ON THE DIFFERENTIABILITY OF HOROCYCLES AND HOROCYCLE FOLIATIONS

W. BALLMANN, M. BRIN \& K. BURNS

Consider a surface S with a complete C^{∞}-metric of nonpositive curvature and let \tilde{S} be the universal cover of S. Denote by γ_{v} the geodesic with initial tangent vector v. Unit tangent vectors v and w of \tilde{S} are asymptotic if $\operatorname{dist}\left(\gamma_{v}(t), \gamma_{w}(t)\right)$ is bounded as $t \rightarrow \infty$. Unit vectors of S are asymptotic if they have asymptotic lifts to \tilde{S}.

For a unit vector $v \in T_{1} \tilde{S}$ define the Busemann function $b_{v}: \tilde{S} \rightarrow \mathbb{R}$ by

$$
b_{v}(q)=\lim _{t \rightarrow \infty}\left(\operatorname{dist}\left(\gamma_{v}(t), q\right)-t\right)
$$

This function is differentiable and $-\left(\operatorname{grad} b_{v}\right)(q)$ is the unique vector at q asymptotic to v. The horocycle $h(v)$ determined by v is the level set $b_{v}^{-1}(0)$. Clearly $h(v)$ is the limit as $R \rightarrow \infty$ of the geodesic circles of radius R centered at $\gamma_{v}(R)$. Let $W(v)$ be the set of vectors w asymptotic to v with footpoints on $h(v)$, i.e.

$$
W(v)=\left\{-\operatorname{grad} b_{v}(q): q \in h(v)\right\} .
$$

The curves $W(v), v \in T_{1} \tilde{S}$, are the leaves of the horocycle foliation W of $T_{1} \tilde{S}$. We project the horocycles from \tilde{S} into S to obtain horocycles for vectors in $T_{1} S$. Similarly we obtain the horocycle foliation of $T_{1} S$ again denoted by W.

An important step in E. Hopf's proof of the ergodicity of the geodesic flow on a compact surface S of variable negative curvature was to show that the horocycle foliation of $T_{1} S$ is C^{1}. He actually proved [6] that the horocycle foliation is C^{1} under the weaker assumption that the curvature of S has bounded derivative and is uniformly bounded away from 0 and $-\infty$. An immediate consequence is that the horocycles and Busemann functions in \tilde{S}

[^0]are C^{2}. In fact, since the sets $W(v)$ are the stable manifolds of the geodesic flow, they and hence also the horocycles and Busemann functions are C^{∞}. P. Eberlein showed that horocycles and Busemann functions are C^{2} on any complete simply connected surface of nonpositive curvature (see [5]). It follows easily that $W(v)$ is a C^{1}-submanifold of the unit tangent bundle which depends continuously on v in the C^{1}-topology. In this paper we construct two examples which show that the above results are in a certain sense sharp.

The first example (see §1) is an analytic rotationally invariant metric of nonpositive curvature on the cylinder $S^{1} \times \mathbb{R}$ such that $\gamma=S^{1} \times\{0\}$ is the only closed geodesic. The curvature along γ vanishes and is negative elsewhere. We show in Theorem 1.1 that any horocycle h perpendicular to γ is not three times differentiable where it crosses γ. Note that $h \cap\left(S^{1} \times(-\varepsilon, \varepsilon)\right)$ is completely determined by the geometry of $S^{1} \times(-\varepsilon, \varepsilon)=U$. It is easy to construct a compact smooth surface of nonpositive curvature containing a closed geodesic γ^{\prime} with a neighborhood isometric to U_{ε}. We see that a horocycle in this surface is not three times differentiable at a point where it intersects γ^{\prime} orthogonally. Ya. Pesin (Lemma 2 in [8]) claimed that the horocycles in such a surface would be C^{r-2} if the surface were C^{r}. The above example shows that this fails for $r \geqslant 5$.

The second example (see §2) provides complete surfaces of finite volume and pinched negative curvature for which the horocycle foliation is not differentiable or even Hölder continuous. More precisely, let $k(v)<0$ denote the geodesic curvature of the horocycle $h(v)$ at the footpoint of v. For any modulus of continuity $m(\cdot)$ (see Definition 2.1), we construct a smooth family of complete metrics $g_{\varepsilon}, \varepsilon \geqslant 0$, on the torus with one puncture such that the volume of g_{ε} is finite, the curvature of g_{ε} is pinched between $-1-\varepsilon$ and $-1+\varepsilon$, and $g_{\varepsilon}=g_{0}$ outside a fixed neighborhood D of the puncture. In Theorem 2.2 we show that there is a unit vector v_{0} with footpoint outside D such that, for every $m(\cdot)$ and $\varepsilon>0$, the function k has modulus of continuity worse than m at v_{0}. A similar construction works on a surface with any number of cusps.

For other results related to the differentiability of horocycles and horocycle foliations see [1], [4], [7], [9].

1. Let $S=S^{1} \times \mathbb{R}$ be the cylinder with the natural coordinates $s \in S^{1}$, $t \in \mathbb{R}$. For any $a>0$ set $Y(t)=1+a t^{4}$. Equip S with the analytic metric

$$
g(s, t)=\left(\begin{array}{cc}
Y^{2}(t) & 0 \\
0 & 1
\end{array}\right)
$$

Then (S, g) is a surface of revolution with the curves $s=$ const as meridian geodesics. The curve $\gamma: s \rightarrow(s, 0)$ is a closed unit speed geodesic. The Gaussian curvature is given by

$$
K(s, t)=-\frac{Y^{\prime \prime}(t)}{Y(t)}=-\frac{12 a t^{2}}{1+a t^{4}}
$$

Note that the curvature is negative except on γ, where it vanishes. Fix an orientation for γ and let V be the field of unit vectors negatively asymptotic to γ.
1.1. Theorem. (i) The vector field V has no second derivatives in the t direction at any point on γ.
(ii) Let $b(\cdot)$ be a Busemann function in the universal cover of S determined by the lift $\tilde{\gamma}$ of γ. Then b has no third derivative in the t-direction at any point of $\tilde{\gamma}$.
(iii) Any horocycle in S orthogonal to the geodesic γ has no third derivative at the point where it intersects γ.

Proof. Assertions (ii) and (iii) follow easily from (i) which we now prove.
By the rotational symmetry, the oriented angle between $(\partial / \partial s)(s, t)$ and $V(s, t)$ does not depend on s. We denote it by $\alpha(t)$. Since $K<0$ except on γ we have with proper orientation that $t \cdot \alpha(t)>0$ for $t \neq 0$.

Let $\sigma(\tau)=(s(\tau), t(\tau))$ be a geodesic in S negatively asymptotic to γ. The Killing field $Y(t) \cdot \partial / \partial s$ gives rise to the Clairaut integral

$$
\langle\dot{\sigma}(\tau), Y(t(\tau)) \cdot \partial / \partial s\rangle=Y(t) \cdot \cos \alpha(t) \equiv \text { const. }
$$

However,

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}(\dot{\sigma}(t), \dot{\gamma}(\tau))=0
$$

for otherwise γ would bound a flat strip (cf. Proposition 5.1 in [3]). Hence

$$
Y(t) \cdot \cos \alpha(t) \equiv 1
$$

Since the function α is odd,

$$
\alpha(t)=\operatorname{sign} t \cdot \arccos \frac{1}{1+a t^{4}}, \quad t \neq 0
$$

and $\alpha(0)=0$. A simple calculation shows that $\alpha^{\prime}(0)=0$ and

$$
\lim _{t \geqslant 0} \frac{\alpha^{\prime}(t)}{t}=\sqrt{8 a} \quad \text { and } \quad \lim _{t>0} \frac{\alpha^{\prime}(t)}{t}=-\sqrt{8 a} .
$$

In particular, α has no second derivative at 0 , which proves assertion (i).
2. We start with an explicit construction of a hyperbolic metric on the punctured torus. Consider the region R in the hyperbolic plane H shown shaded in Figure 1. It is bounded by the vertical geodesics passing through the points 0 and $1 / 2$ and by the circles of radius $\sqrt{2} / 8$ centered at the points 0 ,
$1 / 4$, and $1 / 2$. Let R^{\prime} be the reflection of R with respect to the imaginary axis. Identify the geodesics bounding $R \cup R^{\prime}$ as indicated in Figure 1 to obtain a hyperbolic surface with one cusp and two boundary circles. Now glue together the boundary circles. This produces a hyperbolic surface (S, g) diffeomorphic to a punctured torus. The horizontal line passing through the point i in Figure 1 gives rise to a horocycle h of length 1 in S which bounds the cusp D (see Figure 2).

Figure 1

Figure 2
2.1. Definition. If X is a metric space and $f: X \rightarrow \mathbb{R}$ is a continuous function, then the modulus of continuity of f at $x \in X$ is defined by

$$
m_{f, x}(\delta)=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: \operatorname{dist}\left(x, x^{\prime}\right)<\delta\right\}
$$

2.2. Theorem. Let (S, g) be the hyperbolic surface constructed above and let v_{0} be a unit normal to the horocycle h that points into D. Suppose $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous monotone function for which $m(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

Then there is a smooth 1-parameter family of C^{∞}-metrics $g_{\varepsilon}, 0 \leqslant \varepsilon<1 / 10$, on S such that $g_{0}=g$ and for each ε :
(i) $g_{\varepsilon}=g$ on the l-neighborhood of $S \backslash D$;
(ii) the curvature K_{ε} of g_{ε} satisfies

$$
-1-\varepsilon \leqslant K_{\varepsilon} \leqslant-1+\varepsilon ;
$$

(iii) there is a smooth curve of unit vectors v_{δ} starting at v_{0} such that $v_{\delta} \neq v_{0}$ for $\delta>0$ and

$$
\left|k\left(v_{\delta}\right)-k\left(v_{0}\right)\right| \geqslant m\left(\operatorname{dist}\left(v_{\delta}, v_{0}\right)\right),
$$

where $k(v)$ is the geodesic curvature of the horocycle $h(v)$ defined in the introduction.

Proof. Let γ be the geodesic ray with $\dot{\gamma}(-2)=v_{0}$ and σ be the geodesic ray opposite to γ in D (see Figure 2). Cut the cusp D along σ to obtain the region in the hyperbolic plane shown in Figure 3. The geodesic rays σ^{-}and σ^{+}are asymptotic. Consider Fermi coordinates (s, t) along γ so that $(0,0)=\gamma(0), t$ is

Figure 3
the arclength along γ, and the curves $t=$ const are unit speed geodesics perpendicular to γ.

Suppose $m(\delta)$ is defined if $0 \leqslant \delta<\delta_{0}, \delta_{0}>0$. By increasing $m(\delta)$ if necessary, we can assume without loss of generality that $m(\cdot)$ is C^{∞} except at 0 and that $m(\delta) \geqslant \delta$. Let $M(\delta)=\sqrt{m(10 \delta)}$. For $\delta \in\left(0, \delta_{0}\right]$ set

$$
\begin{equation*}
\varphi(\delta)=-\frac{1}{4} \ln M(\delta) \tag{2.1}
\end{equation*}
$$

Note that φ is monotone and $\varphi(\delta) \rightarrow \infty$ as $\delta \rightarrow 0$. For $t \geqslant-\frac{1}{8} \ln M\left(\delta_{0}\right)$ define

$$
f_{0}(t)=\frac{1}{3} \varphi^{-1}(2 t) e^{t / 2}
$$

Since $M(\delta) \geqslant \delta$, (2.1) implies that $f_{0}(t) \leqslant e^{-16 t} / 30, t \geqslant 0$, and hence f_{0} decreases faster than the distance between γ and σ^{+}or σ^{-}. Therefore there exists a monotone C^{∞}-function $f: \mathbb{R} \rightarrow(0,1)$ with the following properties:

$$
\begin{equation*}
\text { there is } t_{0}>0 \text { such that } f(t)=\frac{1}{3} \varphi^{-1}(2 t) e^{t / 2} \text { for } t \geqslant t_{0} \text { : } \tag{2.2}
\end{equation*}
$$ the points $(\pm f(t), t), t \geqslant-1 / 2$, are in the region bounded by $\boldsymbol{\sigma}^{-}, \boldsymbol{\sigma}^{+}$and the horocycle \tilde{h} shown in Figure 3.

Let $q: \mathbb{R} \rightarrow[0,1]$ be a monotone C^{∞}-function such that $q(t)=0$ if $t \leqslant-1 / 2$, and $q(t)=1$ for $t \geqslant 0$. Choose an even C^{∞}-function $a: \mathbb{R} \rightarrow[0,1 / 2]$ such that $a(0)=0, a^{\prime \prime}(0)=1,-1 / 2 \leqslant a^{\prime \prime}(x) \leqslant 1$ for all x, and $a(x)=0$ if $|x| \geqslant 1$.

In the (s, t)-coordinates, the hyperbolic metric g is given by

$$
g(s, t)=\left(\begin{array}{cc}
1 & 0 \\
0 & \cosh ^{2} s
\end{array}\right)
$$

Consider the one-parameter family of metrics

$$
g_{\varepsilon}(s, t)=\left(\begin{array}{cc}
1 & 0 \\
0 & Y^{2}(s, t)
\end{array}\right)
$$

where

$$
Y(s, t)=\cosh s+\varepsilon \cdot q(t) \cdot a\left(\frac{s}{f(t)}\right) \cdot f^{2}(t)
$$

Note that $g_{0}=g$ and the curves $s \rightarrow(s, t)$ are unit speed geodesics with variation field Y for any $\varepsilon \geqslant 0$. By our choice of a, q, and f,

$$
\begin{equation*}
g_{\varepsilon}(s, t)=g_{0}(s, t) \quad \text { for } t \leqslant-1 / 2 \text { or }|s| \geqslant f(t) \tag{2.4}
\end{equation*}
$$

In particular, by (2.3), σ^{-}and σ^{+}remain asymptotic geodesics and the metrics g_{ε} give rise to a one-parameter family of metrics on S which satisfies statement (i) of the theorem. Part (a) of the following lemma shows that (ii) holds.
2.3. Lemma. (a) $-1-\varepsilon \leqslant K_{\varepsilon}(s, t) \leqslant-1+\varepsilon$;
(b) $K_{\epsilon}(0, t)=-1-\varepsilon$ for $t \geqslant 0$.

Proof. By the Jacobi equation,

$$
-K_{\varepsilon}(s, t)=\frac{1}{Y} \frac{\partial^{2} Y}{\partial s^{2}}=\frac{\cosh s+\varepsilon \cdot q(t) \cdot a^{\prime \prime}(s / f(t))}{\cosh s+\varepsilon \cdot q(t) \cdot a(s / f(t)) \cdot f^{2}(t)} .
$$

The left inequality in (a) holds, since

$$
\begin{aligned}
-K_{\varepsilon}(s, t) & \leqslant \frac{\cosh s+\varepsilon \cdot q(t) \cdot a^{\prime \prime}(s / f(t))}{\cosh s} \\
& \leqslant 1+\varepsilon \cdot q(t) \cdot a^{\prime \prime}\left(\frac{s}{f(t)}\right)
\end{aligned}
$$

Since $f(t)<1$,

$$
-K_{\varepsilon}(s, t) \geqslant \frac{\cosh s-\varepsilon / 2}{\cosh s+\varepsilon / 2} \geqslant 1-\varepsilon .
$$

This proves (a). To prove (b) note that $a(0)=0$ and $a^{\prime \prime}(0)=1$. q.e.d.
Let w_{δ} be the unit vector with footpoint at $\gamma(0)=(0,0)$ which makes the angle $\delta>0$ with $\dot{\gamma}(0)=w_{0}$ (see Figure 4). Denote by γ_{δ} the geodesic with initial velocity w_{δ}. Let $\gamma_{\delta}(\tau(\delta))$ and $\gamma_{\delta}(T(\delta))$ be the points where γ_{δ} intersects the curves $s=f(t)$ and σ^{+}respectively.
2.4. Lemma. Suppose the right triangle shown in Figure 5 lies in a simply connected surface with curvature pinched between $-1-\varepsilon$ and $-1+\varepsilon$. If d and δ are small enough and t is large enough, then

$$
\frac{1}{3} e^{\sqrt{1-\varepsilon} t} \delta \leqslant d \leqslant 2 e^{\sqrt{1+\varepsilon} t} \delta
$$

Figure 4

Proof. By comparing with the surfaces of constant curvature $-1-\varepsilon$ and $-1+\varepsilon$, we get

$$
\begin{aligned}
& \tanh \sqrt{1-\varepsilon} d \geqslant \sinh \sqrt{1-\varepsilon} t \cdot \tan \delta, \\
& \tanh \sqrt{1+\varepsilon} d \leqslant \sinh \sqrt{1+\varepsilon} t \cdot \tan \delta .
\end{aligned}
$$

2.5. Lemma. If δ is small enough, then $T(\delta) \geqslant-\frac{1}{3} \ln \delta-2$.

Proof. Parametrize σ^{+}by arclength so that $\operatorname{dist}\left(\gamma(t), \sigma^{+}(t)\right) \rightarrow 0$ as $t \rightarrow \infty$. Recall that h has length 1 . By comparing with a surface of constant curvature $-1-\varepsilon$, we see that the arc of the horocycle connecting $\gamma(t)$ and $\sigma^{+}(t)$ has length at least $\frac{1}{2} e^{-\sqrt{1+\varepsilon}(2+t)}$. Let $b(t)$ be the length of the geodesic segment $s \rightarrow(s, t)$ between γ and σ^{+}. Since the curvature is uniformly bounded, small enough pieces of horocycles are uniformly C^{1}-approximated by geodesic segments. Hence for t large enough

$$
\begin{equation*}
b(t) \geqslant \frac{1}{4} e^{-\sqrt{1+\varepsilon}(2+t)} \tag{2.5}
\end{equation*}
$$

Denote by $t(\delta)$ the t-coordinate of $\gamma_{\delta}(T(\delta))$ in the (s, t)-coordinates. By Lemma 2.4 and (2.5), we have

$$
t(\delta) \geqslant-\frac{\ln \left(8 \delta e^{2 \sqrt{1+\varepsilon}}\right)}{2 \sqrt{1+\varepsilon}} \geqslant-\frac{1}{3} \ln \delta-2 .
$$

Since the curvature is negative, $T(\delta) \geqslant t(\delta)$.
2.6. Lemma. If δ is small enough, then $\tau(\delta) \leqslant \varphi(\delta)$.

Proof. Let $\theta(\delta)$ be the t-coordinate of $\gamma_{\delta}(\tau(\delta))$ (see Figure 4). By Lemma 2.4,

$$
f(\theta(\delta)) \geqslant \frac{1}{3} e^{\sqrt{1-\varepsilon} \theta(\delta)} \delta,
$$

and so by (2.2),

Figure 5

Since φ is decreasing, $\varphi(\delta) \geqslant 2 \theta(\delta)$. Note now that $\tau(\delta) \leqslant \theta(\delta)+f(\theta(\delta)) \leqslant$ $2 \theta(\delta)$ for δ small enough. q.e.d.

Now we are ready to prove (iii). Consider the Riccati equation

$$
u^{\prime}+u^{2}+K\left(\gamma_{v}(t)\right)=0
$$

Since the curvature is negative, there are solutions of this equation that are defined for all t. Let $u^{-}(v, \cdot)$ be the smallest and $u^{+}(v, \cdot)$ the largest such solutions. Recall that the curvature $k(v)$ of the horocycle $h(v)$ is $u^{-}(v, 0)$ (cf. [2]).

The solution of the initial value problem

$$
\begin{equation*}
u_{\kappa}^{\prime}+u_{\kappa}^{2}-\kappa^{2}=0, \quad u_{\kappa}(0)=\lambda, \tag{2.6}
\end{equation*}
$$

is given by

$$
\begin{equation*}
u_{\kappa}(t)=\kappa \frac{\lambda \cdot \cosh (\kappa t)+\kappa \cdot \sinh (\kappa t)}{\lambda \cdot \sinh (\kappa t)+\kappa \cdot \cosh (\kappa t)} . \tag{2.7}
\end{equation*}
$$

By assumption, $M(\delta) \geqslant \delta$. Therefore, by Lemmas 2.5 and 2.6,

$$
\begin{align*}
T(\delta)-\tau(\delta) & \geqslant-\frac{1}{3} \ln \delta-2-\varphi(\delta) \tag{2.8}\\
& \geqslant-\frac{1}{3} \ln \delta-2+\frac{1}{4} \ln M(\delta) \geqslant-\frac{1}{12} \ln \delta-2
\end{align*}
$$

Let $v=-\dot{\gamma}_{\delta}(T(\delta))$ (see Figure 4). Since $K_{\varepsilon} \geqslant-1-\varepsilon$, we have

$$
\begin{equation*}
u^{+}(v, 0) \leqslant \sqrt{1+\varepsilon} . \tag{2.9}
\end{equation*}
$$

Indeed, if u is a solution of the Riccati equation $u^{\prime}+u^{2}+K_{\varepsilon}\left(\gamma_{v}(t)\right)=0$ with $u\left(t_{0}\right)>\sqrt{1+\varepsilon}$ for some t_{0}, then $u(t) \rightarrow \infty$ in finite times as t decreases from t_{0}.

By construction, $K_{\varepsilon}\left(\gamma_{\delta}(t)\right)=-1$ for $\tau(\delta) \leqslant t \leqslant T(\delta)$. Hence, using (2.7) with $\kappa=1$, (2.8), and (2.9) we get

$$
u^{+}(v, T(\delta)-\tau(\delta)) \leqslant \frac{\sqrt{1+\varepsilon} \cdot \cosh \theta+\sinh \theta}{\sqrt{1+\varepsilon} \cdot \sinh \theta+\cosh \theta}
$$

where $\theta=-\frac{1}{12} \ln \delta-2$. Therefore

$$
\begin{align*}
u^{+}(v, T(\delta)-\tau(\delta))-1 & \leqslant \frac{(\sqrt{1+\varepsilon}-1) e^{-\theta}}{\sqrt{1+\varepsilon} \cdot \sinh \theta+\cosh \theta} \tag{2.10}\\
& \leqslant(\sqrt{1+\varepsilon}-1) e^{-\theta} \leqslant \frac{\varepsilon}{10}
\end{align*}
$$

if $\delta>0$ is sufficiently small.
Our estimates on the solutions of the Riccati equation will use the following lemma.
2.7. Comparison Lemma. Let $u_{i}(t), i=0,1$, be the solutions of the initial value problems

$$
u_{i}^{\prime}+u_{i}^{2}+K_{i}(t)=0, \quad u_{i}(0)=\lambda_{i}, \quad i=0,1
$$

Suppose $\lambda_{1} \geqslant \lambda_{0}, K_{1}(t) \leqslant K_{0}(t)$ for $t \in\left[0, t_{0}\right]$, and $u_{0}\left(t_{0}\right)$ is defined. Then

$$
u_{1}(t) \geqslant u_{0}(t) \quad \text { for } t \in\left[0, t_{0}\right]
$$

Proof. The difference $\Delta u(t)=u_{1}(t)-u_{0}(t)$ satisfies the linear equation

$$
\Delta u^{\prime}=-\left(u_{0}+u_{1}\right) \Delta u+K_{0}(t)-K_{1}(t) . \quad \text { q.e.d. }
$$

Now we estimate $u^{+}(v, T(\delta))=-u^{-}\left(w_{\delta}, 0\right)$. Since $K_{\varepsilon} \geqslant-1-\varepsilon$ everywhere, we can use Lemma 2.7 to compare $u^{+}(v, t), T(\delta)-\tau(\delta) \leqslant t \leqslant T(\delta)$, with the solution u_{κ} of (2.6) with $\kappa=\sqrt{1+\varepsilon}$ and $\lambda=1+\varepsilon / 10$. By Lemma (2.6), (2.7), and (2.10) we obtain

$$
\begin{aligned}
-u^{-}\left(w_{\delta}, 0\right) & =u^{+}(v, T(\delta)) \leqslant u_{\kappa}(\tau(\delta)) \leqslant u_{\kappa}(\varphi(\delta)) \\
& =\sqrt{1+\varepsilon} \frac{(1+\varepsilon / 10) \cosh \eta+\sqrt{1+\varepsilon} \sinh \eta}{(1+\varepsilon / 10) \sinh \eta+\sqrt{1+\varepsilon} \cosh \eta},
\end{aligned}
$$

where $\eta=\sqrt{1+\varepsilon} \cdot \varphi(\delta)$. Note that $u^{-}\left(w_{0}, 0\right)=-\sqrt{1+\varepsilon}$, by Lemma 2.3(b). Therefore

$$
\begin{align*}
\left|u^{-}\left(w_{\delta}, 0\right)-u^{-}\left(w_{0}, 0\right)\right| & =\left|\sqrt{1+\varepsilon}+u^{-}\left(w_{\delta}, 0\right)\right| \\
& \geqslant \sqrt{1+\varepsilon} \frac{(\sqrt{1+\varepsilon}-1-\varepsilon / 10) e^{-\eta}}{\sqrt{1+\varepsilon} e^{\eta}} \tag{2.11}\\
& =\left(\sqrt{1+\varepsilon}-1-\frac{\varepsilon}{10}\right) e^{-2 \sqrt{1+\varepsilon \varphi(\delta)}} \\
& \geqslant \frac{\varepsilon}{5} e^{\sqrt{1+\varepsilon} / 2 \cdot \ln M(\delta)} \geqslant \frac{\varepsilon}{5} M(\delta)
\end{align*}
$$

provided $M(\delta)<1$. This shows that $k(\cdot)=u^{-}(\cdot, 0)$ fails to have modulus of continuity m at w_{0}. However the footpoint of w_{0} lies in the region where the metric g was changed to obtain g_{ε}.

Let $v_{\delta}=\dot{\gamma}_{\delta}(-2)$. Since $-1-\varepsilon \leqslant K_{\varepsilon}<0$, the norm of the differential of the time 2 map for the geodesic flow of g_{ε} is bounded by $e^{2+\varepsilon} \leqslant 10$ (see e.g. Lemma 5.1 in [2]). Therefore

$$
\begin{equation*}
\operatorname{dist}\left(v_{\delta}, v_{0}\right) \leqslant 10 \operatorname{dist}\left(w_{\delta}, w_{0}\right)=10 \delta . \tag{2.12}
\end{equation*}
$$

For a unit vector w of the metric g_{ε} and a number $\lambda \leqslant 0$ denote by $\psi(w, \lambda)$ the value at $t=-2$ of the solution of the initial value problem

$$
u^{\prime}+u^{2}+K\left(\gamma_{w}(t)\right)=0, \quad u(0)=\lambda
$$

Consider the map $\Psi: T_{1} S \times[-2,0] \rightarrow T_{1} S \times[-2,0]$ given by

$$
\Psi(w, \lambda)=\left(\dot{\gamma}_{w}(-2), \psi(w, \lambda)\right)
$$

Equip $T_{1} S \times[-2,0]$ with the product metric. Since Ψ is a diffeomorphism onto its image and all of the vectors w_{δ} are in the same compact fiber of $T_{1} S$, there is a constant $c>0$ such that for all $\lambda, \lambda_{0} \in[-2,0]$
(2.13) $\operatorname{dist}\left(\Psi\left(w_{\delta}, \lambda\right), \Psi\left(w_{0}, \lambda_{0}\right)\right) \geqslant c \cdot \operatorname{dist}\left(\left(w_{\delta}, \lambda\right),\left(w_{0}, \lambda_{0}\right)\right)$.

Now by the triangle inequality,

$$
\operatorname{dist}\left(\left(w_{\delta}, \lambda\right),\left(w_{0}, \lambda_{0}\right)\right) \geqslant \operatorname{dist}\left(w_{\delta}, w_{0}\right)
$$

and

$$
\begin{aligned}
\operatorname{dist}\left(\Psi\left(w_{\delta}, \lambda\right), \Psi\left(w_{0}, \lambda_{0}\right)\right) & \leqslant \operatorname{dist}\left(\dot{\gamma}_{\delta}(-2), \dot{\gamma}_{0}(-2)\right)+\left|\psi\left(w_{\delta}, \lambda\right)-\psi\left(w_{0}, \lambda_{0}\right)\right| \\
& \leqslant 10 \operatorname{dist}\left(w_{\delta}, w_{0}\right)+\left|\psi\left(w_{\delta}, \lambda\right)-\psi\left(w_{0}, \lambda_{0}\right)\right|
\end{aligned}
$$

by (2.12). Since $u^{-}\left(v_{\delta}, 0\right)=\psi\left(w_{\delta}, u^{-}\left(w_{\delta}, 0\right)\right)$, it follows from (2.13) and (2.11) that

$$
\begin{aligned}
& \left|u^{-}\left(v_{\delta}, 0\right)-u^{-}\left(v_{0}, 0\right)\right| \\
& \quad \geqslant c \cdot \operatorname{dist}\left(\left(w_{\delta}, u^{-}\left(w_{\delta}, 0\right)\right),\left(w_{0}, u^{-}\left(w_{0}, 0\right)\right)\right)-10 \operatorname{dist}\left(w_{\delta}, w_{0}\right) \\
& \quad \geqslant c\left|u^{-}\left(w_{\delta}, 0\right)-u^{-}\left(w_{0}, 0\right)\right|-10 \operatorname{dist}\left(w_{\delta}, w_{0}\right) \geqslant c \frac{\varepsilon}{5} M(\delta)-10 \delta .
\end{aligned}
$$

Recall that $M(\delta)=\sqrt{m(10 \delta)} \geqslant \sqrt{10 \delta}$, and so for any small enough δ,

$$
\begin{aligned}
\left|u^{-}\left(v_{\delta}, 0\right)-u^{-}\left(v_{0}, 0\right)\right| & \geqslant c \frac{\varepsilon}{5} \sqrt{m(10 \delta)}-10 \delta \geqslant m(10 \delta) \\
& \geqslant m\left(\operatorname{dist}\left(v_{\delta}, v_{0}\right)\right)
\end{aligned}
$$

by (2.12). This completes the proof of the theorem.

References

[1] M. Anderson \& R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985) 429-461.
[2] W. Ballman, M. Brin \& K. Burns, On surfaces with no conjugate points, J. Differential Geometry 25 (1987) 249-273.
[3] P. Eberlein \& B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
[4] P. Hartman, Linear second order systems of ordinary differential equations and geodesic flows, Optimal Control and Differential Equations, Academic Press, New York, 1978, 293-315.
[5] E. Heintze \& H. C. Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977) 481-491.
[6] E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940) 590-608.
[7] S. Hurder \& A. Katok, in preparation.
[8] Ya. Pesin, Equations for the entropy of a geodesic flow on a compact Riemannian manifold without conjugate points, Math. Notes 24 (1979) 796-805.
[9] S. Shcherbakov, On the degree of smoothness of horospheres, radial fields and horospherical coordinates on an Hadamard manifold, Soviet Math. Dokl. 28 (1983) 233-237.

[^0]: Received June 26, 1986 and, in revised form, September 24, 1986. The first author was partially supported by National Science Foundation Grant \# DMS-85-03742. The second and third authors were partially supported by National Science Foundation Grant \# DMS-82-04024.

