INVARIANT POLYNOMIALS OF THE AUTOMORPHISM GROUP OF A COMPACT COMPLEX MANIFOLD

AKITO FUTAKI \& SHIGEYUKI MORITA

1. Introduction

Let M be a compact complex manifold of dimension $n, H(M)$ the complex Lie group of all automorphisms of M, and $h(M)$ the complex Lie algebra of all holomorphic vector fields of M. When $c_{1}(M)$ is positive, the first author defined in [13] a character $f: h(M) \rightarrow \mathbf{C}$ which is intrinsically defined, vanishes if M admits a Kähler-Einstein metric, and has its origin in Kazdan-Warner's integrability condition for Nirenberg's problem [16].

In this note we give a better understanding of f along the lines of the classical works by Bott and the recent works in symplectic geometry by Duistermaat-Heckman [12], Berline-Vergne [3, 4], and Atiyah-Bott [1]. We begin by rephrasing Theorem 2.18 of Berline-Vergne [3] in the following way; there exists a linear map $F: I^{n+k}(\mathrm{GL}(n, \mathbf{C})) \rightarrow I^{k}(H(M))$ where, for a complex Lie group $G, I^{p}(G)$ denotes the set of all holomorphic G-invariant symmetric polynomials of degree p. The character f coincides with $F\left(c_{1}^{n+1}\right)$ up to a constant. By a proof identical to Bott [5, 6] we have a localization formula of the elements of the image of F. The main result of this note is to show explicitly that the linear map F corresponds to the Gysin map in the context of equivariant cohomology (Theorem 4.1 and Corollary 4.2).

We also give another interpretation of f in terms of secondary characteristic classes of Chern-Simons [11] and Cheeger-Simons [10]. More precisely we find that f appears as the so-called Godbillon-Vey invariant of certain complex foliations which are defined naturally.

The linear map F, which depends only on the complex structure of M, may be regarded as a generalization of f. There is another type of generalization of f ([14], [9], [2]) which depends on a fixed Kähler class. We think that this latter one also deserves further study.

[^0]
2. Definition of F

Let P be a complex analytic fiber bundle over M with the right action of a complex Lie group G. Suppose $H(M)$ acts on P from the left complex analytically and commuting with the action of G. Let θ be any type $(1,0)$ connection and Θ the curvature form of θ. Since $H(M)$ acts on $P, X \in h(M)$ defines a vector field on P, which we shall denote by the same letter X. Then since $\phi\left(-\theta(X)+\frac{i}{2 \pi} \Theta\right), \phi \in I^{n+k}(G)$, is horizontal and G-invariant it projects to a form on M. We define

$$
f_{\phi}(X)=\int_{M} \phi\left(-\theta(X)+\frac{i}{2 \pi} \Theta\right) .
$$

The following is a complex version of Theorem 2.18 of [3] and is proved similarly.

Proposition 2.1. The definition of f_{ϕ} does not depend on the choice of the type $(1,0)$ connection θ. Furthermore f_{ϕ} is invariant under the coadjoint action of $H(M)$. So we obtain a linear map $F: I^{n+k}(G) \rightarrow I^{k}(H(M))$.

Let θ be a type $(1,0)$ connection of the holomorphic tangent bundle of M which is associated by the frame bundle of M. Let D be the covariant differentiation and put $L(X)=L_{X}-D_{X}$ for $X \in h(M)$ where L_{X} is the Lie differentiation by X. For $\phi \in I^{n+k}(\mathrm{GL}(n, \mathrm{C}))$ we define

$$
f_{\phi}(X)=\int_{M} \phi\left(-L(X)+\frac{i}{2 \pi} \Theta\right) .
$$

From Proposition 2.1 together with Lemma 1.10 in [4] we obtain the same conclusion for the new f_{ϕ} with $G=\operatorname{GL}(n, \mathbf{C})$. This conclusion also follows from Bott's localization theorem. We say that X is nondegenerate if zeros of X are isolated and if at each zero p the linear map $L(X)_{p}: T_{p} M \rightarrow T_{p} M$ is nondegenerate.

Proposition 2.2 (Bott [5]). If X is nondegenerate then

$$
f_{\phi}(X)=\sum_{p} \phi\left(L(X)_{p}\right) / \operatorname{det} L(X)_{p}
$$

Now we assume that $c_{1}(M)$ is positive. We put $c_{1}^{+}(M)$ to be the set of all positive $(1,1)$ forms representing $c_{1}(M)$. Choose any $\omega \in c_{1}^{+}(M)$ which is regarded as a Kähler form. Denote by γ_{ω} the Ricci form which also represents $c_{1}(M)$. Since $\gamma_{\omega}-\omega$ is a real exact $(1,1)$ form there exists a real smooth function F_{ω}, uniquely determined up to an additive constant, such that $\gamma_{\omega}-\omega=\frac{1}{2}(i / \pi) \partial \bar{\partial} F_{\omega}$. By definition ω is Kähler-Einstein iff F_{ω} is constant.

We define a linear function $f: h(M) \rightarrow \mathbf{C}$ by

$$
f(X)=\int_{M} X F_{\omega} \omega^{n}
$$

In [13] we proved that the definition of f does not depend on the choice of $\omega \in c_{1}^{+}(M)$.

Proposition 2.3. $f_{c_{1}^{n+1}}=(n+1) f$.
Proof. By the Calabi-Yau theorem [18] there exists a unique Kähler form $\eta \in c_{1}^{+}(M)$ such that $\gamma_{\eta}=\omega$. Therefore we may assume $F_{\omega}=-\log \left(\omega^{n} / \eta^{n}\right)$. It then follows from the divergence theorem with respect to the Kähler form η that

$$
\begin{aligned}
f(X) & =-\int_{M} X \log \left(\omega^{n} / \eta^{n}\right) \omega^{n}=-\int_{M} X\left(\gamma_{\eta}^{n} / \eta^{n}\right) \eta^{n} \\
& =-\int_{M} \delta^{\prime \prime} X \gamma_{\eta}^{n} \\
& =\int_{M} \operatorname{trace}(D X)\left(\operatorname{trace}\left(\frac{i}{2 \pi} \Theta\right)\right)^{n}
\end{aligned}
$$

where D and Θ is the covariant differentiation and the curvature form with respect to η and trace $(D X)$ makes sense because $D X$ is a section of $T^{*} M \otimes$ $T M \simeq \operatorname{End}(T M)$. Since η is Kähler we have $L(X)=-D X$. This proves the proposition.

3. Secondary characteristic classes of complex foliations

First we review some known facts about complex foliations. Let W be a smooth manifold. A complex foliation \mathscr{F} of codimension q is an open covering $\left\{U_{\alpha}\right\}$ of W such that
(1) there exist submersions $\gamma_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} \subset \mathbf{C}^{q}$,
(2) on $U_{\alpha} \cap U_{\beta} \neq \varnothing, \gamma_{\alpha \beta}=\gamma_{\alpha} \circ \gamma_{\beta}^{-1}: \gamma_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \gamma_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is a complex analytic diffeomorphism.
We may choose local coordinates ($t_{\alpha}^{1}, \cdots, t_{\alpha}^{p}, x_{\alpha}^{1}, y_{\alpha}^{1}, \cdots, x_{\alpha}^{q}, y_{\alpha}^{q}$) on U_{α} so that $\gamma_{\alpha}\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right)=\left(z_{\alpha}^{1}, \cdots, z_{\alpha}^{q}\right)$ where $z_{\alpha}^{i}=x_{\alpha}^{i}+i y_{\alpha}^{i}$. It is easy to observe that the covectors $d z_{\alpha}^{i}, i=1, \cdots, q$, span a well defined subbundle of $T^{*} W \otimes \mathbf{C}$ which we will denote by $T^{*} W^{1,0}$. We denote by $T W^{0,1}$ the subbundle of $T W \otimes \mathbf{C}$ spanned by vectors annihilated by the covectors in $T^{*} W^{1,0}$. Clearly $T W^{0,1}$ is spanned by vectors $\partial / \partial t_{\alpha}^{i}$ and $\partial / \partial \bar{z}_{\alpha}^{i}$. The quotient bundle $\nu(\mathscr{F})=T W \otimes$ $\mathbf{C} / T W^{0,1}$ is called the normal bundle of \mathscr{F}. A connection ∇ of $\nu(\mathscr{F})$ is called
a Bott connection if for $X \in T W^{0,1}$ and $Y \in C^{\infty}(\nu(\mathscr{F}))$ we have

$$
\begin{equation*}
\nabla_{X} Y=\pi[\tilde{X}, \tilde{Y}] \tag{3.1}
\end{equation*}
$$

where $\tilde{X} \in C^{\infty}\left(T W^{0,1}\right)$ is an arbitrary extension of $X, \tilde{Y} \in C^{\infty}(T W \otimes \mathbf{C})$ is an arbitrary lift of Y, and $\pi: T W \otimes \mathbf{C} \rightarrow \boldsymbol{\nu}(\mathscr{F})$ is the projection. It is easy to check that this definition is well defined. Roughly speaking a Bott connection is a type $(1,0)$ connection. So by the type reasons:

Theorem (Bott [7]). Let ∇ be a Bott connection and Θ the curvature form of ∇. Then $\phi(\Theta)=0$ for $\phi \in I^{j}(\mathrm{GL}(n, \mathbf{C})), j>q$.
Now we put $I_{\delta}^{j}(\mathrm{GL}(n, \mathbf{C}))=I^{j}(\mathrm{GL}(n, \mathbf{C})) \cap \mathbf{Z}\left[c_{1}, \cdots, c_{n}\right]$. By the argument of Cheeger-Simons [10] we can define a class $S_{\phi}(\mathscr{F}, \nabla) \in H^{2 j-1}(W ; \mathbf{C} / \mathbf{Z})$ for $\phi \in I_{0}^{j}(\mathrm{GL}(n, \mathbf{C})), j>q$. When $j=q+1$, it is known that $S_{\phi}(\mathscr{F}, \nabla)$ is independent of the choice of the Bott connection; so we shall write it $S_{\phi}(\mathscr{F})$. And $S_{c_{1}^{n+1}}(\mathscr{F})$ is known as the Godbillon-Vey class.

Let M be a compact complex manifold and $W=M \times S^{1}$ where $S^{1}=\mathbf{R} / \mathbf{Z}$. Consider a vector field $Y=\partial / \partial t+2 \operatorname{Re}(X)$ on W where $\operatorname{Re}(X)$ is the real part of $X \in h(M)$ and t is the coordinate of S^{1}. Then the flow generated by Y defines a complex foliation \mathscr{F} of codimension n.

Theorem 3.1. For any $\phi \in I_{0}^{n+1}(\mathrm{GL}(n, \mathrm{C}))$ we have

$$
S_{\phi}(\mathscr{F})[W]=\frac{i}{2 \pi} f_{\phi}(X) \bmod \mathbf{Z}
$$

Proof. We denote by \mathscr{F}_{λ} the foliation obtained by replacing Y by $Y_{\lambda}=$ $\partial / \partial t+2 \operatorname{Re}(\lambda X)$ for any $\lambda \in \mathbf{R}$. Then we have $\nu\left(\mathscr{F}_{\lambda}\right) \simeq \pi^{*} T M$ where π : $M \times S^{1} \rightarrow M$ and $T M$ is the holomorphic tangent bundle of M. Let h be any Hermitian metric of $T M$ and D its connection. We define a Bott connection ∇^{λ} by

$$
\begin{gather*}
\nabla_{\partial / \partial \bar{z}^{i}}^{\lambda} \frac{\partial}{\partial z^{j}}=\left(\pi^{*} D\right)_{\partial / \partial z^{i}} \frac{\partial}{\partial z^{j}}, \quad \nabla_{\partial / \partial z^{i}}^{\lambda} \frac{\partial}{\partial z^{j}}=0, \tag{3.2}\\
\nabla_{Y_{\lambda}}^{\lambda} \frac{\partial}{\partial z^{j}}=\pi_{*}\left[Y_{\lambda}, \frac{\partial}{\partial z^{j}}\right]=\lambda\left[X, \frac{\partial}{\partial z^{j}}\right] .
\end{gather*}
$$

Then from (3.2) we have

$$
\begin{equation*}
\nabla_{\partial / \partial t}^{\lambda} \frac{\partial}{\partial z^{j}}=\nabla_{Y_{\lambda}-\lambda x}^{\lambda} \frac{\partial}{\partial z^{j}}=\lambda L(X) \frac{\partial}{\partial z^{j}} . \tag{3.3}
\end{equation*}
$$

Denoting by $\boldsymbol{\theta}^{\lambda}$ and θ the connection forms of ∇^{λ} and D

$$
\begin{equation*}
\frac{d}{d \lambda} \theta^{\lambda}=\frac{d}{d \lambda}\left(\pi^{*} \theta+\lambda L(X) d t\right)=L(X) d t \tag{3.4}
\end{equation*}
$$

Moreover the curvature form Θ^{λ} of θ^{λ} is computed as

$$
\begin{equation*}
\Theta^{\lambda}=d \theta^{\lambda}+\theta^{\lambda} \wedge \theta^{\lambda}=\pi^{*} \Theta^{\lambda} \bmod d t \tag{3.5}
\end{equation*}
$$

It follows from (3.4), (3.5), and Proposition 2.9 in [10] that

$$
\begin{align*}
\frac{d}{d \lambda} S_{\phi}\left(\mathscr{F}_{\lambda}\right)[W] & =(n+1) \int_{W} \phi\left(\frac{i}{2 \pi} \frac{d}{d \lambda} \theta^{\lambda}, \frac{i}{2 \pi} \Theta^{\lambda}, \cdots, \frac{i}{2 \pi} \Theta^{\lambda}\right) \bmod \mathbf{Z} \\
& =\frac{(n+1) i}{2 \pi} \int_{M} \phi\left(L(X), \frac{i}{2 \pi} \Theta, \cdots, \frac{i}{2 \pi} \Theta\right) \bmod \mathbf{Z} \tag{3.6}\\
& =\frac{1}{2 \pi i} f_{\phi}(X) \bmod \mathbf{Z}
\end{align*}
$$

Since the right-hand side does not depend on λ we obtain Theorem 3.2 by integrating the both sides of (3.6) over $[0,1]$ with respect to λ.

4. Relation to equivariant cohomology

For brevity we shall write H for $H(M)$. Let $E H \rightarrow B H$ be the universal H-bundle. We put $M H=E H \times_{H} M$. Let P be as in §2. Then $P H=E H \times_{H} P$ is a principal G-bundle over $M H$.

Theorem 4.1. The following diagram commutes:

where two W 's are Weil maps corresponding to $P H \rightarrow M H$ and $E H \rightarrow B H$, and π_{*} is the Gysin map of $\pi: M H \rightarrow B H$.

Proof. We may prove it for a principal H-bundle E over a finite-dimensional base space B instead of $E H \rightarrow B H$. Let κ be a connection form of $E \rightarrow B$ and V the horizontal distribution. Let $X_{\#}$ be a right invariant horizontal (local) vector field of E.

Lemma 4.2. $X_{\#}$ defines a well-defined vector field X on $P H$. In particular V defines a distribution V^{\prime} in $T(P H)$ whose dimension is equal to $\operatorname{dim} B$.

Proof. Let ξ_{t} be the flow generated by $X_{\#}$. Then by the right invariance of $X_{\#}$ we have $\xi_{t}(e h)=\xi_{t}(e) h$ for any $e \in P$ and $h \in H$. We put $X=$ $(d / d t)\left(\xi_{t}(e), p\right) \in T(P H), p \in P$. This is well defined because

$$
\left(\xi_{t}(e h), h^{-1} p\right)=\left(\xi_{t}(e) h, h^{-1} p\right)=\left(\xi_{t}(e), p\right) . \quad \text { q.e.d. }
$$

Let $\pi_{2}: P H \rightarrow B$ be the projection and $T\left(\pi_{2}\right)$ the vector bundle consisting of all vectors tangent to the fibers of π_{2}. Then clearly $T(P H)=T\left(\pi_{2}\right) \oplus V^{\prime}$. Let κ^{\prime} : $T(P H) \rightarrow T\left(\pi_{2}\right)$ be the projection defined by this splitting. On the other hand $P H$ is considered as a differentiable family of complex analytic principal
bundle over B. We may choose a differentiable family $\tilde{\theta}$ of type $(1,0)$ connections on $P H$. So $\tilde{\theta}$ is just defined on each fibers and depends smoothly on the base space B. We define a connection ψ of the G-bundle $P H \rightarrow M H$ by $\psi=\tilde{\boldsymbol{\theta}} \circ \kappa^{\prime}$. Let $K, \tilde{\Theta}$, and Ψ be the curvature forms of $\kappa, \tilde{\boldsymbol{\theta}}$, and ψ respectively. Let $\lambda: E \times P \rightarrow P H$ be the projection and $\lambda(e, p)=q$. Clearly $d \lambda(V \oplus 0)=$ V^{\prime}.

Lemma 4.3. For $X, Y \in T_{q}\left(\pi_{2}\right), \Psi(X, Y)=\tilde{\Theta}(X, Y)$.
Lemma 4.4. For $X, Y \in V_{q}^{\prime}, \Psi(X, Y)=\tilde{\theta}\left(d \lambda_{(e, p)} K\left(X_{\sharp}, Y_{\#}\right)_{*}\right)$ where, for $X \in h(M), X_{*}$ denotes the basic vector field of E.

Lemma 4.5. For $X \in T_{q}\left(\pi_{2}\right)$ of type $(0,1)$ and $Y \in V^{\prime}, \Psi(X, Y)=0$.
Lemma 4.3 follows immediately from $\Psi=d \psi+\frac{1}{2}[\psi, \psi]$. For $X=d \lambda\left(X_{\sharp}\right)$ and $Y=d \lambda\left(Y_{\#}\right)$, we also have $\Psi(X, Y)=-\tilde{\theta}\left(\kappa^{\prime}[X, Y]\right)$. On the other hand since

$$
\kappa\left(\left[X_{\sharp}, Y_{\#}\right]-\left(\kappa\left[X_{\sharp}, Y_{\#}\right]\right)_{*}\right)=0 \quad \text { and } \quad K\left(X_{\#}, Y_{\#}\right)=-\kappa\left[X_{\sharp}, Y_{\#}\right]
$$

we have $\kappa^{\prime}\left(d \lambda\left(\left[X_{\sharp}, Y_{\#}\right]+K\left(X_{\sharp}, Y_{\sharp}\right)_{*}\right)\right)=0$. Hence

$$
\begin{aligned}
\Psi(X, Y) & =-\tilde{\theta}\left(\kappa^{\prime}[X, Y]\right)=-\tilde{\theta}\left(\kappa^{\prime}\left(d \lambda\left[X_{\#}, Y_{\#}\right]\right)\right) \\
& =\tilde{\theta}\left(\kappa^{\prime} d \lambda\left(K\left(X_{\#}, Y_{\#}\right)_{*}\right)\right)=\tilde{\theta}\left(d \lambda\left(K\left(X_{\#}, Y_{\#}\right)_{*}\right)\right) .
\end{aligned}
$$

This proves Lemma 4.4.
We now assume that X is a section of $T\left(\pi_{2}\right)$ of type $(0,1)$ and that $Y=d \lambda\left(Y_{\sharp}\right)$. Let ξ_{t} be the flow generated by Y_{\sharp}. We consider a trivialization $U \times H$ of E on an open set $U \subset B$. We may write $\xi_{t}(b, h)=\left(\xi_{t}^{1}(b), \xi_{t}^{2}(h)\right)$ for $b \in U$ and $h \in H$. Putting $\xi_{t}^{2}(1)=\rho_{t}$, by the right invariance of ξ_{t} we have $\xi_{t}^{2}(h)=\rho_{t} h$. Let $U \times P$ be a trivialization of $P H \times B$. Then $\lambda: E \times P \rightarrow P H$ is given over U by $\lambda: U \times H \times P \rightarrow U \times P, \lambda(b, h, p)=(b, h p)$. Therefore the flow η_{t} generated by $Y=d \lambda\left(Y_{\#}\right)$ is expressed by $\eta_{t}(b, p)=\left(\xi_{t}^{1}(b), \rho_{t} p\right)$. Since ρ_{t} is an automorphism of $P, \eta_{t^{*}}(X)$ is also a section of $T\left(\pi_{2}\right)$ of type $(0,1)$. Therefore

$$
[X, Y]_{q}=\lim _{t \rightarrow 0} t^{-1}\left(\left(\eta_{t^{*}} Y\right)_{q}-Y_{q}\right)
$$

is also type $(0,1)$. Then we obtain Lemma 4.5 from

$$
\Psi(X, Y)=-\tilde{\theta}\left(\kappa^{\prime}[X, Y]\right)=-\tilde{\theta}([X, Y])=0 .
$$

Returning to the proof of Theorem 4.1, the curvature form Ψ restricted to a fiber does not have type $(2,0)$ part. This fact together with Lemma 4.5 shows that only the $(1,1)$ part of $\tilde{\Theta}$ contributes to the integration over the fiber of $\phi(\Psi), \phi \in I^{n+k}(G)$. Thus we obtain from Lemma 4.3, Lemma 4.4 and

Proposition 2.1 that

$$
\begin{aligned}
\pi_{*} \phi(\Psi) & =\binom{n+k}{k} \int_{M} \phi\left(\frac{i}{2 \pi} \theta(K), \cdots, \frac{i}{2 \pi} \theta(K), \frac{i}{2 \pi} \Theta, \cdots, \frac{i}{2 \pi} \Theta\right) \\
& =\left(\frac{i}{2 \pi}\right)^{k} f_{\phi}(K)
\end{aligned}
$$

This proves Theorem 4.1.
Now let H^{δ} be the same group as H but equipped with the discrete topology. As before let $E H^{\delta} \rightarrow B H^{\delta}$ be the universal H^{δ}-bundle and put $M H^{\delta}=$ $E H^{\delta} \times{ }_{H^{\delta}} M$. The structure group of the bundle $M \rightarrow M H^{\delta} \rightarrow B H^{\delta}$ is the discrete group H^{δ} which acts on M holomorphically. Hence $M H^{\delta}$ admits a complex foliation \mathscr{F}_{M} of codimension n whose leaves are transverse to the fibers. The normal bundle $\nu\left(\mathscr{F}_{M}\right)$ of \mathscr{F}_{M} is naturally isomorphic to the subbundle of $T\left(M H^{\delta}\right)$ consisting of vectors which are tangent to the fibers. We can define a homomorphism $S: I_{0}^{n+k}(\mathrm{GL}(n, \mathbf{C})) \rightarrow H^{2 n+2 k-1}\left(M H^{\delta} ; \mathbf{C} / \mathbf{Z}\right)$ as follows. For an element $\phi \in I_{0}^{n+k}(\mathrm{GL}(n, \mathrm{C})), S(\phi) \in H^{2 n+2 k-1}\left(M H^{\delta}\right.$: \mathbf{C} / \mathbf{Z}) is the Simons class [10] defined by applying the Bott vanishing theorem to $\nu\left(\mathscr{F}_{M}\right)$. On the other hand consider the element $\Phi_{0}(\phi) \in I^{k}(H(M))$, where $\Phi_{0}: I_{0}^{n+k}(\mathrm{GL}(n, \mathbf{C})) \rightarrow I^{k}(H(M))$ is the restriction of Φ. By Theorem 4.1 the cohomology class $W \Phi_{0}(\phi)$ is equal to $\pi_{*} W(\phi)$. Hence it is the reduction of the integral cohomology class $\pi_{*}^{\prime} W(\phi) \in H^{2 k}(B H ; \mathbf{Z})$, where π_{*}^{\prime} : $H^{2 n+2 k}(M H ; \mathbf{Z}) \rightarrow H^{2 k}(B H ; \mathbf{Z})$ is the Gysin map. Now $E H^{\delta} \rightarrow B H^{\delta}$ is a flat H-bundle so that $W \Phi_{0}(\phi)=0$ in $H^{2 k}\left(B H^{\delta} ; \mathbf{C}\right)$. Hence we can define the Simons class $S_{\Phi_{0}(\phi), \pi_{*}^{*} W(\phi)} \in H^{2 k-1}\left(B H^{\delta} ; \mathbf{C} / \mathbf{Z}\right)$. The above procedure defines a homomorphism μ : Image $\phi_{0} \rightarrow H^{2 k-1}\left(B H^{\delta} ; \mathbf{C} / \mathbf{Z}\right)$ and we have

Corollary 4.6. The following diagram commutes:

References

[1] M. F. Atiyah \& R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28.
[2] S. Bando, An obstruction for Chern class forms to be harmonic, preprint.
[3] N. Berline \& M. Vergne, Zeros d'un champ de vecteurs et classes characteristique equivariantes, Duke Math. J. 50 (1983) 539-549.
[4] \qquad , The equivariant index and Kirillov's character formula, preprint.
[5] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967) 231-244.
[6] \qquad , A residue formula for holomorphic vector fields, J. Differential Geometry 1 (1967) 311-330.
[7] O_ On a topological obstruction to integrability, Proc. Sympos. Pure Math. Vol. 16, Amer. Math. Soc., 1970, 127-131.
[8] , On the Lefschetz formula and exotic characteristic classes, Sympos. Math. 10 (1972) 95-105.
[9] E. Calabi, Extremal Kähler metrics, Seminars on Differential Geometry (S. T. Yau, ed.), Princeton Univ. Press, 1982, 259-290; II with the same title, preprint.
[10] J. Cheeger \& J. Simons, Differential characters and geometric invariants, preprint.
[11] S. S. Chern \& J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974) 48-69.
[12] J. J. Duistermaat \& G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268; Addendum, ibid., 72 (1983) 153-158.
[13] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983) 437-443.
[14] On compact Kähler manifolds of constant scalar curvature, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983) 401-402.
[15] A. Futaki \& S. Morita, Invariant polynomials on compact complex manifolds, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984) 369-372.
[16] J. L. Kazdan \& F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974) 14-47.
[17] S. Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 11 (1984) 386-388.
[18] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978) 339-411.

Chiba University
University of Tokyo

[^0]: Received January 11, 1985. The first author was partially supported by 1984 JSPS Fellowship for Research Abroad to stay at University of California at Berkeley.

