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MORSE THEORY FOR LAGRANGIAN INTERSECTIONS

ANDREAS FLOER

Abstract

Let P be a compact symplectic manifold and let L C P be a Lagrangian
submanifold with π2{P,L) = 0. For any exact diffeomorphism φ of
P with the property that φ(L) intersects L transverally, we prove a
Morse inequality relating the set φ(L) Π L to the cohomology of L. As
a consequence, we prove a special case of the Arnold conjecture: If
τr2 (P) = 0 and φ is an exact diffeomorphism all of whose fixed points
are nondegenerate, then the number of fixed points is greater than or
equal to the sum over the Z2-Betti numbers of P.

1. Introduction

Let (P, ω) be a symplectic manifold, i.e., P is a smooth manifold with
a closed and nondegenerate 2-form ω. We can then assign to each smooth
function

H.PxR^R: H{x, t) = Ht{x)

a family of vector fields Xt on P defined by

(1.1) ω{;Xt) = dHt.

This is called the Hamiltonian vector field associated with the time dependent
Hamiltonian H. If P is compact, then the differential equation

(1-2) Jt

φH^x) = H*(Mx))

with initial condition ΦH,O{X) = £ defines a family of smooth diffeomorphisms
of P, which also preserve the symplectic structure, i.e. for each t € R, we
have φ*ω = ω.

In fact, the set

(1.3) 3 = {φH,t I t e R and H e C°°{P x R)}

turns out to be a subgroup of the group of symplectic diffeomorphisms of P.

Received May 22, 1987 and, in revised form, October 1, 1987. This work was partly
supported by grant ARA DAAG29-84-K-0150.



514 ANDREAS FLOER

As an immediate consequence of the existence of a nondegenerate 2-form ω,
the manifold P must have even dimension 2n. An n-dimensional submanifold
L is called Lagrangian if

(see, for example, [24]). It is well known that n is the maximal dimension for
any manifold with this property. If two orientable n-dimensional submanifolds
L and V of P intersect transversally, then one can assign to each x £ LΓ)L'
a sign σ(x) by comparing the orientation of TXL @ TXV with the orientation
of TXP. The sum over these signs is a cohomological invariant of L and L'
and is called their intersection number. As a consequence, the intersection
number of L and V gives a lower bound on the cardinality of L Π V in the
case of transverse intersection. For example, the intersection number of a
Lagrangian submanifold L with itself equals the Euler characteristic of L,
since the normal bundle of L in P is isomorphic to its tangent bundle (see
[24]). It has been conjectured by V. I. Arnold [1], [2] that stronger estimates
hold if L is Lagrangian and V is obtained from L by an exact deformation
φ = {φt}. Let us denote by I(L,φ) the set of all x G φι{L) Π L for which
{φt(x)} defines the zero element in τri(P, L). It is the purpose of this paper
to prove

Theorem 1. Let P be a compact symplectic manifold and let L C P be a
compact Lagrangian submanifold of P with π<2(P,L) = 0. Moreover, let φ be
an exact deformation so that φ\ (L) intersects L transversally. Then to each
x E /(L, φ), we can assign an integer μ(x) with the following property: Define
the polynomials

x€l(L,φ)

(1-4) dhnL

Π L (t)= Σ dimZ2H
k(L,Z2)tk.

k=0

Then there exists a polynomial Q € Z[t] with nonnegative coefficients so that

(1.5)

Setting t = 1, we obtain an estimate on \L Π φ(L)\ by the sum of the
Z2-Betti-numbers. In the orientable case, the restriction to Z2-coefficients in
(1.4) does not seem to be essential, but simplifies the analysis considerably.
It is conceivable that the methods of this paper can be refined to estimate
\LΠφι(L)\ by the "cuplength" of L after dropping the transversality assump-
tion. Note that if one extends the set of exact deformations of L to allow
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self-intersections of φ(L), then Weinstein proved in [25] that L Π φi(L) may-
be empty.

By applying Theorem 1 to the symplectic manifold P x (-P) (where the
sign of the symplectic form on the second factor has been reversed) and the
Lagrangian submanifold L = {(x, x) \ x G P} we obtain the following corollary:

Theorem 2. If P is a compact symplectic manifold with τr2(P) — 0 and

φ is an exact diffeomorphism of P all of whose fixed points are nondegenerate,

then the number of fixed points of φ is greater than or equal to the sum over

the Z 2 -Betti numbers of P.

Again, extensions to arbitrary coefficients and to general fixed points are
expected to hold. Such a result was obtained by Conley and Zehnder [5] for the
torus T2n with the standard symplectic structure. The main idea of [5] is to
convert the fixed point problem into a variational problem on the loop space
of P and to apply Conley's index theory. These methods were generalized
by Sikorav [19] and the present author [6] to cover e.g. surfaces of higher
genus. Theorem 2 is expected to remain true without any assumption on
τr2(P). In fact, the general Arnold conjecture has been proved for P = CPn

by Fortune [11]. We hope to extend our methods to prove Theorem 2 for
general symplectic manifolds. Estimates of Lagrangian intersections have been
proved for the diagonal in T2n with the standard symplectic structure by
Chaperon [3] and for the zero section of cotangent bundles by Hofer [13], and
by Laudenbach and Sikorav [14]. For P and L as in Theorem 1, Gromov [12]
proved the existence of at least one intersection and hence of one fixed point
for any P and φ as in Theorem 2. Rather remarkably, Gromov does not use
the variational formulation. Instead, he applies an indirect argument which
involves manifolds of "pseudo-holomorphic" discs in a way reminiscent of the
use of Yang-Mills moduli spaces in four dimensional topology.

In some sense, our method in proving Theorem 1 interpolates between these
two approaches. To outline the proof of Theorem 1, note that the Morse
inequality (1.5) with Q € N[£] is equivalent to the fact that the intersections
serve as a model for the Z2-cohomology of L. To be more precise, let Cp denote
the free Z2-module over the set of x e /(L, φ) with μ(x) = p. Then (1.5) holds
if and only if there exists a Z2-module-homomorphism δ : Cv —• C p + 1 so that
δδ = 0 and so that

(1.6)

Now define the space

(1.7) Ω := Ω(L, φ) = {z E C°°([0,1],P) | *(0) G L and z(l) e φι{L) and
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The tangent space TZΩ consists of tangent fields ξ of P along z which are
tangent to L at 0 and to V := φi(L) at 1. Then ω induces a "1-form"

α(0 -£•
on Ω. Since ω is closed and L and V are Lagrangian, this form is closed in
the sense that it can be integrated locally to a real valued function a on Ω,
so that

(1.8) a(z) = da(z).

Moreover, under the hypothesis of Theorem 1, a can be defined globally on a
certain component of Ω (see Proposition 2.3 below). Since ω is nondegenerate,
a vanishes exactly at the constant loops, so that critical points of a correspond
to intersections of LQ and L\. Moreover, a critical point of a is nondegenerate
if and only if the corresponding intersection is transversal.

There are two main obstructions against applying standard methods of
Morse theory to a. First, in order for a to satisfy the Palais-Smale condition
(see [17]), we would have to extend it to the Sobolev space /ί1/2(([0, l],0,1),
(P, L,L')), which is ill defined unless L and P are linear spaces. Second,
one easily verifies that the second derivative of a at each critical point is a
quadratic form with infinite dimensional positive and negative definite sub-
spaces. Hence the critical points cannot be expected to be related to the
topology of Ω itself. Because of the first problem, we will not try to define
a gradientlike flow for a with respect to some Hubert structure on Ω, but
proceed as follows: Let J E End(P) be an almost complex structure on P,
i.e. J2 = — id, so that the bilinear form g = ω( , J ) is a metric on P, i.e. g is
positive and symmetric. The triple (ω,J,g) defines an almost Kahler struc-
ture on P, i.e. it satisfies all relations of a Kahler structure except that J is
not integrable. Then the "L2-gradient" of a with respect to g is ^(z) = Jz,
since for all ξ G TZΩ:

(1.9) (Jz, 0 := f g(Jz, ξ) = f ω{z% ξ) = d*(z)ζ.
Jo Jo

Then define a trajectory

u : R —Ω, u{τ){t) = u{τ,t)

of the L2-gradient flow of a as the solution of the Cauchy-Riemann equation

In other words, trajectories are holomorphic maps u of the complex manifold

θ := R x [0,1] = {z e C I 0 < Imz < 1}
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into the almost complex manifold (P, J) so that u({0} x R) C L and u({l}
x R) C V (compare [12]). This does not define a flow on all of Ω, since the
"Cauchy problem" for the (elliptic) Cauchy-Riemann equation is ill posed,
i.e. a smooth map {0} x [0,1] —• P representing an element of Ω does not
in general extend to a holomorphic map on any neighborhood of {0} x [0,1].
On the other hand, however, the ellipticity of d greatly simplifies the anal-
ysis of "bounded" trajectories connecting two critical points. In fact, if all
critical points of a are nondegenerate, i.e., if V meets L transversally, then
we can define a Banach manifold ^(x,y) of paths u : R —• Ω so that in a
precisely defined sense limτ_+oo u(τ) = y and limr_>_oo u(τ) = x and so that
u —+ du is a smooth section of a Banach space bundle over ^(x,y). Then
the ellipticity of d ensures that it is a Fredholm section, i.e. the linearization
of d at any trajectory has closed range and a finite dimensional kernel and
cokernel. Moreover, an arbitrarily small perturbation of the almost Kahler
structure J makes all these linearizations surjective, so that the space of tra-
jectories connecting x with y is a finite dimensional manifold. This procedure
was motivated partly by Taubes analysis of instantons on (asymptotically)
cylindrical manifolds and uses very similar analytic techniques (see [22]). It
was carried out in [7] and the results are summarized in §2. We call this
manifold a cell in the Morse complex of bounded trajectories. The dimension
of this cell, i.e., the index of d on ^ ( x , y), can be computed as the difference
μ(x) — μ(y) of a suitably defined integer valued "relative Morse index" μ of x
and y (see [8]). This is analogous to the gradient flow of a smooth function /
on a finite dimensional manifold M: for an open and dense set of metrics on
M, the set of trajectories between two critical points is a finite dimensional
manifold whose dimension equals the difference of the Morse index of these
two critical points (see e.g. [16]).

Since equation (1.10) is invariant under time translations, the above dis-
cussion implies that the space of trajectories between critical points of index
difference 1 consists of isolated trajectories. The crucial step is to show that
this set is always finite. This follows from the compactness considerations in
[6] (see also [12] for similar results for holomorphic closed curves and holo-
morphic discs). We can now define the operator δ of (1.6) as follows: For each
y G /(L, φ) with μ(y) = p, consider all trajectories ending at p and starting
at any critical point of Morse index p + 1. The above discussion allows us
to define δ(y) as the formal sum of the points x over all such trajectories.
However, to obtain an invariant result, we would have to attach a sign to each
trajectory. In the finite dimensional theory, this sign is well defined as the
"normal" intersection number of the stable manifold of y at the trajectory
(see [16]). Since this definition of the sign is difficult to generalize to our



518 ANDREAS FLOER

infinite dimensional problem, we restrict ourselves in this paper to the mod-2
reduction of δp.

It turns out (see Proposition 3.2 below) that {δp} satisfies the coboundary
property δvδv-\ = 0. We can therefore define the index cohomology

Ip(L,ψ;J)=kerδp/lmδp-1.

This is motivated by the following construction: Let S be a compact invariant
set of a continuous flow on a finite dimensional manifold. Then its Conley
index I(S) = [X/A, {A}] is defined in [4] as the pointed homotopy type of the
topological quotient of a neighborhood X of S by a suitably defined "exit set"
A. It is proved in [9] that its cohomology can be computed by a construction
analogous to the definition of /*. This observation, which represents an alter-
native proof of the Morse inequalities, has been partly used in [16]. With the
field Z2 replaced by R, it has been studied by Witten in his recent paper [27],
which partly prompted our approach to the Morse theory of the symplectic
action.

The crucial fact is that I(S) and hence its cohomology is invariant under
continuous deformations of the flow as long as the invariant set S remains
"isolated" in a certain sense. We will use a similar property of /*: In §3,
we show that the groups /P(I/, φ\ J) are not only independent of J, but also
invariant under a change of either L or V by an exact deformation φt of P.
This even holds if in the course of such a deformation, L and φt(L') have a
nontransversal intersection.

In order to complete the proof of Theorem 1, it now suffices to calculate
J*(L, 0, J) in the case where φ is a small exact deformation and J is chosen
conveniently. This problem is solved in [9]: If φ is induced by a time indepen-
dent function H on L which is extended to P in a certain well-defined way,
then bounded trajectories in Ω(L, φ) with respect to J correspond to trajecto-
ries of the gradient flow of H on L with respect to g = ω( J , •). In particular,
the spaces of trajectories in Ω(L, φ) are regular if and only if the gradient flow
of H on L is of Morse-Smale type. The index /*(£, φ) can then be calculated
by counting trajectories of the gradient flow on L (see Theorem 3 of [9]). It
then follows from Theorem 1 of [9] that it is isomorphic to i/*(L; Z2). This
completes the proof of Theorem 1.

The research for this paper was essentially carried out at the State Univer-
sity of New York at Stony Brook. The author wishes to thank M. Gromov,
C. Taubes, and E. Zehnder for valuable discussions.
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2. The Morse complex

In this section, we essentially recall some results from [7] and [8]. For any
two Lagrangian submanifolds L and V of P and for fc > 2/p, consider the
space of L^-paths

Kioc^Φ) = (" € ϋ ϊ ; l o c ( θ , P ) I u(R x {0}) C L

and tι(R x {1}) C Z/}.

An almost Kahler structure is a smooth section of the bundle with fiber

(2.1) SX = {J e Eτιd{TxP) | J 2 = - id and ω{JΊ •) is a metric}.

For technical reasons, it is often convenient to allow J to vary smoothly with
t G [0,1], i.e., we denote by J a smooth section of the trivial extension of Sω

over [0,1] x P. We then replace (1.10) by

(2.2) όju{r,t) = — h J t ,

which is still translationally invariant in r. We now define the space of
bounded trajectories with respect to J as

jr3 = Jtj[L,L'] = {u : R -> Ω | 9^ = 0 and ||Vtι||2 < oo}

Here, Vu = (du/dr^du/dt) and || ||2 is the L2-norm with respect to the
metric g. If no confusion can arise, we will omit the subscript J. It follows
from elliptic regularity theory (see Lemma 2.1 of [7]) that each u E Jίj is
smooth. Other results of [7] are summarized in

Proposition 2.1. For x+, z_ € LnL', define

J£(x+,xJ) = \u G^# I lim u(τ,t) = x± \.

Tften we Λαi e

Moreover, if L intersects V transυersally, then for each x,y £ L Π L' there
exist smooth Banach manifolds

so that (2.2) defines a smooth section d of a smooth Banach space bundle over
3°(x,y) with fibers <S?U = Lp(u*TP), and so thatJT(x,y) is the zero set ofd.
The tangent space TU9° = Tu9°{x,y) consists of all elements ξ of L\{u*T)
so that f (r, 0) G TL and f (r, 1) G TV for all r G R. The linearizations

(2.3) Eu : = Dd(u) = Tu&> -> ^
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are Fredholm operators for u E Jί{x,y). There is a dense set ^^(L^L')
of C°°-almost Kάhler structures on P so that if J E Jreg(L,L'), then Eu is
surjective for all u E ̂ #(x, y).

We will also need certain compactness properties of the Morse complex.
Note that the additive group R operators on each Jίj{x,y) by translation:

(p*u)(τ,t) =u(τ- p,t).

Proposition 2.2. Assume that J{ G,f,Ji->J and L{ -*+ V in C°°.
Then each sequence U{ in ^ = ^#jt. [L, Li] contains a subsequence converging
to a family of adjacent trajectories va E ^{za-i^Za), 1 < a < N, in the
following sense: For each 1 < a < N there exists a sequence σi E R so that
σi*υ,i —> va locally in C°°(θ, P). Moreover, if N = 1, then va converges in
the relative topology of &{x,y).

It follows in particular that restricted to r > 0, the sequence p * u for
u E •/#(£, 2/) converges to the constant map uniformly in all derivatives. In
fact, if this were not the case, then by reparametrization one could construct
a sequence violating Proposition 2.2. In the same way, it follows that for any
ε > 0, all but finitely many U{ considered as paths in C*([0,1],^)ΠΩ takes
values in an ε-neighborhood Ue{υχ, ,VN) of the combined images of Va>

Let us now consider the situation of Theorem 1. Define Ω(φ) = Ω(L, φ) as
in (1.7).

Proposition 2.3. Let {φχ}χeκ be an exact deformation of P with φo =
id. Then we have bijections

Φx,μ Ω(φχ) —> Ω(0λ+μ) : φχiμ(z)(t) = φχ+tμz(t).

Now assume in addition that τr2(P, L) = 0. Then (1.8) defines a function
a : Ωo(φχ) —• R. // ||Vιt|| is defined with respect to the standard metric on θ
and the metric g = ω(y , •) on P, then for all u E ̂ {x, y) we have

(2.4) !l |Vu|β>*(2;)-*(y),

with equality if and only ifuE J£j(x, y).
Proof It suffices to show that for all smooth maps u : S1 x [0,1] —• P

with u(τ, 0) E L and u(τ, 1) E L1, we have

u*ω = 0.
I

To this end, let us consider wasa map u : S 1 —• Ω and define the map

H:Sι x [0,1]2 -> P : fΓ(τ,t,λ) = 0o,λ(w(r))(ί).

It follows from the exactness of φx and from Stokes' theorem that

/ u*ω — j (φιu)*ω.
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Hence it suffices to consider the case where V = L. Moreover, since we
restrict ourselves to the path connected component of the constant elements
of Ω(L,L), we can assume that u(0) is constant. Then we can redefine the
map u to yield a map ΰ : (D2^1) —• (P,L). Since π2(P,L) = 0 and ω
is closed, the integral of u*ω over D2 vanishes. This proves that a is well
defined. The last assertion follows from

and (1.9). q.e.d.

In [23], Viterbo defined a relative Morse index μu(x,y) for any pair (x,2/)
of transversal intersections, which in addition depends on the choice of a path
u in Ω connecting x and y. In [8], this number was proved to be equal to the
Fredholm index of Dd(u). Moreover, it was shown that under the topological
restrictions of Theorem 2, μu(x, y) does not depend on u, and that it can be
written as the difference of suitably defined Morse indices of x and y. We
summarize these results in the following proposition.

Proposition 2.4. With P, L and φ as in Proposition 2.2, there exists a
map

which is well defined up to an additive constant, so that for u G

(2.5) mdex(Dd(u))=μ(x)-μ(y).

If J G^reg as in Proposition 2.1, then (2.5) is the dimension ofJf(x,y).

3. The index cohomology

Let L C P be as in Theorem 1, and let φ be an exact deformation so that
φ(L) meets L transversally. We want to define I*(L,φ;J) according to the
outline given in the introduction. We also want to show that this group is
independent of φ and J.

Let us denote by C* the free Z2-vector space over the set /(L, φ). By virtue
of the Morse index μ of Proposition 2.4, we have a grading,

(3.1) C* =

where Cp is the free Z2-vector space over the intersection points of Morse
index p. We will define a coboundary operator on C* by counting trajectories
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between points in if. Recall from §2 the operation of the translational groups
R. Since the action a is strictly decreasing on nonconstant trajectories, it has
a slice

(3.2) ^(x ,y) - , * ( * , y)/R ~ {ueJ?{x,y) | *(u(0)) = \{a{x) +a{y))}.

Lemma 3.1. If J £ ̂ eg(L,φ(L)) as in Lemma 2.1, then Jf{x,y) is a

manifold of dimension μ{x) — μ(y) — 1. If μ(x) = μ(y) + 1, then J£\x, y) is a

finite set.
Proof The first assertion follows from (3.2). The second assertion follows

from Proposition 2.2, since if μ(x) — μ(y) = 1 and J G j%eg, no family of
adjacent trajectories with N > 1 can exist between x and y. q.e.d.

Now let ( , ) denote the canonical Z2-valued inner product in C*. Then
Lemma 3.1 justifies the following construction.

Definition 3.1. For μ(x) = μ(y) + 1, and J e fτ^[L,φ\[L)\ we define

(3.3) δ = δ{φ,J):C?^σ+1, δ(y)=

where {x,δy) G Z2 is the mod-2 number of elements of Jί(x,y).
Lemma 3.2. δδ = 0.
Proof We have for z € C^"1 and x E C p + 1 :

(3.4) (
μ{y)=p

Geometrically, this is the number modulo 2 of pairs of adjacent trajectories
joining x and z. The crucial observation is now that since both ^(x,y) and
^#(ι/, z) are regular, each such pair of trajectories gives rise to a 1-parameter
family of trajectories in Jϋ{x,z). In fact, by Proposition 4.1, pairs of adja-
cent trajectories between x and z are in 1-1 correspondence with the ends of
Jί(x,y). Hence their number is even, which proves Lemma 3.2.

Definition 3.2. Let L be a Lagrangian submanifold of a compact sym-
plectic manifold P, and let φ € 3f be an exact deformation so that φi(L)
meets L transversally. Then for every J G J^eg(L,φι(L)) as in Proposition
2.1, we define the graded group

Ip{φ, J) = ker[<5 : Cp -> CP+1}/6CP~\

with δ = δ(φ, J) as in Definition 3.1.
The main result of this section is:
Proposition 3.1. For any φ,φ' and J,J' as in Definition 3.2, there is

an isomorphism Ip(φ, J) = Ip(φ', J1) of Z^-vector spaces.
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Proof. Since 31 is connected by definition, we can connect φo with φ\ by
a smooth family {φχ}o<x<i in 3ί. Of course, we cannot avoid nontransverse
intersections along such a deformation. A typical nontransverse intersection is
given by the following example: Let us identify (P, ω) locally with the linear
symplectic space (Cn,ω). Let L\,L2 be two transverse linear Lagrangian
subspaces of C 7 2 " 1 and let R, Sι C C be the real axis and the unit circle
around i respectively. Then set

(3.5) L = SxLχ, Lχ = (R + iλ)xL2.

Lemma 3.3. Any φo,Φi G 3 such that φo{L), φι{L)ίϊ±L can be con-
nected by a smooth isotopy {Φx}o<x<i so that φχ(L) and L have at most one
nontransverse intersection in the vicinity of which the deformation has the
form (3.5).

Proof In a neighborhood of each y G φχ{L) Π L there exists a Darboux-
chart so that L is linear and φx (L) is the graph of the differential dfx of some
smooth function / on L. Clearly, φ(L) Π L is the set of critical points of
/, and an intersection is transversal if and only if the corresponding critical
point is nondegenerate. Now it is well known from singularity theory that
any smooth family {/λ}o<λ<i of such functions can be deformed into one
so that all critical points of fx are either nondegenerate or that the Hessian
Dgτ&dgf with respect to some metric on L has a 1-dimensional kernel k
on which the quadratic differential D2 grad^ fx : k —• k is a nondegenerate
quadratic function. In the latter case we can deform fx locally into a family of
functions inducing the deformation (3.5) without introducing any new critical
points. By another local deformation, we can change the critical parameter
values in case one fx should have more than one degenerate critical point,
q.e.d.

We will denote the set of critical parameter values by Ao In order to prove
the proposition, we first assume that Ao = 0. In this case, we have smooth
families {xx} = x in I\ = {(x, λ) G L x A | φχ{x) G L} C P x A. Define the
parametrized Morse cells

(3.6) -4Λ(*,J/) = { ( M ) I ueJ?Jχ(xχ,yχ)}.

Moreover, let π : Ω x [0,1] x P —• P denote the projection. Then if Ja,Jb€ β\
we define with (2.1)

Λ) = {J E C°°(π*5) I Jl{a}xP = Ja and Jl{b}xP = Jh),
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Proposition 3.2. Let Lχ, A 6 A = [α,6], be a smooth family of La-

grangian submanifolds of P so that LίsLχ for all A G A. Assume that Ja G

fXQ%{L,La) and Jb G fτ^{L,L^). Then there exists a Baire set JΛ,reg C

^ v ( J α , Jb) so that for each JΛ G <̂ Λ,Γeg> the parametrized trajectory space

^κ(x,y) of (3.6) is a smooth manifold of dimension μ(x) — μ(y) + 1 . More-

over, we can assume that for each A G A, there exists at most one trajectory

in J£\ joining intersection points of equal Morse index.

Proof. Except for the last statement, this is Theorem 5b of [7]. To show

how the last statement follows, we briefly review the proof. Let &{xχ,yχ)

and Jϊ?(xχ,yχ) denote the Banach manifold and the Banach space bundle of

Proposition 2.1 for the pair L,Lχ of Lagrangian subspaces. It was shown in

Theorem 3a of [7] that they define a Banach manifold ^\(x^y) = {(u, A) |

u G 3°{x\, yx)} with a corresponding bundle <5Λ, SO that d(λ, u) = du defines

a Fredholm section of -SΛ with Fredholm index μ(x) — μ(y) + 1. To prove

the genericity result, we first define as in Lemma 5.1 of [7] a suitable Banach

space ^ Λ of smooth perturbations of J\. Let TΓI : ̂ Λ X <^Λ —* ̂ A be the

projection and define the section

d'.^xΛ-* * Ά 3(u, A, JΛ) - dJχu.

Then the proof of [7, Lemma 5.2] applies to show that 0 is a regular value of

d and that the projection

7Γ2 : {(w, JΛ, A) | dJχu = 0} -> J Λ

is a smooth Fredholm map. For each J G ̂ , π^"1 ([«/])= ^ Λ Hence the first

assertion of Proposition 3.2 follows from the Sard-Smale theorem [7].

In order to prove the second assertion, we consider for any x, x1 G Cv and

y,yeCq the set

Xx = {(A, u,v,J)\ue Jχ{x, x'), ve jfxiy, j /) , J € Λ }

Again, this is a Banach manifold. The projection Xι —• JΛ now has index

—1. Hence for every regular value of the projection map, the counterimage is

empty. This completes the proof of Proposition 3.2.

It follows from the proof of Lemma 3.1 that if Ao = 0 , then the homomor-

phism 6χ = δ(φχ, Jx) and its cohomology Iχ is well defined on the complement

of the set

Ax = {A I 3z,2/ so that μ(x) = μ(y) and J£χ{x,y) φ 0 } .

In the same way as in the proof of Lemma 3.1, it also follows that Ai is

discrete, so that by restricting A to a neighborhood of 0, we can assume that

Ai = {0}. Then we have

Lemma 3.4. If λ0 = Ai = 0 , then (xo,δoyo) = (z



MORSE THEORY FOR LAGRANGIAN INTERSECTIONS 525

Proof. As in the proof of Lemma 3.1, one shows that the set Jif{x, y) for
μ(x) = μ(y) + 1 is compact for all λ G A — Ai. Now Lemma 3.4 follows from
the fact that the number of ends of the 1-dimensional manifold J?A(X, y) is
even, q.e.d.

Let us now assume that A is a neighborhood of 0 in R and that {0} = Ai,
i.e. that there exists exactly one trajectory u connecting two points x+ and
x_ of equal Morse index p (see Proposition 3.2). We can define δ = δ(Jχ^φχ)
for λ > 0 and 7 = δ(J\,φχ) for λ < 0. The difference between 7 and δ is
due to the fact that for trajectories ending at x_ or originating at x+, the
proof of Lemma 3.1 breaks down. For example, a sequence of trajectories in
./#(£,x_) may "split" into a pair {u,u) with u G ̂ #(x,x+). However, this
lack of compactness can be measured algebraically:

Lemma 3.5. For y G Cv~x;

(3.7) ηy = δy + x+(x-,δy).

Moreover, we have

(3.8) ηx- =δx- +δx+.

For all other generators of C*, we have η = δ.
Proof. Whenever x φ x+ and y φ x_, Proposition 2.2 yields compactness

even for ̂ ( x , y), so that we conclude as in Lemma 3.4 that (x, δy) = (x, ηy).
Now consider x G C p + 1 . By Proposition 4.2, there exists for p large enough
a local diffeomorphism

# ΰ : Λf (x, x+) X (p, oo) -» ΛfΛ(z, z-), {% p) -> u#pu.

On the other hand, the compactness result of Proposition 2.2 together with
the uniqueness statement of Proposition 4.2 implies that the complement of
the image of # ΰ in ^Λ(X,X_) is compact. It follows that the number of
trajectories in ̂ ( x , x _ ) and ̂ #_ε(x,x_) differs modulo 2 by the number of
trajectories in ̂ o(x, x+). This proves (3.7). In the same way, we prove (3.8)
by considering for y G Cv~x the map

Λfo(z-?y) X (0,oo) ->ΛfΛ(z+,2/), (v,0) ->v#μ.

Now the invariance of Iχ follows by purely algebraic means:
Lemma 3.6. The map φ : C* —> C* defined by φ(x) = x + x+(x_,x)

satisfies φ2 = id and

(3.9) δφ = φη.

Proof. The first assertion is obvious. To show that φ is a chain map, we
calculate for y G Cp~ι:

Sφ(y) = δy = ηy + x+(x-,ηy) = φ(ηy).
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Moreover, we have

δ(x-) = δ(x- + z+) = η(x- + x+) - 72;+ = 7Z_ = φ(ηx-).

For all other generators of C*, equation (3.9) is obvious, q.e.d.

We have so far proved the continuation result under the hypotheses that all

intersections remain transverse, i.e., that the intersection set does not change

essentially. Since we want to apply the index cohomology to estimate the

number of intersections, the crucial step is to show that it remains invariant

even when intersections vanish through nontransverse intersections as in (3.5).

As above, we set the critical parameter value to zero. Let us denote by (C*, 7)

and {D*,δ) the chain complexes for small negative and small positive values

of λ, respectively.

It is here that we make use of the variational structure of the problem.

Because of relation (2.4) with a globally well-defined function a on Ω, ||Vι/||2

for trajectories u £ */#(?/+,?/_) can be estimated by a(y+) — &{y-), which

converges to zero for λ —• 0. It follows from Proposition 2.2 that for λ small

enough, all trajectories in Jf(y+,y-) are contained in a small neighborhood

of the nontransverse intersection y. Now it follows from [9, Theorem 1], that

for small negative λ,

(3.10) {y+1δy-) = l.

Let π : C* —• D* denote the projection, i.e.

πx = x-y_(y_,x) -y+(y+,x).

Let i :/}*—• D* denote the homomorphism induced by the inclusion. Unfor-

tunately, these two homomorphisms are not chain homomorphisms in general.

This is due to the fact that trajectories from x to y- and from y+ to z may

merge to trajectories from x to z. As in the case above, we have to measure

this phenomenon in algebraic terms. This will be carried out in §5. More

precisely, the following formula follows from Proposition 5.1:

Lemma 3.7. For μ(x) = p, we have δx = πη(x + y- (y+, 72;)). For

μ(x) φ p, we have δx = πηx.

Now define φ : C* —> D* by φx = π(x + ηy-{y+x)). In a less formal

notation, we have δx+ = πηx-, δx- = 0, and δx = x otherwise. Moreover,

define ψ : D* —• C* by ψx — ix + y_ (?/+, ηix).

Lemma 3.8. ψ and φ are chain maps.

Proof. For μ(x) = p, we have φx = x and

δφx = δx = π(ηx + ηy- (y+,ηx))

= πη{x + ?/_ (y+, ηx)) = φηx.



MORSE THEORY FOR LAGRANGIAN INTERSECTIONS 527

For x G Cv~ι, we have

φx = πη(φx) = π(ηx) = φ{ηx).

For i G C p + 1 , we have

If x φ 2/, this yields

<50x = όx = 7X = φηx.

If x = 2/+, we obtain

50a: = δπηy- = ηπηy- = η{ηy- + 2/+(2/+7-))

by (3.10). Since 73/+ = 072/+, this completes the proof of the chain property

of φ for μ(x) = p + 1. For μ(x) > p + 1 or μ(x) < p — 1, the chain property

of φ is obvious.

To prove the chain property for rp, consider x G Dp~ι. We have

φ{δx) - ψ(iπηx) = iπηx 4- y~ (y+ηiπηx)

= iπηx + y-(t/+, 7(73: - y_(?/_7a:)))

= iπ7X + y- (2/+, 72/- (2/- Ίx))

= iπηx + 2/_ (y+, 72/-) (2/-, 72;)

= iπ7a: + y_ (y~ηx) — ηx = ηψx.

For x G D p , we have

( ( + 2/- (y

= iπηψ(x) = ηψ{x).

The last equality holds because the 2/+-component of ηψ{x) vanishes:

(y+,ηφ{x)) = (y+,η{χ + y-(y+,ηiχ)))

= (y+,iz) + (y+,ηy-)(y+,ηx)

= (1 + (y+,7X-))(y+,ηfx> = 0,

by (3.10). The other cases are obvious, q.e.d.

We can now define the induced maps φφ and φ# on the index groups.

L e m m a 3.9. ψ# and φ# are inverse to each other.

Proof. Since φ(y~) = 0, we calculate that φ o ψ : D* —• D* is even equal

to the identity:

φ{ψ(x)) = Φ{ix + yJ(y+,ηix))

= φ(ix) + φ(y-){x+,ηix)

= φ(ix) = ix + 7X_ (x_, ix) = x.
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On the other hand, ψ o φ is not the identity, but it induces the identity in

cohomology since the homomorphism β = y_ (y+ | is a chain homotopy (see,

for example, [20]) between ψoφ and the identity on C*, i.e., ψφ—Ίd = βη+ηβ.

To see this, first calculate

{βη + ηβ)x = y- (y+, ηx) + ηy~ (y+, x).

Then it follows that

ψ{φy+) = ψ{πηy-) = iπηy- = ηy- + y+.

For all other generators of D*, we have

φ(φx) = x + y-(y+,ηx).

This completes the proof of Lemma 3.9 and hence of Proposition 3.1.

4. Gluing trajectories

By Proposition 2.2, the ends of Jί{x,y) correspond to families of adjacent

trajectories connecting x and y. In this section we want to show that in the

"generic" situation J G ̂ ^(L, φ(L)) of Proposition 2.1, the converse is true:

any pair (tz, v) £ Jf(x, y) x^#(y, z) gives rise to divergent families in Jΐ{x, z).

The construction of these families proceeds essentially in the same way as

Taubes' construction [21] of noncompact instanton families on 4-dimensional

manifolds. We first define "approximate" trajectories using "cutoffs". Note

that for u E J?{x,y) and τ large enough, there exists ζ(τ,t) such that

(4.1) tι(r,0 = (expy ζ)(τ,t) =

Here, expy : [0,1] x TyP —• P is a smooth family of charts of P such that

expy(0,ΓyL) C L and expy(l,ΓyL
;) C V. If K C Jt{x,y) is a compact

subset, then there exists a constant po = po{K) such that (4.1) holds for all

u G K and r > p0. Then, we also have a decreasing function ε: [po, oo) —• R +

with limp_,oo ε(p) = 0 and

uniformly in u E K. Similarly, if K' is a compact subset oΐJt{y^z)^ we can

choose po and ε so that (4.1) and (4.2) hold for all u(τ,t) = v(-τ,t), v E K1.

Now let β : R —• [0,1] be a smooth function with β(τ) = 0 for r < 0 and

β(τ) = 1 for T > 1.
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Definition 4.1. For compact sets K c Jί{x,y) and K' C Jί(y,z) we
define the map

K x ^0,00) x K' ^&(x,z),

(4.3)
u(r + p, t) for r < —1,

f o r - l < r < l ,

> ι>(τ — p,t) for r > 1.

and f, ς are defined so that u = expy ξ for r > p - 1 and v = expy ς for

τ<-p + l.
It is easy to see that Definition 4.1 defines a continuous map, and that by

(4.2), its image is almost holomorphic in the following sense.
Lemma 4.1. For every compact set K C Jί{x,y) and K1 C ^(y,z)

there exists a decreasing function ε : R+ —• R+ with l imp-^ ε(p) = 0 so that
for (u, v) G K x Kf and p > ρ0,

\\dwx\\p<ε(p(χ)).

Now the main result of this section can be stated as follows: Consider on Ω
the metric dist(x,2/) = maxo<t<i dist(x(t),y(t)) for some metric on P. Then
for every (u, v) as above, define

(4.4) Uε(u, v) = {z e Ω I dist(2, u(τ)) < ε or dist(^,υ(τ)) < ε

for some r G R}.

Proposition 4.1. Assume that x,y,z are transverse intersections and
that K C JK{x, y) and Kf C J^(y^ z) are compact sets containing only regular
trajectories. Then there exist positive constants po and C and a smooth map

# : K x [/90,00) x K1 -+ ̂ ( x , z), x -> exp^χ (ζx)

with | | ί x | | i ,p < C||9τι;x||. Moreover, for u andv in the interior of K and K*',
there exists ε > 0 so that Jf(x, z) Π Uε(u, υ) is contained in the image of # .

A trajectory u is called regular if Eu is surjective. There also exists a
parametrized version of Proposition 4.1. We restrict ourselves here to the
simplest case, which is needed in the proof of Lemma 3.2 above. Assume that
μ(x) = μ(y) and (u,λ) G ̂ Λ(X,y) (see (3.6)). If in addition v G <J?\(y,z),
then by Proposition 2.2 we expect to find trajectories in the ε-tube

Uε{u, v] λ)P = {{z, μ) G C°([0,1], P) x A | |λ - μ\ < ε and there exists

ε G R+ so that dist(^, w(τ)) < ε for w = u or w = v}.
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Proposition 4.2. Assume that L\, λ € R, is a smooth family of La-
grangian embeddings and that x,y,z E L Π LQ are transverse intersections.
Moreover, assume that μ(x) = μ(y) and that u £jfχ(x,y) is a nondegenerate
zero of d in the sense of Proposition 3.2. Then if K C ^\(y,z) is compact
and contains only regular trajectories, there exist positive constants po and C
and a local diffeomorphism

#p : Jίχ{x, y) x [p0, oo) x K -> Jίλ{x, z),

X = (u, p, υ) -* expWχ f,

where wx is as in Definition 4.1 and | |£ | | i, p < CΊ|9tyχ | |p. Moreover, for every
(u,v) in the interior of K x K' there exists an ε > 0 so that ^Δ(X,Z) Π
Ue(u, v A) is contained in the image of φ.

The main tool of the proofs of Propositions 4.1 and 4.2 is the following
version of Newton's, or rather Picard's method:

Lemma 4.2. Assume that a smooth map f : E —> F between Banach
spaces E and F has an expansion

so that Df(0) has a finite dimensional kernel and a right inverse G and so
that for ξ,ςeE:

\\GN(ξ) - GN(ς)\\E < C(\\ξ\\E + \\ς\\E)\\ζ ~ (WE

for some constant C. Set ε = (5C)" 1. Then if ||G/(0)||£; < ε/2, the zero set
of f in Bε = {ξ G E | | |£ | | < ε} is a smooth manifold of dimension equal to
the dimension ofkerdf. In fact, if we define

Kε = {ξekerDf(O)\\\ξ\\E<ε},

then there exists a smooth function

φ : Kε -+ K1- := GF C E,

with φ(ξ + φ(ξ)) = 0 so that all zeros of f in Bε are of the form ξ + φ(ξ).
Moreover, we have

\\Φ(ξ)\\ε<2\\Gf(0)\\ε.

The proof of Lemma 4.2 proceeds by the Banach fixed point theorem and
can be found in [10].

Proof of Proposition 4.1. In Proposition 2.1, we quoted from [7] the fact
that d is a smooth section of a smooth Banach space bundle Jϊ? over ̂ ( x , z).
In fact, explicit charts of ^(x,z) and trivializations of 2" were given in
Theorem 3 of [7], which convert d locally at w into a (Frechet) smooth function

( 4 5 ) dw

d
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Ew is linear and for w G */#(z, z) coincides with the linearization of the section
d at w. The nonlinear part Nw satisfies the estimate

(4.6) \\Nw(ξ) ~ Nw(ξ)\\p < C

with C(w) depending only on ||Vw||oo. We want to apply Lemma 4.2 to (4.5)
with w replaced by wx for p(χ) large enough. Then the constant C(wx) is
bounded for u,v G K x K1 and p < po. Hence by Lemma 4.1, it suffices
to show that there exists a family of right inverses GWχ of EWχ which are
bounded independently of χ if p(χ) is large enough.

Lemma 4.3. There exist constants CQ and po so that if χ = (u, p, υ) G
K x [po,oo) x K1 and w = wx, then there exists a continuous right inverse
G : LP{w) -> W(w) ofLw with

Proof. For ζ G keτEu = TuJH{x,y) and ? G kerϋ;υ = Tv^(y,z), we
define

Γ /?(r + l)ί(r) for r > 1,
( € # ί ) ( τ ) = | 0 for τ € [-1,1],

I. /?(r - l ) f (ί) for T < - 1 ,

with β as in (4.3). Denote by W-L{w) the L2-orthogonal complement of these
sections in TW£P. We want to show that for all ξ E W±(w),

(4-7) \\ξ\\i,P<CG\\Ewξ\\p.

Since the Fredholm index μ(x) — μ(z) of Ew is equal to the dimension of
kerEu 0ker£"v, this proves Lemma 4.3. To prove (4.7), assume the contrary.
Then there exists a family (ua,va) G K x K' and ρa —• oo so that with
Xa = {uanPacVa) and wa = wXot, there exists ξa € W^iwa) satisfying

(4.8a) | e α | | 1 ) P = 1,

(4.8b)

with Ea = EWa. We will derive a contradiction to (4.8a). Therefore, consider
first the vector field £oα defined by

(4.9) D2 expy{t, ξo«{τ, t)) = ξa(τ, t)

on [-3,3] x [0,1]. Here, ς is defined so that exp^ ς = w on this interval as in
(4.1). Our first aim is to show that

(4.10) £θα -> 0 in Lp([-3,3] x [0,1], TyP).

Note therefore that ξ0ot is defined by (4.9) on increasing subsets θ α T θ .
Choosing a suitable sequence of cutoff functions /3α, we find that the sequence
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A*fθα of smooth maps θ -> Γ y P is bounded in Lf (θ,Γ y P). Hence there
exists a weakly convergent subsequence whose weak limit £oo satisfies do £00 =

0, where do is the standard Cauchy-Riemann operator. However, with the
given boundary conditions, this operator has no kernel in Lp, so that &*, = 0.
Now a compact Sobolev embedding implies (4.10).

Now choose a cutoff function β0 : R —> [0,1] so that βo{τ) = 0 for \τ\ > 3
and βo(τ) = 1 for \τ\ < 2. Then we have

This converges to zero by (4.8b) and (4.10). Hence ξ converges to zero in the
Lj-norm on Θ2.

Now define ζ± = β±ξa for β±(τ) = β(±(τ + 1)). We want to show that

ζa = Pa * ξa —> U m

(4.11) S α Ha ς " ,
r/Q = — pa * ςj" —»• 0 m

This will complete the proof of Lemma 4.3, since then

converges to zero, in contradiction to (4.8a). To prove (4.11), we use the fact
that Eu is uniformly invertible away from its kernel for uE K. Therefore,

converges to zero by (4.8b) and by (4.10). This completes the proof of Lemma
4.3. ^ _

It remains to prove that the map # is surjective onto JKε := J?(x, z) Π
Ue{u,υ). By the uniqueness assertion in Lemma 4.2, it suffices to show that
for each δ —• 0 there exists an ε > 0 so that if w G Uε{u, v), then wx = exp^ ξ
in the sense of (4.1) with | |£| | i, p < δ. Define a map s : JKε —• R by

a(w(s(w)))=a(z).

By Proposition 2.1, we know that for ε(u) small enough and s(w) — 1 < r <
s(w) -}-1, we have w = expz η with

(4-12) N l i , P < < M ε )

Here and in the following, we denote by φa : R —• R a continuous map which
is independent of u and satisfies φa{0) = 0. We can define an element of

G = { Γ
for T > s — 1,

otherwise.
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Similarly, we define v G ^(y,z). Moreover, define σ,r G R by a(u(σ)) =

\{a(x)+a(y)) and a(v(τ)) = \{a{y) + a{x)). Then for χ = (σ*2,σ + r,r*P),

we have w% = exp x ξ with \\ξ\\iiP < </>2(ε) To show that σ * u is close to u,

note that by Proposition 2.2, we have

(4.13) σ * u = exp u £ with ||f||1|OO < 0 3 (ε).

In order to obtain estimates in integral norms, we expand as in (4.5),

du : W?(u*TP) - L*>{u*TP), du(ξ) = £„£ + ^ ( 0

The zero order term vanishes since u is holomorphic. Since u is regular and

since on the finite dimensional kernel of Eu all norms are equivalent, we have

(4.14) < σ(||5«(0 - iv^coilp +
<C(\\du\\p + \\Nu(ξ)\\p) + φ3(ε).

Note that | | £ | | p < oo since u G ̂ (x,y) and u is constant outside a compact

set. Now we have estimates ||<9δ|| < </>4(ε). Moreover, by Theorem 3a of [7],

we have

with C depending only on u. It follows that

\\ξ\\uP<Φβ(ε){l +

which for ε small enough proves that limε-.o ll£||i,p = 0. This completes the

proof of Proposition 4.1.

Proof of Proposition 4.2. We apply Lemma 4.2 to the map (see [7, Theo-

rem 3a])

(4.15) dw : TW&>A -> Lp(w*TP)

for w = wx. Here, Tw^\ — Γ ^ θ R is the tangent space of the parametrized

path space (see also the proof of Proposition 3.4 above). The additional

dimension is generated by a certain section X of w*TP. The estimates on the

constant and the nonlinear parts of (4.15) are the same as in Lemma 4.1 and

(4.6) (for the latter see Theorem 3a of [7]). To prove the invertibility of the

linear part, we proceed as in the proof of Lemma 4.3. We have to show that

for every (£, XX) G TWχ^λ with ζ _L k e r £ n # k e r £ υ ,

(4.16) ^

for p(χ) large enough. Since the index of EWχ on TWχ^ is equal to dimker Eu+

Ey, (4.16) implies that EWχ is surjective and therefore has a right
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inverse. Again, the proof of (4.16) proceeds indirectly. For a sequence £Q =
ζa + λαΛΓ violating the assertion, we first show that ξa converges to zero near
the value of τ where the gluing takes place. The crucial point is then that
λα —• 0 because Eυ is invertible on the parametrized space away from v'. One
then obtains a contradiction as in the proof of Lemma 4.3. The proof of the
uniqueness property proceeds as in the case of Proposition 4.1.

5. Vanishing critical points

It is the aim of this section to prove the formula of Lemma 3.7 for the change
of the coboundary operator at a nontransversal intersection y as in Lemma 3.3.
On a neighborhood of y let us fix the Kahler structure (g, J) corresponding
to the Kahler structure on C n . We consider an exact deformation of V
generated by a time independent Hamiltonian H on P which is supported in
this neighborhood of y and which has the form

on some smaller neighborhood U of y. Clearly, under such a deformation,
there exists for λ < 0 small enough a pair of transverse intersections y^ , y^
in {/, whereas for λ > 0, U does not contain any intersections at all. If we
denote the index of yχ by p, then the index of yχ is p + 1 (see [9]). Let us
extend J to an almost Kahler structure for λ on P and denote as usual the
Morse cells for φ\ by Jί\{x,z). Then Lemma 3.7 follows from the following
existence result:

Proposition 5.1. Let x,z E LΠ V be the transverse intersections with

μ(x) = μ(y+) and μ(y) = μ(y~). Then there exists J as above and e > 0 so

that we have bijections between finite sets

Jίε{x, z) ~ J?-ε(x, z) U {JK-ε{x, yZε) x Λf_e(2/ίe, z)).
For a proof, consider the selfadjoint operator Ay := J(y)d/dt on

L2([0, \],TyP) whose domain is given by the boundary conditions f (0) G TyL
and ξ(l) ETyL'. It can be considered as the Hessian of a at the critical point
y E Ω. The special problems for nontransverse intersections arise because the
Fredholm property of Eu in Proposition 2.1 depends crucially on the fact that
Ax and Ay have no zero eigenvalues (see Theorem 4 of [7]). This is closely
related to the rate of convergence of trajectories at x and y, which is expo-
nential in the nondegenerate case. If L and V have a common tangent vector
at 2/, i.e. if Ay has a zero eigenvalue, then Theorem 4 of [7] only implies that
d is a Fredholm section of a suitable bundle over a certain Banach manifold
^(o,ε){χ^y) consisting of paths which a-priori converge exponentially at y.
The exponential rate ε has to be positive but smaller than the first positive
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eigenvalue of Ay. By Theorem 2 of [8], its Fredholm index can be calculated
by considering the "spectral flow" along u of a certain family Az, z 6 Ω,
of selfadjoint operators extending the operators Ax for x € L Π V. More
precisely, if x and z are transverse intersections, then the Fredholm index
of d on ^(x,y) is equal to the number of eigenvalue families of Au^ with
limr_>_oo a(τ) < 0 and lmv-oo a(τ) > 0. On ^(o^)(x,y), it is equal to the
number of those families where limr_>_oo o,{τ) < 0 and limτ_κχ) a(τ) > ε. One
can now verify that the index of d on <̂ (o,e) (z? y) must be one less than the
index of d on ^(:r,2/_), which is μ(x) — p. In particular, in the situation
of Proposition 5.1, it is zero. Since the genericity result of Proposition 2.1
still holds on these Banach manifolds (see Theorem 5 of [7]), this implies that
for J € ^eg, ^{x,y) n<^(o,e)(z,S/) is empty, i.e., no trajectory in Jί{x,y)
has exponential decay. Since for possible future applications we would like to
consider the general case, we define

It follows from complex function theory (see also [7, Lemma 5.1]) that for
o

every uEJ?(x,y) there exists a unique representative satisfying

1
< Cue~τ,(5.1) -,.,„, , ~iτ + i t

where ei is the unit vector for the first component of C n and Cu depends on
u. We will henceforth use this gauge. A special Fredholm theory for J£{x, y)
was developed in [7]. Let us denote the derivative in the r-variable by a prime.
Then by (5.1), the function

K W I I Γ1 for r ^ o,
IKMHί1 forτ>0

grows like r 2 for positive r. Define the norms

(5.3)

where £c is the "longitudinal component"

ξL = β(τ)(σu(τ)u'(τ)1ξ(τ))

and (, ) is the inner product in L2(u(τ)*TP). If we denote by W(u) and L(u)
the corresponding Banach spaces of sections of u*TP, then Eu: W(u) —• L(u)
is Fredholm of index μ(x) — μ(xx) (see Theorem 4 of [7]). Moreover, we can
choose the dense set ^ e g above so that not only Jί{x,y) Π«^>(o,ε)(a:?2/)ϊ but

o o

also all sets Jί(x, y) (and similarly Jί{y, z)) are regular. Eu is then surjective
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o

and for ξ e W(u) with (ξ(O),η(O)) = 0 for all η < kerEu Ξ TuJT{x,y), we

have

(5.4) \\ξ\\w(u)<C\\Euζ\\L{u).

o

To prove Proposition 5.1, we construct for each χ := (u, v, λ) 6 J!{x, y) x
o

Jί{y,z) x (0,λo) the following "approximate trajectory": If φ\ is the exact

deformation generated by H, then u\(τ,t) = φ\t(u(τ,t)) describes a path

in Ω(L,L\). Moreover, for each positive λ small enough, there exist unique

diffeomorphisms 7J : R± —• R so that the paths

( φxt(0) forr = 0,

tiλ(7ί(r),ί) forr<0,

Vλ(7λ(r),ί) forr>0

in « (̂x, z) satisfy
(5.6) (w'χ(τ),dwx(τ))=0

for all r G R. To define 7^, note that the function

(5 7) α - ( r ) - < " Ά ( τ ) , * Ά ( r ) )

is smooth. Whenever u(τ,t) is in the domain U where the deformation is

linear, we have
(5.8) dux(τ,t) = \e1.

Hence by (5.4), a~ increases like r 2 for large r, so that there exists a unique

solution 7~ of the ordinary differential equation

which maps R_ surjectively onto R. Similarly, we define 7+, replacing u by v.

Equation (5.6) is a direct consequence of (5.9). Finally, it follows immediately

from (5.4) that wx has continuous first derivatives at r = 0.

As in the preceding section, we now deform the approximate trajectory wx

into an element of ̂ ( x , z).
o o

Proposition 5.2. For compact subsets K C «/#(£, y) and K1 C ̂ #(t/, x),

there exists λo > 0 and a smooth map

ll:A'x(0,A1)xff'->.#A(z,*),

(u, υ, λ) -> u \\χ v := expWχ (ξx)
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w i t h llfχlkp < C\χ/2-1/2p. Moreover, if (u,v) is in the interior of K x K'
then there exists an ε > 0 so that every trajectory contained in Uε(u,υ) is in
the image o/t|.

o

In a similar way, we define inclusions of compact subsets K C JH{x,y) in

J?-ε(x,yZε) and of compact sets Kf C Jΐ{y,z) in Jt-ε(y^ε^z). This will
complete the proof of Proposition 5.1. Clearly, it suffices to consider the first
case. Let us define for χ = (tx, λ) with u G Jt{x1 y) and λ > 0 small enough a
path wx in Ω(L,L_λ) approximately satisfying the trajectory equation. Note

o

that for λo small enough, a smooth function p : Jί{x,y) x (—λo) —• R is
defined so that w(p(x),0) coincides with yχ{X) in the first component. Then
if R is chosen large enough,

tiλ(r, ί) = Φxt{u{τ, t)) + /?(r - R)(yϊ{\) - Xtex - u{p{χ), i))

defines a path in Ω(I/, L-χ) so that uχ(p(χ),t) = yχ. As in (5.5), there exists
a unique reparametrization ηx : R —• (—oo, p(χ)) so that

(5.10) wx(r,t)

satisfies (9ιyχ(r), IWX(T)) = 0 for all r E R. Now we have

Proposition 5.3. For every compact subset K C Jΐ{x,y) there exists
o

> 0 and a family of maps

= expWχ{ξx(u))

for X G (0,λ0), where wx is defined by (5.10) and | |ξ x | | i , p <
Moreover, there exists an ε > 0 so that every trajectory in M\(x,y^) which
is contained in the ε-tube ofuχ is in the image o/tU

Propositions 5.2 and 5.3 together imply Proposition 5.1. We therefore come
to the proofs of the above results.

Proof of Proposition 5.2. Throughout the proof, we will denote by Cfc,
k E N, positive real constants which depend only on the compact sets K and
K'. We apply Lemma 4.2 to the map

^ χ : ί y ( x χ

9u>x(ξ) = dwx + Exξ + Nx{ξ).

As in (4.15), W(wx) = TWχ&> φ R is the tangent space to the parametrized
path space. The additional direction is now generated by the vector field
Xjj(iϋx(r,t)), where XH is the Hamiltonian vector field of H. However, as
opposed to the situation of the preceding section, the operator family Ex is
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not uniformly invertible with respect to the standard Sobolev norms. Define
therefore the weight functions

f I K M I I J 1 f o r Ίχ~(°) ̂  τ ^ 7χ (°).
°x""" 1 IK^xί 0 )) !^ 1 f o r ±τ^fx(°)

For any section ^ for wχTP, define the longitudinal component

ξL(τ) = /?(r - 7+ (0))/?(7"(0) - r)(σx(r), f (r)).

Now we replace the norms on Lp(wχTP) and Ttϋχ«^2> by

We define the norm in the additional direction by the unit vector

which is chosen so that the following estimate holds:
Lemma 5.1.

C^<\\ExXx\\Lχ<C2.

Proof. The time that wx spends in the neighborhood U of y where the
deformation is nontrivial is estimated by

(5.13) C-ιX~1'2 < |7±(±λ χ / 2 ) | < |τ±(0)| < OX'1'2.

To prove this, we can by (5.1) restrict ourselves to the case u(τ,t) =
- ( r + t ί ) " 1 . Then for r < X1'2, we have \{ηx)'{τ)\ < 2, so that ηx(X1/2) -
7"(0) < 2A1/2. For r > λ1/2, it follows from (5.8) that | |tι£(τ)| | 3 > λ, hence

Now the estimates from above follow immediately since σx(τ) = x
< λ"1. To obtain an estimate from below, note that σχ(τ) > | λ - 1 for
7 χ ( λ " 1 / 2 ) < r < 0 . q.e.d.

Using the explicit formulas for the nonlinear part Nu(ξ) given in Lemma
3.2 of [6], we find that for all ξ, ς € Wx,

(5.14) ||ΛΓχ(O - Nx(ς)\\Lχ < CMfy + \\ζ\\fiχ)\\ξ " f 11^,

since the weight on the longitudinal component in Lx is only the square of
the weight of the same component in Wx. On the other hand, although the
weight σx is large in the region where u and v are glued together, we still have

Lemma 5.2.

(5.15) \\dwx\\Lχ<C2'X
1/2-1/2p.



MORSE THEORY FOR LAGRANGIAN INTERSECTIONS 539

Proof. By (5.13), Lemma 5.2 follows from the uniform estimate

(5.16) σx{τ)\dwx{τ,t)\ < C 3 λ 1 / 2 .

To prove (5.16), note that by construction of wx in (5.5), we have for — αλ""1/2

< T < 0, and a > 0 small enough,

wx(τ) = u{η~(r)) + λ t id.

Therefore, with ηx = η~,

The reparametrization is chosen in such a way that

(5.17) dwx(τ) = πx (Ίχ(τ))-λeu

where τr-'-(r) is the projection onto the L2-orthogonal complement of u'(τ).
Using the asymptotic estimate (5.1), we find with |X(τ)| <

We conclude that

(5.19) llTΓ-^rleills^CδT-1.

In order to calculate the weight, we obtain from (5.9),

Hence

for some positive constant Cβ Together with (5.17) and (5.19), this yields
the estimate

Now (5.16) follows by elementary methods, q.e.d.
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It remains to invert the operator Ex. Of course, since

Indexi?x = μ(x) - μ(z) + 1 = di

we have to factor out a family of finite dimensional subspaces Kx ~ ker Eu ©

kerί^ of W(wx). Define

W£ = {ξ + aXx G W(wx) I (ι,(0), ί(7λ (0))> = 0 for all η G keτEu

and (ι/(0), ξ(Ίχ(0))) = 0 for all η G kerEv}.

Then we have
Lemma 5.3. There exist positive constants C and λo depending only on

K and K' so that if X < λo, then for each χ E K x (0, λo) x K', there exists
a continuous right inverse G : Lx -» Wχ of Ex with

Proof In principle, we use the same method as in the proof of Lemma
4.3. Because the Predholm index of Ex restricted to Wχ is zero, it suffices to
prove that we can choose λo small enough so that for all χ G K x (0, λo) x K'

Proceeding indirectly, we assume that there exists a family %λ = (u\,vχ, λ)
indexed by λ G (0, ε) accumulating at zero and a family f A + <*λ̂ λ G Wχ =

so that

(5.20) | |6 lkλ = 1,

and, abbreviating E\ = Eχx,

(5.21)

for λ —> 0. Again, we derive a contradiction to (5.20). However, this point
is considerably more complicated than in the proof of Lemma 4.3. First note
that if a is any fixed positive number and τ < Tχi (αλ)"1/2, we have for λ
small enough \otχ (τ)\ < I/a (see (5.7) and (5.8)). We now decompose θ into
θ ^ := ^ ( ( α λ ) " 1 / 2 ) , 7^(—(oλ)"1/2)] and the two components θ j of its
complement. Then for (r, t) G θ^", the reparametrization 7̂ " satisfies

— ~(τ)-

Therefore, the weights σλ can be compared with the weights σUχ of (5.2)
through

(1 - l/a)σUχ(τ) < σλ(7λ W) < ί1 + l/α)*ΰ λ(
r)
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We now construct a section ξ~ of u*TP out of ξ by

(5.22) ξ(r,t) = Dφxt(u(ηϊ(τ),t))ξ-(η;(τ),t),

where φ\ is the deformation by the Hamiltonian H. Then if ξ is supported

in θ^", we have

(5.23)

l-l/α<||ΓI|L(ttΛ)llίllIλ<

(5.24) \\EUχξ~

Define now ξχ by (5.22) for τ < Tχ and set ξχ = 0 otherwise. We will

apply (5.24) together with (5.4) to the section ξx obtained from ξχ by the

following two modifications. First, since it is not E\ξ\ but Eχ(ξχ + ot\X\)

whose Lλ-norm converges to zero, we solve the equation

(5.25) {EUχUχWx)-)L = (EUχ(aλXx)-)L

explicitly for fx by integration, given the initial condition fχ(O) = 0. We

then have on (-oo, (αλ)"1/2] x [0,1]:

(5 26) ~ l | £ ; w λ ( 6 + α λ X λ ) H ^ ( - λ ) + <
< 2\\Ex{ζx + αλXλ)| |Lλ + \\ξλ + aχXχ\\wx/a + ax\\(ExXx)τ\\wx

where limλ-.o^λ = 0. The term (ExXx)τ converges to zero since | |(ei)r(τ) | |

< C\\τ~ι. The second modification is necessary since ζx + fxu'x is not an

element of W{ux); we have to cut it off close to r = τx . Of course, this

creates additional terms when we apply EUχ. In particular, the longitudinal

part of ξχ + fxv!x may be large at the cutoff. We therefore use the following

trick: define real constants yχ so that the longitudinal component of (ξχ +

(/λ — yx)u')(τχ) = 0 Let β be defined as in (4.3) and define a(x) = 0 for

x < 0 and a(x) = 1 for x > 0. Then

? λ M ) = ξχ~ β(r - τχ)(ξχ)τ(τ,t) + (Λ - yχ)a(τ - rλ") yxu'x{τ,t)

is an element of W(u\), and satisfies

\\EUχξχ\\L(ux) < \\EUχ(ξχ + / A ti;)l|L(uA)

The second term converges to zero if

(5.27) λ-^maxίKft-Mr.t) | |τ-τλ"| < 1 } - 0
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for λ —• 0. Hence assuming that (5.27) is correct, it follows with (5.26) and

(5.4) that

(5.28) \\tx\\w(uλ)<C/a + e'λ.

Here we have used the fact that the constant C in (5.4) can be chosen inde-
o

pendently of A, since uχ is contained in a compact subset of Jί(x, y). We can

then choose a > AC so that for λ small enough,

on (-oo, (αλ) 1 / 2 -1] x [0,1]. Performing the same procedure at the other end,

we find ζf + ffυ'x on [-αλ~1/2, oo) x [0,1] whose W(vχ)-noτm is less than |
for small λ.

Let us now consider ζ on θ ^ = [σ^",σ^], where σf = 7^(=p(αλ)1/2). First,

we have to prove (5.27). Clearly, for λ small enough we have wχ(θ) = expy ζχ

in the sense of (4.1) on θ ^ for some ζχ : θ\ —• TyP. We can then define

e°eL?(0(λ),Γ,P)asin(4.19)by

on θ ° . To prove (5.27), we claim that

(5.29)
λ—0

In fact, if there exists a family {τχ,tχ) G θ ^ and a positive number ε so that

> ελ1/2"1"1^ for all λ, we obtain a contradiction as follows: Define

χ-l/2ξθίτ _^_Tχ jλ for | r | < ^-1/2

0 otherwise.

The crucial observation is now that for (r, t) G Θ J,

Hence by (5.20), \\ζχ\\p < Cs\\σι^2ξ\\p is bounded. We can therefore assume

that it converges weakly to some limit fo £ L p ( θ , T y P ) . We want to show

that fo = 0. Note therefore that for any p > 0, the restriction & to θ p =

[-p, p] x [0,1] is, for Λ small enough, a bounded sequence in L\(θp, TyP). We

can therefore assume that it converges weakly in this space to ς0. Moreover,

if EQ = d/dr 4- Jd/dt is the standard Cauchy-Riemann operator, it follows

from (5.21) that for all p and for A -• 0,

(5.30) ,

(Note that the contribution of X~1/2Xχ vanishes locally.) By weak lower

semicontinuity of (5.30) we conclude that Eoςo = 0 everywhere on θ . Together
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with ς0 E Lp, it follows that ς0 = 0. Since weak convergence in L\(θp,TyP)
implies uniform convergence, this contradicts the assumption and therefore
proves (5.29).

We now define the longitudinal part of ξ*χ as the integral

Jo
over the ei-component of ζ\. Correspondingly, we define the transversal part
of ξ°x as ζ°λτ = € S - $ L ei. It follows from (5.21) that λ-1/3 | |(JEb€S)Γ | |p ~+ 0.
Using a cutoff function and (5.29), this implies

(5.31) A-^Htfrll^-O,

since EQ is invertible on the transversal component of W^iιP(θ,TyP). To
obtain an estimate on the longitudinal part, we first have to solve an equation
corresponding to (5.25). If we choose an initial condition so that

& > λ ) + « A / Λ ° K ) = ^L(τχ) + αλ/ λ -(r λ -) |K(r λ -) | | 2

we obtain on θ^:

(5.32) X-1/2\\ξ°XL + axfiWi* < CiaA-^IEbίίSL + «λ/S)||P - 0.

If we replace f® by g^ which is defined so that

we obtain in the same way

(5-33) λ-

However,

By (5.13) we have on the interval [σ^,

Hence (5.32) and (5.33) can both be true only if ax -• 0. Now (5.28), (5.32),
and (5.33) together imply a contradiction to (5.20). This completes the proof
of Lemma 5.3.

It remains to prove the uniqueness statement of Proposition 5.2. Therefore
let Wk € Jf\k (x, z) be a family of trajectories contained in the 1/A -tube of
(tx, v). As in the proof of the uniqueness statement of Proposition 4.1, we
have to show that if we define Wk = wXk for χk = (u,v,\k), we have Wk =
expnjfc(6) with Hindoo ||&||ιvXfc = 0. By applying a translation if necessary,
we can assume that

a{wh{0)) = a{y).
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Choose τ£ and r^ so that

Then by Proposition 2.2 we can choose a subsequence so that τζ * Wk and
τ£*Wk converge locally to u and v, respectively. We now split θ for each ί E N
into five parts: Choose p large enough so that u takes values in the union of a
neighborhood U(x) and U(y) outside θ p , where U(y) can be identified with
open subsets of C n as described in the beginning of this section. We can also
assume p to be large enough so that υ takes values in U(y) U U(z) outside θp.
Then define

it = {{τ + τt>t) I M ̂  Ph ik = {(? + *£>*) I M ̂  ri

For A: large enough, we can now assume that the complement of l£ and 1^
has three components θfc, θ£ and θjj" so that u{βqζ) C ί/x, w(θĵ ") C ί7y,
and w(θjf) C ί7 .̂ Now estimates of ||£jfc||wXfc on Ijjr follow immediately from
the uniform convergence of Proposition 2.2. The estimate on θ^ uses the
transversality of the intersections x and z and follows essentially the lines
of the proof of the uniqueness statement of Proposition 4.2. We therefore
restrict ourselves to proving the estimate, on θ£, which is the most delicate
part because of the weights in || \\wχ . The idea is to compare u to certain
standard holomorphic functions. Consider

eiμθ _ eiμθ

θ) i

for θ 6 C. It has poles for θ = |(2fc +1) π/μ. Moreover, it maps the interval
(—|τr//i, |τr///) diίfeomorphically onto the real axis. The line R-f 1 is mapped
to a circle, which is defined by

/μ(i) = i tan(—iμ) = itanh(μ),

i

We want to normalize this function so that R -f 1 is mapped to the circle of
radius 1. We therefore divide fμ by the radius of this circle to obtain

(5.34) gμ = 2% ( ^ ^ y - tanh(μ)) tan(-μfl)

We now show that the first component of any sequence (wk,\k) € ^Λ(X, Z)
which converges locally to the constant trajectory y has to be asymptotic in
a very strong sense to the family of functions g-μie of (5.34) for 2sinh2 μk =
λjfc. Note therefore that gμie is invertible in the neighborhood Uy to a map
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Φk Uy —• C. Now define the family of holomorphic functions

Λ : θ 2 - C , fk(z) = φk(wk(z)) - z

with the property that

Λ ( R ) c R , Λ(R + 1)CR.

Moreover, fk(τ£ — p) and Λ(r^" + p) are bounded independently of p. Now
the Cauchy-Riemann equation for such maps can be rewritten as the ordinary
differential equation {d/dτ)fk{t) = Afk{τ) on the linear space of paths in
C originating and ending at R. Here, A is the linear operator Az = Jz.
Therefore, it follows from linear functional analysis that

fk{τ) < Cexp[-μmin(τ+ - p, -r£" - p))

for positive constants C and μ, as long as \{τζ + p) < | ( r ^ — p). For fc large
enough, this proves the desired estimate in θ£.

Proof of Proposition 5.3. The proof is in many aspects parallel to the
proof of Proposition 5.2. One difference is that we apply Lemma 4.2 to the
family of maps

rather than to the parametrized space. To define a suitable family of norms,
consider the weight function

KWIIΐ1 farθ<τ<lp(χ),

1 f o r r < 0 .

Then if we define the family of norms || \\wx and || \\LX by the same formula
as (5.12), it follows again that

l im| |dw x | | L χ = 0 ,

ll^xίfl - Nx(ς)\\Lχ < Cu(\\ξ\\wx + IkIkjlie - flkx

The index of the operator Ex is equal to the dimension of Jί(x, y) by Theorem
5 of [7]. To define a subspace on which to invert it, define for each ξ E W(wx)
the section ~ξe\V(u) by

(5.35) « r , ί ) = ^ -

Then define the subset

Wf = {ξe W{wx) I (ξ(0),ι?(0)) = 0 for all η e
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Since Ex restricted to W^ has index zero, we obtain a uniformly bounded
family of inverse operators Gx if we can show that there does not exist a
sequence χ\ G W£ = W£χ, so that λ —> 0 and

(5.36) ||6lkλ = l,

(5.37) | | £ A £ A | | L A - > 0 .

The crucial point is again that we can divide θ into the part with r, ^p\ =
\p{X\) where 7^(r) ^s bounded, and therefore formula (5.35) essentially de-
fines an isometry between W\ and W{uχ) as well as between L\ and L(u\),
and the part with r > |/?Λ, where the weights are essentially constant. The
estimate on the first part is accomplished by the same method as in the proof
of Lemma 5.3. We also obtain a uniform estimate near ±p\ of type (5.27). It
immediately implies an estimate on the transversal component of ζ\ on the
second domain. To obtain the estimate of the longitudinal component of ξ\
on the second domain, note that the longitudinal part of E\ is of the form

and that the second term for r —• oo converges to a nonzero value a\ — 2λ */2.
Now instead of conjugating Eχ with a multiplicative operator, we conjugate
it with the contraction operator

Then cxE^c^1 converges for λ —• 0 to the operator / — • / ' + /, which
defines an isomorphism between Wf(R, R) and LP(R, R). But these norms
correspond precisely to the longitudinal parts of || \\wx and || \\LX under c\.
This contradicts (5.36) and therefore completes the proof of the existence
assertion in Proposition 5.3. To prove the uniqueness, we proceed as in the
proof of Proposition 5.2, using an appropriate comparison function.
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