzero, so we can restrict
attention to a Φ θ and hence (α + 2p,a) < (0 + 2p, θ) [7, p. 71]. Then
A can only vanish if (a, 0) > 0, so β — θ - a is also a root, necessarily
positive.

Suppose \a\ φ |/?|, say |α| > \β\ (by symmetry it is enough to consider
this case). Then |0 | 2 = \a\2 + \β\2 + 2(a,β), and 0 and a are long, so
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that 0 = \β\2 + 2(a,β). Hence {β,2a/\a\2) = -\β\2/\a\2 £ Z. This is
impossible, thus |α| = \β\. A short calculation using 0 = a + β shows that

A = \β\2-2(p,β).

So A can only vanish if (p,2β/\β\2) = 1. Let au••• ,an be the simple
roots; then (/>,2α//|α, |2) = 1 for all / [7, p. 70]. Hence if β =
then

so
l/?|2 _

If /? is not simple, then it follows from this formula that it must be a long
root, and the α, occurring in the sum must all be short roots. In the case of
Gι we have only one short simple root, and the ratio |/?|2/|α/|2 = 3 would
force β to be three times the short simple root. This cannot happen, so
the ratio must be 2. The only way this can happen for nonsimple β is if it
is the sum of two short simple roots. But the latter case then implies that
α is long so that the simple roots are orthogonal. Thus their difference is
also a root. But this never happens, so we conclude that β is itself simple.

We have thus shown that the highest weight of the form 0 + a must
have 0 = β + a with β simple. Suppose the weight 0 + α occurs in S2g
with multiplicity larger than one, that is, 0 + a = δ + γ for two roots with
neither δ nor γ equal to θ. Then both δ and γ can be written as θ minus
at least one simple root, and so δ + γ is 20 minus at least two simple roots.
On the other hand θ + a = 2Θ - β which is 20 minus just one simple root.
Thus 0 + aφ δ + γ. It now follows that the only way 0 + a can arise as a
highest weight in Ker T is on the product of $Θ a n d βα.

However $θ V gα is never a highest weight space since

*β (80 V flα) = 00 V eβ ga = QΘ V 2Θ

is not zero. Hence A is always nonzero, which completes the proof.
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