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ON LIE'S APPROACH TO THE STUDY
OF TRANSLATION MANIFOLDS

JOHN B. LITTLE

1. Introduction

In this paper, we will study a question originally posed by Sophus Lie in [4].

After Lie completed his work on double translation surfaces, he began to

consider several different kinds of generalizations of this special class of

surfaces. To understand the particular types of manifolds he considered, it

should be kept in mind that Lie interpreted his theorem showing that every

nondevelopable double translation surface is a piece of the theta-divisor in the

Jacobian of an algebraic curve of genus three as a characterization of the

abelian integrals on the curve by the functional equations they satisfy as a

result of Abel's theorem. Therefore, in addition to studying the higher-

dimensional analogs of double translation surfaces, Lie also proposed the

problem of determining if the abelian integrals on algebraic curves of a given

genus may be characterized by other, more general, functional equations.

As a first step in a program left incomplete at his death, Lie undertook the

study of analytic hypersurfaces 5 c C 4 with two different parametrizations of

the form

(1) *,. = α , ^ ) + Λ f.(ί2, t3) = ft(iii) + Bt(u2, u3).

Geometrically, the existence of parametrizations of this form implies that S

may be swept out in two different ways by translating a curve along a

two-dimensional surface. This condition is a natural generalization of the

definition of double translation three-folds, a class of manifolds which Lie had

studied previously in [3] (see also [5] and [7]). In [4], Lie referred to such

hypersurfaces as " Translationsmannigfaltigkeiten zweiter Art." We will call

them generalized double translation manifolds instead.

The existence of two parametrizations as in (1) is apparently a weaker

hypothesis than the assumption that S is a double translation manifold, with
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two distinct parametrizations

(2) x. = aM + a2i(t2) + a3l(t3) = βλi(uλ) + β2ι(u2) + β3i(u3).

However, Lie apparently believed and we will show that in fact, if S is not

developable (that is, the Gauss mapping on S is not degenerate in the sense of

[2]) and the generating curves and surfaces of S satisfy some general position

hypotheses to be made explicit later, then the existence of two parametrizations

of the form (1) implies the existence of two parametrizations of the form (2).

Indeed, the surfaces

x^Mh'h) a n d xi = BXu2^3)

in S must themselves be translation surfaces, and this fact implies the existence

of parametrizations as in (2).

We will prove our results by following Lie's original approach rather closely.

The underlying philosophy of the proof is that the integrability condition of

the (overdetermined) system of PDE whose solutions are the generalized

double translation hypersurfaces with generating curves and surfaces having

prescribed tangent directions may be expressed geometrically. The resulting

constraints on the generating curves and surfaces of S lead directly to the

desired result.

Our major tools will be general facts about congruences of curves—analytic

two-parameter families of curves in P3 such as the family of projectivized

tangent spaces to one of the generating surfaces of S.

Of course, our major interest in these generalized double translation mani-

folds comes from the connection between double translation manifolds and

theta-divisors given by the Lie-Wirtinger theorem ([7], [5]). Indeed, it is a direct

consequence of this theorem that a principally-polarized abelian variety is a

Jacobian if and only if its theta-divisor is a double translation manifold.

Hence, our local result that sufficiently general generalized double translation

manifolds are double translation manifolds, combined with this corollary of

the Lie-Wirtinger theorem, yields the following global characterization of four-

dimensional Jacobians:

Let (A, Θ) be a principally-polarized abelian variety of dimension four with

Θ symmetric and assume that there exist a curve C and a codimension-two

sub variety V in A such that Θ = C + V (sum using the group law in A) and

C and V are not symmetric themselves. Then under an additional mild

hypothesis (see §6) C is a nonhyperelliptic curve of genus four and A is the

canonically polarized Jacobian of C.

(If the hypothesis that C and V are not symmetric is removed, then it should

still be true that A is a Jacobian, but possibly the Jacobian of a hyperelliptic

curve. In the hyperelliptic case, the two parametrizations of Θ as a translation
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manifold given by Riemann's theorem (that Θ is a translate of W λ in a

Jacobian) coincide.)

Thus, four-dimensional Jacobian varieties are the only principally-polarized

abelian varieties of dimension four whose theta-divisors contain even one large

(two-parameter) family of parallel curves—the translates of the curve C by the

points of V. These results may be generalized to give a similar characterization

of Jacobians of curves of genus g for all g > 4. The higher-dimensional

version of our local result is somewhat more complicated, however, and we will

not consider those cases here.

The present paper is organized as follows. §2 contains some preliminaries on

the (once-standard) topic of congruences of curves in IP3 (see [1]) and other

topics. In §§3 and 4 we study generalized double translation manifolds. In §5

we prove our main local result by applying the techniques of §2 to several

congruences of curves which arise naturally from the configuration of pro-

jectivized tangent spaces to the generating curves and surfaces of a generalized

double translation manifold. Finally, §6 contains the general results on

Jacobians obtained from the local theorem of §5.

I would like to thank Tom Cecil, Dave Damiano, and Pat Shanahan for

many helpful discussions about the original version of this paper. In addition, I

take this opportunity to thank the referee for several very useful suggestions,

especially for pointing out a gap in the original proof of the main theorem, for

indicating the general result of Proposition (2.5), and for showing how the

results of this paper could be expressed in terms of the general approach to

local differential geometry embodied in [2].

2. Some preliminaries

We begin by recalling some of the basic facts about congruences of curves in

P> 3 orC 3 .

(2.1) Definition. A congruence of curves is an analytic two-parameter

family of analytic curves in an open subset U c P 3 . The pairs of parameter

values may be taken to lie in an open connected subset F c C 2 .

In the congruences of importance to us, the curves of the congruence will be

algebraic curves—either lines or conies.

In naive terms, if the curves of the congruence are defined (perhaps only

locally) by equations

( 1 ) / ( X l , * 2 > * 3 > Ί > ' 2 ) > g ( * l > * 2 > * 3 > Ί > ' 2 ) = 0
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(using affine coordinates in £/), then the disjoint union of the curves in the

congruence can be realized as an analytic subvariety K c U X V. If we define

F: U X V -> C 2 by F = (/, g), then we take K = F-\0,0). We will usually

assume that dim K = 3 (that is, there are oo2 distinct curves in the congruence).

To study how the curves making up a congruence "fit together" in U, we

must study the projection πλ:

Ka UX V

- / \ -
U V

(2.2) Definition. A point p e K is called a focal point of K (on the

corresponding curve) rank dπλ < 2 at p.

For instance, the focal points of the congruence defined in (1) may be found

as follows.

(2.3) Proposition. The focal points of the congruence (1) are the common

solutions of (I) and

Proof. This follows easily from a calculation of ^7^ using the chain rule.

(2.4) Examples. If the curves of the congruence K are algebraic, equations

(1) and (2) usually yield a finite number -of focal points on each curve of the

congruence. For instance, in a congruence of lines defined by equations

x2 = , t2)xλ + b(tλ, t 2 ) , x3 = c(tl9 t2)xx + d(tx, f 2 ) ,

the focal point equation (2.3) is quadratic in xv so there are two focal points

on each line (possibly coinciding for some of the lines). Similarly, for con-

gruences of smooth algebraic plane curves of degree «, there will be n(n + 1)

focal points on each curve of the congruence. This follows from a direct

calculation, or by applying the following general result.

(2.5) Proposition. Let Ή be a congruence of smooth algebraic curves of

degree d and genus g in P 3 . On each curve of the congruence either the number of

focal points {counting multiplicities) is exactly 2g — 2 + 4d, or else every point

of the curve is a focal point.

Proof. As before let # c U X V be the total space of the family of curves

and consider the projection 77̂ : ^ -> P3. If it is not the case that every point of

every curve of # is focal, then ττ1 is a generically finite mapping. In this case

the canonical bundle formula implies that

Keg — 7T*Kp3 + R,
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where R is the ramification divisor of πv Of course, by definition, R is just the

locus of focal points. Hence if C is a curve of the congruence (viewed as a

sub variety of ^ ) and C is not entirely contained in R, then from the formula

for Kc# and the fact that Kpi = 0 p 3 (-4), we see that C meets R in exactly

deg(K c) + 4d = 2g - 2 + 4d points as claimed, q.e.d.

A useful alternate characterization of the focal points of a congruence K is

given by the following proposition.

(2.6) Proposition. Let K be a congruence and let L be any one-parameter

subfamily of K containing a fixed curve C of K. At the focal points of K on C, the

tangent plane to the surface swept out by L is the same plane for all such L.

Conversely, any point where this is true is a focal point of K.

Proof. The plane is the image of diτι at that point, q.e.d.

Hence, at each focal point q of K on C, we have a distinguished plane

Hq = Im(d7τι) which we will call the focal plane of K at q. Note that Hq

contains the tangent line to C at q, by the proposition.

We will also need to consider the locus of all focal points of the congruence.

(2.7) Definition. The focal set of a congruence K, denoted ^(K), is the

set of all points q e U which are focal points on some curve of K passing

through q.

In other words, 1F(K) is the branch locus of the mapping πv

As noted before, for a general congruence K, there are only finitely many

focal points on each curve of the family, so ^F(K) will be, in general, an

analytic surface in U. One or more of the components or "nappes" of the focal

set may degenerate to curves or points for special congruences, however. In

any case, we have:

(2.8) Proposition. Let C be a general curve of a congruence K. At every focal

point q of K on C, the focal set &(K) is tangent to the focal hyperplane Hq.

(That is, the tangent space to 1F(K) is contained in this hyperplane.)

Proof. This follows from the observation made before that Hq is the image

of dmλ at the focal point, q.e.d.

We will be especially interested in congruences of lines in P3 arising as the

family of projectivized tangent spaces to a (two-dimensional) surfaces A a C4.

Let K be such a congruence (N. B. not every congruence of lines arises in this

way). As might be expected, if dim^(K) < 2 in this case, then this should

reflect some special property of A itself. (By way of analogy, if both nappes of

the focal set of the congruence of normal lines to a surface in U3 reduce to

curves, then the surface is (part of) a cyclide of Dupin, see [1].)

(2.9) Proposition (compare [4, p. 414]). Let A c C 4 be a surface which is

contained in no three-dimensional affine linear subspace of C 4 . Let K be the

congruence of projectivized tangent planes to A (a congruence of lines in P 3 ) .
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Assume there are two distinct focal points on each line of K. Then dim &(K) = 1

if and only if A is a translation surface (that is, A has a parametrization of the

form X; = γ^ ί^) + y2i(s2\ i = 1, ,4).

Proof, lί A has such a parametrization, then for each p e Λ the projecti-

vized tangent plane to yl at /? is spanned by the points corresponding to

the tangent directions of the translates of the generating curves γy =

(Ύji(Sj),' , γ / 4 (^)) passing through p. Thus the lines of the congruence are

spanned by pairs of points, one on the curve yλ = (γί1 ? , γ{4), the other on

Ϊ2 = (Ϊ2i»*' *> ΎIA) in ί/ C P 3 . Hence, if we fix a point g on γ, , there are oo1

lines of the congruence passing through q. By an easy consequence of Defini-

tion (2.1), q is a focal point of K on each line of the congruence which

contains it. It follows that &(K) = yλ U γ2. (Otherwise, there would be at

least three focal points on each line of K, so by Proposition (2.5) every point of

each of the lines of K would be a focal point. In this case, ^(K) would be a

plane in P 3 , containing all the lines of the congruence, so A would have to be

contained in some C 3 c C4.)

Conversely, if dim^(K) = 1, by restricting if necessary, we may assume

that ^(K) consists of two disjoint analytic curves: JF(K) = δλ U δ 2. If we fix

a point, q on either 8k, then the lines spanned by q and a variable point on the

other δ, are the projectivized tangent spaces to A at the points of an analytic

curve. The curves we obtain for different choices of q are parallel in C 4 (i.e.

they are translates of each other). Hence A contains two oo1 families of parallel

curves. It follows that A is a translation surface, q.e.d.

For future reference, we also include an analysis of the special case in which

the two focal points coincide on each line of the congruence of projectivized

tangent spaces to a surface A c C 4. We begin by relating this property to the

behavior of the second fundamental form |II| of A, as defined by Griffiths and

Harris in [2]. We recall that in this case, for each p e A, |II| is a pencil of

quadrics on PTp(A) = P 1 .

(2.10) Lemma. Let A c C 4 be a surface which is not contained in any

C 3 c C 4 and let K be its associated congruence of projectivized tangent spaces.

The two focal points of K coincide on each line if and only if |Π| has a base point

for allp e A.

Proof. Let II = Spanl^ , q2). Since II may be identified as the differential

of the Gauss map on A (see [2, pp. 378-379]), it follows that if Qλ and Q2 are

the bilinear forms on Tp(A) X Tp(A) associated to qι and q2 respectively, then

the direction of υ (Φ 0) e Tp(A) defines a focal point of K if there is some

w Φ 0 such that
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By the symmetry of the Qt this implies that

Qi(^^) = Q2(w,v) = 0

as well, so in fact the direction of w defines the other focal point of K on

PTp(A). If w = υ, then by definition qλ{υ) = q2(v) = 0, so |II| has a base

point, and conversely, q.e.d.

We will now apply the calculus of moving frames to determine the structure

of surfaces A cz C4 such that |II| has a base point for all p e A. The following

result is conjectured in [2, p. 377].

(2.11) Proposition. Let A c C 4 be a surface that |ΪI| has a base point for all

p G A. Then either A is a ruled surf ace, or A lies in a C 3 c C 4 {in which case II

reduces to a single quadric).

Proof. We may assume A is contained in no three-dimensional affine linear

subspace of C 4. To prove that A is ruled, we will begin by choosing a special

(Euclidean) Darboux frame for A. (We use Euclidean frames rather than

projective frames, but otherwise this computation is very similar to many in

[2].) This means that we want to find a "good" frame (z; eλ,e2; e3,e4] such

that z is the position vector of p e A, ex and e2 span Tp{A) (translated to 0),

and C 4 = Tp{A) + Span{e3, e4). (The vectors e3 and e4 may be thought of as

spanning the "normal space" to A at p, but we will not use any metric

properties of C 4 , so this will be merely a complementary subspace to the

tangent plane, not the orthogonal complement.) Our special frame will be

chosen as follows:

(a) For each /?, let e2 be a vector in the direction of the base point of |II|.

(This will correspond to ωλ = 0 in suitably chosen coordinates.)

(b) In the pencil of quadrics II at p, there is exactly one with a double root:

ω\. Choose e3 so that the corresponding projection of A has second fundamen-

tal form ω\ at p.

(c) Choose a constant vector e4 such that Tp{A) + Sρan{e3,e4} equals C 4

for all p and such that the corresponding projection of A has second

fundamental form with two distinct roots for each /?, say II = (oxco2 (ω 2 Φ ωλ).

(This is clearly true generically for any constant vector e 4, hence we may find

such a vector for all p by restricting A if necessary.)

(d) Let ex e Tp{A) be any vector in the direction ω2 = 0. Hence II =

Now the usual structure equations for moving frames yield:
4

(2)

dz = ωιeι + ω2έ?2, det = £ ω ^ ,

dωj = Σ ωy Λ coy/, dui} = £ ωik A ωkJ.
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According to the definition of II in [2], if Σ qaβμωaωβ e II corresponds to the

" normal direction" eμ (3 < μ < 4), then

β

Hence from our choice of frame and the resulting form of II, we obtain

ω 1 3 = ωu ω2 3 = 0,
^ ' ωu = ω2, ω2 4 = ωv

To show that A is ruled, we will show that the curves ωx = 0 on A are

straight lines. First, from (2) and (3)

0 = dω22
 = ^ 2 1 Λ ω 1 3 + <*>22 ^ ω 2 3 ~*~ *°23 ^ *°33 ~̂~ ω 2 4 ^ ω 4 3

= ω 2 1 Λ ω 1

since ω 2 3 = 0 and ω4 3 = 0 (recall e4 is constant). From this we deduce that ω2 1

must be a multiple of ω1.

Now, along the curves ωλ = 0, we have

dz = ω1e1 + ω2e2 = ω 2e 2.

But along these curves,

de2 = ω21e1 + ω 2 2 ^ 2 + ω 2 3 ^ 3 + ω24eΛ = ω22e2,

since ω2 3 = 0 and ω2l = ω 2 4 = 0 (modω^. It follows immediately that the

curves ωλ = 0 are straight lines. (Note that unlike the case of "metric"

Darboux frames, we have not normalized our frame vectors to have constant

length, so it is possible that ω2 2 Φ 0.)

(2.12) Remarks. (1) The converse of the proposition is also true (and is

much easier to prove). See [2, (2.3)].

(2) The same argument shows that if A c Cn (n ^ 4) and |II| has a base

point for every p ^ A, then A is either ruled or A lies in a three-dimensional

affine linear subspace of C n.

Finally, we recall a classical (but, as the referee points out, forgotten) fact

from the polar theory of conies in P2.

Recall that if Q(x) is a homogeneous quadratic form in three variables

(defining a conic (S\ Q(x) = 0 in P 2 ) and 2?(x, y) is the associated symmetric

bilinear form, then for each point | ? G P 2 , the line B{p, x) = 0 is called the

polar of p with respect to the conic # . A self-polar triple with respect to a

conic ^ is a set [pl9 p2, p3} of points in P 2 such that for each {i,j\k} =

(1,2,3), the line spanned by pj and pk is the polar of /?, with respect to <$.

If we have two different self-polar triples with respect to the same conic ^ ,

then something interesting happens.



THE STUDY OF TRANSLATION MANIFOLDS 261

(2.13) Proposition. (This is due, I believe, to Steiner.) Let { pλ, p2, p3} and
{ 4V #2» ̂ 3} be self-polar triples with respect to a smooth conic ¥>. Then all six of
the points lie on (another) conic Γ.

Proof. There are many ways to prove this. We will give an algebraic
argument. We will assume the six points are distinct.

The key idea from the algebraic standpoint is that, by the definition of a
self-polar triple, if we change coordinates and use the p{ or the qt as the
vertices of the reference triangle, then the quadratic form Q defining the conic
<€ will be taken to diagonal form in the new coordinates.

To simplify the computations, we may assume that coordinates have been
chosen so that Q has the form:

Q(xo,xι,x2) = xo + xι + xi
(i.e., the vertices of the standard reference triangle in P 2 themselves form a
self-polar triple with respect to ίP).

If we write

3,2)>

then

and

P, = (r,c

the polar of (r/0,

we have

β(*o,

for some at Φ 0 in C.

'ii. ''a)

Hence
6

:) and qj

with respect
v 4- r v 4

3

= T a(r

6

= Σ (-«,)<

= (
tO1)

- ̂ 2

x H

ry+3,o» ;

ί is

" '/I

the

= 0

Xλ H

} +3,l

line

h r/2.

Σ «/(>*,O*0 + Yι\X\ + r/2^2)2 = 0.
/ = 1

This identical vanishing implies

(4) Σ <W,, = 0
/ = 1

for all pairs (k, I).
Now, suppose Γ is a conic containing five of the points in the two triples. If

Γ has an equation Σk ιcklxkxι = 0, then we may assume without loss of
generality that

(5) Σcklrikril=Q

kj

for/ = 1, ,5.
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On the one hand,

/ \
Σ «/ ΣCklrikril) = «6 ' Σ ^^6^6/

by (5). On the other hand interchanging the order of summation on the left,

this also equals

V if

which is zero by (4). Hence Γ contains the sixth point as well.

3 . Generalized translation manifolds

Our major objects of study will be the hypersurfaces S c C " + 1 satisfying
the condition given in the following definition.

(3.1) Definition. We will call an analytic hypersurface 5 c C Λ + 1 a gener-
alized translation hypersurface if S has a parametrization of the form

(1) *,. = «,.(*!)+Λ,.(f2, , O (1 < / < / ! + 1),

where the ai and the Ai are analytic functions.
We will assume that the origin 0 G 5 and that our parametrizations have

been chosen so that

α(0) = ( α 1 ( 0 ) , ,α# l + 1

A generalized translation hypersurface is swept out by translating the
analytic curve a = a(tλ) by the points of the codimension-two sub variety
A = A(t2, , tn) in C"+ 1, or by translating A along a. Note that given any
pair α, A we can construct such a hypersurface. We call a and A the
generators of S.

In this paper, we will specialize to the case n = 3, and consider hyper-
surfaces S c C 4 which have a parametrization of the form (1):

(2) Xi^HiM+Mh'h)-

The geometry of such hypersurfaces is controlled by the configuration of the
tangent spaces to the translates of the generators a and A passing through
each p e S. To see the picture more clearly, we follow Lie, projectivize the
situation in each tangent space to S, and view everything in one fixed
P>3 = P(C4). (We are identifying all the spaces Γ_(C4) = C 4 for p e S.)
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When this is done, in the projectivized tangent space H = PTp(S) (a P 2 c P 3 )

we have:

(a) a point, the projectivized tangent line at p to the translate of the

generating curve a passing through p, and

(b) a line, the projectivized tangent space at p to the translate of the

generating surface A passing through p.

As p e S varies, in some family of planes in an open set U c P 3 we obtain:

(a) a curve, the curve of tangent directions to a, which we will call ά, and

(b) a two-parameter family of lines, K, the congruence of projectivized

tangent spaces to A c C 4 as in §2.

Our first goal is to identify and rule out some relatively uninteresting

degenerate generalized translation hypersurfaces which may be recognized by

special behavior of the second fundamental forms of S and A. First we note

that the second fundamental form II(S) at p e S is given by a single conic

F(H) c H = PTp(S). Indeed, if S is defined by an equation of the form

x4=f(x1,x2,x3),

then F(H) is defined by

where //y = 82//3xf.9jCy. Similarly, ll(A) is spanned by two quadrics. It is easily

checked that 1I(S)\T {A) e ll(A).
One way to catalogue some of the possibilities for degenerate S is to recall

the relation between the rank of the conic F(H) and the dimension of the

image of the (projectivized) Gauss map on S:

γ: S -> G(2,3) (the Grassmanian of planes in P 3 )

By [2, (2.6)] we have

dim Im(γ) = 3 if and only if F(H) is smooth for general p,

dimlm(γ) = 2 if and only if F(H) consists of a pair of distinct lines for

general p,

dim Im(γ) = 1 if and only if F(H) is doubled line for general p, and

dim Im(γ) = 0 if and only if 11(5) = 0 everywhere.

If dimlm(γ) < 2 we will say that S is developable, by analogy with the

classical terminology for surfaces. In each case we can analyze the structure of

a generalized translation manifold with a degenerate Gauss map, as follows.

(3.2) If dimlm(γ) = 0, then S is a hyperplane in C 4 . Every hyperplane is a

generalized translation manifold in infinitely many ways.
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(3.3) If dimlm(γ) = 1, then S is swept out by oo1 2-planes in C 4 . There are

several different types of generalized translation manifolds with dim Im(γ) = 1.

If the generating curve a is not a straight line, then for dimlm(γ) = 1 we must

have that A is a 2-plane. Alternately, if a is a line, then S contains the oo2

lines obtained by translating a by the points of A. Hypersurfaces S with

dimlm(γ) = 1 are obtained, for example, if A is a developable ruled surface

(or a cone). These hypersurfaces are also generalized translation manifolds in

infinitely many ways.

(3.4) If dimlm(γ) = 2, then S is swept out by oo2 lines in C 4 . Such surfaces

are obtained, for example, by translating any surface A along a line α, or by

translating a developable ruled surface or cone along any curve a. In any case,

S is the union of oo1 developable ruled surfaces (or cones) in more than one

way.

(3.5) Finally, we note that if \ll(A)\ has a base point for all p e A, then by

Proposition (2.11), A is either contained in a C 3 or A is ruled. In the second

case, S is swept out by the oo2 lines obtained by translating the lines of the

ruling on A along the curve a.

From this discussion, we conclude that if S does not contain oo2 lines (that

is S is neither developable nor contains one of the special ruled surfaces A

discussed in (3.5)), then by restricting S if necessary, we may assume that:

(a) There is a one-to-one correspondence between planes H near H° =

PT0(S) and points p near 0 in S given by p <-> PTp(S). In each such plane we

have a point ά Π H from the curve ά and a line k(H) from the congruence K

of projectivized tangent spaces to A.

(b) The curve ά crosses each H transversely.

(c) On each line k(H) there are two distinct focal points of K, which we will

denote by PY(H) and P2(H).

In this situation, we have the following relationship between the points

{άΠH, Pλ(H), P2(H)} for each H near H°.
(3.6) Proposition, {ά Π H, Pλ(H\ P2(H)} is a self-polar triple (see §2)

with respect to the smooth conic F(H)—the second fundamental form of S at the

pointp with H = PTp(S).

Proof. We may assume that S has a local equation of the form

x4=f(xι,x2,x3).
From the parametrization

x^a^+A^t^t^),

if we substitute into the equation of S and compute mixed partial derivatives,

we see that
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where the prime denotes differentiation with respect to tx and as before we

write ftj for d1f/dxι'dxJ.

From these equations we see immediately that the line k(H) (spanned by

the tangent directions d/dt2 and d/dt3) is the polar of the point ά Π H with

respect to F{H).

Next, from the facts used in the proof of Lemma (2.10), we see that since the

quadric ϊl(S)\T(A) is in the pencil 11(̂ 4), the tangent directions corresponding

to the focal points of K on k(H) are conjugate with respect to 11(5'). The

claim follows immediately.

(3.7) Remark. This result holds even in the case where v4 c C 3 c C 4 . In

that case, every point on each of the lines k(H) is a focal point of the line

congruence K. Given a point Pλ(H), unless the single quadric in 11(̂ 4) is a

square at every p e A (which implies that A is a developable ruled surface or

cone), there will be another uniquely determined point P2(H) such that

{ά Π H, Pλ(H\ P2(H)} is a self-polar triple with respect to F(H). The point

P2{H) corresponds to the conjugate direction to Pλ{H) on A (with respect to

4. Generalized double translation hypersurfaces

We now turn to hypersurfaces S having two parametrizations as a gener-

alized translation manifold:

(1) x, = α , ^ ) + >i.(ί2, t3) = β.(Ul) + 5 , . ( I I 2 , κ 3 ) .

It is important to note that although the generating curves and surfaces of a

generalized (single) translation hypersurface are completely arbitrary, the same

is definitely not true for a generalized double translation hypersurface. Ana-

lytically, this is a reflection of the fact that the system of PDE whose solutions

are these hypersurfaces is overdetermined. In this section, we will derive a

striking geometric form of the integrability conditions of this system, following

Lie's ideas.

By the results of §3, we may assume that S is not one of the developable

hypersurfaces considered in (3.2)-(3.4) and S is not one of the ruled three-folds

considered in (3.5). In this case, the hypotheses of Proposition (3.6) will apply

to both the triple {ά Π H, PX(H\ P2(H)} from the first parametrization of S

and the analogous triple {$ n H,Qι(H),Q2(H)} from the second. (Here

Qj(H) are the two focal points on the line l(H) from the congruence L of

projectivized tangent spaces to the generating surface B.) By Proposition (3.6)

both of these triples are self-polar triples with respect to the conic F(H).

Our main interest is in the case in which the two triples are in general

position in H (see Figure 1).
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FIGURE 1. The general situation

However, there are several ways this can fail to be true, yielding some
degenerate special types of generalized double translation hypersurfaces. We
will now identify the hypersurfaces obtained in each case.

(4.1) One of the points of the first triple coincides with one of the points of
the second triple (for all H).

In this case, the line spanned by the other two points of the first triple must
coincide with the line spanned by the remaining two points of the second triple
as well. This is true since that line is the polar of the coincident points with
respect to F(H). There are now several subcases which arise depending on
whether:

(a) ά Π H coincides with β Π H, for all //, or
(b) (relabeling if necessary) ά Π H coincides with one of the Q^H) for all

//, or
(c) one of the P^H) coincides with one of the Qj(H) for all H.
In case (a), we may characterize the situation quite simply by noting that this

happens if and only if the generating curves a and β coincide. The two
parametrizations in (1) are therefore not really distinct. Examples of such
hypersurfaces may be obtained by taking any surface (described by two
possibly different parametrizations) and translating along any curve. A (some-
what more interesting) special case arises if the surface A is a double translation
surface (which then necessarily lies in a C3, since there are more than two focal
points on each line of the associated congruence of projectivized tangent
spaces) and S is generated by translating A along the curve a = β. This gives
a special degenerate double translation manifold. However, these cases should
clearly be excluded from our further considerations, since we want to consider
generalized double translation hypersurfaces with two distinct parametriza-
tions.
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Cases (b) and (c) are best seen as further degenerations of cases to be

considered later, so we will not discuss them now.

Modulo this, let us continue and assume that the six points of our two

self-polar triples are distinct. The next case we will consider is:

(4.2) The six points are distinct but one of the lines spanned by a pair from

the first triple coincides with one of the lines spanned by a pair from the

second (see Figure 2).

άnH

\ \

\

\

\

/

/

A:

ί \

J > - — ^
P2(H)

^ ^

H

FIGURE 2.

This case may be excluded immediately, since if this occurs for all H (and

there are no coincident points), then 5 must in fact be developable. The reason

is that if not, as we have seen, the conic F(H) defined by ll(S) is smooth for

general H. If this is true then the polarity mapping TΓ: P 2 -> (IP 2)* defined by
77 (Z7) = polar of p with respect to F(H) is injectiυe.

Hence, we are now reduced to considering the following situation:

(4.3) The triangles defined by the two self-polar triangles have no vertices or

edges in common, but a vertex of one is contained in an edge of the other for

all H.

To analyze this case, we will use the following direct consequence of

Proposition (2.13).

(4.4) Proposition. In the case that the points of the two self-polar triples are

distinct, there is a unique conic T(H) containing { ά Π H, P^H), P2(H)} U

It is the existence of the conic T(H) that makes our configuration of

generating curves and surfaces in S really special. This is the geometric form of

the integrability conditions mentioned before.
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If we are in the situation (4.3) then it is clear that the conic T(H) must split

into two lines, since it contains three collinear points. Since the two triangles

are assumed to have no edges in common, the remaining three points are also

collinear. Without loss of generality, we may reduce to studying the following

two cases (see Figure 3).

Situation (4.5a) Situation (4.5b)

FIGURE 3.

(4.5a) an H lies in l(H) = Span{Qι(H),Q2(H)} and β Π H lies in
k(H) = Span{ P^HIP^H)} for all H.

Since A contains oo1 translates of β and similarly B contains oo1 translates

of ά it follows that both A and B are themselves translation surfaces and that

S is a degenerate type of double translation hypersurface. We note that

subcase (4.1(b)) may be seen as a specialization of this one, in which ά Π H

actually coincides with one of the Qj(H) for all H. Hence those hypersurfaces

are also double translation hypersurfaces for the same reason.

(4.5) One of the />,(#), say Pλ{H\ lies in 1{H) = SpaniQ^H), Q2(H)} for

all H.

Here by fixing a point on ά and letting the point on /? vary, it may be seen

that B (and hence A as well) are translation surfaces, since the curves on B

and A obtained by integrating the field of tangent directions given by Pλ{H)

must all be translates of each other. As a result, S is a double translation

manifold of a degenerate type. Case (4.1(c)) is a further degeneration of this

one.

Having disposed of these degenerate cases, we are now ready to tackle the

remaining (and most interesting) case in which the points of the two triples are

in general position for general //, and consequently the conic T(H) is smooth

for general H.
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5. The local theorem

We are now ready to state and prove our main local result about generalized

double translation hypersurfaces in C 4 . Our method will be to use the

properties of the family of conies T(H) deduced in §4 to show that in the case

that the generating curves and surfaces of S are in general position it must be

the case that both &(K) are one-dimensional. Once we have this, we will then

apply Proposition (2.8) to obtain our desired conclusion. Lie also knew of the

existence of the conic T(H) (see [3, p. 435]), but it apparently did not occur to

him to use the behavior of all the conies in the family to obtain further

information on the focal sets ^(K) and ^(L). (Note that ^(K) and ^(L)

are contained in the union of the Γ(//).)

(5.1) Theorem. Let S c C 4 be a generalized double translation hyper surface.

Assume that neither of the generating surfaces A and B is contained in a C 3 c C 4 .

Then either

(a) S is developable, or

(b) S is ruled by oo2 lines in C 4, or

(c) the generating surfaces A and B are translation surfaces so that S is a

double translation hypersurface.

Proof. By our analysis of the degenerate cases (3.2)—(3.5), (4.1)-(4.3), and

(4.5) the only case left to consider is the one in which the two self-polar triples

{ά Π //, /\(//), P2(H)} and {β Π H,Qι(H\Q2(H)} lie on a smooth conic

T(H) in all planes H near H° = PT0(S).

Let C(/?o) be the congruence of conies T(H) lying in the planes H

containing p0 = ά Π H°. Since p0 is contained in each of these conies, it

follows from the definition that p0 counts as a double focal point on each of

them.

I claim that the focal points Pt{H) and Q^H) of the line congruences K

and L are also focal points of C(p0) on T(H). To see this, consider the total

space Γ of the whole family of conies T(H), and the mapping π2, whose image

is an open set in (IP3)* (the dual projective space). Since we assume S is not

developable, there is also a one-to-one correspondence between the points of

this set and the points of S near 0.

P 3 D ί / Vc (IP3)*

We have dim Γ = 4 and at any point on Γ we can use as local coordinates tl9

t2, t3 on S and any local parameter on the conic T(H). Consider the point

Pλ(H), for example. Clearly, the image of PX{H) under πι is unchanged in the
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tx direction on S. Furthermore, since Pλ(H) is a focal point of the line
congruence K associated to A c 5, it follows that the derivative of πλ vanishes
in one direction in the (3/3/2,3/3/3) plane as well as at Pλ(H). Hence
rank dπγ < 2 at PX(H). When we restrict to the two-parameter subfamily
C(/?o), the rank cannot increase, and by Definition (2.2) Pλ(H) is a focal point
of C(p0) on T(H). The same is true for the other points P2(H), Qλ(H),

Finally, by the definition of focal points of congruences, it follows that the
point β Π H is also & focal point on each of the conies in C(p0). Since every
conic in the two-parameter family meets the curve β there is a one-parameter
subfamily containing each of the points on β and the intersection points are
focal points.

Since each conic T(H) in the congruence C(p0) has at least seven focal
points (counting multiplicities), by Proposition (2.5) every point of every conic
in the congruence C(p0) is a focal point. Hence, in the notation of §2, if πx:
C(Po) ~* P*3 i s ^ e projection, we have rank^T^ = 2 at every point. It follows
that all the conies of the congruence lie on a two-dimensional surface M c U
c P 3 .

Since the focal points of the line congruences K and L lie on the conies of
C(/?o), this implies that the focal sets ^(K) and ^{L) are contained in the
surface M.

Now recall that by Proposition (2.7) the focal sets ^(K) and ^(L) are
tangent to the focal plane of the corresponding line congruence at each focal
point. However, this focal hyperplane contains the line k(H) (resp. 1{H)).
Since the lines k(H) and l(H) meet the conic T(H) transversely, it follows
that &{K) and ^(L) must reduce to curves lying on the surface M. By
Proposition (2.8), then, the surfaces A and B in S must be translation
surfaces, with generating curves given by integrating the fields of tangent
directions given by the focal points.

(5.2) Remarks. It also follows from what we have seen already that all the
conies Γ(i/), not only the ones in the congruence C(/?o), lie on a fixed surface
M c P 3 , and hence that this surface is an open subset of a quadric surface.
The curves ά, /?, and the components of ^(K) and J^(L) are curves lying on
this quadric surface.

With the advantage of hindsight (see §6) it may be seen that these six (a
priori analytic) curves on the quadric are actually parts of one algebraic curve
of degree six lying on the quadric—a canonical curve of genus four or a
singular limit of such curves. It should be possible to prove this directly,
perhaps by showing that the "Reiss-type" relations which characterize the
algebraic curves lying on a quadric surface (see [6, pp. 79-80]) are satisfied
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here. This would give a self-contained proof of the results of §6 of this paper

by methods very close to Lie's original approach to the problem. The author

has not been able to carry this out as of yet, however.

6. Some applications

In this section we will show how the local result of the previous section may

be combined with the Lie-Wirtinger theorem on double translation manifolds

([5], [7]) to obtain another characterization of Jacobians of nonhyperelliptic

curves of genus four. Our first result will be a direct application of the

corollary of the Lie-Wirtinger theorem given in [5, Theorem (5.1)].

(6.1) Theorem. Let (A,Θ) be a principally polarized abelian variety of

dimension four with Θ irreducible and assume that in a neighborhood of p E θ , θ

{or its lift to C 4 , suitably translated) has two distinct parametrizations of the

form.

Xi = a^) + Ai(t2, t3) = βAuJ + JJ.(κ2, n 3 ) .

Assume that the par ametrizations satisfy the following additional condition'.

(*) If we vary tλ leaving t2, t3 fixed, then all the Uj vary along the curve traced

out in θ .

Then (A,®) is the canonically polarized Jacobian of a nonhyperelliptic curve

of genus four.

Proof. First, by Theorem (5.1), since an irreducible theta-divisor in an

abelian variety is never developable or ruled, Θ is a double translation

manifold with two distinct parametrizations

*i = «i(h) + «2i(il) + «3/('3) = A K ) + βli(ΰ2) + β3(ΰ3).

Since (*) is satisfied for the original parametrization, by the fact that our

generating curves and surfaces are in general position, the analogous condition

is satisfied for ΰ2 and w3 as well. Hence Theorem (3.9) of [5] applies and the

claim follows, q.e.d.

We can obtain another sort of characterization of Jacobians if we proceed as

follows. Again, let (A,®) be a four-dimensional principally polarized abelian

variety and suppose that Θ is a symmetric theta-divisor. Suppose that Θ may

be generated globally by translating a curve C c A along a two-dimensional

surface V c A.

(6.2) Corollary. Assume that neither C nor V is symmetric and that the

second parametrization of Θ as a generalized translation manifold obtained by

reflecting the given one through the origin in A satisfies the hypotheses of Theorem

(6.1). Then C is a curve genus four and (^4,Θ) is the canonically polarized

Jacobian of C.
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(6.3) Remark. It would be interesting to see how (or whether) the other

approaches to characterizing Jacobian varieties (in particular the Schottky

relation) are related to this geometric characterization of Jacobians. Can they

be interpreted as guaranteeing the existence of two-parameter family of

"parallel" curves in Θ (the translates of C by the points of V)Ί
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