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RICCI DEFORMATION OF THE METRIC
ON COMPLETE NONCOMPACT

RIEMANNIAN MANIFOLDS

WAN-XIONG SHI

1. Main result

Suppose (M,gij) is an n-dimensional complete Riemannian manifold
with metric

ds2 = gijdxidxj > 0.

It is well known that the curvature tensor Rm = {Rijki) can be decomposed
into the orthogonal components which have the same symmetries as Rm:

(1) Rm= W+V+U or Rijkι = Wijkl + Vijkl + Uijkh

where W = {WiJki} is the Weyl conformal curvature tensor, and V =
{Vijkl} a n d U = {Uijkι} denote the traceless Ricci part and the scalar
curvature part respectively.

We know that the Ricci curvature is

Rij = gklRikjh

and the scalar curvature is

R = giJRij = gijgklRikjι.

Under these notations we can write U, V, W as follows:

(2)

o

here /?,-_,•
If we

(3)

let

U,jki

Vijkl

wm

o
Rm =

n{n -

1 (

n — 2

= {Rijki} ••

Vijkl-

= {Rijki

Wijkl

-u,

gilgjk),

τjk Rjlcgil

j

iki) = {Vijkί
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then

(4)

Now suppose M is a complete noncompact Riemannian manifold of
dimension n. Fix a point JC0 G M, and for any x e M let yCxo,*) denote
the distance between xo and x. Let

(5) 5(xj) = { ^ M | y ( x j ) < y }

be the geodesic ball. Then we can state the main result of this paper as
follows.

Main Theorem. Let M be an n-dimensional complete noncompact Rie-
mannian manifold, n > 3. For any C\,C2 > 0 and δ > 0, there exists a
constant ε = ε(n,C\,C2,δ) > 0 such that if the curvature ofM satisfies:

(A) VO1(J?(JC, γ)) > cxy
n, Vx € M, γ > 0, and

(B) |Rm| 2 < εR2, 0<R< c2/γ{xo,x)2+δ V c e M,
then the evolution equation

ί &

has a solution for all time 0 < t < +oo and the metric gij(t) converges to a
smooth metric gij(oo) as time t -+ +oo 5wcΛ ίΛα/ R^iioo) = 0 on M.

2. Notation and conventions

The notation we are going to use in this paper is basically the same as
the notation used by Hamilton in [6].

We denote vectors as V\ covectors as F,, and mixed tensors as Tι

k\m etc.
The summation convention will always hold. For the Riemannian metric
gij, we let

(1) (gij) = {gijΓι.

The Levi-Civita connection is given by the Christoffel symbols

(2) Γ* - -2kl (^L + ^ - d g i j \
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and the Riemannian curvature tensor is

V ' ιJk " Qχi
l jk Qχj

ι ik^ ι ip1 jk l jpl ik>

(Aλ /?••!» — v i Rk

v v ΛXιjkl — &pklxijl*

We denote the covariant derivatives of a vector Vj and a covector Vj
respectively by

(5)

(6) V F ^ - ^ - F - Γ * , ^ .

This definition extends uniquely to tensors so as to preserve the product
rule and contractions. For the interchange of two covariant derivatives we
have

(7) ViVjVk - VjViVk = gpqRijkpVq.

For any tensors such as {Sijkι} and {Tijkl}, we have the inner product

(8) (Sijkh Tijkl) = giagjβgkγglδSijklTaβγδ9

and the norm of {Tijkl} is defined as

(9) \Tijki\ = (TijkiiTjjki).

We use inj(Λf) to denote the injectivity radius of M.

3. Evolution equation and the short time existence of the solution

For any ^-dimensional Riemannian manifold M with metric

consider the heat flow equation

(2) fagij = -2Rij
on M. We want to find the evolution equations for the curvature tensor
and its covariant derivatives; we need these evolution equations in this
paper.

Lemma 3.1. If the metric gij(t) satisfies the evolution equation (2), then
d n Bijik - Bnjk + Bikjι)

- gPQ{RpjklRqi + RipklRqj + RijplRqk + RijkpRql)*

j + 2RpiqjR
M - 2gMRpiRqj,

^.=AR + 2gik gi>'RijRk, = AR + 2S,
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where

(4) Bijkl = gpygqsRpiqjRyksh

(5) Rpq = g

(6) S=\Rij\2 =

Proof See Hamilton [6].
If A and B are two tensors, we write A *B for the linear combination of

terms formed by contraction on Ai...jBk...ι using the gik, and write VmA
for the mth covariant derivatives of A with respect to the metric gy. Then
we have the following lemma.

Lemma 3.2. If the metric gij(t) satisfies the evolution equation (2), then
for any integer m > 0 we have

!-VwRm = Δ(VmRm)
ot

ι+j=m

(7) |- |VmRm| 2 = Δ|VmRm|2 - 2|Vm+1Rm|2

+ ^ 3 V'Rm * V>Rm * VmRm.
i+j=m

Proof This is Theorem 13.2 and Corollary 13.3 in Hamilton [6].
Lemma 3.3. Suppose (M, gij) is a noncompact complete n-dimensional

Riemannian manifold with sectional curvature 0 < Riμj < ko. Then the
injectivity radius ofM satisfies

(8) inj(Af) > π/y/fa.

Proof This is a well-known fact. Actually one can use the arguments
of [2] to prove this lemma. For example, use Lemma 5.6 and Corollary
5.7 in [2].

The following short time existence theorem for the evolution equation
(2) is a special case of the theorem proved in [12].

Theorem 3.4. Suppose (M,gij(x)) is an n-dimensional complete non-
compact Riemannian manifold with its sectional curvature satisfying 0 <
Rijij < ko. Then there exists a constant To = To(n, ko) > 0 depending only
on n and ko such that the evolution equation

d

has a smooth solution gij{x,t) > 0 on 0 < t < To and satisfies the
following estimates: For any integer m > 0, there exist constants
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= cm+\(n, JCQ) > 0 depending only on n and ko such that

(10) sup\VmRijkl(x,t)\2 < cm+i/tm, 0<t<T0.
M

Proof. The sectional curvature of M satisfies 0 < i?/,/, < ko. By using
formula (1.10) of [2] we have

(11) \Rijkl\
2 < 100«4fc0

2 o n ¥ .

Thus from Theorem 1.1 of [12] it follows that the theorem is true.

4. Maximal principle of the heat equation

on noncompact manifolds

In the case where M is a compact Riemannian manifold, the maximal
principle of the heat equation on M is easy to prove, just as Hamilton did
in [6].

In the case where M is a noncompact complete Riemannian manifold,
the maximal principle for the parabolic heat equation on M is much more
complicated and is not always true except if we make some curvature
assumption on M and some growth assumption of the solution near the
infinite of M. The proof of such maximal principles is not so easy; for
details we refer the reader to the papers of D. G. Aronson [1], H. Donnelly
[5], L. Karp and P. Li [9], P. Li and S. T. Yau [10], and M. H. Protter and
H.F.Weinberger [11].

Let (M, gij(x)) be an ^-dimensional complete noncompact Riemannian
manifold with its sectional curvature satisfying

0 < Rijij < ko.

Then from Theorem 3.4 in §3 we can find a metric

ds2 = gij(x, t) dxldxj > 0 on M x [0, Γo]

such that

I gij(χ,0) = gij{χ),

and
sup \VmRiJk,(x, t)\2 < cm+ι/tm, 0 < t < To, m > 0.

M

If m = 1, we get

(1) \VPRijki\2 < ci/t, xeM,0<t<T0,

(2) \VpRijk,(x,t)\ < cι

2

/2/yft, xeM,0<t<T0;
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thus

(3)
ί \Vp*tjki(x, 01 dt < cψ f ° dt/yft = 2 ^ 7 ^ , x e M,

Jo Jo

SUP / \VpRijkι(x, 01 dt < 2y/ToC2 < +00.

In this section we make the following assumption.
Assumption A. M is an ^-dimensional complete noncompact Rieman-

nian manifold with respect to the metric

ds2 = gij(x9t)dxidxj>0

on C°°(M x [0, T]), where 0 < T < +oo is some constant such that

(4) §ϊgi*x>ή = ~2Ru(χ> o o n M χ [o, n
0<Rijij(x90)<ko, xeM,

(5) \Rijkι(x,t)\2 <cu x G M, 0 < t < T,
( } rT

\VpRukl(x9t)\dt<c29 xeM,
r

\

Jo
\

Jo

where 0 < C\,C2 < +oo are two constants.
Under Assumption A, we let

(6) dsf = gjj(x, t) dxldxj > 0, 0 < t < Γ,

and use V or V to denote the connection of dsf, A or Δ, the Laplacian
operator of dsf, and γt(x9y) the distance between x and y with respect to
metric dsf for any two points x,y e M.

Lemma 4.1. Under Assumption A, we have

2 < ds2 < e2y/ncΐtds29 0 < t < T,

- ^ ' ( ) < γ,(x9y) < e^<γo(x,y), xeM,yeM.

Thus for each t, 0<t <T, dsf is equivalent to ds$.
Proof. Since

\Rijki(x,t)\2<Cι onMx[0,n

we get

(8) \Rij{x, Ol2 < ncγ on M x [0, T].

Thus from
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it follows that

(9) \§ϊgij(x,t)\ < 2\Ru(x9t)\ <

that is,

(10) -2y/ncϊgij{x9t) < §-tgij(x,t) <

We now have

(11) e-^'gij^O) < giJ(χ9t) <

(12) e-2^ιdsl < dsf <

Using (12) we get

(13) e-^'γo(x,y) < γt(x,y) <

for any x,y e M, and this completes the proof of Lemma 4.1.
In particular, we have

(14) e
(χ,y) < yt(χ,y) <

for 0 < / < T and x,y e M.
Lemma 4.2. Under Assumption A, for a fixed point xo e M, we can find

a function ψ{x) e C°°{M) such that

C3{1 + ?o{xo,x)} < ψ{x) < cA{l

(15) \V«ψ(x)\2<c5,

for all x e M, where C3, C4, and c5 are some positive constants.
Proof Let

(16) φ{x) = l+7o(^o,^), XGM.

Then at the smooth point of φ(x) we have

(17) |V>(JC)| < 1.

If we compare φ(x) with the distance function on Rn with respect to
standard Euclidean metric, then, by using the Hessian comparison theorem
in Riemannian geometry, we know that

(18) ^o^o9{χ)^_^_ fOranyξeTxM,\ξ\2 = U

because by Assumption A

0<RijU(xy0) <fco, xeM.
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From (18) it follows that at the smooth point of φ(x)

The problem is φ(x) may not be smooth at some points of M.
We choose a cut-off function χ(x) e Cg°(R) such that

0 < χ(x) < 1 Vx € R,
χ(x) = 0 i f** [-1,2],

(20) X(x)=l 0 < x < l ,

\χ'(x)\<2 VxeR,

\χ"(x)\<S VxeR,

and set

(21) a{Xίy) =

By Assumption A we have

0<Rijij(x,0) <ko, xeM.

Thus we know, from Lemma 3.3, that

(22) inj(M) > π/y/%

with respect to metric ds$, and, from (20) and (21), that

(23) a(x,y)eC°°(MxM).

Now we can use the so-called mollifier technique to modify φ{x). Define

(24) ψ{x) = ί a(x,y)φ{y)dy, xeM.
JM

Then

(25) ψ{x) =

From (23) we know that ^(JC) € C°°(M), and from (17), (19), and (20)
we know that

)} < ψ(χ) <

Hence the proof of Lemma 4.2 is complete.
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Lemma 4.3. For ψ(x) e C°°{M), which was found in Lemma 4.2, there
exists a constant c6 = c6(T) > 0 such that

(26) Δtψ<c6 onMx[09T].

Proof. For any 0 <t <T and x G M, we want to compute Δtψ(x) at
x. Choose a coordinate system such that

(27) ^ ^

and let

(28) I* = i

Then, by the definition of covariant derivative, we have

l)(29) V - Γ-(x ί)
dx'dxJ ι'J{X'l) dxk

*,ψ(x) = g(Xtt)JL-

Since by (27),

(30) Γj=.(*,O)

we have V?V^(x) = d2ψ(x)/dxidχj.
From Lemma 4.2 we know that

which together with (14) implies

(32) gV{x, t)j^j < c5g
ij(x, t)gu(x, 0) <

For each /, [Γ^x, t) - Tkj(x, 0)] is a tensor on Λf. Define

u{x, t) = ̂ ta(αf, t)gjβ{x, t)gkγ(x, t)gky{x, t)[Γkj(x, t) - Γkj(x, 0)]
( 3 3 ) P^(*,0-Γ^(*,0)].

Then u(x, t) € C°°(Λ/ x [0, Γ]).
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Since Γ^(x, 0) = 0 at x, we have

(34) u(x, t) = giagiβgkyT
kij{x, t)Γaβ(x, t),

( 3 5 ) dt dt 6 wj'oβ ' ° ° dt

Since

we have

(36)

and from (28)

d Γk

dt ιj

it follows

l Γ

2g [
=gky{v\

that

v, (:

>Rij ~

?u..

~dt

-v<

= 2ί

- ) -

Rjy

• ό

I-V l

}Raβ,

(dgiγ

\ dt L

(37) ^ 1 * = g vφyRij - VtRjy - VjRiγ).

Substituting (36) and (37) into (35) gives

du(X,ί) _ iσ gJβ
Qt — **g g Koτg

By (8) we get

(39) ^-u(x,t) < βJnc^Γ^l2 + 6\Γ,
at J af:

where \Γkj\2 = u(x,t). Thus

• + 6\Γaβ\
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and therefore

*-V^|i* | - |I* (x,0)| = jf £[e-V^'|I* |]rff

<3 [ \ViRjk\dt<3 f \ViRjk\dt
Jo Jo

<3nί \VpRijkl\dt,
Jo

which together with (5) gives

e-W\I*j{x9t)\ - \Γtj(x,0)\ < 3nc2.

Then by definition (33) we have

|Γf/x,0)| = 0 onM,

and therefore

Ϊj(x, 01 <

(40) |Γ*,(JC,0| < 3nc2e
3T^, xeM90<t<T.

By (14) and (31) we get

(41)

and therefore

(42) \V'iΨ(x)\2 < c5e
2T^^, 0<t<T.

From (40) and (42) it follows that

( 4 3 ) -*/y(*,OΓ&(*,θf5 < n\ΓΪj(x,t)\ • \V'kψ(x)\

which together with (32) gives

giJ(x, t)

Let c6 = c<,ne2T^ + 3n2c2c5e
5T^. Then from (29) we have

(44) Δ,^(JC)<C 6 , xeM, 0<t<T.

Lemma 4.4. Under Assumption A, for any cη > 0 we can find a constant
eg > 0 and a function

θ(x,t)eC°°(Mx[0,T])
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such that the following are true.

(45) O < 0 ( x , f ) < l V(x,t)eM x[0,T],

(46) - — ± r < θ(x, t) < - ίί r, x e M, 0 < / < T,

' l + y o ( * o * ) ~ 1 + Yo(xox)

(47) ^<w-^p--c7θ oπMx[0,Tl

Proof. From Lemma 4.3 we know that

Atψ{x) <c6, x e M, 0 < t < T.

Let

(48) ξ(x, t) = eCηt{ψ{x) -h c6r}, x € M, 0<t<T.

Then

(49) ^ = ̂  + ̂ 6^', 0<t<T.

Since
c6t} = eCl'Aψ < c6e

Clt,

from (49) it follows that

(50) ^>Aξ + cΊζ onMx[0,T).

By (48) we get

ψ(x) < ξ(x, t) < eClTψ{x) + eClT • c6T,

and therefore, in consequence of (15),
(51)

?o(xo,x)] < Ψ(x) < ξ(x,t)

< ec'τ • cA[l + γo(xo,x)] + c6Tec"τ onMx [0, T],

Yo(xo,x)] < ξ(x, t) < (c4e
c'τ + c6Tec'τ)[l + γo(xo,x)]

onMx [0,T].

Let

(52) θ(x,t) = j^—r onMx[0,T].
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Then

dt ~ ξ2dt ~ ξ2[Δζ +

ξ2 ζ θι

(53) — <AΘ- ^\VPΘ\2-Cηθ onΛfx[0, T].

From (51) we have

In particular,

β(*, 0 < — on M x [0, Γ].

Let

(55) θ{x,t) = c3θ(x,t) on¥x[0,η.

Then 0 < θ(x, t) < 1 on M x [0, Γ].
From (53) we get

(56) — <AΘ- -τ\Vpθ\2-Cηθ onΛ/x[0,Γ],

(C4 + Cξ>T)eCηT[\ + yo(̂ o> ^)] "" [1 +yo(*o>*)]"

Choose eg > 0 such that

C 8 > 1 + ^ I ^ r .

Then (45), (46), and (47) are true.
Now we are going to prove the following maximal principle on noncom-

pact manifold M.
Lemma 4.5. Under Assumption A, suppose φ{x, t) is a C°° function on

M x [0, T] such that

^ ,x,t) onMx[0,T]9

( 5 8 ) \9(x,t)\<C9<+oo onMx[0,T],

ί>(x,0)<0 onM,

Q(φ,x,t) <0 forφ>0.

Then we have

(59) φ(x,t)<0 onMx[0,T].
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Proof. If this lemma is not true, then we can find some (XQJQ) eM x
[0, T] such that

(60) φ(xo,to)>O.

Suppose θ(x, t) eC°°(Mx [0, T]) is the function obtained in Lemma 4.4,
and define

(61) Φ(xJ) = θ(x,ή<p(x,ή onM x [0,Γ].

Since 0 < θ(x, t) < 1 and \φ(x, t)\ < c9, we have

(62) \Φ(x,t)\<c9 onMx[0,Γ],

(63) φ(xo, to) = θ{x0, to)φ{xo, to) > 0.

Let

(64) a = sup φ{x, t).
Mx[0,T]

Then from (62) and (63) it follows that

(65) 0 < a < c9,

so that

\φ(x, t)\ = θ ( x , t)\φ{x, t)\ < c 9 θ ( x , t ) < -

Let

(67) D = {x € M\γ0(x0, x) < csc9/a}.

Then D c M is a compact subset.
If (x,ήφDx [0, T], then γo(xo,x) > α-'c8C9. From (66) we know that

\<p(x,t)\<a foτ{x,t)tDx[0,T].

Since D x [0, T] is a compact set, we can find a point (xι,tι) G D x[0,T]
such that φ(x\,t\) = a, so that

(68) φ(xι,ίι)= sup φ(x,t)>0.
Mx[0,T]

Thus we have

(69) ! ^ ( X l ) / ) ) > 0 ,

(70)

(71)
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where (69) comes from the fact that φ(x,0) = θ(x,0)φ{x,0) < 0. There-
fore we always have tι > 0.

From (58) it follows that

dφ d Qdφ dθ
= m = θ + φ

= A(θφ) - 2Vkθ • Vkφ - φAΘ + <P^j + ΘQ(φ,x, t)

= Aφ-l

(72) ^ = Aφ-

Let (JC,0 = (Jti,ίi). Then from (68) we get

Since

(73)

we have

(74)

θ(xι,h)>0,

φ(χι,tι)>0,

and, in consequence of (58),

(75)

Letc7 =

(76)

Q(φ,Xι,tι)<0.

1 in Lemma 4.4. Then

— <AΘ- z:\Vkθ\2

ut θ

From (73) and (75) it follows that

(77) θ(xι,h) Q(φ,XιJι)<0,
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and (74) together with (76) implies

(78) ( ! J -Aθ + §|V*0|2) φ<-θφ =

Substituting (70), (71), (77), and (78) into (72), we get

?£(*i,ίi)<-#(*i,ίι)<0,

(79) d t

§£(*..'.)«>.
Since (79) contradicts (69), we have

φ(x,t) < 0 onM x [0,Γ].

Theorem 4.6. Under Assumption A, suppose φ(x,t) is a C°° function
onMx [0, Γ] 5wcΛ that

= Δ^ + ciol V*p| + G(^' ̂  0 onMx [0, Γ],

(80) ^(x,0<c 9 <+oo onMx[0,T],

?>(Λ:,0)<0 o«Λf,

Q(φ,x,t)<cnφ forφ>0,

where 0 < C9, Cio, C\ \ < +00 ΛΓ^ some constants. Then we have

(81) 9(x,t)<0 onMx[0,T].

Proof. Let

(82) w(x, t) = e-
βt[ec^x^ - 1] on M x [0, T],

where j? > 0 is a constant to be determined later. Then

2Z

= -βw + cιoe-βtec">φ[Aφ + cι0\Vkφ\2 + Q{φ,x, t)]

= -βw + e-β'AeC]<>φ + CιOe~β'eCίoφQ(φ,x,t),

(83) ^- = Aw-βw + c\Oe-βtec«">Q{φ,x, t).
at

If w(x, t) > 0, from (82) it follows that φ(x, ή > 0. Therefore

(84) Q(φ,x,t)<cuφ(x,t).
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Since φ(x, t) <Cg < +00, we can find a constant δ > 0 such that

(85) φ(x, t) < <ί[e*oK*.O - 1] for 0 < φ(x, t) < c9,

which together with (84) gives

(86)
= CιOcnδeCιoφw < Cι0cnδeCi0C9w.

Let

(87) Q(w, x, t) = -βw + cιoe-βtec«>φQ(φ, x, t).

Then
rim

(88) ^-=Aw + Q(w,x,ή onMx[0,T].
ot

If w(x, t) > 0, from (86) we get

Q(w,x,t) < lcιocnδec^ - β]w.

Choose

(89) β^ciocnδe*"*;

then

(90) Q(w9 x,ή<0 for ^ > 0.

Since φ(x9θ) < 0, from (82) it follows that

(91) w(x,0)<0 onΛ/,

-l<w(x9t)< eCιoC9 - 1 on M x [0, Γ],

so that

(92) \w(x, t)\ < ec"C(> on M x [0, Γ].

Using (88), (90), (91), (92) and Lemma 4.5 we get

w{x9t) < 0 onΛf x [0, Γ],

so that, in consequence of (82),

flK M ) < ° o n M x [ 0 , Γ ] .

Now we are going to prove another maximal principle that is different
from Theorem 4.6.
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Lemma 4.7. Under Assumption A, for any fixed point Xo € M and ε > 0,
we can find constants c(ε) > 0 and Cn > 0 such that for all k > Cn, there
exists a function θ{x) € C°°(M) satisfying the following:

0 < θ(x) < 1 on M,

θ(x) = l VxGB0(x0,k),

θ(x) = 0 Vx € M\Bo(xo,2k),

(93) vo(L)\<cM(Λ-

(
k \θ(x)J

where

#o(*o, k) = {xe M\γo(xo,x) < k},

(94) Ω = {x € M\θ(x) > 0}.

Proof. Suppose p(t) e C°°(R) is a function such that

0 < p(t) < 1, -ex) < t < +oo,

0 < p'(t) < 90, -oo < t < +oo,

(95) p(ί) = 0, -oo < t < g ,

/̂ (0 = ̂  M <r<+oo.
It is easy to show that such a />(ί) exists. Then we define a function

e C°°[0, | ) as follows:

* ( 0 = i, o < / < ^ ,

j?(O=l+exp —

(96)

p(t)exp

1 +exp I --

l 1 11 3
T < ί < 2

X{t) = exp

It is easy to see that

(97)
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from (95) and (96), and that

x ( t ) > h o < t < l
(98) 0<χ'(t)<c(ε)χ(t)ι+ε, 0 < / < J,

\χ"(t)\<c(ε)χ(t)l+ε, 0<t<l,

where c(ε) > 0 depending only on ε > 0.
Let

(99) ?

ηU) = 0, - < t < +00.
4

Then^(r)eC°°[0,+oo).
For k > 0, let χ{t) € C°°[0, |fc) as follows:

(100) X{t) = X(t/k), 0<t<lk.

Then

*(0>i, o<t<Ί-k,

(loi) 0 < / w < ^ W 1 + ε , o<t<lk

\x"(t)\<ψ-χ(t)ι+e, o<t<lk.

Choose a cut-off function ζ(x) € C °̂(R) such that

0 < ζ(x) < 1 Vx € R,

C ( X ) Ξ O i f jc^[- l ,2],

(102) ί W = l, 0 < * < l ,

and define

(103) ψ{x) = L

Then similar to the proof of Lemma 4.2 we know that ψ(x) € C°°(M),
ψ(x) > 0, and we can find a constant c$ > 0 such that

fyo(*o,*) - cs < ψ(χ) < ψyo(χo,χ) + Cf,,

(104) | V ^ ( A Γ ) | 2 < C 5 WxeM,
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Now we define θ(x) as

\
(105) θ{χ) = J XiΨix))

0 if ψ(x) > fk.

Then from η(t) € C°°[0,+oo) and ψ(x) € C°°(M) it is easy to show that

(106)
θ(x) € C

0 < β(x) < 1 V* € Λf.

Let en = 40c5. Then if A: > C12, for any x € 2?o(x<)> ̂ ) w e

O,Λ:) < k,

Ψ(x) < ψϊo(xo, x) + c 5 < ψ

From (105) and (96) we have, respectively,

(107)

θ{x) = x(ψ(χ)Y V x € 5 °( χ ° '^ '
θ(x) = l VxeBQ(x0,k)

If x € M\5o(xo, 2fc), then 3Ό( Xo> *) > 2A: and

Thus

(108) θ(x) = 0 Vx G M\B0(x0,2k).

For Ω = {x € Af |θ(x) > 0}, we have

From (101) and (104) we get
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(I)=

c5

κ(θfx)) 8ii(x'0) o n Ω

Let
c(ε) = max{c(e)v^5, c(ε)/40 + c(ε)c5}.

Then the lemma follows from (106), (107), (108), (109), and (110).
Lemma 4.8. For the function θ(x) obtained in Lemma 4.7, we can find

another constant Cπ > 0 depending only on ε and the constants in Assump-
tion A, such that

Proof. Similar to the proof of Lemma 4.3.
Now we are going to prove the following maximal principle on noncom-

pact manifold M.
Lemma 4.9. Under Assumption A, suppose there exist constants 0 <

ε, cu,Ci5 < +oo, and φ(x, t) eC°°(Mx [0, T]) such that

do

£=Aφ
£ ,t) onMx[09T],

φ(x,0)<cl4 onM,

Q(φ,x,t)<-cl5φ
ι+ε ifφ>cϊ4.

Then we have

(113) φ(x,t)<Ci4 onMx[0,T].

Proof Fix a point x0 € M and suppose this lemma is not true. Then
we can find some (A:2, t2) e M x [0, T] such that

(114) <p(X2,t2)>cϊ4.

Choose k > c{2 large enough such that x2 € 2?o(*o>£)> and let θ(x) e
C°°{M) be the function constructed in Lemma 4.7. Then we define

(115) φ(x,t) = θ(x)φ(x,t) onΛ/x[0,Γ].
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Since X2 € BQ(XO, k), we have θ{xι) = 1, and therefore

(116) Φ(x2,h) = 9{x2,h)>cu.

If (χ,t) € [M\B0{x0,2k)} x [0,T], then θ(x) = 0. Thus from (115) we
know that

(117) φ(x,ή = 0 on{M\B0(xo,2k)}x[0,T].

Since 2?o(*o5 2Λ:) x [0, T] is a compact set, where 5o(*o> 2/:) is the closure
of Bo(xo,2k), from (116) and (117) it follows that there exists (x\,t\) G
Bo(xo,2k) x [0, T] such that

(118) Φ(x\,t\)= sup ^ ( x , 0 > c 1 4 .
Λ/x[0,Γ]

Thus we have

(119) Aφ(x\,t\) < 0, V^(xi,/i) = 0.

Since 0 < θ(x) < 1,

^(x,0) = θ(x)<p(x,0) < c{4θ(x) < c u .

From (118) it follows that tx > 0, so that

(120) -^-(x\J\) > 0.

On the other hand, by (115) we get

-̂ y = -Qjiθφ) = θ--jj = θ[Aφ + Q(<p,x,t)] = ΘAφ + ΘQ{φ,x,t)

= Δ(β^) - 2VPΘ Vp^ - φAΘ + 0β(p, JC, r),

^ = Aφ - lvpθ • Vp(θφ) + ̂ -\VPΘ\2 - φAΘ + ΘQ(φ,x, t),

(121) <^=Aφ-?.vpθ.vpφ

Let (x,ή = (x\,t\). Then from (118) we have

(122)

Since O < 0 ( x , ) < 1, φ(xuh) > ci4. By (112) we get

(123) Q(9,xutι)<-cι5φ(xutι)ι+β,

\\+ε

ψ- cfφ{Xuti)
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From (122) it follows that

325

1+e

φ(xutι)θ2

By means of Lemma 4.8 we have

(124)

'

If we choose k large enough such that c\^jk - C\sc\4 < 0, then

(125) (-Q\VPΘ\2-AΘJ φ + ΘQ(φ,Xι,t\) < 0 at (x\9t\).

From (119), (121), and (125) we know that

which contradicts (120); therefore the lemma is true.
Lemma 4.10. Under Assumption A, suppose there exist constants 0 <

e < +oo and 0 < C\4,C\5,C\β < +oo, and φ(x,t) e C°°{M x [0, T]) such
that

^=Aφ + Q(φ9 x, t) onMx [0, T],

φ{x,0)<C\4 on M,

ε forφ>cι4.

Then we have

φ(x, t) < en on M x [0, T],

Proof. Let a be an odd integer and a > 1 + Ci6- Define

(126) ψ(x,t) = φ{x,t)a onΛ/x[0,Γ].
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Then

= Aφa - α(α - l)φa-2\Vi<p\2 + aφa-χQ{φ,x,t).

Thus

(127)

where

(128)

From (126) we get

(129) ψ(x9θ)<cf4 onM.

If Ψ(x, t) > cf4, then φ{x, t) > cl4,

Q(ψ,x,t) < -«{*- l ) ^

= α(l + cϊ6 -

Since a > 1 4- C\6,

(130) Q ( ^ x , 0 <

From (127), (129), (130) and Lemma 4.9 it follows that

ψ(x, t) < c?4 on M x [0, Γ].

By (126) we get
φ(x,t) <C\4 o n ¥ x [ 0 J ] .

Lemma 4.11. Under Assumption A, suppose there exist constants 0 <
e < +oo and 0< Ci4,Ci5,Ci6,cπ < +oo, andφ(x,t) e C°°(M x [0, Γ])

Q(φ9 x91) onMx [0, Γ],

, 0) < en on Λf,

,x, 0 < C l 6 1 ^ + ̂ /V/ίi - cπ^l^ l2 - cl5φ
ι+ε for φ > c14,

φ
where {ψi} is a tensor. Then we have

φ(x,t) <C\4 onM x [0,Γ].
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Proof. The proof follows from the inequality

and Lemma 4.10.
Theorem 4.12. Under Assumption A, suppose there exist constants 0 <

ε < +oo and 0 < C\o,C\\,C\^C\^,c\^C\η < +oo, and the function φ(x,t) e
C°°{Mx[0,T]) such that

^=Aφ + Q(φ,x,t) onMx[0,T],
ot

) < 0 onM,

(131) Q(9,x,t)<Cιo\Viφ\2 + cnφ for 0 < φ < cl4,

for φ > c{4,

where {ψi} is a tensor. Then we have

(132) φ{x,t)<0 onMx[0,T].

Proof From Lemma 4.11 we know that

φ{x,t) <Ci4 onM x[0,Γ].

Using Theorem 4.6 we thus complete the proof.

Now we are going to use the maximal principle derived above to prove
some properties of curvature on M under the Ricci flow. First we have

Lemma 4.13. Under Assumption A, we have

(133) 0 < R{x, t) < n2y/Γ\ onMx[0,T].

Proof Using (5) and Lemma 3.1 we get respectively

(134) \R(xJ)\<n2JFx onMx[0,Γ],

-

where S = gikgJ'RuRkι > 0. Thus

(135) ψL-AR
 OΛMX[0,T].

From (5) we have

(136) R(x,0)>0 onM,

and therefore, in consequence of (134), (135), and Theorem 4.6,

(137) R(x,t)>0 onMx[0,T],
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which together with (134) implies

0 < R(x, 0 < rp-^/cl o n M x [0, T],

Next we are going to show that the Ricci deformation preserves the pos-
itivity of the curvature operator on the complete noncompact Riemannian
manifold M. Hamilton [7] proved this for the case when M is a compact
manifold. In the case when M is a noncompact complete manifold the
proof basically is the same as the compact case, but we need to use some
cut-off function technique, just as we did in Lemma 4.5. For more details,
see Hamilton [7].

We regard the Riemannian curvature tensor Rm = {Rijkι} as a symmet-
ric bilinear form on the two-forms A2(M) by letting

(138) Rm(p, ψ) = RijkiΦijψu.

We say that the manifold has a positive curvature operator if Rm(</>, φ) > 0
for all two-forms φ Φ 0; in this case we denote

(139) Rijkl>0 or Rm > 0.

We say that the manifold has a nonnegative curvature operator if Rm(</>, φ)
> 0 for all two-forms φ and denote it by

(140) Rijki>0 or R m > 0 .

We want to prove
Theorem 4.14. Under Assumption A, ifRijkι(x,0) >0onM, then

(141) Rijki(x,t)>0 onMx[0,T].

Moreover, ifRiJki(x,0) > 0 on M, then

(142) Rijkι(xJ) > 0 onMx [0,Γ].

Proof. Since (142) is an immediate consequence of (141), by using the
local technique, which is exactly the same as the one used in the compact
case, we only need to prove (141).

From Lemma 3.1 we have

^ ΔR

+ RpjRiqkl + ̂ pk^ijql + RplRijkq)gPQ'•

To simplify these equations we pick an abstract vector bundle V isomor-
phic to the tangent bundle TM, but with a fixed metric hab on the fibers.
Choose an isometry u = {u'a} between V and TM at the time t = 0, and
let the isometry u evolve by the equation
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Then the pull-back metric

(144) hab = gijU^ul

remains constant in time, since it is easy to see that §-thab = 0, and u
remains an isometry between the varying metric gy on TM and the fixed
metric hab on V. Now we use u to pull back the curvature tensor to a
tensor on V:

(145) Rabcd =

We can also pull back the Levi-Civita connection Γ = {Γ^ } on TM to get
a connection f = {f*c} on V, where the covariant derivative of a section
w = {wa} of V is given locally by

(146) V / «; β ^

We may take the covariant derivative of any tensor of V and TM, in
particular we have

(147) V/i#i = 0, V/*ea = 0,

and let the Laplacian

(148) ΔRabcd = giJViVjRabcd

be the trace of the second covariant derivative. From Hamilton [7] we
know that

(149) -TπRabcd = ΔRaijC(j + 2(5α^Cί/ - Babdc + Bacbd - Badbc),

where Babcd = RaebfRcedf
We regard the two-forms Λ2 on V as the Lie algebra so(«) of the Lie

group of rotations of V. Choose a local chart on V where hab is the
identity, the metric on Λ2 is given by \φ\2 = (φ,φ), where (φ, ψ) = φabΨab>
and the Lie bracket is given by

(150) [φ, ψ]ab = ΦacΨbc ~ ΨaeΦbc

It is easy to check that the trilinear form ([0, ψ], w) is fully antisymmetric;
choose an orthonormal basis φa = {φ%b} for the 2-forms on V, then the
inner product on A2(V),

is the identity matrix in the local chart. The Lie bracket is given by
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where the Cγβ are the Lie structure constants relative to this basis. Note

that caβγ = cγhyδ is fully antisymmetric since

(151) c^y = ([φ

The tensor Rabcd o n V m a Y be regarded as a symmetric bilinear form Maβ
onΛ 2 (F), where

(152) Rated = Maβφ«abφ
β

cd.

Then from Hamilton [7] we know that

( 1 5 3 ) -Q-^abcd = ΔRabcd + Rlbcd + Rlbcd>

where

Rlabcd = RabefRcdef = ΆBabcd ~

Rabcd = 2(Bacbd ~ Badbc) =

or equivalently

(155)

For any symmetric bilinear form A = {Aaβ} on Λ2(F), if we define

(156) Q{A)aβ = AaγAγβ + caγηcβδθAγδAηθ,

then we get

(157) —Maβ — AMaβ + Q(M)aβ.

For any {Aaβ}, if Aaβw
awβ > 0 for all tu = {wa}, we denote

(158) AQβ>0.

For any {A*0} and {AQβ}, if ^4α^ - 4̂αyj > 0, we denote

(159) Aaβ>Aaβ.

For any fixed (x, t) e M x [0, T], we define

(160) p(jt, t) = sup{0|Λ/α«(.x, ί) > Θδaβ},
θeR

where

Lemma 4.15. For ύwy (x, t) e M x [0, Γ], i?^/(x, 0 > 0 if and only if
Maβ{x,t)>0.

Proof By the definition of Maβ.
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From the assumption of Theorem 4.14, we have RiJkι(x,0) > 0 on M,
and therefore

(161) Maβ(x90)>0 onM.

Thus

(162) 9>(JC,0)>0 onM.

If we can prove φ(x, t) > 0 on M x [0, Γ], then Theorem 4.14 follows from
Lemma 4.15.

From Assumption A it follows that

)\2<Cχ onMx[0,Tl

By (143), (144), and (145) we get

(163) \Rabcd(x,t)\2<Cx onMx[0,n

where 0 < C\ < +oo is some constant. Thus by the definition of Maβ there
exists a constant 0 < C\% < +oo such that

(164) -CιSδaβ<Maβ(x,t)<cιsδaβ onMx[0,Γ].

In particular we have

(165) <p(x,ή>-cιs onMx[0J].

Lemma 4.16. For any symmetric bilinear form {Aaβ}, ifΆaβ > 0, then
Q(A)aβ > 0.

Proof. Just by the definition of Q(A)aβ.
From (165) it follows

(166) Maβ(x,t)>φ{x,t)δaβ on M x [0, Γ],

so that

(167) Aaβ = Maβ-φδaβ>0 on M x [0, Γ].

By Lemma 4.16 we get Q{A)aβ > 0. Since Q(A)aβ actually are the qua-
dratic polynomials of Aaβ, from (156) and (164) we have

Q(M)aβ > -cϊ9[cιs\φ\ + φ2]δaβ on M x [0, Γ],

and, in consequence of (164) again,

\φ(x,t)\<cι% on M x [0, Γ].

Thus

(168) Q(M)aβ > -2cl9cιs\φ\δaβ on M x [0, T],
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and therefore

(169) Q(M)aβ>2cl9cιsφδaβ for φ < 0,

where 0 < C\g < +oo is some constant.
Now if we can find some (xo^o) Ξ M χ [0, T] such that

(170) p(xo,ίo)<O.

Let 0(x, 0 G C°°(M x [0, Γ]) be the function constructed in Lemma 4.4,
and consider Maβ as follows:

(171) Maβ(xj) = θ(x,t)Maβ(x,ή onMx[0,Γ].

Let

(172) φ(x,t) = sup{θo\Maβ(x,t) > θoδaβ}.
θoen

Then

(173) φ(x,ή = θ(x,ήφ(x,ή onMx[0,T].

Since 0 < θ(x, t)<ί, from (170) we have

(174) 9K*o,'o) = θ(xo,to)φ(xo,to) < 0.

By (46) and (165) we know that

Thus if yo(xo,^) > -CiiCS/φ{xo,to), then

(176) φ(x,t)>φ(x0,to).

Since 5O(Λ:O, -CI8CS/^(Λ:O, to)) x [0, Γ] is a compact subset of Λf x [0, T]
and p(x, ί) is a continuous function, from (176) it follows that there exists
a point (xu tx) € M x [0, Γ] with

such that

(177) ^(x,,ί1)

On the other hand, by (172) one can find an index αi such that

(178) Maιaι{xι,tι) = φ{xι,h),

(179) Maa{x, t) > φ{xut\) V(x, ήeλfx [0, T], V index a.

Thus

(180) ΔJfirβlQl(*,,ίi)>0,
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Since φ(x,0) > 0, we have φ(x,0) > 0, and from (177) we get t\ > 0.
From (179) we have

(181) — Λ ' ' ^ ' Λ

On the other hand,

= θ[AMaβ + Q(M)aβ] + ^Maβ

= A(ΘMaβ) - 2VPΘ • VpMaβ + ΘQ(M)aβ + ̂ Maβ - MaβAΘ

(182) = AMaβ - lvpθ • Vp(ΘMQβ) + ̂ f^Maβ + ΘQ(M)aβ

= AMaβ - | v p 0 VpMaβ +(^-AΘ + l\VPθ\ή Maβ

+ ΘQ(M)aβ.

Now let (x, t) = (xι, t\) and a = β = a\. Since

φ(xι,ti) = θ(xi,tι)φ(xι,t\)<0,

we have

From (169) it follows that

(183) Q(M)aιa, >

But Maιaι(xutι) = φ{x\,h), so by (182) and (183) we get

(184) °l

By Lemma 4.4 if we choose Cη > 2c\%C\<), then

(185) ^ - Δ ^ + ̂ |V^| 2

at u
Since φ{xuh) < 0, from (180), (184), and (185) it follows that

—Maιaι(xι,tι) >0,
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which contradicts (181). Thus

φ(x,t) > 0 on Λf x [0, Γ],

and the proof of Theorem 4.14 is complete.

5. Long time existence

Let M be an /7-dimensional Riemannian manifold with metric

ds2 = gijdxidxj > 0.

If the curvature satisfies

(1) \Rm]2<δn{l_ε)2_J__R2y

where ε > 0, δ3 > 0, ό4 = y, δ$ - ^ , and

( 2 ) *• = (n-2)(n+l)> n * 6 '

then the curvature operator is positive, more precisely, in this case we have

(3) RijkiUijUkl > 2 φ o l 2

for any two-form {Uij}. For the proof of this statement, see G. Huisken

[8].
Now we choose constants βn < δn/[2n(n - 1)] depending only on n, and

suppose the curvature of the manifold considered satisfies

(4) |Rm|2 < βnR\

In this case from (1) and (3) we know that for any {«/;},

(5) RijkiUijUkl > M 2

n ( π _ t ) .

Lemma 5.1. Suppose M is an n-dimensional complete noncompact Rie-
mannian manifold with its curvature satisfying condition (4). Then

(6) \RiJk,\
2 < [A, + φ^irjy\Rl on M

Proof It is easy to show that

(7) l ^ / l 2 = |R m l 2 + ^ τ y Λ 2

From (4) and (7) we get (6) immediately.
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Theorem 5.2. Suppose M is an n-dimensional complete noncompact
Riemannian manifold with metric gij(x). If the curvature ofM satisfies

(8) |Rm|2 < βnR\ 0 < R < c0,

where 0 < Co < +oo is a constant, then the evolution equation

(9) a7ft;(*> 0 = -2Rviχ> 0, Sijix, 0) = gu(χ), xeM,

has a solution for all time 0 < t < +oo.
This long time existence theorem is what we want to prove in this sec-

tion, but before we start the proof, we must prove several lemmas.
Using (8) and Lemma 5.1 we find

(10) \Rijki(x,0)|2 < [A, + n{n\ 1 }] 4 Vx e M.

From (5) we get

(11) Rijkl(x,0)>0 VxeM,

which together with (10) implies

Γ 2 1 1 / 2

(12) 0 < Rtjijix,0) < \βn + n{n } ) j «2c0 on M.

Thus by using Theorem 3.4 we know that the evolution equation (9) has
a solution for a short time 0 < / < 7o, where To > 0 depends only on n
and Co, and by using Lemma 3.4 we still have the short time estimate:

(13) s u p | V m ^ / ( x , 0 | 2 < cm+ι(n,c0)/tm, 0 < t < Γo, m > 0.
M

Lemma 5.3. The solution obtained above satisfies Assumption A o/§4
on M x [0, To].

Proof Similarly to the proof of (3) in §4 by using (13).
Now we define 0 < T\ < +oo as follows:

T\ = sup{τ|the evolution equation (9) has a solution gij(x,t)
τGR

on M x [0, τ), and for any 0 < T < τ, the solution

(14) gij(x, ή satisfies Assumption A of §4 on M x [0, T] and

(13) holds on Λf x[0,^Γ0]}.

Then we have

(15) 0 < Γ o < T{ <+oo.

What we need to prove is that T\ — +oo.
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For 0 < T2 < Γi, suppose gij(x, t) is a solution of the evolution equation
on M x [0, Γ2), and for any 0 < T < T2, the solution gij(x,t) satisfies
Assumption A of §4 on M x [0, T].

Thus for any T < T2, the maximal principle Theorem 4.6 and Theorem
4.12 are true on M x [0, Γ], but since T < T2 is arbitrary, we know that
Theorem 4.6 and Theorem 4.12 actually hold on M x [0, Γ2).

Lemma 5.4. We have the following'.

(16) Rijkl(x,t)>09 R(x,t)>0 onMx[0,T2).

Proof. From (11) we complete the proof immediately by using Theo-
rem 4.14.

Lemma 5.5. Suppose 0 < a < \ and

(17) / f f ( ^ / ) = J ^ L ( X ) i ) on M x [0,

Then

(18) §-ffβ = Δ/σ + ^ ^ 2ί^)

- |Rm|25.

Proof. This is Lemma 3.2 [8].
Lemma 5.6. //*

|Rm|2 < δn{\ - ε)2 — ψ-R2, ε > 0,

then

P < -£/?2|Rm|2.
~ n '

PROOF. This is Theorem 3.3 [8].

Lemma 5.7. |Rm|2/Λ2 <βnfor0<t< T2.

Proof. Let fo(x, t) = (\Rm\2/R2)(x, t). Then from (18) we have

(19) ^ / o = Δ/o + I V k R • Vkf0 - -^\RVpR i jkι - RijkιVpR\2 + -^P.

Let

(20) p(x,i) =
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Then

(21) φ(x,t)

By (3) and (7) of §3 we get

(22) I ? = A</>

+ 2S(fo-βn), 0<t<T2.

From (8) it follows that

(23) Mχ,0)<βn, xeM,

and that

(24) φ(x,0)<0, x<=M.

Using Lemma 5.4 and formula (1.10) in [2] we get, respectively,

0 < Rijij(x, t) < R(x, t) on M x [0, T2),

(25) \Rijki(x, t)\2 < 200n4R(x, ή2 on M x [0, T2).

o

Since |Rm|2 < \Rijki\2, we have

|Rm|2 < 200/I4/?2 on M x [0, T2),

(26) fo(x, t) < 200«4 on M x [0, T2),

(27) φ(x, t) < R(x, t)fo(x, t) < 200n4R(x, t) on M x [0, T2).

For any T < T2, since Assumption A of §4 is true on M x [0, T], we can
find a constant c\ (T) > 0 such that

(28) | / ? , 7 W ( Λ : , 0 | 2 < C I ( Γ ) onΛfx[0,Γ],

which together with Lemma 5.4 implies that

(29) 0<R(x,t)<n2^/cι{T) onMx[0,Γ].

From (27) it follows that

(30) φ(x, t) < 200n6s/cι(T) on M x [0, T].

If φ > 0, from (20) we have \Rm\2/R2 > βn. Define

Θ2 = ML or θ = ^-βll\
|Rm|2 |Rm|
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Then 0 < θ < 1 and

(31) Pn = 0

( * , « = •

R2 '

Thus

(32)

Let

o

Λ, ̂ / = ΘRijkh

(33) C/

Then

(34) jR/yjt/

From § 1 we know that

( 3 5 ) \Rijk!\2 = \

fe/l2 =
Since 0 < θ < 1, from (28) and (35) we have

(36) \&ijki\2<\Rijki\2<Ci(T).

Define

(37) P = 2RRijkιRimknRmjnι + jRRijicιRkιmn

where

(38) A = gikgjiAijki = R9 S = gikg»AijAkh Ru = gklRikjh

Since
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and βn < δn/[2n(n - 1)], from Lemma 5.6 it follows that

(39) p<_-Lr°

By the definition of P and P,

P-P<

which becomes, in consequence of (36),

P - P < 2c2\Rijk,γ • \Rijkl - Rijkl\

= 2c2\Rijklγ • \Rijkl - ΘRijki\

= 2c 2 | JRo w | 3(l-0)|Rrn|.

From (25) and (32) it follows that

(40) P - P < 6000c2n
6R3 • -%= < c3R

3φ,

which together with (39) implies P < c^R}φ. By using (29) we get

(41) 4JP ^ C3 4Rψ < c4ψ foτφ>0.

On the other hand, from (20) we have

2S(/o - βn) = η£<P^

which together with (25) yields

By using (29) we get

(42) 2S(fo-βn)<c5φ if φ > 0,

which together with (41) implies

(43) *-P + 2S{fo-βn)<c6φ iϊφ>0.

From (22), (24), (30), (43) and Theorem 4.6 we have

φ(xj) <0 onMx[09T]

for any T < T2. Thus

φ(xj) < 0 o n M x [ 0 J 2 ) ,

and, in consequence of (20),

(44) fo(x,t)<βn onΛ/x[0,Γ2).

Hence the proof of Lemma 5.7 is complete.
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Lemma 5.8. We have the inequality

< 4 5 > I*'**!2 a ΪU^W
Proof. This is Lemma 4.3 in [8].
From Lemma 5.8 we get

Lemma 5.9. Lef Λ,7 = Λ,7 - £/?&;. τ h e n

(47) S-i/ϊ 2 = |Λo | 2 >

(48) ^ = AS - 2\ViRjk\
2 + ARi

(49) §

Proof. This is Lemma 4.2 in [8].
Lemma 5.10. We have the inequality

9

(50) d
+ c(n)\Rijkι\

3.

Proof. This is a direct corollary of Lemmas 5.8 and 5.9.
Lemma 5.11. For γ > 0 we have

(51) §i\V-R\2 = Δ I V < * I 2 - 2|V/Vylϊ|
2 + 4V, Λ V,S,

γ{γ+l)\VR\2 - -^S

+ R

Ί0-

= gik gj>RπRkl.
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Proof From Lemma 3.1 we have

Thus

• 2V/Λ = Δ(V//<j - Kik\/kK + 2V, Λ,

r̂ ^x —|V/i?|2 = Δ|Vz i? | 2 o l

dt\RyJ Rv+{ dt

The third and fourth equations of (54) are (51) and (52) respectively.
Now, using (51) and (52), we get

_(
dl \RT

Since

/ 1 \ 4v

ViR

we have

ΊΓt

V.V,/? - ^ |

which actually is (53).
Lemma 5.12. If we define
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(55)

< Aw + jVkR Vkw - —w2 + -Rw

c(n)\Rijkl\\

where c(n) > 0 is a constant depending only on n.

Proof. We have

VkS - \\

Thus from (50) it follows that

dt\ n
<A(S- -R2) + ivfeJR -Vk(s- -R2)
~ \ n ) R V " /

(56)

Now, letting γ = 1 and using (53) we get

di \ΓΊΓ) = Δ \-R-) + R

25
1

R

1 .

(57)
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By means of (56) and (57) we have

^ < Aw + ±VkR • Vkw -

^Rw - ¥ R ( S - i/?2) + Λc{ή)\Rijkl\\

VR Vkw - -^w2 + -Rw

Lemma 5.13. For any T < Tj, there exists a constant c = c(T) > 0
such that

Proof. Let

Then from Lemma 5.12 we have

(58)

Since
o

from Lemma 5.7 it follows that

(59) ^\RίJkl\2<βn + —±— O n0< t<T2.

If 0 < / < T < T2, then by (59) we get

• n< < <fR* = c{n)R\
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where c(n) > 0 depends only on n and βn. We still have

c{n)\Rijklγ<c{n)R\

Thus by the above two equations (58) is reduced to

(60) ^ < Aw + i VkR Vkw - ±w2 + ̂ Λ w + c3R\ 0<t<T,

which together with (29) implies

(61) ^ < Aw + 4 ^ Λ VfcW - -^tί;2 + c 2 ^ + c4, 0 < ί < Γ,

where 0 < Cι, c^ < +oo are constants depending on T. Let

Then

ΔF + Iv*Λ VkF - ±F2 + l-±p*F + c4T.

From (47) it follows that

-ml* 'v n R ) \ - t R
Finally we have

d F <— <

+ F

Let Cs = 1 + Γc2 and C6 = C4Γ. Then

, 0<ί<T.

By using (29) again we get

c5R < c7, c6tR < c8 on 0 < t < T.

Thus
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By definition we know that

(63) F(x,0)==0 onM.

Then from (62), (63) and Lemma 4.11 it follows that

(64) F(x9t)<c, 0<t<T,

where c> 0 depends on T. Thus we have

Lemma 5.14. We can find σ > 0 and c(σ) > 0 such that

Let fσ(x, t) = |Rm|2/Λ2-σ. Then Lemma 5.5 implies that

R4 σ |Rm| |V,Λ|
(65)

From Lemmas 5.6 and 5.7 it follows that

(66) P < -^i? 2 |Rm| 2 , 0 < t < T2,

S < - R 2 + \Rπ\ < ( - + c{n) ) R 2 , 0 < t < T2,n \n )

and therefore

(67) - W L ̂

0<t<T2.

Now if we choose σ such that

(68) 0 < σ <
2nc{n)
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then

(69) . ^ _ (p + ̂ |Rm|2SΊ < 0, 0 < t < T2.

Substituting (69) into (65) gives

or
(70) ^f < ϋfσ + |V,/σ|

2 + [1 - σ(l - σ ) / σ ] ^ ^ 5 0 < t < T2.

Since

Mχ>°) = ^ S r
from (8) it follows that

(71) fσ(x,0)<βn(% onM,
o

By using (44) we find

(72) fσ{x,t)<βnRσ{x,t) onΛ/x[0,Γ].

For any T < T2 we use (29) and (72) to get

(73) Mx,t)<βnn2σci(Tr'2 onMx[0,T].

Since <τ satisfies (68) and c{n) = i + c(«) > i,

(74) 0 < σ < i.

Therefore

(75) [ i - ^ i - f f ^ J ^ U ^ o i f Λ > !
ff(1!_ff)

From (70), (71), (73), (75) and Theorem 4.6 we know that

fσ(x, t) < max \βHcξ, l_ ] on M x [0, Γ].

Since Γ < Γ2 is arbitrary, we get

(76) fσ(χ, t) < max \βHcξ, —^—rl, 0 < / < T2.

I σ(l-σ)J
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From Lemma 5.14 it follows that if σ satisfies (68), then

(77) _ l _ ^ 5 - i Λ 2 ) < « 2 c ( σ ) , 0 < t < T2,

which holds since S - ^R2 = |j?,7|
2 < n2\Rijkl\

2.
Lemma 5.15. We have the inequalities:

(78) RijRkiRikji <R(S- ^R2), 0<t<T2,

f (s- 1-RΛ <A(S- 1-R2) - 2ί"-2)j
( 7 9 ) dt\ n ) - \ n ) n(3n-2)'

+ 4R (s - ^R2) , 0<t<T2,

m

Proof. From Lemma 5.7 one can check directly that

RijRkiRikji < R { S - — R J 9

or one can see [8, p. 60].
Now (79) follows directly from (46), (49), and (78); (80) follows from

(53).
We want to prove the following important lemma:
Lemma 5.16. For any η > 0, we can find a constant c(η) > 0 depending

only on n,βn,Co, and η, such that

(81) |V//t|2 < ι/Λ3 + φ/) , η<t<T2.

Proof. Since

we have

r-r D T*7 o ^ i n |2|T7 D|2 ι OlTT D |2 ITT D|2 _ι QIT7 D |2
— V ; Λ V/o < -pp)\-Kjk\ |v//v| -T o|V//v, ̂ | = •—y|V//v| -H o|V//vy ̂ | ,
R Rι RΔ

which reduces (80) to

(82) I
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From Lemma 5.14 it follows that if 0 < δ < l/[2nc(n)]9 then we can find
a constant C\ = C\ (βn, c0, δ) > 0 such that

(83) S--R2 <CιR2-δ, 0<t<T2

(actually this comes from (77)). By (79) we get

(84) dt\ n ) ~~ \ n ) n(2>n-2) ι j

+ 4cιR3~δ, 0<t<T2.

Since $=AR + 2S9S- ±R2 > 0, we have

(85) — > ΔΛ + -K ,

— R 2 = 2R— = 2RAR + 4RS,

= AR2 - 2\VιR\2 + 4RS,

and therefore

(86) AR2 - Λ-R\

From (82), (84), and (86) it follows that for any η > 0

(87) < Δ
' J?|2 / 1 \ 1

If we choose C3 such that

8 - 2( W -2) 2 ^ 4η(n-l)(n
« ( 3 n - 2 ) 3 " 3 « - 2

then from Lemma 5.8 we have

Γ 2 ( « - 2 ) 2 1 2 4η(n- l)(/i + 2)

[8 " n(3«-2)C3J | V ' ^ ' " 3 ^ 2 l

< -2η\ViR\2,

[8 " ( 3 " 2 2 ) ]
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and therefore, in consequence of (87),

0 < ί < T2.

Let

Then from (85) and (88) we get

η

(89) ^ < AF + ^ c { c 3 R ι - δ - ±ηR - J j c ] R 2 , 0<t< T2.

If we choose C large enough, then

* 4 2
4c{c3R

ι~δ ηR C < 0 for all R > 0,

where C depends only on βn,Co,δ, η,C\, and C3. We have

(90) ^ 7 - Δ F ' 0 < ί < Γ2.

By the definition of F,

Suppose Γo is the constant in Lemma 5.3. Then from Lemma 5.13 we
know that

(91) J V ^

which implies

(92) i ^ * U < C 6 ( , ) , ^ < ί < r 0 ,

and from Theorem 3.4 it follows that

0 < S - -R2 < c7(c0,Λ), 0 < f < ^Γo.

Thus

(93) F(x,t) < cs(n,βn,c0,η), η<t<^T0, xeM.
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For any T < Γ2, by (28) and Lemma 5.13 we get
(94)

F(x,t) < ̂ ^ + c3 (s - ^RΛ < c9(n,βn,c0,η, T) on η < t < T.

From (90), (93), (94) and Theorem 4.6 we have

F(x,ή<cs(n,βn,c0,η), η < t < T.

Since T < T2 is arbitrary, we have

(95) F(x,t)<a9 η<t<T2,

- ηR2 -CR< cs(if), η<t<T2,

IVz i?|2 < ηR3 + CR2 + c*(η)R, η < t < T2.

If we replace η by %η9 then

\ViR\2 < \ηR3 + CR2 + cs(η)R, η<t<T2,

and therefore
IV ΛI2 < ηR3 + C(f/), η<t<T2.

Note. C(^) > 0 in (81) depends only on AΪ, /?„, Co, ̂ , and is independent
of T2.

Lemma 5.17. There exists a constant C > 0 depending only on n,βn,
and Co such that

(96) 0 < R(x, t)<C onO<t<T2.

Proof. From Lemma 5.4 and (13) we know respectively that R(x, t) > 0
on 0 < t < T2, and that

(97) R(χ, t) < cx (π, Co) on 0 < t < \ Γo.

For any η > 0, by using Lemma 5.16 we can find a constant C(η) > 0 such
that

|V/Λ| < \η2R3'2 + C(η), η < t < T2.

If Rmax —• oo as ί -* Γ2, we can find 0 such that η < θ < T2 and

(98) C{η)<\η2R]iL while t = θ.

Thus

(99) |Vf Λ| < η2RUL at / = θ.

Fix a point x e M such that

Λ(*,0) > (1 - η)MaxyeMR(y,θ).
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Then on any geodesic out of x of length at most S = î?max we have
R > (1 - 2η)Rmax, and from Lemma 5.7 we know that there exists a fixed
εo > 0 such that Ry > εoRgij. Thus on any geodesic out of x of length at
most S = ̂ i?maχ we have

If η > 0 is small enough, it follows that every geodesic from x of length
S = î?max has a conjugate point by the well-known theorem of Myers,
which can be found in [Theorem 1.26, Cheeger and Ebin [2]]. Thus

(100) yβ(χ,y)<jjRl£L VyeM.

Since θ < T2, Assumption A of §4 holds on Mx [0, θ]. By using Lemma 4.1
we know that ds\ is equivalent to ds$. Since M is a complete noncompact
manifold with respect to ds%, M is a complete noncompact manifold with
respect to ds^; therefore (100) is impossible. This means that (98) cannot
be true for any θ e [η, Γ2), so that

C(η) > \η2R]LL η<t<T2,

Thus we can find C{η) >0 such that

(101) R(x,t)<C(η), η<t<T2.

Fix 0 < η < \T0. Then (97) and (101) imply the lemma.
Proof of Theorem 5.2. Now we are going to prove the long time exis-

tence theorem. We need to prove that T{ = +00.
Suppose T\ < +00, from (15) we get

(102) 0 < Γo < ΓΪ <+oo.

By the definition of T\ in (14), for any ε > 0 we can find a constant

(103) T{ -ε< T2< Tx

and a solution gij(x, t) of the evolution equation on M x [0, T2) such that
for any T < T2, the solution gij{x,t) satisfies Assumption A of §4 on
M x [0, Γ], and (13) holds on M x [0, ^Γo]. Thus from Lemmas 5.4 and
5.17 we know that

ί
l(104) l o < * < * , / ) < c
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By (59) and (104) we get

(105) |i?^/|2 < \βn + n{n

2_ 1 } ] C2 on M x [0, T2).

From (104) and (105) it follows that

(106) 0 < Rijijix,t) < \βn + n { n

2

 1 } ] C o n M x [0,T2).

1/2

Now we consider the evolution equation

Since T\ - ε < Γ2, from (106) we have

(108) 0 < Rijij(x, Tx-ε)< \βn +

where C is independent of ε.
From Theorem 3.4 we know that (107) has a solution gij(x,ή on 0 <

t < δ, δ = δ(n, βn, Co, C) depending only on n, βn,Co, and C; in particular,
δ is independent of ε. By Theorem 3.4 we still have

(109) sup\VmRijkl(x,ί)\2 < cm+ι/tm, 0 < t < δ,x e M, m > 0.
M

Define

(110)
g*j(x, t) = gij(x, 0, 0 < t < Tx - ε,

g*j(x, t) = gij{x9 t-T{+ε), T{-ε<t<T{-ε + δ.

Then g*j (x, t) > 0 on M x [0, Tx - ε + δ], and

( i n ) y j { x , i ) = -2R*j{x,t), 0 < t < T x - e + δ,

g*j(x,0) = gij(x) o n ¥ .

By the regularity theorem of parabolic equation we know that

g*j(x,t)eC°° onΛfx[0,Γi-β + ί ] .

Thus g*j{x91) is a solution of evolution equation (9) on M x [0, T\ - ε + <?],
and

(112) ^*.(x,0 = fty(x,0> 0 < ί < T{ - ε.

Since J > 0 depends only on n,βn,co and C, with C depending only on
n, βn and Co, thus δ > 0 depends only on «, /?„ and Co. If we choose ε > 0
small enough such that

(113) 0 < ε
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then from (15), (112), and (113) we have

(114) s £ ( * , 0 s f t y ( x , 0 , 0 < / < I Γ 0 .

Since gij(x,t) satisfies (13) on M x [0, \TQ\9 g*j(x9t) also satisfies (13) on

Λ/x[0,±Γ0].
Because T\ -ε < T2, by the definition of gij(x, t) and (112) we know that

both gij{x91) and gjj{x9t) satisfy Assumption A of §4 on M x [0, T\ - ε].
Therefore we get the following:

to
From (109) it follows that

\R*ijk,{x, t)\2 <c\, x€M,O<t<Tι-ε,

' ε\VpR*jkl(x,t)\dt<c*2, xeM.L
\R*jkι(x, t)\2 < c, on Tx - ε < t < Tx - ε + δ,

\VpR*ijkl{x, t)\2 < c2/(ί -Ά+ε), Γ, - ε < t < Tx - ε + δ.
(116)

Thus
rTi-ε+S r-Ti-ε+δ s'/2

(117) / \VpR*jkl(x,t)\dt< 2 dt = Ci<+oo.
JTi-ε JTι-ε y/t — 1\ + ε

By (115), (116), and (117) we get

0 < i ? / 0 (Λ:,0)<fco, XGM,

f,ci}, xeM,0<t< T{ -ε + δ,
(118)

Γ t+O\VpR*jkl(x,t)\dt<c*2+c3 V X E M .

Therefore g*j(x,t) satisfies Assumption A of §4 on M x [0, T\ - ε + δ]
and satisfies (13) on M x [0, iΓ 0 ] . Thus from (14) and (113) we know
respectively that T{ > T{ - ε + δ, and that Tx > Tγ 4- δ/2 > Tx. Since this
is impossible, T\ = +oo and we can find a solution of evolution equation
(9) on M x [0, +oo). Hence the proof of Theorem 5.2 is complete.

Corollary 5.18. Suppose gij{x, t) > 0 is the metric constructed in Theo-
rem 5.2 on M x [0, +oo). We still have

Rijkl(x9t)>0,

(119) 0<Λ(x,0<C, 0<ί<+oo,

|Rm|2 < βnR\

(120) s\ip\VmRijkι(x,t)\2<cm+ι/tm, 0 < ί < i Γ 0 , xeM, m > 0,
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where C > 0 and cm+\ > 0 are constants depending only on n9 βn and c$.
Moreover, for any 0 < T < +oo, gij(x,t) satisfies Assumption A o/§4 on
M x [0, Γ].

Proof. We can prove this corollary by using Lemmas 5.4, 5.7, and 5.17,
and (112) directly.

6. Controlling the scalar curvature

We have shown in the last section that the scalar curvature of M is
positive and bounded from above for all time 0 < t < +oo. In this section
we want to show that the scalar curvature R actually tends to zero as time
ί-> +oo.

Suppose M is an /i-dimensional complete noncompact Riemannian
manifold with metric gij(x) > 0. Then the curvature of M satisfies the
following condition:

(1) |Rm| 2 </?i? 2 , 0<R<c0,

where β and Co are constants and 0 < β < δn/2n(n - 1).
Now consider the evolution equation on M:

gij{x,0) = gij(x), xeM.

From Theorem 5.2 we can find a solution of this evolution equation for
all time 0 < / < +oo and the solution satisfies the properties mentioned in
Corollary 5.18. Thus we can find a constant C > 0 such that

(3) |Rm|2 < βR2, 0 < R{x, t) < C,

for all 0 < t < +oo.

Let 0 < σ < { and fσ(x,t) = (\Rm\2/R2-σ)(x,t). Then from Lemma
5.5 it follows that

dfσ A f , 2(1 - g )
= AJ +A f

= AJσ + —

VkR - \kfσ ^3^—|Rm|

- ^\RVpRijkl - RijklVpR\2 + ^

From Corollary 5.18 we have

(5) Ru > 0, 0 < / < +00,

and therefore

(6) -R2 < S < R2, 0<t< +oo.
n
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By (3) and Lemma 5.6 we get

(7) P< - — |Rm|2i?2, 0 < / < + o o ,

which implies

355

in

Substituting the above equation into (4) gives

Lemma 6.1. There exists a constant c\ > 0 depending only on Co> «> and
σ such that for 0 < σ < l/(2/ι) we have

(9)

= βφ(t)σ, 0 < ί < +oo.

Proof. Because 0 < σ < l/(2/i), from (8) we have

(10) -fij-<Δfσ-\ jΓ—

Let

- 1

Then

(Π)

Thus

(12)

-2

dψ 1
0<t<+oo.



356 WAN-XIONG SHI

From (8), (12) and 0 < σ < l/(2/i) it follows that

^ ^ ^ - ψ)

Let F(x, ί) = fσ(x, t) - ψ{t) and

Q(F,x,t) = 2{l~σ)VkR • Vfc(/ff - ψ) + \φψ - X-

Then

dF
(13) —<AF + Q(F,x,t), 0<t<+oo.

Since |Rm|2 < βR2 on 0 < t < +oo, we have

(14) fσ{x,t)<βR"{x,t), 0<ί<+oo.

In particular,

by (1). Since φ(0) = CQ,

(15) F(x,0) = Mx,0)-ψ(0)<βcζ-βφ(0r<0, x e M.

Therefore if F(x, t) > 0, then

0 < F(x, t) = fσ(x, t) - ψ{t) < βRσ(x, t) - βφ{t)\

φ{t)<R{x,t),

Q(F,x, t) < 2{l~σ)VkR • VkF + ̂ Rψ - ^
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Thus if F > 0, we get

Suppose m > 3 is an odd integer, and define H(x, t) = F(x, t)m. Then
from (15) it follows that

(17) i7(x,0)<0.

If H(x, t) > 0, then F(x, t) > 0, and we have

dJL = Fm-l . m

dJL < mFm-l[AF + Q(F,X,t)\

= AH- m(m - l)Fm-2\VkF\2 + mFm-χQ{F,x, t)

<AH- m(m - l)Fm-2\VkF\2 + ™ Fm-2\VkF\2.

If m> l + l/[σ(l-σ)],then

(18) ^-<AH forH>0.
at

From (3) and (14) we know that

F(x, t) < fσ{x, t) < βRσ(x, t) < βcσ, 0 < / < +oo.

Thus

(19) H(x, t)<βmcmσ, 0<t< + o o .

By (17), (18), (19) and Lemma 4.5 we get

H(x, t)<0, 0 < t < +oo;

thus

F(x, ί) < 0, 0 < t < +oo,

fσ{X,t) < ψ{t), 0<t<+OO,

(20) fσ(x,t)<l

Since

< C l ^ \ ^ \ 0<t< +00;

we have
o

|2

which completes the proof of Lemma 6.1.
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Now we want to estimate the gradient of the scalar curvature. From
Lemma 5.11 we have
(22)

~γ V ~ 2)

^ _ 7iR\z + Ί ^ V / Λ V, 5, 0 < / < +00.

Let 1 < y < 2. Then

25 ,„ ^,2 16

i.e.,

(23) ^ViR V, 5 - ^ | V ^ | 2 < ^ l I V ^ I 2 , 0 < t < +oα

Substituting (23) into (22) yields

( 2 4 ) -γ

0<t< +00.

From (79) we get

+ 4JRί5--/?2J, 0<ί<+oo.

Since dR/dt = έiR + 25,
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Therefore

(26)

Let H = Rι-?{S - ±R2). Then

VkH = Λ>-'V* (5 - I *

2(y-l)2 / 1 Λ, |

(s-^R2)|V,Λ|

(27)

l

• 2(7 - I)2 (s I o 2 \ | v ί | 2
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Since

±VkR VkS = ̂ VkR RijVkRij < l\Rij\ \VkR\

by Lemma 5.8 we get

Thus

From (6) it follows that |Λ, 7 |
2 < i?2; thus

| Λ y |

where C\ > 0 depends only on n.
Using (27) we get

• VkH

c2 = y ( y - 1).

From (26) it follows that

— < Δ// + — V /̂<

By (6) we have

and therefore

+ ^ V ί Λ Vttf + [(2 -
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If we choose 1 < γ < 2 such that

(28) 0 < 2 - γ <

then

S1 7 ; ' « ( 3 « - 2 ) S «(3«-2)

Thus

9 H < \H Λ-y T7 J? V W ( " ~ 2 ) 2

 D l-yιr7

/29) d t R w ( 3 " ~ 2 )

+ 6R2~γ is - ^R2) .

We still have

^Ri-y = (3 - y)R2~y^ = (3 - y ) ; ? 2 - ^ + 25)

5" - (3 - y)(2 - γ)Rι-v\V,R\2 + 2(3 -

= (3 -

J '' + |vfci? V^3"'' - 2(3 -

+ 2(3 - γ)SR2~γ.

From (6) it follows that

J U 3 - ' > Δi?3-'' + ̂ VkR • VkR^ - 2(3 - γ)R1~y\Vi

(30) d t R

ί

Now we define

(31) F^ή^^^ + aR^ζs-Uή-ηR3-?, 0 < t <+oo,

where a > 0 and >/ > 0 are two constants to be defined later. Then by
(24), (29), and (30) we get

(32) (s - i
2IJ(3 - γ)Rι-*\VkR\2 - - (3 - 7 ) ^ 4 ~ y , 0 < ί < +oo.
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If we choose a such that

(33) a > 22n{3n ~ 2 )

{ i i ) " (/i-2)2 '

then

( 3 4 )

dF
dt '•

(35) - iΓ T J ^ a ' Ίv,-*,*!2 + 2̂ (3 -

6aR2~Y (s - i/?Λ - ^(3 - y)»;/?4-y, 0 < t < +oo.

By definition we have

Thus

Using Lemma 5.8 we get

. (« —2)2ot ,_ 2 ( « - 2 ) 2 α
( 3 7 ) " 2 n ( 3 » - 2 ) j R | V ' ^ * ' " ~4n(n - ! ) ( « + 2)
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Substituting (36) and (37) into (35) yields

( 3 8 )

[f £ ] 4-?, 0 < ί <+00.

Choose ?/ > 0 small enough such that

' — y)n(n — \){n + 2 ) '

Then

2)2a < (n - 2)2a
l)(« + 2) - 8H(AZ-1)(AZ +

Thus from (38) it follows that

dF <\F+ yv R v F γ (\ γ

(40) 4 I ! 2

+ [6α + (2 - y)α2]/?2-'' (s - -R2) - -ηR4~y,

\ n ) n

0 < t < 00.

By the definition of F, we have

|V,/?|4 |V,J?|2 α
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Substituting the last equation into (40) gives
(41)

<AF + VkR VkF 5 (1 5J &F 4\

+ [6α + (2 - γ)a2]R2~γ

Let

0 < 2 - y <

Then

7(2 r) (n-2)2 (n-2)2

16n(« - l ) (n+ 2)'

v ; 8^ ^i? 2 -' ' 16n(/t- l)(n + 2) ' * '

+ [6a + (2 - γ)a2]R2~γ (s - -R2 ) - -^R4"51.
\ n ) n

Since

from (42) we get

9 F y y IV, i?l2 y F2

<«>

Lemma 6.2. Suppose m > 0, C > 0 arc*/ 9>(x) = x + C/xm, 0 < x <
+oo.

?(*) > Λ + 1") wl/(m+DCl/(m+l) 0 < X < +0O.
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Proof. Let φ'(x) = 0. Then φ'(x) = 1 -mC/xm+ι = 0, and the solution
l We get

Xo

φ(x) > φ{x0) = x0 I

φ{x) > (l + j-λ mi/(m+i)Ci/(m+i)) 0 < x < +00.

Thus

γ,. , Λ F2 , {n-2)2a

)- l ) ( n + 2)

2 « ( « - ! ) ( « +2)

Γ16rt(n- l)(« + 2)

( « - 2) 2 αF / _ 1 _ \ _ 1 / ( 3 _ y ) 1 / ( 3 _ y

- 1 6 φ - l ) ( « + 2 ) \ 2 - y / 1 γ>

( « - 2 ) 2 ( 3 - y ) Γ2n(/i-!)(« +2)

(n-2)2

)a(2-y)/(3

Substituting this into (43) yields, for F > 0,

1/(3-)-)

(n-2)\3-γ) \2n(n - l)(/i + 2)

x (2 - y)(y-l)/(3-y)α(2-y)/(

\ n J I6n(n - l)(/ι + 2)

0 < ί < +oo.

From Lemma 6.1 we know that for 0 < σ < l/(2n)

Λ 2 " σ ' 0 < r < + oo.
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Thus

(45) 0 < S- ^R2 < ^ A , * . 0 < ί < +00,

ΊS--RΛ
 {n~2)2

\ n ) 16w(n — l)(w +

< \Saπ2Cι(σ)β ( A - ., ,~J,
~ I \t+ \) 16«(«- l)(n

a

mnHn-l)(n + 2)a-βcι(σ)f-γ)/σ-1 f 1 \4-y~σ

(n-2)2η J \ί+l

Let σ = l/2«. Then

Ba2R2-y (s - -R2) - }"l\\(n y\aηR*~y

(46)

where Co is the constant in (1).

Substituting (46) into (44), we get

v , Λ V t , ( 2 r )

(47) - C4(«)(2 - y)(l'-»/(3-J')α(2

2n(*~y) ( 1 λ

(J , 0<ί<+OO.

Define

(48) w(x,ή = F(x,ήt3~Y, 0</<+oo.



RICCI DEFORMATION ON RIEMANNIAN MANIFOLDS 367

Then

y-Wi-r)a(2-y)H3-y)w(4-γM3-γ) . ί}Λ

aβ\2n{4-γ)l ( t \4~γ (3-y)

(49) ι [ w V n)

-c4(n)(2 - y)(y

for w > 0.

From (48) it follows that

(50) w(x,0) = 0,

and therefore, in consequence of Theorem 4.12, that

(51) w{x,t)<yo onΛ/x[0,oo),

where y0 > 0 is the root of

(52) ^ ^ τ r "
- c4(n)(2 - y)(

Now if we fix y such that (28) holds and let

then

yx

- C4(«)(2 -

= (3 _ y) + cy{n
(2-^/12(3-)-)

If y? > 0 is small enough, we have
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Thus there exists a constant c$ = Cβ(n,Co, y) > 0 such that

(53) w(x, t) < βV-vV* if 0 < β < c6.

By the definition of w(x, t) we get

(54) F(x, 0 < βV-γV4/t3-γ, 0 < / < +oo.

Also by definition we have

(55) F{x9t)>W0L

Combining (54) and (55) gives

0<t<oc.

Since η = /?1/3, we have

(56) |V/i?|2 < βx'*R? + βV-v)/*B? (l\ \ 0 < t < +oo.

Lemma 6.3. Suppose M is a complete noncompact Riemannian mani-
fold of dimension n, and suppose there exists δ > 0 such that

Rij > δRgij > 0 on M.

Then there exists a constant η0 = η$(n,δ) > 0 such that

(57) %[supi?(x)l <sup|Vz iί|
2.

VxeM J M
Proof The proof of this lemma is analogous to that of Lemma 5.17.
Now we can prove the following scalar curvature decay theorem.
Theorem 6.4. There exist constants δ = δ(n) > 0 depending only on n,

and Ce = c^(n, c$) > 0 depending only on n and Co, such that ifO < β < ce,
then

(58) R(x, t) < C(n)β*/t9 0 < t < +oc,

where C(n) > 0 depends only on n.
Proof Let

(59) Hmax(0 = SUP R(x, t)9 0<t< +00.

xeM

Since from (3) we have

0 < S - -R2 = \Rij\2 < n2\Rm\2 < n2βR2, 0<t<oo,
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we can find c6 > 0 depending only on n such that if 0 < β < c6 then

(60) Rij > γRgij> 0 < t < +oo.

By Lemma 6.3 we can find a constant ηo = ηo(n) > 0 such that

L x l I
M

From (56), if we fix γ = γ(n) > 0 and let c6 = ce(n,co) < CO, then for
0 < β < C6, we have

| | ^ χ a x ^ Q y U, 0<t<+oo,
and therefore

"RU, 0<t<+oo.

If 0 < β < min{c6) (ηo/2)3}, then

2 max —= /* i j

Thus if 0 < β < min{c6, (^/o/2)3}, then

3-7
Λ m a x , 0 < t < +oo.

/ 7 \
Rm**(t) < [j-J βV-y)/w-*)/t, o < t < oo.

Let C(/ι) = (2/ηo)ι/{3-γ] and <J = (2 - y)/4(3 - γ) > 0. Then

(61) R(x,t) < C(n)βδ/t, 0<t< +oo.

Corollary 6.5. For δ > 0 α«ί/ Cβ > 0 /« Theorem 6.4, ίAere ex/ί/ί α
constant cη = cj{n,co,β) > 0 .swcΛ that for 0 < /? < C6, we Λαve

CίnλRδ r (YI r R\
(62) Λ(x,/)< t+l

C(n) > 0 am/ C(n) > 0 depend only on n.
Proof. (62) follows from Theorem 6.4 and (3), and (63) follows from

(56) and (62).
Thus we know that as time t —> oo, the scalar curvature R(x, t) goes

to zero in t~~1 order, but this is not enough; we need faster decay of the
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scalar curvature than t~ι to guarantee the convergence of the metric

as time t -> oo.

7. Decay of the controlling function

In this section we want to prove that the scalar curvature of M actually
decays in the order of (l/ί) 1 + ( 9, θ > 0, as time t -> +oo, provided that M
satisfies all of the conditions stated in the Main Theorem.

We still use the notation of the last section. Suppose M is an n-
dimensional complete noncompact Riemannian manifold with metric
gij{x), the curvature of which satisfies the condition

(1) | R m | 2 < £ i ? 2 , 0<R<c0,

where β and Co are constants, and 0 < β < δn/2n(n - 1).
From Corollary 6.5 we know that if 0 < β < ce, then

,2) «(*,,) <£g£ + «fiίψ, 0<«+oo.
Let

(3) ε = C(n)βδ, C(ε) = cΊ(n,c0,β).

Then

(4) *(,,,) < _ L Ϊ + - £ Φ - J , 0<t<+oo.

Suppose M(Λ:) e C°°(M) is a function satisfying

(5) 0<R(x,0)<u(x)<2R(x,0) on M.

We consider the following equat ion on M:

du . (. 1 \ Γ e C(β) 1 1 ,

{b> 0<ί< +oo,
u(x,0) = u(x).

From (5) we get

(7) 0 < R(x, 0) < u(x, 0) < 2R(x, 0) < 2c0.

Therefore by using some simple technique we can find a positive solution
u(x,t) e C°°{M x [0,+oo)) of (6) such that

(8) 0<u(x,t) <cι, 0<ί<+oo,

where 0 < C\ < +oo is some constant.
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Since dR/dt = ΔR + 2S, from (6) of §6 we have

(9) ^ <AR + 2R2, 0<t<+oo,
at

which together with (6) implies

%-(u - R) > Δ(« - R) + Ϊ2R - -Lu] (u - R)
(10) L V£ J

From (4) we get

Since w(x5 r) > 0, we have

which thus reduce (10) to

(11) O.(u-R)

Let v(x, 0 = u - R. Then

(12)

where

Furthermore, from (7) we have

(13) ίKx,0)>0.

Since u(x, t) > 0, we get

(14) ^(JC, t) > -R > -C, 0 < t < +oo.

By using (4)and (8) we get

+ ̂ =y\ψ\, 0<t<+oo,

(15) Q(ψ,x,t)>-(2C + ̂ =y\ψ\, 0<ί<+oo.
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From (12), (13), (14), (15) and Theorem 4.6 it follows that

ψ(x,t)>0, 0<t<+oo,

so that

(16) R(x,t)<u(x,t), 0 < ί < + o o .

Let

(17) P(t) = (2 + — F ) —̂—r + -,—^4τ2 > 0 < ί < H-oo.

Then

(18) -^=Au + P(t)U γzU2, 0<t<+OO.

Let

where δ > 0 and Cj > 0 are two constants to be determined later. If we let

w(x,t) = u{x,t)-φ(t),

then we have

= Δu> + P(ί)[ω + ̂ (/)] - ^ [ w + <p(t)ΐ - Ψ'{t),

(20) ^ ?

L

2 ^ ^ J
- ^ 4 - - $?;(ί), 0 < t < +oo.

From (19) we have

δ 2c\

- f '(0 - TΓT^TTT +
2c,

( ί + 1 ) 2 ( r + 1 ) 3

- p ) (εc, +δC(ε)) + 2c

0<t< +oo,

J _ 2 _ 1 δ2 2δcι 1 c? 1
1)3 + ^ ( ί + 1)) 4 -
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Let δ — 4y/ε. If C\ is large enough, then

(2"V

(2+-L)cWc,<

Thus

c?

P(t)φ(t) - φ'(t) < -^φ(t)2, 0 < t < oo,

(21) P(t)φ(t)--Lφ(t)2-φ'(t)<0, 0 < t < +oo.
v ε

Substituting (21) into (20) yields

(22) ^ < Aw + \p(t) - ±=w - -ίφ(t)] w, 0 < t < +oo,

By definition of w(x, t) we have

,0) = u(x,0)-φ(0),

u{x,0)<2R(x,0)<2c0,

φ(0) =

and therefore

w(x,0) < 2

If we choose c\ > 2CQ, then

(24) w(x,0)<0, xeM.

From (8) and (23) it follows that there exists a constant Ci > 0 such that

0 < M(X, ί) < c2,

0 < p(ί) < c2, 0 < t < +oo,
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so that

(26) -c2 <w(x9t)<c2, 0<t< +00,

Γ 1 2 1
(27) \P(t) - - τ = w - - 7 = ^ ( 0 w < c3\w\, 0<t< + o o .

L fi fi J

By means of (22), (24), (26), (27) and Theorem 4.6 we get

w(x,t)<0, 0<ί<+oo,

(28) u(x,t) < φ{t\ 0<t< +oo,

and finally the following:

Thus we have proved the following lemma.

Lemma 7.1. Suppose u(x91) € C°°(Mx [0, +oo)) is the solution of equa-
tion (6). Then

(29) 0 < R(χ9t) < u(x9t) < M . + ̂ i ^ , 0 < / < +oo,

where C\ = Cγ(ε, CQ) > 0 depends only on ε and Co.

Since

^ = ΔM + P(t)u- -γu2, 0 < / < +oo,

we have

= ukki + P(t)Ui --=uui
y/ε

2
= uikk - Rikuk + P{t)Ui - "τ=ww/,
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where wz = Vzw is the covariant derivative,

(30) ^ = Aui - Rikuk + P{t)Ui - ίuuh 0 < t < +00,

— |V,«|2 = Δ|V, «|2 - 2\Uij\2 + IRijUiUj - 2

+ 2P{t)\ViU\2 - -$=u\ViU\2,

^|Vz^=Δ|Vz ^-2|w z 7r
(31) Ol

 4
- -pt/IV/Ml2, 0 < t < +oo,

y/ε

From (31) and (32) we get

Let w{x9t) = \ViU\2/uγ. Then

(33)

Since
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from (33) we have, for 0 < t < +oo,

=Aw + !-

^ ' 2

Vkw - γ 11 - '-
\ 2

Now let 0 < γ < 2. Then

(35) y ( i _

From Lemma 7.1 we know that

(2 - γ)P(t) + —r^u\ w < (2 - γ)P(t)w.
L V β J

Substituting (17) and the above equations into (34) yields

( 3 6 )
2 2 £̂ Zi£l«;, 0<ί<+oo.

Let

F(x,t) = w(x,t)t = ̂ p-t, 0 < ί < + o o .

Then from (36) we have

Σ(

+ | | f + ,

(37) + /_ m 3 V / , o , c2V,,o;,

0 < t < +CX).
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By the definition of F we know that

(38) F(x,0) = 0,

which together with (37) and Theorem 4.12 implies

F(x,t)<c4(γ9ε)9 0 < t < +oo.

Thus if 0 < γ < 2, then we have

(39) II2ΪL < ^ψL, 0 < t < +oo.

Let

H{x, t) = u;(jc, t)t*~γ = ^p-t3~γ, 0 < t < +oo.

Then from (36) it follows that, for 0 < t < +oo,

dt - — ' u κ κ 4V " u
3-y

dί u
(40) ^ r

+ -r ( 3 - y ) + c3(j>,e)( —f-r I -c 2(y,e)

which together with Theorem 4.12 yields

H{x,t) < c5(γ,ε), 0<t< + 0 0 .

Thus if 0 < γ < 2, then

(41)

Lemma 7.2. For any 0 < y < 2, /Λere exwίί α constant c& > 0 depending
only on γ and ε such that

/ (42) follows from (39) and (41).
Now we prove the Harnack Inequality for the controlling function u{x, t).

We know that

^ = ΔM + P(t)u - 4=« 2 , 0 < ί < + o o .
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Let f(x, t) = log u(x, t). Then

(43) U = Δ/ + IV//|2 + P(t) - -J=ii, 0 < ί < + oo,

(44)

Since

we have

gy fc a/
1 j J ~ dx'dxJ ijdxk>

6 Jk dt "

We have proved the following formula in §4:

(45) ^f = gkm{VmRu - ViRjm - VjR,m),

which together with the Bianchi identity implies

drk-
(46) £ θ _ J i = o for any A:.

ot
Therefore

Substituting this into (44), we have

= IRijfij + Δ [Δ/ + IV,/|2 + P(/) - -L

= Δ(Δ/) + 2V,/ V/

the last step comes from

Δ|V//|2 =

= 2/5 + 2fkkifi + 2Rikfifk,
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where we have used the formula

(47) fikk = fkki + Rikfk.

Thus we get

j-t(Af) = Δ(Δ/) + 2V, / V, (Δ/) + 2$ + 2RijJ}j

ifj - - p Δ « , 0 < t < +oo.
(48)

Since

(49)

we have
Δi

and therefore (48) becomes

|-(Δ/) = Δ(Δ/) + 2V, / V,(Δ/) + 2y}5 + 2R,jfu

(50) a ' » . . _ ! _ _L 2

From (60) of §6 it follows that Rtj > 0, so that

(51) 2Rijfifj > 0, 0 < t < +oo,

Since ^ i? 2 < 5 < R2, from Lemma 7.1 we know that R<u,S <R2 <u2,
and

(52) \2RijM < u 2 + f}^ 0 < t <

Combining (50), (51), and (52) gives

(53) ^ ( Δ / ) > Δ ( Δ / ) + 2V//

On the other hand, we have

(54) flj > -
\ i Jij n

(55) - -
v

Substituting (54) and (55) into (53) yields

(56)
|-(Δ/) > Δ(Δ/) + 2V, / V,(Δ/) + \f}j + -^
dt I 4«

- (1 + - ) u2 - 4=«|V//|2, 0 < t < +oo.
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From Lemma 7.2 we know that

(57) o<u\V,A^^<ψ(j^). 0<t<+oo.

Substituting (57) in (56), and using Lemma 7.1 we get

j-t(Af) > Δ(Δ/) + 2VJ • V,

On the other hand, from (34) it follows that

d ίWiu\2\ /ΊV Wpλ 2
— I J — - γ ~ J = Δ I - — ~ γ - j + - V

( 5 9 ) - l \ u 1 , 2 2 / 1 V , M | 2 \

u2\».j uu,uj\ ^y u y

Recalling that / = log u, we have

|-|V,/|2 = Δ|V, / | 2 + 2Vfc/
(60)

Suppose 0 < α < ̂  is a constant. By (58) and (60) we get

^ ( Δ / + α|V,/|2) > Δ(Δ/ + α|V, / | 2) + 2V,/ V*(Δ/ + α|V,/|2)

Since 0 < α < \, we have ^ - 2α > 0, and, in consequence of (61) and
Lemma 7.2,

^ [ Δ / + α|V,/|2] > Δ[Δ/ + α|V, / | 2 ] + 2Vkf • V*[Δ/ + α|V, / | 2 ]

(62) + ̂ [ Δ / + α|V,/|2]2 - ^ |V,/ |

Let

(63) f(jc, ί) = [Δ/ + α| V ;/|2]ί, 0 < t < +oo.
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Then

/ 1 \ F

~ c*^ \TTϊ) + 7' ° -
Finally we have

K ' F\ ( t \ 1 F

By the definition of F we know that

(65) F(x,0) = 0.

From (64), (65) and Theorem 4.12 it follows that

(66) F(x91) > -c9(ε), 0 < t < +oo,

where c9(ε) is a constant independent of a. Thus

(67) Δ/ + a\Vz/|2 > -c9(ε)/t, 0 < t < +oo,

for 0 < α < ^, and letting α-^Owe get

(68) Δ / > -c9(ε)/t, 0<t< + o o ,

(69) — - -Lί^- > -c9(ε)/t, 0<t< +oo.

Lemma 7.3. Γλere exists a constant C\o{ε) > 0 such that

(new [V/^l2 1 du Cio(β)

Proo/ Denote ut = du/dt. Then

ut Au D, . 1 . Δw 1

-τ = -τ-p{t) + u +

(71) iZi^-ίίi<iΣi^ + 4 ,
v y w2 u - u2 u y/ε
The lemma now follows from Lemma 7.1 and (69).

Now we state the Harnack inequality for the controlling function w.
Lemma 7.4. For any x,y eM and 0 < t\ < t2 < +oo, we have

W e X PL4(ί2-ίi)J'
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where we use γt{x>y) to denote the distance between x and y with respect
to the metric gij{t).

Proof. Suppose γ(S): [0,1] -» M is a geodesic with respect to the met-
ric gij(0) such that

7(0) = y,

Define

φ(s) = f ( γ ( s ) , h s + * 2 ( 1 - s))9 0 < s < U

where f(x91) = log u(x, t). Then we have

- φ(0) = f φ'{s)ds
Jo

where V° denotes the covariant derivative with respect to g//(0).

Since

(72) / ( * ,

from Lemma

(73)

so that

γ

fι r
h)-f{y,h)< I \Yo(χ,y)

Jo L

7.3 it follows that

(y,tι)

v?/| < |v,/|,

I|V,/| - (t2 -- ( ί 2 - ί i ) - l ds9

f{χ,t\)-f{y,ti) < ds
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Therefore we have

As soon as we prove the Harnack Inequality for the function u(x, t), we
can control u(x,t) better than we did in Lemma 7.1; of course we need
extra conditions on the initial data w(x,0). As a first step we prove the
following lemma.

Lemma 7.5. Under the assumptions of the Main Theorem stated in §1,
for any 0 < T < +oo, we can find a constant C(T)>0 such that

0<u(x,ί)<- v ' 2+δ onMx[0,T).

Proof. In (7) we assumed

-R(x,0)<w(*,0)<2/?(*,0),

and condition (B) in the Main Theorem implies that

(74) 0<u(x,0)<2R(x,0)< —

Suppose ζ(x) € Q°(R) is the cut-off function defined in (102) of §4, and
let

- (yo(χ>y)\ dy l i e (γ°(χ°'yA dy

Then, similar to the proof of Lemma 4.2, we know that ψ(x) e C°°(M),
ψ(x)>0, and we can find constants C3,c4,c5 > 0 such that, for Vx € M,

)]2+δ -YK"'-[i + γo(χo,χ)]2+δ'

\V<jψ(x)\ < c5ψ(x), \Vy°jΨ(x)\ < c5ψ(x).

Then, similar to the proof of Lemma 4.3, we can show that

A,ψ(x) < c6(T)ψ(x), 0<ί<T,xeM.

Now define
φ(x, ή = %^'ψ(χ) onMx [0, Γ].

Then from (74) we have

0<u(x,0)<φ(x,0),
do
^ onMx[0,η.
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Thus we get

u(x,0) < φ(x,O),

(75) ^ ~ A φ o n Λ / χ [ ° '

By (18) we have

— < Au + P(t)u < Au + c7u,
(76) d t

%-t(e-*"u)<A{e-*"u).

Define

Then from (75) and (76) it follows that

^ > Aw on M x [0, Γ],

w ( * , 0 ) > 0 onΛf.

By using Lemmas 7.1 and 4.5 we know respectively that

w{x, t) > -u(x, t) > -cs onMx [0, T],

and that

w(x,t)>0 onMx[0,Γ],

so that
u(x, ί) < edltφ{x, t) < edlTφ(x, t) on M x [0, T\.

Thus we get

from (75), and u(x, t) > 0 from Lemma 7.1. Hence the proof of Lemma
7.5 is complete.

Lemma 7 6. Under the assumptions of the Main Theorem, suppose ε\ >
0 and u(x, 0) satisfies

f u(x, O)"/2-*1 dv0 <c2< +oo.
JM

If the constant ε > 0 in (29) is small enough, then we can find a constant
c$ = C3(ει,εyc2) > 0 such that
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Proof. Suppose dvt is the volume element of the metric gij(t). Then

(77) dv, = yjάex(gij{t)) dxι A dx2 Λ • Λ dx".

It is easy to show that

(78) £-tdυ, = -Rdvt.

We have

5-βl) / u"^'-ι^
2 / JM dt

- f un'2-ε>
JM

+ ( l ~ δ l ) / u"/2~e'~ι \Au + pWu - -T"2} dv

( ? - β i ) / un'2-ε>-ι[Au
V 2 ' JM

( ? - βi) P{t) ί u"'2-ε> d
V 2 ' JM

f
M

>Rdv

[
M

Because of Lemmas 7.2 and 7.5 we can integrate by parts on the whole
complete manifold M. Thus we get

(79) ^- / un/2~ει dv < ζp(t) ί un/2~ει dv,
otJM 2 JM

which implies

/ M"/2-" dv < e(nl2)Kmdt ί u"'2-" dv0,
JM, JM0

(80) / tW2-£' dv < c2ef>/2)P{t)dt, 0 < t < +oo.
JM,

Moreover, by definition we have
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If ε is small enough, then

7r / Pit) dt < C(ε) + n\βlog(/ + 1),
2 Jo

and, in consequence of (80),

(81) / wΛ/2-* lrfv<c4(β)(ί+l)'Iv/i, 0 < ί < + o o .
JM,

For fixed t, we can find a point x e M such that

(82) x sup M < u{x, t) < sup u,
* Mi Mi

where supM = sup y 6 Λ / w(y, r).
Let τ = 2/ and ί > 1. If y\{x,y) < t, then from Lemma 7.4 we have

u(x, t) < Csu(y, τ). Thus we get

MT l{

>c6
Jy2

o(χ,y)<t
>c6 I

Jy2

o(χ,y)t

ί dvτ(y).
Jy2

0(χ,y)<ty2

0(χ,y)<t

Let A = {y e M\γξ(x9y) < t}. Then, using (4),

(83) / wπ/2"ε' dv > c6u{xj)nl2"^ ί dvτ,
JMT JA

ί £ C(e)

Therefore

<84> ί,L"v i-[τh+irπψ\L'"'- O£ί<+00

(85) J^vt>-^-^^dυo, 0</<+oo.

By condition (A) in the Main Theorem, we have

f dυ0 = ί dυo(y) > Cγξ >C(t+ί ) n ' 2 .
JA Jyfa,y)<t



RICCI DEFORMATION ON RIEMANNIAN MANIFOLDS 387

Since we assume ί > 1,

(86) / dvo>C(t+l)n'2,
JA

which together with (85) implies

Since τ = 2ί,

ί dvτ>c9(t+l)nί2-e.
JA

Substituting this into (83) yields

(87) / un'2^ dv > cι0(t

On the other hand, from (81) it follows that

f un

JMT

Using τ = It we have

(88)
λfr

which together with (87) gives

c\o(t+

Moreover, from (82) we get

SUpM(;C,/) <C\2 ί- Λ , 0 < ί < + 0 0 ,

if ε > 0 is small enough, then

and therefore

(89) u(x9t)<C(ε\9ε)l-—rj , 0 < / <+oo,

which completes the proof of Lemma 7.6.
Now we state the main result of this section.
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Theorem 7.7. Under the same hypotheses as in the Main Theorem, if
we let

nδ n
ει = WTδ)>0'

then there exists a constant C3 > 0 depending only on n, ε, δ, c\, and Cι such
that ifε > 0 in condition (B) of the main theorem is small enough, we have

(90) R(x,t) < c3 (j^j \ 0<t< +00.

Proof By condition (B) of the Main Theorem, we have

0<R(x,0)< , Cl

Thus

(91) / Λ(x,0)Λ/2"2ei dυo<C< +00,
JM

which together with (7) implies

(92) ί u(x, 0)"/2-2ε i dv0 < C < +00.
JM

Moreover, by Corollary 6.5 there exists a fixed η > 0 such that

(93) Λ ( x , 0 < £ ^ + ^ ) , 0 < , < + o o .

From Lemma 7.1 it follows that

(94) 0 < «(*,<)< 4 V ^ 7 + (7^7)1 > 0 < ί < + o o .

Now, if ε > 0 is small enough, by (92), (94) and Lemma 7.6 we know
that

(95) u(x, t) < c3 [γ^ϊ) , 0 < t < +00.

Since from Lemma 7.1

0 < R(x, t) < u(x, 0, 0 < t < +00,

we have

/ j \ i+βι

(96) 0 < R(x, t) < c3 yj^ϊ) , 0 < t < +00,

which completes the proof of the theorem.
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8. Higher derivatives of the curvature tensor

In this section we are going to control the higher derivatives of the
curvature tensor Rijki

Theorem 8.1. Under the same hypotheses as in the Main Theorem, if
we let

then for any fixed η > 0 and any integer m > 0, there exist constants

Cm(η) > 0 such that

(1) \V

Proof From Theorem 7.7 and Corollary 5.8 we know respectively that

/ 1 \ i+ε.
0 < Λ < C ( — J , 0</<+oo,

and that

|Rm|2 < εR2, 0<t< +oo.

Thus

|Rm|2 = |Rm|2 + , 2 ^R2 <(ε+ , 2 Λ R2,
1 1 1 1 n(n - 1) V n(n ~ 1)/

and therefore

2+2ε»

(2) |i?^/|2 < co [γ^jj > 0 < ί < +oo.

Hence in the case m = 0 the theorem is true. Now we prove the theorem
by induction. Suppose we already have the following:

/ i \ 2+ε,

(3) \VsRijki\2 < Cs(η) (j^) , η<t<+oo,

for s = 0,1,2, ,m.
Now suppose s = m + 1. From Lemma 3.2 we have

^ 2 2 - 2\Vm+ιRijkl\
2

V'Rm * V7Rm * VmRm.

i+j=m
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Let α = 2 + ε\ and let a be a constant to be determined later. Then

= A[a + (t+ ir\VmRijkl\
2] - 2(t + l)a\Vm+iRijkl\

2

+ (t + i)a Σ v ' R m * v ; R m * v m R m

i+j=m

+ a(t+ir-ι\VmRijkl\
2.

Let

φ(x,t) = a + (t+ir\VmRiJkl\
2.

Using the induction hypothesis

\VmRiJkl\
2 < Cm(η) {jj-j \ , ^<ί<+oo,

we have

(5) a < φ(xj) < a + Cm(η), η<t<+oo,

ψt = Aφ - 2(t + l)a\Vm+ιRiJkι\
2 + a(t + I)*"11VmRijkl\

2

' " ' 4X/V ^ ^ V ' R m * V^Rm * V m R m ,

a ( t + l)a~ι\VmRiju\2 < ^ m y / , η < t < + o o ,

(r -I- l)α 2 ^ ^'R111 * V7Rm * VmRm < C ί r j , η < t < +cx>

Thus from (6) we get

(7) ξ f < Δp - 2(r + l Π V ^ 1 ^ / ! 2 + T ^ — , v < ί < +oo,

where 0 < C < +oo is some constant. From Lemma 3.2 it follows that

i\Vm+lRijki\2 = A\Vm+ιRukl\
2 - 2\Vm+2Rijkl\

2

(8)
K } + 2 V/Rm*V^Rm*Vm+1Rm.

Using the induction hypothesis (3) again we have

* VyRm * Vm+1Rm < C ( \ )

( 1 \ 3 α / 2

(F+T) '
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Substituting this into (8) yields

l - 2\Vm+2Rijkl\
2

η < t < +oo,

•2(t+\r\Vm+2Rijkl\
2

•C(t+l)a'2\Vm+iRijkl\
2

a/2

Let y(jt,<) = ( ' + l ) α |V m + 1 Λ l 7 W | 2 . Then

^ <Aψ-2(t+ ir

°/2

η<t< +oo.

Now define F(Λ:,ί) = φ{x,t)ψ{x,t). Then

(10) f (jf,0 = (t+ir\Vm+lRijkl\
2[a + (t+ir\VmRukl\

2].

Combining (6) and (9) gives

^ < ΔF - 2Vpφ • Vpψ - 2(t + l)2a\Vm+iRiJkl\
4

(11) +j^f-Άt+\

( 1 \ α / 2

+ C ( 7JJ ) . η<t<+oo.

Using (5) we have

C C < C _F_
+ 1 ) ^ " (t+\)φψψ - a' (t+\
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From (11) and the definitions of φ(x, t) and ψ(x, t) we get

^ < AF - 2Vpφ • Vpψ - 2(t + l)2a\Vm+ι Rijkl\
4

2 + j^F(12) " 2(ί + l)aφ\Vm+2Rijkl\ j ^

( 1 \ α / 2

+ C{a,η)l j-j-j-1 , η<t<+oo,

-2Vpφ • Vpψ = -2[(t + irVp\VmRijkl\
2][(t + l)aVp\Vm+ιRijlcl\

2]

= -2{t + l^Vp^R^2 • Vp\Vm+ιRijkl\
2

= - 8 ( ί + l ) 2 α V m Rm * V m + 1 Rm * V w + 1 Rm * V m + 2 Rm

<(t+l)2a\V"+iRijkl\
4

+ l6(t+ί)2a\VmRukl\
2\V"+2Rukl\

2.

Using the induction hypothesis (3) we have

(t + ϊ)a\VmRijkι\
2 < Cm(η), η<t<+oo.

Thus

-2Vpφ • Vpψ < (t + l)2a\Vm+ιRijkl\
4

+ 16Cm(^)(< + l)a|V"+2/?,7W|2, η < t < +oo.

Substituting this into (12) yields

^ < AF - (ί + l)2a\Vm+ιRijkl\
4 + l6Cm(η)(t+l)a\Vm+2Rukl\

2

( 1 \ α / 2

C ( α ' ? 7 ) VFTϊ] '
?£<AF-ψ2 + [l6Cm(η) - 2φ](ί + ir\Vm+2Rijkl\

2

But a < φ < a + Cm(η); if we choose a > ZCm{η), then

l6Cm(η)-2φ<0, η < t < +oo,

( ί + 1 )

, η < t < +00.
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Obviously we can choose η such that 0 < η < jTo, where Γo is the constant
in Corollary 5.18. From Corollary 5.18 it follows that

(14) F(x,η)<C(η) V c G M.

Furthermore, from (13), (14) and Theorem 4.12 we have

F(x,t)<C(η), η<t<+oo,

[a + (t+ l)a\VmRijkι\
2]{t + l)a\Vm+ιRiJkl\

2 < C(η), η < t< +oo.

Thus

(t + l ) α |V m + 1 i? z ̂ / |2 < , η < t < -hex).

Since a = 2 + e\9 we get

(15) |Vw+1Λ/7,/|2 < Cm+{(η) (J-^

Hence the theorem is also true in the case s = m + 1.
Proof of the Main Theorem. By the evolution equation

ϊjgij = -2RiJ9

Rij > 0 for all time 0 < t < +oo, and

0 < Rij < Rgij, 0<t< + oo;

therefore

(16) 0 > —g,j > -2Rgu, 0 < t < +oo,

(17) gij(x, 0) > giJ(x, t) > gij(x, 0)e~2So R{x'l}dt, 0 < t < +00.

From Theorem 7.7 we have

0 < R(x, t) < C I j-1 , 0 < ί <+oo, ει > 0,

which implies

(18) 0 < / R(x, t) dt < C < +00.

Therefore combining (16), (17) and (18) yields

gij(x,O) > gij(x,t) > e~2Cgu(x,0),

(19) —gu(x,t)<0, 0<t<+oo.
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Thus there exists a metric gij(x, oo) > 0 such that

(20) gij(x,t)£gu(x9oo) as/^oo.

Since the curvature tensor actually is the second derivative of the metric,
from Theorem 8.1 we know that

(21) Rijkl(x,oo) = 0, xeM.

Therefore we still have

(22) gij(t) c-^ gij(oo) as time t -+ +oo,

and hence we complete the proof of the Main Theorem.
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