AN EXAMPLE OF A COMPACT CALIBRATED MANIFOLD ASSOCIATED WITH THE EXCEPTIONAL LIE GROUP G_{2}

MARISA FERNÁNDEZ

1. Introduction

Recently Harvey and Lawson have introduced the concept of calibrated geometries [10], [11]. In [11] they study manifolds which have a distinguished closed differential form, which allows them to generalize Wirtinger's inequality [15]. The primary example of a calibrated geometry is a Kähler manifold, the distinguished form being the Kähler form. However there are other interesting calibrated geometries, for example those defined in [8] and [10]. To say that a 7-dimensional manifold has holonomy group a subgroup of G_{2} is the same thing as saying that it has a 2 -fold parallel vector cross product; that is, there exists a 2 -fold vector cross product such that the associated 3 -form ϕ is both closed and coclosed. (If ϕ is closed the manifold is called an "associative 7-manifold" while if ϕ is coclosed the manifold is called a "coassociative 7-manifold" in the terminology of [10], [11].)

Of particular interest are compact calibrated geometries. In addition to compact Kähler manifolds, there is the compact symplectic manifold of Kodaira-Thurston [12], [14]. In the present note we shall give an example of a compact 7 -dimensional manifold V^{7} with a 2 -fold vector cross product such that the associated 3-form is closed; thus V^{7} satisfies a natural weakening from "Hol $\subset G_{2}$ " to "associative." This manifold is a G_{2} analog of a symplectic manifold, and like Kodaira-Thurston's manifold it can be realized as the quotient of a nilpotent Lie group by a discrete subgroup.

The Kodaira-Thurston manifold T cannot be Kählerian for topological reasons. In fact there are two ways to prove that T cannot be Kählerian. The easiest way is to observe that the first Betti number of T is 3 , whereas any compact Kähler manifold has even first Betti number. A second method
(exploited in [4]) is to prove that the minimal model of T is not formal; consequently T cannot be Kähler by the results of [6].

We show that with respect to the natural metric, V^{7} does not have a parallel vector cross product, so the holonomy group is not a subgroup of G_{2}. It is probable that V^{7} possesses no metric with holonomy group a subgroup of G_{2}. There are topological obstructions to the existence of parallel vector cross products on a 7 -dimensional manifold U^{7} [1]. For example $b_{3}\left(U^{7}\right) \geqslant 1$ and $b_{3}\left(U^{7}\right) \geqslant b_{1}\left(U^{7}\right)$. But the manifold V^{7} which we construct has both of these properties. R. Bryant has recently shown that locally there are many 7dimensional Riemannian manifolds with " $\mathrm{Hol} \subset G_{2}$," but a compact example is still conjectural [3]. We show that the minimal model of V^{7} is not formal. It would be nice if the results of [6] could be extended to compact 7-dimensional manifolds having a parallel vector cross product. Then the minimal model of such manifolds would be formal. We do not know if this is true or not.

The word "calibrated" applies to V^{7} since ϕ has comass one. An interesting question remains. What are the associative submanifolds of V^{7} ?

We wish to thank Professor Alfred Gray for many useful discussions.

2. The manifold V^{7}

Let $K^{7}=H(1,2) \times R^{2}$. Here R^{2} is a 2 -dimensional vector space and $H(1,2)$ is a generalized Heisenberg group (compare [9]). By definition $H(1,2)$ consists of all matrices of the form

$$
\left(\begin{array}{ccc}
I_{2} & X & Z \\
& 1 & y \\
& & 1
\end{array}\right)
$$

where X and Z are 2×1 matrices of real numbers and y is a real number. Let $\left\{u_{1}, u_{2}\right\}$ be the natural coordinates of R^{2} and let $\{X, y, Z\}$ be the coordinates of $H(1,2)$ written as matrices. Put ${ }^{t} X=\left(x_{1}, x_{2}\right)$ and ${ }^{t} Z=\left(z_{1}, z_{2}\right)$. Then we have the following left invariant 1 -forms on K^{7} :

$$
\begin{align*}
& \alpha_{1}=d x_{1}, \alpha_{2}=d x_{2}, \beta=d y \\
& \gamma_{1}=d z_{1}-x_{1} d y, \gamma_{2}=d z_{2}-x_{2} d y \tag{1}\\
& \eta_{1}=d u_{1}, \eta_{2}=d u_{2}
\end{align*}
$$

Theorem 1. The 3 -form ϕ on K^{7} defined by

$$
\begin{aligned}
\phi= & \gamma_{1} \wedge \alpha_{1} \wedge \eta_{2}+\alpha_{2} \wedge \gamma_{2} \wedge \eta_{2}+\alpha_{1} \wedge \gamma_{2} \wedge \eta_{1}+\alpha_{2} \wedge \gamma_{1} \wedge \eta_{1} \\
& +\beta \wedge \gamma_{1} \wedge \gamma_{2}+\alpha_{1} \wedge \alpha_{2} \wedge \beta+\beta \wedge \eta_{2} \wedge \eta_{1}
\end{aligned}
$$

is left invariant and closed.

Proof. It is obvious that ϕ is left invariant. On the right-hand side of (1) all of the terms except the third and fourth are closed. But $d\left(\alpha_{1} \wedge \gamma_{2}+\alpha_{2} \wedge \gamma_{1}\right)$ $=0$, and so the sum of the third and fourth terms is closed.

Let $\Gamma \subset K^{7}$ be the subgroup whose entries are integers and let $V^{7}=\Gamma \backslash K^{7}$ be the space of right cosets. Denote by $\mu: K^{7} \rightarrow V^{7}$ the projection.

Theorem 2. There exists a closed 3-form $\tilde{\phi}$ on V^{7} such that $\mu^{*}(\tilde{\phi})=\phi$. Furthermore $\tilde{\boldsymbol{\phi}}$ is the fundamental 3-form of a (nonparallel) vector cross product on V^{7}.

Proof. Since the forms given by (1) are left invariant, they descend to K^{7}. Thus ϕ descends to $\tilde{\phi}$. There is also a metric on K^{7} which descends to a metric on V^{7}. It is given by

$$
d s^{2}=\alpha_{1}^{2}+\alpha_{2}^{2}+\beta^{2}+\gamma_{1}^{2}+\gamma_{2}^{2}+\eta_{1}^{2}+\eta_{2}^{2} .
$$

Let $\left\{E_{1} \cdots E_{7}\right\}$ be the basis dual to $\left\{\alpha_{1}, \gamma_{2}, \eta_{2}, \eta_{1}, \alpha_{2}, \beta, \gamma_{1}\right\}$. Then a 2 -fold vector cross product P on K^{7} is given by $P\left(E_{i}, E_{j}\right)=-P\left(E_{j}, E_{i}\right)$, and

$$
P\left(E_{i}, E_{i+1}\right)=E_{i+3}, \quad P\left(E_{i+3}, E_{i}\right)=E_{i+1}, \quad P\left(E_{i+1}, E_{i+3}\right)=E_{i}
$$

It is not hard to show that P satisfies the axioms for a 2 -fold vector cross product (see [7] and [8]). Since ϕ is the fundamental 3 -form of P, and P descends to a vector cross product P on V^{7}, to show that P is not parallel we prove that $\delta \phi$ is nonzero, where δ denotes the coderivative of K^{7} with respect to the metric given above. In fact a calculation shows that $\delta \phi=-\left(\alpha_{2} \wedge \gamma_{1}-\right.$ $\left.\alpha_{1} \wedge \gamma_{2}\right) \neq 0$.

Theorem 3. The Betti numbers of V^{7} are as follows:

$$
b_{1}\left(V^{7}\right)=5, \quad b_{2}\left(V^{7}\right)=13, \quad b_{3}\left(V^{7}\right)=21 .
$$

Proof. Because K^{7} is a connected nilpotent Lie group, a theorem of Nomizu [13] implies that the cohomology ring $H^{*}\left(V^{7}, R\right)$ is isomorphic to $H^{*}(k)$, where k is the Lie algebra of K^{7}. The left invariant 1-forms on K^{7} are given by (1). From this it is easy to compute the cohomology.

Theorem 4. The minimal model of V^{7} is not formal.
Proof. Since k is a nilpotent Lie algebra, a minimal model for the exterior algebra $\wedge^{*}\left(V^{7}\right)$ of differential forms on V^{7} is the differential algebra $\left(A, d_{A}\right)$ defined as follows. A is the algebra with 7 generators of degree 1 , namely those defined by (1). The differential d_{A} is given by

$$
d_{A} \alpha_{i}=d_{A} \beta=d_{A} \eta_{i}=0 \quad(i=1,2), \quad d_{A} \gamma_{1}=-\alpha_{1} \wedge \beta, \quad d_{A} \gamma_{2}=-\alpha_{2} \wedge \beta
$$

To prove that $\left(A, d_{A}\right)$ is not formal it suffices to check that $H^{*}(A)$ has a nonvanishing Massey product (see for example [6]). Let [β] and [α_{1}] denote the cohomology classes in $H^{*}(A)$ represented by β and α_{1}. Then $[\beta] \wedge\left[\alpha_{1}\right]=$ $\left[d_{A} \gamma_{1}\right]=0$, so that the Massey product $\left\langle[\beta],\left[\alpha_{1}\right],\left[\alpha_{1}\right]\right\rangle$ is well defined. In fact it is nonzero because it is represented by the nonexact form $\gamma_{1} \wedge \alpha_{1}$.

References

[1] E. Bonan, Sur les variètés riemannienes à groupe d'holonomie G_{2} ou $\operatorname{Spin}(7)$, C. R. Acad. Sci. Paris 262 (1966) 127-129.
[2] R. B. Brown \& A. Gray, Vector cross products, Comment. Math. Helv. 42 (1967) 222-236.
[3] R. L. Bryant, Metrics with exceptional holonomy, to appear.
[4] L. A. Cordero, M. Fernández \& A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986) 375-380.
[5] L. A. Cordero, M. Fernández \& M. De Leon, Examples of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc. 95 (1985) 280-286.
[6] P. Deligne, P. Griffiths, J. Morgan \& D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245-274.
[7] M. Fernández \& A. Gray, Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura Appl. (IV) 32 (1982) 19-45.
[8] A. Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969) 463-504; Correction 148 (1970) 625.
[9] Y. Haraguchi, Sur une généralisation des structures de contact, Thèse d'Université, Univ. de Haute Alsace, Mulhouse, 1981.
[10] R. Harvey \& H. B. Lawson, A constellation of minimal varieties defined over G_{2}, Proc. Conf. Geometry and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., Vol. 48, Marcel Dekker, 1979, 167-187.
[11] , Calibrated geometries, Acta Math. 148 (1982) 47-157.
[12] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 .(1964) 751-798.
[13] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954) 531-538.
[14] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467-468.
[15] W. Wirtinger, Eine Determinantenidentität und ihre Anwendung auf analytische Gebilde in Euclidischer und Hermitischer Massbestimmung, Monatsch. Math. Phys. 44 (1936), 343-365.

Universidad de Santiago de Compostela, Spain

