A REMARK ON THE SYZYGIES OF THE GENERIC CANONICAL CURVES

LAWRENCE EIN

Let C be a genus g nonhyperelliptic curve. Consider the canonical ring

$$
R=\bigoplus_{n} H^{0}\left(\omega_{C}^{n}\right)
$$

Set $V=H^{0}\left(\omega_{C}\right)$ and let S be the polynomial ring $\operatorname{Symm}(V)$. Then R can be regarded as a graded S-module. Let $\mathbb{C}=S / \mu$, where μ is the irrelevant ideal of S. Then \mathbb{C} has a minimal graded Koszul resolution:

$$
0 \rightarrow \wedge^{g} V \otimes S(-g) \rightarrow \cdots \rightarrow V \otimes S(-1) \rightarrow S \rightarrow \mathbb{C} \rightarrow 0
$$

$K_{p, q}(C)$ is defined to be the Koszul cohomology group $K_{p, q}(R)[1, \S 1]$ which is isomorphic to the homogeneous degree $p+q$ part of $\operatorname{Tor}_{p}^{S}(R, \mathbb{C})$. Observe that if

$$
0 \rightarrow L_{g-2} \rightarrow \cdots L_{1} \rightarrow L_{0} \rightarrow R \rightarrow 0
$$

is a minimal graded free resolution of R, then $L_{p} \otimes \mathbb{C} \simeq \operatorname{Tor}_{p}(R, \mathbb{C})$.
Mark Green conjectures that if C is generic, then $K_{p, 2}(C)=0$ for $p \leqslant$ $[(g-3) / 2],[1,5.6]$. It is elementary to show that $K_{p, j}(C)=0$ for $j \geqslant 3$ (Proposition 2). Now one observes that $K_{1.2}(C)=0$ is equivalent to Petri's theorem, which says that the homogeneous ideal of C in $\mathbb{P}(V)$ is generated by quadrics. In [2], Green and Lazarsfeld showed that if the Clifford index of C is less than or equal to m, then $K_{m .2}(C) \neq 0$. Green conjectures that the converse is also true [1, 5.1].

In this paper, we study the Koszul cohomologies of a generic curve by the degeneration method. We show that if $K_{p .2}(X)=0$ for a curve of genus n, then $K_{p .2}(C)=0$ for a generic curve of genus m, if $m \equiv n(\bmod p+1)$ and $m \geqslant n$.

With the aid of the computer program Macaulay, Bayer, and Stillman had showed that if C is generic and $g \leqslant 12$, then $K_{p, 2}(C)=0$ for $p \leqslant\lceil(g-3) / 2]$. Using their results, we prove that $K_{2.2}(C)=0$ for $g \geqslant 7$ and $K_{3.2}(C)=0$ for

Received May 20, 1986. The author was partially supported by a National Science Foundation grant.
$g \geqslant 9$ as conjectured by Green. $K_{2,2}(C)=0$ is equivalent to saying that if $\left\{q_{1}, \cdots, q_{n}\right\}$ is a basis for the quadrics containing C, then the relation among the quadrics are generated by the elements of the form $1_{1} q_{1}+\cdots+1_{n} q_{n}=0$ when $1_{1}, \cdots, 1_{n}$ are linear forms.

I would like to thank M. Green and R. Lazarsfeld for many helpful discussions. I would also like to thank Bayer and Stillman for their help. Throughout the paper, we shall work over the complex numbers.

Consider the exact sequence

$$
0 \rightarrow M_{C} \rightarrow V \otimes \mathcal{O}_{C} \rightarrow \omega_{C} \rightarrow 0
$$

Set $Q_{C}=M_{C}^{*}$.
The first two propositions are well known to the experts. But I include them for the convenience of the readers.

Proposition 1. Assume C is a nonhyperelliptic curve of genus g. Then
(a) There is an exact sequence,

$$
0 \rightarrow \omega_{C}^{-1} \otimes \mathcal{O}_{C}(D) \rightarrow M_{C} \rightarrow \sum_{1}^{g-2} \mathcal{O}_{C}\left(-p_{i}\right) \rightarrow 0
$$

where p_{1}, \cdots, p_{g-2} are general points on C and $D=p_{1}+p_{2}+\cdots+p_{g-2}$.
(b) If $p<g-1$, then $H^{1}\left(\wedge^{p} M_{C} \otimes \omega_{C}^{2}\right)=0$.
(c) The natural map

$$
\phi_{p+1}: H^{1}\left(\wedge^{p+1} M_{C} \otimes \omega_{C}\right) \rightarrow H^{1}\left(\wedge^{p+1} V \otimes \omega_{C}\right)
$$

is surjective. Hence

$$
h^{0}\left(\wedge^{p+1} Q_{C}\right)=h^{1}\left(\wedge^{p+1} M_{C} \otimes \omega_{C}\right) \geqslant\binom{ g}{p+1}
$$

(d) $K_{p, 2}(C)=0(p<g-2)$ if and only if

$$
h^{0}\left(\wedge^{p+1} Q_{C}\right) \leqslant\binom{ g}{p+1}
$$

Proof. (a) See 2.3 of [3].
(b) Set $E=\Sigma_{1}^{g-2} \mathcal{O}_{C}\left(-p_{i}\right)$. Consider the sequence

$$
0 \rightarrow \wedge^{p-1} E \otimes \omega_{C} \otimes \mathcal{O}_{C}(D) \rightarrow \wedge^{p} M_{C} \otimes \omega_{C}^{2} \rightarrow \wedge^{p} E \otimes \omega_{C}^{2} \rightarrow 0
$$

One sees that $H^{1}\left(\wedge^{p} M_{C} \otimes \omega_{C}^{2}\right)=0$ for $p<g-1$.
(c) Consider

$$
0 \rightarrow \wedge^{p+1} M_{C} \otimes \omega_{C} \rightarrow \wedge^{p+1} V \otimes \omega_{C} \rightarrow \wedge^{p} M_{C} \otimes \omega_{C}^{2} \rightarrow 0
$$

Observe that $\operatorname{cok} \phi_{p+1}=H^{1}\left(\wedge^{p} M_{C} \otimes \omega_{C}^{2}\right)$. So ϕ_{p+1} is surjective for $p<g-1$.
The second assertion follows from the first part by Serre's duality.
(d) Consider

$$
\psi_{p}: H^{0}\left(\wedge^{p+1} V \otimes \omega_{C}\right) \rightarrow H^{0}\left(\wedge^{p} M_{C} \otimes \omega_{C}^{2}\right), \quad \operatorname{cok} \psi_{p} \simeq K_{p, 2}(C)
$$

Now (d) follows from (c).

Corollary 2. Assume C is a nonhyperelliptic curve of genus g. Then
(a) $K_{p, 3}(C)=0$ if $p \neq g-2$.
(b) $K_{p, q}(C)=0$ if $q \geqslant 4$.

Proof. Since the homological dimension of R is $g-2$, then $K_{p, q}(C)=0$ for $p>g-2$. Now assume $g-2>p \geqslant 0$. Consider

$$
H^{0}\left(\wedge^{p+1} V \otimes \omega_{C}^{2}\right) \xrightarrow[\rightarrow]{\alpha} H^{0}\left(\wedge^{p} M_{C} \otimes \omega_{C}^{3}\right) \rightarrow H^{1}\left(\wedge^{p+1} M_{C} \otimes \omega_{C}^{2}\right)
$$

$K_{p, 3}(C) \simeq \operatorname{cok} \alpha=0$ by Proposition 1. Similarly $K_{p, q}(C)=0$ for $q \geqslant 4$.
Proposition 3. Assume C is nonhyperelliptic of genus g. Consider the minimal resolution of R,

$$
\begin{equation*}
0 \rightarrow L_{g-2} \xrightarrow{d_{g}-2} L_{g-3} \rightarrow \cdots \rightarrow L_{1} \xrightarrow{d_{1}} L_{0} \rightarrow R \rightarrow 0 . \tag{3.1}
\end{equation*}
$$

Denote by \tilde{L}_{i} the corresponding locally free sheaf on \mathbb{P}^{g-1}.
(a) $0 \rightarrow L_{0}^{*} \otimes S(-g-1) \xrightarrow{d_{1}^{*}} L_{1}^{*} \otimes S(-g-1) \rightarrow \cdots \rightarrow L_{g-2}^{*} \otimes S(-g-1)$ is again a minimal resolution of R.
(b) One can recover the curve C from a boundary map d_{i}.
(c) If $0<p<g-2$, then $\tilde{L}_{p} \simeq E_{p} \oplus F_{p}$ where $E_{p} \simeq \oplus \mathcal{O}_{\mathbf{p}^{g^{-1}}}(-p-1)$ and $F_{p} \simeq \oplus \mathcal{O}_{\mathbf{p}^{8-1}}(-p-2)$. Furthermore, $\operatorname{rank}\left(E_{p}\right)=\operatorname{dim} K_{p, 1}(C)$ and $\operatorname{rank}\left(F_{p}\right)$ $=\operatorname{dim} K_{p, 2}(C)$.
(d) If $K_{p, 2}(C)=0$ for an integer $p(p<g-2)$, then $K_{j, 2}(C)=0$ for $j \leqslant p$.

Proof. (a) Observe that

$$
\mathrm{E} x \mathrm{t}^{j}\left(\mathcal{O}_{C}, \mathcal{O}_{\mathbf{p}^{-1}}(-g)\right)= \begin{cases}\omega_{C}=\mathcal{O}_{C}(1), & \text { if } j=g-2 \\ 0, & \text { otherwise }\end{cases}
$$

So

$$
0 \rightarrow \tilde{L}_{0}^{*} \xrightarrow{d_{1}^{*}} \tilde{L}_{1}^{*} \rightarrow \cdots \rightarrow \tilde{L}_{g-3}^{*} \xrightarrow{d_{g-2}^{*}} \tilde{L}_{g-2}^{*} \xrightarrow{d_{g-1}^{*}} O_{C}(g+1) \rightarrow 0
$$

is an exact complex of sheaves. Set $N_{j}=\operatorname{ker} d_{j}^{*}(2 \leqslant j \leqslant g-1)$. Then

$$
H^{1}\left(N_{g-1}(i)\right) \simeq H^{2}\left(N_{g-2}(i)\right) \simeq \cdots \simeq H^{g-2}\left(\tilde{L}_{0}^{*}(i)\right)=0
$$

Similarly, one shows that $H^{1}\left(N_{j}(i)\right)=0$ for $2 \leqslant j \leqslant g-1$. Thus (3.1)* \otimes $S(-g-1)$ is a minimal resolution of R.
(b) Let $M_{j}=\operatorname{ker} d_{j}$. Then

$$
\mathrm{E} x \mathrm{t}^{g-2}\left(\mathcal{O}_{C}, \mathcal{O}_{\mathbf{p}^{g-1}}(-g-1)\right) \simeq \mathcal{O}_{C}(1) \simeq \mathrm{E} x \mathrm{t}^{g-j-3}\left(M_{j}, \mathcal{O}_{\mathbf{p}^{g-1}}(-g-1)\right)
$$

(c) By Noether's theorem and (a), we conclude that $\tilde{L}_{0} \simeq \mathcal{O}_{\mathbf{p}^{s-1}}$ and $\tilde{L}_{g-2} \simeq \mathcal{O}_{\mathbf{P}^{-1}}(-g-1)$. Since C is nondegenerate in \mathbb{P}^{g-1} and $K_{1, j}(C)=0$ for $j \geqslant 3, \tilde{L}_{1} \simeq E_{1} \oplus F_{1}$ where

$$
E_{1} \simeq \oplus \mathcal{O}_{\mathbf{p}^{-1}}(-2) \quad \text { and } \quad F_{1} \simeq \oplus \mathcal{O}_{\mathbf{p}^{-1}}(-3)
$$

Since (3.1) is a minimal resolution, $K_{p, q}(C)=0$ for $q \leqslant 0$ and $p \geqslant 1$. By Corollary 2, this implies that $\tilde{L}_{p} \simeq E_{p} \oplus F_{p}(p<g-2)$ where $E_{p} \simeq$ $\oplus \mathcal{O}_{\mathbb{P}^{-1}}(-p-1)$ and $F_{p} \simeq \oplus \mathcal{O}_{\mathbb{p}^{-1}}(-p-2)$. Furthermore, rank $E_{p}=$ $\operatorname{dim} K_{p, 1}(C)$ and $\operatorname{rank} F_{p} \simeq \operatorname{dim} K_{p, 2}(C)$.
(d) If $K_{p, 2}(C)=0$, then $\tilde{L}_{p} \simeq E_{p}$. Suppose for contradiction that $K_{p-1,2}(C)$ $\neq 0$. Then $\tilde{L}_{p-1}=E_{p-1} \oplus F_{p-1}$ where $F_{p-1} \neq 0$. We can decompose d_{p} as $f_{p} \oplus g_{p}$ where $f_{p} \in \operatorname{Hom}\left(E_{p}, E_{p-1}\right)$ and $g_{p} \in \operatorname{Hom}\left(E_{p}, F_{p-1}\right)$. Since (3.1) is a minimal resolution, $g_{p}=0$. Set $B_{p-2}=\operatorname{cok} d_{p}$. Then $B_{p-2} \simeq F_{p-1} \oplus B_{p-2}^{\prime}$. Now consider

$$
\beta: 0=H^{0}\left(\tilde{L}_{p-2}^{*} \otimes \mathcal{O}_{\mathbb{P}^{g^{-1}}}(-p-1)\right) \rightarrow H^{0}\left(B_{p-2}^{*} \otimes \mathcal{O}_{\mathbb{P}^{g^{-1}}}(-p-1)\right)
$$

Observe that β is not surjective. This contradicts that (3.1)* is a minimal resolution of $R(g+1)$. Thus $K_{p-1,2}(C)=0$. It follows by induction that $K_{j, 2}(C)=0$ for $j \leqslant p$.

Theorem 4. Let X be a nonhyperelliptic genus n curve. Assume $K_{p, 2}(X)=0$ for an integer p where $1 \leqslant p \leqslant n-3$. Then:
(a) If C is a general curve of genus $n+p+1$, then $K_{p, 2}(C)=0$.
(b) If C is a general curve of genus m, where $m \equiv n \bmod (p+1)$ and $m \geqslant n$, then $K_{p, 2}(C)=0$.

Proof. (a) Consider a stable curve $C_{0}=X \cup Y$, where $Y \simeq \mathbb{P}^{1}$ and $X \cap Y$ $=q_{1}+q_{2}+\cdots+q_{p+2}$ are $p+2$ general points on X. Now consider a one-parameter degeneration $\pi: \mathscr{C} \rightarrow T$ where \mathscr{C} is a surface and T is an affine curve. Assume that π is proper and flat and there is a point $t_{0} \in T$ such that $\pi^{-1}\left(t_{0}\right) \simeq C_{0}$. Furthermore if $t \neq t_{0}$ in T, then $\pi^{-1}(t)=C_{t}$ is a smooth curve of genus $n+p+1$. Now consider the following line bundle on $\mathscr{C}: \mathscr{L}=\omega_{\mathscr{C} / T} \otimes \mathcal{O}_{\mathscr{C}}(X)$. Observe that $\left.\mathscr{L}\right|_{C_{t}}=\omega_{C_{t}}$ for $t \neq t_{0},\left.\mathscr{L}\right|_{X}=\omega_{X}$, and $\left.\mathscr{L}\right|_{Y} \simeq \mathcal{O}_{\mathbf{P}^{1}}(2 p+2)$.

Claim 4.1. $h^{0}\left(\left.\mathscr{L}\right|_{c_{0}}\right)=n+p+1$ and $\left.\mathscr{L}\right|_{c_{0}}$ is generated by its sections. Consider

$$
\begin{gather*}
\left.0 \rightarrow \mathcal{O}_{\mathbf{P}^{1}}(p) \rightarrow \mathscr{L}\right|_{C_{0}} \rightarrow \omega_{X} \rightarrow 0 \tag{4.1.1}\\
\left.0 \rightarrow \omega_{X}\left(-\sum_{1}^{p+2} q_{i}\right) \rightarrow \mathscr{L}\right|_{c_{0}} \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(2 p+2) \rightarrow 0 \tag{4.1.2}
\end{gather*}
$$

By (4.1.1), $h^{0}\left(\left.\mathscr{L}\right|_{c_{0}}\right)=n+p+1, h^{1}\left(\left.\mathscr{L}\right|_{c_{0}}\right)=1$, and $H^{0}\left(\left.\mathscr{L}\right|_{c_{0}}\right)$ maps onto $H^{0}\left(\omega_{X}\right)$. Since the q_{i} 's are general points,

$$
h^{1}\left(\omega_{X}\left(-\sum_{1}^{p+2} q_{i}\right)\right)=h^{1}\left(\left.\mathscr{L}\right|_{c_{0}}\right)=1
$$

Thus $H^{0}\left(\left.\mathscr{L}\right|_{C_{0}}\right)$ maps onto $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(2 p+2)\right)$. So $\left.\mathscr{L}\right|_{C_{0}}$ is generated by its sections. After replacing T by a smaller open set if necessary, we may assume $\pi_{*} \mathscr{L} \simeq(n+p+1) \mathcal{O}_{T}$ and $\mu: \pi^{*} \pi_{*} \mathscr{L} \rightarrow \mathscr{L}$ is surjective. Set $M_{\mathscr{G}}=\operatorname{ker} \mu$, and $Q_{\mathscr{G}}=M_{\mathscr{G}}^{*}$. Observe that

$$
\begin{aligned}
& \left.Q_{\mathscr{C}}\right|_{C_{1}} \simeq Q_{C_{i}},\left.\quad Q_{\mathscr{C}}\right|_{X}=Q_{X} \oplus(p+1) \mathcal{O}_{X} \\
& \left.Q_{\mathscr{C}}\right|_{Y} \simeq(n-p-2) \mathcal{O}_{P^{1}} \oplus(2 p+2) \mathcal{O}_{\mathbb{P}^{1}}(1)
\end{aligned}
$$

Claim 4.2. $h^{1}\left(\left.\wedge^{p+1} Q_{\mathscr{E}}\right|_{C_{0}}\right) \leqslant\binom{ n+p+1}{p+1}$. Consider

$$
\left.\left.\left.0 \rightarrow \wedge^{p+1} Q_{\mathscr{E}}\right|_{Y} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-p-2) \rightarrow \wedge^{p+1} Q_{\mathscr{C}}\right|_{c_{0}} \rightarrow \wedge^{p+1} Q_{\mathscr{E}}\right|_{X} \rightarrow 0
$$

Observe that

$$
\begin{aligned}
& h^{0}\left(\left.\wedge^{p+1} Q_{\mathscr{C}}\right|_{Y} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-p-2)\right)=0, \\
& h^{0}\left(\left.\wedge^{p+1} Q_{\mathscr{C}}\right|_{X}\right)=\sum_{k=0}^{p+1}\binom{p+1}{p+1-k} h^{0}\left(\wedge^{k} Q_{X}\right) \\
&=\sum\binom{p+1}{p+1-k}\binom{n}{k}=\binom{n+p+1}{p+1}
\end{aligned}
$$

by Proposition 1 and Proposition 3. Thus $h^{0}\left(\left.\wedge^{p+1} Q_{\mathscr{C}}\right|_{C_{0}}\right) \leqslant\binom{ n+p+1}{p+1}$. It follows that for generic $t, h^{0}\left(\wedge^{p+1} Q_{C_{t}}\right) \leqslant\binom{ n+p+1}{p+1}$. Thus $K_{p, 2}\left(C_{t}\right)=0$ by Proposition 1.
(b) This follows from (a) and induction.

Theorem 5. Let C be a general curve of genus g.
(a) $K_{2,2}(C)=0$ if $g \geqslant 7$.
(b) $K_{3,2}(C)=0$ if $g \geqslant 9$.
(c) $K_{4,2}(C)=0$ if $g \geqslant 11$ and $g \equiv 1$ or $2 \bmod 5$.

Proof. (a) Using the computer program Macaulay, Bayer, and Stillman had checked that $K_{p, 2}(C)=0$ for $p \leqslant[(g-3) / 2]$ if $g \leqslant 12$. So $K_{2,2}(C)=0$ for $g=7,8$, or 9 . Then Theorem 4 will imply that $K_{2,2}(C)=0$ if $g \geqslant 7$. Similarly one can prove (b) and (c).

References

[1] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984) 125-171.
[2] M. Green \& R. Lazarsfeld, Appendix: The nonvanishing of certain Koszul cohomology groups, J. Differential Geometry 19 (1984) 168-171.
[3] , , A simple proof of Petri's theorem on canonical curves, Geometry Today (Giornate Geometria Roma 1984), Birkhauser, 1985, 129-142.

