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ON THE GENERALIZATION OF KUMMER SURFACES

SHI-SHYR ROAN

1. Introduction

The subject of this paper is on the compact complex ^-manifolds with
trivial canonical bundle. Complex tori are of course the obvious examples
which have been extensively studied. In this paper, we shall go into the
other types of manifolds which have the zero first Betti number. The typi-
cal examples for complex surfaces are K3 surfaces. On the 3-dimensional
case, aside from the geometric point of view, part of the purpose for the
study of this type of 3-folds comes from particle physics in the finding of
the Ricci flat Kahler 3-folds with zero first Chern class and 1st Betti num-
ber. The topological invariants of such manifolds, especially their Euler
numbers and the fundamental groups, are interesting for physicists [2]. In
a previous paper [5], we had constructed a subclass of such 3-manifolds.
In this paper, the analogous construction in the higher dimensional case is
considered. The following is the general problem:

Find the projective manifolds with trivial canonical bundle and zero first
Betti number by the construction of resolving singularities of the quotient
of a complex torus by a finite group. Compute their Euler numbers.

We shall only consider the case when acting on the torus, the group
is abelian and all the elements in this group have at least one common
fixed point. Consider the complex torus V to be a complex Lie group
with 0 as the identity element. We may assume G to be a finite abelian
group of Lie-automorphisms of V, and also the dualizing sheaf ωV/c to
be trivial. If x is an element of V fixed by some nontrivial element of
G, the action of its isotropic subgroup Gx on V near x is isomorphic to
that of some diagonal finite group g acting on CΛ near the origin 6. Inside
the affine algebraic variety Cn/g, C*n/g (C* = C\{0}) is a Zariski-open
set which has the structure of an algebraic torus, denoted by T. Then
Cn/g is an equivariant affine embedding of T. A toroidal desingulariza-
tion of Cn/g means a nonsingular equivariant embedding Cn/g of T to-
gether with a Γ-equivariant birational morphism π: Cn/g -+ C/g. In this
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note, a desingularization of V/G always means a toroidal desingulariza-

tion, i.e., a resolution p: V/G —• V/G such that near each singular point q

of V/G, p: (V/G,p~ι(q)) —> (V/G,q) is isomorphic to a desingularization

π: (Cn/g, π~{(0)) -> (Cn/g,6) (described before) as the germs of analytic

spaces. We shall show that for every V/G with trivial canonical bundle, the

eigenvalues of the differential of the group action at a fixed point cannot be

all equal when dim V > 4. Therefore the actions with distinct eigenvalues

should be studied for the higher dimensional generalization of Kummer

surfaces. Some examples are discussed and a formula of the Euler number

of such V/G suggested by string theorists [1] can be derived.

This paper is organized as follows. In §2, we give a summary of the main

results concerning toroidal compactification [3] needed for our purpose.

The principal method here is to associate each toroidal embedding with

a combinatorial data and to compute the topological invariants through

this correspondence. In §3 we study the desingularization of quotients of

complex tori to examine the possible generalization of the construction of

Kummer surfaces on higher dimensional cases. In §4 we derive a formula

to relate the Euler number of the desingularization V/G with the fixed

point set of G on V when the canonical bundle of V/G is trivial. In fact,

we work on a more general situation described in Theorem 2 below.

The author wishes to express his deep gratitude to Shing-tung Yau for

the valuable suggestions and discussions during the preparation of this

paper.

Notation. For a finite group G acting faithfully on a compact complex

manifold X, we shall use the following notation throughout this paper:

Xφ = {x e X\φ{x) = x} for φeG,

XG = \J{Xφ\φeG,φϊid},

Gx = {φ e G\φ(x) = x}, the isotropy subgroup a t x G l .

2. Toroidal embeddings

First we recall a few useful results [3].
Let T be an algebraic n-torus over C, M = Homa\^&oup(T,Gm) be the

group of characters of Γ, and TV = Homalg<groUp(Gm, T) be the group of
1-parameter subgroups of Γ. If r G M, we denote by Xr the correspond-
ing element of Γ(Γ,^£). M and iV are free abelian groups of rank n,
related by a nonsingular canonical pair: M x N —> Z, (r,a) »-• (r,α). For
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a Γ-equivariant normal embedding X of Γ, or a Γ-space, there associates
a finite rational partial polyhedral (f.r.p.p.) decomposition {σa} of NR

such that X is Γ-isomorphic to X{σny9 where X{σ<ϊy is the union of affine
open subsets Xσn% defined by XGa = SpecC[σα n M], There is a natural
correspondence between the following two equivalent categories:

(A) The category of Γ-space:
object: Γ-space X,
morphism: Γ-equivariant algebraic morphism φ: X —> Y.

(B) The category of f.r.p.p. decomposition of NR:
object: f.r.p.p. decomposition,
morphism: Φ: {σa} —> {τ^} a continuous map Φ: \Jσa —> IJτ^

such that for each σa> Φ(σa) is contained in some Xβ, and Φrest' ^α —• tβ
is a linear map sending σa Π iVq into Xβ Π TVQ.

Denote the Γ-space associated to {σa} of the above correspondence by
X{σny. It is known that the nonsingular condition of X{ffny is equivalent to
the multiplicity of {σa} being equal to one, i.e. to say each σa is generated
by a subset of a Z-base of N.

For a Γ-space X = Λ{σrt}, there is a one-to-one correspondence between
the set of all complete Γ-invariant coherent sheafs f of fractional ideals
over X and the set of functions / : U σa -* R with the properties

[\j J yλ.X) —- Λ.J yXJ, / t ιϋ ) X c LJ0Q,

(ii) / is continuous, piecewise linear,

(*) (iii) f(NΠUσa)Cl,

(iv) For each σa, there exist r, G M such that

/(JC) = min/(r/,x) for x e σa.

This is set up by the relation

cr.

We shall denote by Jf the sheaf f corresponding to the above function
/. Let {(Ji, ,(JΛΓ} be the set of all 1-dimensional cones in {σα}. For
I < i < N, let p/ be the primitive integral vector in σ, , and D/ be the
closure of the Γ-orbit corresponding to σ, . The following facts are known:

(ii) The Weil divisor ^ r ( Σ / I i ( - m / ) A ) is equal to //, where / is the
convex interpolation of the function f\: Uα skισa -• R, sending /?/ to mz,
i.e. to say the restriction of / on each σa is the least function satisfying (*)
and > f\ on skισa.
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(iii) #χ(Σb=\(-mi)Di)is t h e trivial Cartier divisor <̂  the function / in
(ii) is linear on \Jσa.

(iv) The dualizing sheaf ωχ{σn} = ^x{~Y!i=\ A ) = h> where δ is the
convex interpolation of the function on \Jsk{σa, assigning/?/ to 1.

We shall compute the Euler number of a Γ-space.
Lemma 1. The Euler number of a T-space X{σ,ty is equal to the number

of n-dimensional polyhedral cones in {σa}.
Proof We claim for a convex rational polyhedral cone σ in iVR, the

Γ-orbit @σ in Xσ corresponding to a is a strong deformation retract of
Xσ. Consequently the Euler number of Xσ is equal to 0 or 1 according to
dimσ < n or = n.

Take an element a in N Π [σ — (J proper faces of σ], and let λa be its
associated 1-parameter subgroup of Γ. Then λa(t) acts on Xσ for t eC*.
It is known that lim,_>o^a(τ) * x exists and lies in @σ for all x E Xσ. So
{λa(t)\t e C} gives the desired deformation retract.

Now we proceed to prove this lemma by the induction on m :=
maxσr dim<7Q. We want to show that

0 if m < A2,

#{σα |dimσα = n} if m = n,

where χ(X{Ony) is the Euler number of X{Ony. It is obvious for m = 0.
Suppose that we are given a f.r.p.p. decomposition {σa} of NR with

m > 1. Let {τi, , TΛΓ} be the set of σa with dimσQ = m. Let {σ'a} be
the f.r.p.p. decomposition of TVR consisting of all the proper faces of τ/s,
and K ' } := {σa} - {τj\j = 1, ,N}. Then

By the induction hypothesis, χ(X{σ;y) = χ{X{σyy) = 0 and χ(Xτjn[jj^ XTj)
= 0. So

)
\j=l J 7=1

Based on the fact claimed at the beginning of the proof, this number is
equal to 0 or TV according to m < n or m = n. q.e.d.

Suppose that g is a finite diagonal group acting on the vector space Cπ.
Assume the fixed point set of each nontrivial element in g has codim >
2. Since g acts freely on (C*)Λ, the quotient (C*)n/g has the structure
of algebraic torus, denoted by T. Then Cn/g is a Γ-space of which the
structure can be described as follows:
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Let RΛ be the vector space consisting of all n x 1 column vectors, and
let {eι, - ,en} be the standard base. Define

(xι

exp: R" ^ (C)" ,

•Σ>

The group TV of 1-parameter subgroups of T can be identified with
the lattice exp" 1 ^) in Rn. It contains the standard lattice Σϊ=\ ^'"> a n c *
N/Σn

i=x~lei is isomorphic to #. We can identify 7VR with Rπ by ex-
tending the embedding of N in Rn. As Γ-spaces, Cn/<? is isomorphic
to the affine variety Xc, where C is the cone in Rn (= NR) defined by
C = {Σ!i=\ x&'lXi > 0}. The Γ-invariant divisors Z), are in one-to-one
correspondence with all the 1-dimensional faces R+e* of C, 1 < / < n.
From the condition of the fixed point set of g, each e* is a primitive inte-
gral vector in N. The triviality of the dualizing sheaf of Cn/g is equivalent
to the Weil divisor (9χc\— ΣH=ι A) as the trivial Cartier divisor. This is
also equivalent to tr(C n N) C 1. A desingularization of Xc is in fact a
Γ-space X{σ<ty with \Jσa = C and multiplicity of {σa} = 1.

Denote Δ := {x e Rn\tτ(x) = 1} n C, the triviality of the canonical
bundle of X{σ<ty is the same as requiring each σa to be a simplicial cone
generated by vectors in Δ n N. In this situation, for each σa of dim n, we
have

7aΠ{x\tτ(x)< l}):vol(Cn{jc|tr(;c)< 1})

and therefore

This implies x(X{ffny) = \g\ by Lemma 1. Hence we have proved the
following:

Proposition 1. Let g be a finite diagonal group of Cn such that the
dualizing sheaf of U11 g is trivial Let N, T, C, be the same as before. Then
the following statements are equivalent:

(i) The T-space X{any is a desingularization of Cn/g with trivial canonical
bundle.
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(ii) {σa} is af.r.p.p. decomposition ofNR with \Jσa = C, and each σa is
a simplicial cone generated by elements in NnA, which can be extended to
a 1-base ofN.

In this case, the Euler number ofX{σn} is equal to the order of g.
In general, the above X^fftty may not exist for n > 4; but when n = 2

and 3, such desingularization always exists due to the following.
Proposition 2. Let g be the same as in Proposition 1. For n = 2 and 3,

{σa} is af.r.p.p. decomposition ofNR with the following properties:

(i)"Oα = C.
(ii) Each σa is a simplicial cone.
(iii) {R+p\p eAnN} is the set of all l-dimensional cones in {σa}.

Then X{σ(t} is a desingularization ofCn/g with trivial canonical bundle.
Proof From the triviality of the dualizing sheaf of Cn/g, we know

tτ(CnN) c Z. If {σa} is a f.r.p.p. decomposition satisfying the assumption,
all we have to show is that each σa of dimension n is generated by a Z-base
of N by Proposition 1.

When n = 2, a nontrivial element φ of g can be expressed by exp(^),
where aφ, βφ are some rational numbers less than 1 with aφ+βφ = 1. Then

AΠN = {el,e2}U{Q)\(p e g,φ ϊid}.

Every σa of dimension 2 is generated by two vectors p,p' in Δ n TV such
that the convex hull spanned by 0,/?,/?' contains no other element of N.
So p,p' form a Z-base of N.

When n = 3, each nontrivial element φ in g can be expressed by

exp βφ

W
for some nonnegative rational numbers aφ,βφ,γφ less than 1. Then aφ +
βφ + yφ = \oτ 2,

If w', w2, w3 are three elements in Δ n N generating a 3-dimensional sim-
plicial cone σa, denote the sublattice £ ? = 1 Zω' of N by No. If N Φ No,
there is an element a = a\iυι + aiw2 + a^w3 in N - No with a, e Q,
0 < a, < 1. The value tr(α) must be 1 or 2 because 0 < tr(α) < 3,
tr(JV ΠC)CZ. If tτ(a) - 2, all α, must be greater than 0. Replacing a by
(1 -a\)w ι + (1 -a 2 )w 2 + (1 - a ^ w 3 , we may assume tτ(a) - 1. Therefore
we can find an element a in {£>,u;'|.x, > 0, £ > , = 1} n (iV - Λ/Ό), and
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hence in ΔΠN. But as {ΣXiW*|JC, > 0,Σ χ ι : = 1} intersects AnN only at
{w'}/=i> α h a s t 0 b e o n e o f t h e w ' \ a n d t h a t contradicts the assumption
a φ No. Therefore N = No, {w'}/=i ί s a z - b a s e of N. q.e.d.

The following lemma can provide some examples of X{σny with trivial
canonical bundle in higher dimensional cases.

Lemma 2. Let gi (i = 1,2) be a finite diagonal linear group ofCni, and
g be the product group g\ x g2 acting on Cn := C"1 x C"2. Let iV, (/ =1,2)
and N be the groups of l-parameter subgroups of(C*)ni/gi and (C*)n/g,
respectively. If{σau)} is af.r.p.p. of(Nj)R which satisfies condition (ii) in
Proposition 1 for i = 1,2, so does {<7α(n x σa(2)} for NR.

Proof Obvious.

3. Quotients of complex tori

Let V be a complex «-torus (~ Cn /lattice) for n > 2. Consider V as a
complex Lie group with 0 as the identity element. Let θ: V -> F be a (Lie)
automorphism of order d, and (ί/0)o be the induced linear automorphism
on the tangent space at 0.

Theorem 1. Let θ be an automorphism ofV with (dθ)o = μ id, where
μ is the dth primitive root of I. If there exists a desingularization ofV/(θ)
with trivial canonical bundle, then the dimension nofV is the same as the
order d ofθ, and it equals 2 or 3.

In order to prove the above theorem, we need two lemmas.

Lemma 3. Let θ be an order d automorphism as in Theorem 1. Ifθ
has more than one fixed point on V, then d = 2,3, or 4, and Vθ is a subset
of the d-torsion part ofV. Furthermore, for each x eVθ - {0} in the cases
ofd = 3,4, there exists a (Lie) homomorphism λ: E —> V from an elliptic
curve E into V, together with an order d automorphism p ofE, such that
λ p = θ λ, and λ(EP) = the subgroup of V generated by x.

Proof We may express

i Q ι
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where L is a lattice in C",

π:Cn->V, z^z + L,

( z

:

Let x := α + L be a fixed point of 0 not equal to 0. The vector

..(7
is not zero in C2. Consider the linear map λ,

1:C->CΠ,

1 is an injective map sending / := ]C>Γ0

2 ^μ7 into L. When d = 2, the
conclusion follows easily. So we need only consider the cases where d > 3.
Since L n Im λ is a free Z-module of rank < 2, so / is a rank-2 lattice in
C. The multiplication by μ on C induces an order d Lie-automorphism p
of the elliptic curve E := C//, so the only possibilities for d are 3, 4 and
6. The linear homomorphism λ: C —• Cn induces a Lie-homomorphism
λ: E -> Cn/L such that λp = θλ. The element (μ - I ) " 1 + / in E is fixed
by /?, and is sent to a + L by A. Because of α + L ^ L, (μ - 1)~ι + / is not
equal to / in E. Hence the order of p cannot be 6, otherwise it would have
only one fixed point. So d = 3 or 4, (μ - I ) " 1 + / generates Ep, which is
contained in the d-torsion part of E. This implies d(a + L) = 0 in Cn/L.

Lemma 4. Le/ 0 be an order d automorphism of a complex n-torus V.
If all the eigenvalues of{dθ)0 are equal then d has to be one of 2,3,4, or
6. Furthermore,

d = 2,3 or 4 if and only if \VΘ\>2,

d = 6 if and only if \VΘ\ = 1.

Proof Assume (dθ)0 = μ id, where μ is the dth primitive root of 1.
By Lemma 3, we know that d is one of 2, 3, or 4 when \VΘ\ > 2, so it
suffices to show that d equals 6 under the assumption \VΘ\ = 1. Let p be
a prime dividing d\ the automorphism θd/p of V has the order p. Denote
θd>p by θ'. Then

\VΘ>\ = - * ( F - Vθ>) = -Pχ((V - Vθ>)/(θ')) > 2.
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By Lemma 3, the order of θ' is equal to 2 or 3. This implies d = 2k3s for
some nonnegative integers k,s. Claim: k > 0,s > 0. If not, we assume
d = 2k. Since \VΘ\ = 1, every (0)-orbit in F<6>) - Vθ has more than one
element, and its cardinal number is a power of 2. So \V^)\ = 1 (mod2).
On the other hand,

\V{Θ)\ = -χ(V - V{θ)) = -2kχ((V - VW)/(Θ)) = 0 (mod2);

this gives the contradiction. Using the same argument, we can also show
that d Φ 3s. Therefore d — 2kV for some k,s greater than 0. Let θ\ be
the order 3s element in (θ). Since \VΘ{\ Φ 1, s has to be equal to 1 by
Lemma 3. Let x be a point in Vθι - {0}. From Lemma 3, we can find a
homomorphism λ: E —> V from an elliptic curve E into V with an order
3 automorphism p of E such that θ\λ = λp and λ sends a nontrivial fixed
point of p to JC. The image of λ is a 0i-invariant 1-dimensional subtorus
of V. The tangent space of this 1-dimensional subtorus at 0 is invariant
under (dθ)o, so the restriction of θ induces an order-a? automorphism on
it. This implies d = 6. q.e.d.

Proof of Theorem 1. Let p: V/(θ) —• V/(θ) be a desingularization of
V/(θ) with ^ ^ } = trivial. The dualizing sheaf of V/{θ) has to be trivial,
which implies det(dθ)o = 1 . So μn = 1 and « is divided by d. For
x G F(0), the isotropic subgroup at x is a cyclic subgroup of (θ) of order
dx (> 1). Let [x] be the singular point of V/(θ) corresponding to the orbit
of x. By the requirement of the desingularization, p: (V/(θ),p~ι([x])) —•
{V/{θ),[x]) is isomorphic to π: (Cn/g,π-{(6)) -• {Cn/g,6) as germs of
analytic spaces, where g is the cyclic group generated by μW*) id, and
Cn/g is a toroidal desingularization of Cn/g. From Proposition 1, the
triviality of the canonical bundle of Cn/g is equivalent to the condition
n = dx, because the lattice N in Proposition 1 in this case is generated by
the standard base e1,-- ,en and the vector

Ί/dx

Mdx

The triviality of the canonical bundle of V/(θ) is equivalent to dx = n for
all x e Vφ). Since the isotropic subgroup at the identity of V is (0), d
has to equal n, which is one of 2, 3, 4, or 6 by Lemma 4. We have the
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expression of the Euler number of V/(θ):

X(V/(Θ)) =
/=0

X(V/(Θ)) = χ((V - V{θ))/(θ)) + χ(V{θ)/(θ))

= \W - v(θ)) + X(V(θ)/(θ)) = -\\V{Θ)\ + \V{Θ)/(Θ)\.

If d = 6, g|K<0)l is an integer, so |F^) | > 6. From Lemma 4, \VΘ\ = I.
There is an element of V^ with the order of its isotropic subgroup less
than 6. This contradicts the triviality of K^ If d = 4, it is easy to see

that
1 for / = 0,8,

dim///(F,C)*= I ' '
κ J ] 38 for/= 4,

. 0 otherwise,

Therefore
72 = χ(V/(θ)) = -\\V{Θ)\ + \V{Θ)/(Θ)\

which implies that \VΘ\ = 16. We can find an element in V^ with its
isotropic subgroup of order 2, and it contradicts the triviality of K^η^ .
Therefore, the only possibilities for d are 2 and 3, and the proof of The-
orem 1 is complete, q.e.d.

Remark. If V and θ satisfy the condition of Theorem 1, then dim n of
V = the order of θ = 2 or 3. When n = 2, θ is the involution, and V/(θ)
is the well-known Kummer surface. When n = 3,(V,θ) is classified in [5],
which can be described as follows:

Denote

E = C/1 + Zω, ω = e

lπyfz~x^,

σ:E-+E, [z] — [ωz] for z e C,

θσ: ExExE -+ExExE, {puPi.pi) •-• (σ(/?i),<τ(/?2),σ(/>3)).
The 3-torus V is equal to (E x E x E)/K for some θσ-invariant finite
subgroup K with order(#) = 1 (mod 3), and θ is the automorphism of V
induced by θσ. The Betti numbers of V/(θ) are known for both cases. In
particular, their first Betti numbers vanish.

If we want to obtain the higher dimensional manifolds with trivial
canonical bundles by resolving singularities of V/(θ), there should be no
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restriction on the eigenvalues of (dθ)o except det(dθ)0 = 1 by the conclu-
sion of Theorem 1. Even for the cases when n = 2,3, the investigation
of this general version will provide further examples of K3 surfaces and
3-folds with trivial canonical bundle. First, let us consider the situation
when |F(0)| < oo. For n = 2, the following simple result (a proof can be
found in [4]) is known:

If V is a 2-torus acted on by 0 with det(rf0)o = 1, then the order d of
0 is one of 2, 3, 4, 6, and \V{Θ)\ = 16,9,16,24 according to d = 2,3,4,6.
Furthermore, the minimal desingularization of V/(θ) is a K3 surface.

When n = 3, there are only two cases with \V^\ < oo from the classifi-
cation of the finite group action on 3-torus [4]. One of these is the order
3 group action described in the remark of Theorem 1. The other one
is the action of order 7 automorphism on a 3-torus V with eigenvalues
μ,μ 2,μ 4 (μ := e2πilη) and \V{Θ)\ = \VΘ\ = 7. The pair (V,θ) is unique up
to the isogeneous relation. In fact, V is constructed from the cyclotomic
field Q(μ) with the three isomorphism φh 1 < i < 3, of Q(μ) into C with
φx{μ) = μ, φ2{μ) = μ2, φ?>{μ) = μ4 [5]. Under the mapping

e C3, ae Q(μ),

Q(μ)R can be identified with C3, and l[μ] corresponds to a lattice L in
C3. Then V is equal to C3/L, and the automorphism θ of V is the one
corresponding to the multiplication of the element μ on Q(μ)R. Further-
more, V/(θ) has a desingularization with trivial canonical bundle. For the
other dimension n with 2n + 1 as a prime number denoted by p, we im-
itate the above construction by choosing n distinct isomorphisms {φi}"={

of Q(e2πi/p) into C such that (Q(^2π///7),{^/}"=1) is a field of C-M type.
Then φi{e2πilP) = (e2πi/ηm' for some 1 < mz < p^and £ ? = 1 mz > Σ t i ι =
jn(n+ 1). On the other hand, the existence of V/{θ) with trivial canonical
bundle requires Σ£=i mi — P by Proposition 1. Therefore n < 3, which
are the cases we have discussed already. This suggests that for the higher
dimensional cases, the condition \V/{Θ)\ < oo is still too restricted. We
have to consider the situation when the dimension of V/(θ) is positive.
For n = 3, all such (V, θ) are classified in [4], and every such V/(θ) has a
desingularization with trivial canonical bundle from Proposition 2. Now
we can use the following procedure to provide examples in the higher di-
mensional case: Let Vi (i = 1,2) be fl/-dim complex torus acted by an order
di automorphism 0/. Then (θ{) x (θ2) acts on V{ x V2. If ^7(0/) h a s a

desingularization with trivial canonical bundle, so does Vx x V2/(θι) x (02)
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by patching the local construction in Lemma 2 suitably. In the case when

d\ and dι are relatively prime, (θ\) x (Θ2) is a cyclic group (0); hence we

obtain V/(θ) with trivial canonical bundle for dim V > 4. For all the ex-

amples we are able to obtain, the direct computation of the Euler number

of V/G can be tiresome except the cases when G is cyclic and \VG\ < 00.

In the next section we are going to derive a formula of the Euler number

of V/G in terms of VG. In particular, we shall have

x(Vι x vίpβx) x <02» = χ{vjφx))χ{vίμβ2)).

4. A formula for Euler numbers of "minimal"

desingularizations of quotient varieties

When G is a finite abelian group of Lie automorphisms of a complex

torus V, the triviality of ωy/G is equivalent to (codim VQ in V) > 2 and

det(dφ)o = 1 for φ e G - {id}. The purpose of this section is to express

the Euler number of V/G in terms of the fixed point sets Vφ

9 φ e G, when

V/G has the trivial canonical bundle. In fact, we shall work in a more

general setting, and hopefully the formula would be useful in some other

situation.

Let G b e a finite abelian group consisting of biholomorphic maps of

a compact complex w-manifold X. It is known that near a point x of

XG, the action of Gx is equivalent to a linear action on C" near 6. By

a desingularization of X/G, we mean a proper analytic map p: X/G —•

X/G from a complex manifold X/G onto X/G such that the following

conditions hold:

(i) pτest: X/G - p-ι{Sing(X/G)) -> X/G - Sing(X/G) is biregular.

(ii) For each singular point q of X/G, p: (X/G^p-^q)) -* {X/G,q) is

isomorphic to a toroidal desingularization π: (Cn/g,π~{(6)) —> (Cn/g,6)

as germs of analytic spaces for some finite diagonal group g.

Theorem 2. Let G be a finite abelian group of biholomorphic maps of the

compact complex n-manifold X. Assume that Xφ is an analytic subspace of

codimension > 2 for each nontrivial element φ in G. If the dualizing sheaf

ωχ/G ^ a locally free <fχιG-sheaf, and p: X/G-+ X/G is a desingularization

of X/G with Kγ^ ~ P*ωx/G, then

{φ,ψ)€GxG
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Proof, For x e XQ, let [x] be the orbit of x in X/G. ωX/G is trivial near

[x] in X/G, and K^ is the trivial bundle near p~1 ([*]). p: (X/G, p~1 ([*]))

-> (ΛΓ/G,[x]) is isomorphic to π: (CV^/r^O)) — (Cn/g,6) for a diago-
nal group g with |#| =JG!

JC|. There is a neighborhood C/ of [x] in X/G such
that χ(p~ι{U)) = χ(Cn/g) = \GX\ by Proposition 1. Denote S? = {H\H:
a subgroup of G} and X(H) = {x e X\GX = H} for H € &. X(H)
is G-invariant and the closure X{H) of X{H) is equal to Γ\φeH^φ-
x G X(H), the action of (ί* near x in X is equivalent to that of a di-
agonal group near 0 in C". So X(H) is a closed complex submanifold
of X, and X(H) — X(H) is the union of a finite number of proper sub-
manifolds of X(H) intersecting normally. The quotient group G/H acts
on X(H) and freely on X(H). We can find a (7-invariant neighborhood
N(H) of Ύ[H) - X(H) in ΎζH) such that (X(H) - X(H))/G is a defor-
mation retract of N(H)/G, and the boundary dN(H) of N(H) is a closed
(odd-dimensional) real submanifold of X. Since pτcst: p~ι(X(H)/G) —•
X(H)/G is a topological fiber bundle and the Euler number of the fiber
equals \H\, we have

χ(p-ι(X(H)/G)) = χ(X(H)/G)\H\,

χ{p-\dN{H)/G)) = χ(dN(H)/G)\H\ = 0.

Find a sequence of G-invariant closed subspaces Y, of X:

such that for each 0 < i < m, Y, = 7/+i UX{Hi) and 7, - 7/+i = X(Hi) for
some //,- € ^ . So X is the disjoint union of {X(Hi)\0 < i < m}, and this
implies {/fz|0 <i<m} = {He S*\X(H) φ 0 } . Since

= χ(p-ι(Yi+ι/G)) + x(X(Hi)/G)\Hi\9

we can prove by induction

i\ for j = m , m - I , - - , 0 .

If we set the Euler number of the empty set as zero, we have
m

χ(X/G) = χ(YQ) = Σχ(X(Hi)/G)\Hi\ = £ χ(X(H)/G)\H\
;=0

= ψ\Σ X(X(H)/G)\G/H\\H\2 = ± Σ X(X(H))\H\2.
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On the other hand, for (φ, ψ) € G x G, Xφ Γ\XΨ is the disjoint union of
{X(H)\φ, ψ e H e S*}. Then we can also show that

Hence

-L £ χ{χ«nχn = ±ι Σ
1 ' (φ,ψ)eGxG ' ' (φ,ψ)€GxG €

φ,ψEH

= τkΣ Σ *(*(»)> = lέi Σ

Comparing this with the above formula for χ(X/G), we obtain our result.
Corollary 1. Lei Gj (i = 1,2) 6e a finite abelian group acting on the

compact complex manifold Xiy and G be the product group G\ x G^acting
on the product manifold X := Xx x Λ .̂ IfXi/Gi (i = 1,2) α«ί/ AΓ/G Λre
ί/ze corresponding desingularizations satisfying the condition of Theorem 2,

Proof For an element 59 in G, φ = ψ\ x ψι for p, G G, , and

where φ = ψ\ x φι and ^ = ^1 x ψ2. By Theorem 2,

1 '

Corollary 2. Let G be α finite αbeliαn group of the biholomorphic maps
of a complex n-torus V. If p: V/G -> V/G is a desingularization ofV/G
with the K-^ = trivial, then

χ{fjG) = -1- Σ {{isolated points in V* n V*}\.
' ' (φ,ψ)€GxG
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Proof, Obviously, V, G and V/G satisfy the assumption of the above
theorem. For (φ, ψ)eGxG, each connected component of Vφ Π Vψ with
dimension > 1 is a translation of a subtorus of V9 and has the zero Euler
number. Therefore our result follows immediately.
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