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0. Introduction

This paper continues the search begun in [2] for some new techniques to use

in computing Koszul cohomology. The same notation will be used as in that

paper.

One extremely natural question is to determine the Koszul cohomology

groups Λ ^ ( P Γ , Hk

9 Hd, W\ where H -> P r is the hyperplane bundle, d > 1

and W c H°(Pr

9 Θpn(d)) is a base-point free linear system. The simplest case

of this is to ask when the multiplication map

(0.1) W β H°(Pr, Θ(k)) -> H°(Pr, β(k + d))

must be surjective. Indeed, the surjectivity of (0.1) comes up in a conjecture of

Carlson, Green, Griffiths & Harris [1]. Let

be the variety of smooth surfaces in P 3 of degree d which contain a curve C of

degree k which is not a complete intersection. Is

(0.2) c o d i m S ^ d - 3?
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This conjecture will be answered in the affirmative in §4 as a consequence of
an analysis of the Koszul cohomology groups of projective space.

We will establish the following vanishing theorem: For W c H°(Pr, Θpr(d))
a base-point free linear subspace, d > 1,

(0.3) <XpJVr> Hk, Hd, W) = 0

if

k +(q - \)d > p + coding, H°(Pr, 0v(d)))9

(0.4) d+l> codim(^, H°(Pr, Θpr(d))).

The other main result we prove is as follows: Let I b e a smooth complete
algebraic variety, E ̂ > X an analytic vector bundle and p0 > 0 an integer.
Then there exists an ample line bundle Lo -> X so that

(0.5) j ς ^ ( * , £ , L ) = 0

for any analytic line bundle L -> X such that L ® LQ1 is ample. Two special
cases of this result were needed in [3], and it gives a partial answer to Problem
5.13 of [2].

1. Algebraic preliminaries

(a) Truncation. Consider

V a vector space,

Λ\ S{V) the symmetric algebra of V,

B = φ Bq a graded 5r(F)-algebra.
Z

We define the kth truncation ofB, denoted Tk(B), by

(l.a.2) Tk(B)= ®Tk(B)q,

where

(0, q < k,
l i a : V 1k\D)q~\β π^k.

We note that directly from the definition of Koszul cohomology,

) — u, q ^ K.
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From the exact sequence of 5'(F)-modules

0 - Tk+ι(B) -» Tk(B) - * * - > ( ) ,

we conclude from the long exact sequence for Koszul cohomology that

(l.a.5) *rptq(Tk(B),V) - ker(Λ*F® Bk -> A*"1 Θ Bk+1).

This is particularly interesting in the case of the truncated symmetric algebra

Tk(S(V)) = φ SW.

We conclude that, for k > 0,

*P9q{Tk(S(V))9V)

( "a* ' ^ ί ker(Λ' 0 S*F -* A^-1^ 0 Sk+Ψ), q = k,

~\0, qΦk.

Using the Littlewood-Richardson rule from representation theory, we conclude

that

Θ SkV -> Λ^-χF 0 Sk+ιV) =

as GL(F)-modules, where in general F ( λ l 1 ' "^^ denotes the representation of

GL(F) whose Young diagram has kγ rows of λx elements each, k2 rows of λ 2

elements each, etc. (see [4]). For our purposes, we may regard (l.a.7) as a

definition, noting that

Ί'> = 0 iίp>dimV.

We now have, for k > 0,

(l.a.9) ^q(Tk(S(V)), V) - ( V(kΛP)> 9 = *,

10, ^r#fc,
and thus Tk(S(V)) has the minimal resolution

0->F^)

> Tk(V) -+ 0,

where dim V = r 4- 1.

In the context of complex manifolds, if we have

(X a complex manifold,

L -> X a holomorphic vector bundle,

W Q H°(X, L) a base-point free linear system,
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then (l.a.10) becomes the exact sequence of bundles

(l.a.ll) 0 -> W{kX) Θ L~r -> -> W{k;l) $ L"1 -> S*W -> Lfc -> 0,

where dim W = r + 1. For X = P r, L = i/ = the hypeφlane bundle and

W = if°(P r, if), (l.a.10) says that taking # ° of each term of the sequence

(l.a.ll) tensored by Hι gives an exact sequence for all / > 0.

(b) Change of base. Let B, V be as in (l.a.l) and let W c V be a linear

subspace. Then we may also regard B as in S( W)-module and ask:

What is the relation between theXp g(B9 W) and theXp q(B, V)1

Proposition l.b.l (Spectral sequence for change of base). For each / G Z ,

there is a spectral sequence with

(l.b.2) El" = A'-"(V/W) ®Jf_q<p+q(B,W),

(l.b.3) EM = &'(•*•,_,_,,,+,(*, V)).

Proof. Consider the Koszul complex

... ^ Λ'"" + 1 F ® 5 9 _! -» Λ'-«F ® Bq -» A'"*-1

(l-b.4) || || ||

Kq-1 Kq Kq

with the filtration

(l.b.5) Fp(K«) = im(Λί'-9WΛ ® A'~PV) ® 5 ? .

So

(l.b.6) Gr^(^«) = Λ^-«ίF ® A'-P(V/W) ® 5 ?

For this filtered complex

(l.b.7) El" = A'-'iV/W) ®Jf_q<p+q(B, W),

(l.b.8) £^.» = Gr^(sr,_ p . 9 t P + q (B, V)).

Corollary l.b.9. For any p, q, we have

Proof. Take / = p + q. Then

GτP'{^q(B, V)) = E£ '-', q<p'<p + q.

On the other hand

E{'«->' = A*>+«-i>'(V/W) *Jrp.-,tq(B,W) = 0 forq^p'^p

So E^q~pf = 0 and we are done.
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2. Koszul cohomology of powers of the hyperplane bundle

on projective space

Consider

H -> P r the hypeφlane bundle,

Theorem 2.2. For k,d&Z with d > 1,

(2.3) *;,,(PΓ. Hk, H") = 0 ifk+(q-l)d>p.

Proof. Let

(2.4) Bm = φ tf°(Pr, <V(m

From the exact sequence (l.a.ll) we have the exact sequence of sheaves for any

/€= Z

0 -+ κ w r ) <8) β P r(/ - r) -*

^2*5^ ^ S J F 0 (Ppr(/) -> (PPr( J + /) -> 0.

By the spectral sequence for hypercohomology and the Bott vanishing theorem

for H'(Pr, ®?r{l)\ we obtain an exact sequence

(2 6) ° "
i ^ 0 S'K -* S J + / F ) -> 0.

Let

(2.7) R = 0 ^ = 0 ker(Srέ/K
Z

We have exact sequences of 5(5'ί/F)-modules

(2.8) 0 -> R -+ SdV 0 Λfc(-1) -> Λ* -> ^ Λ / έ / ] ^ 0,

(2.9) 0 -> F ( ί / ' r ) <8> ^ / c " r ( - l ) - > • - . - > F ^ ' ^ «> J ^ - ^ - l ) -> R -> 0.

By the general spectral sequence (l.d.3) of [2], (2.8) gives rise to a spectral

sequence abutting to zero. For q > -\k/d\ the differentials coming in to

(2.10) SdV Θ jrpίq,x(Bk

9 SdV) ^ *p,q{B\ SdV),

( 2 n ) k e r ( ^ : j ς _ ^ + 1 ( Λ , SdV)
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Note the map (2.10) is zero by (l.b.ll) of [2]. For q > -[k/d], there are no
nonzero differentials emerging from Jtpq{Bk, SdV). Thus, we have the impli-
cation:
(2.12)

for q > -[k/d], if Jfp_hq+1(Ry SdV) = 0, thenXp,q(Bk, SdV) = 0.

Now, using the spectral sequence abutting to zero which arises from (2.9)
using the general spectral sequence (l.d.3) of [2], we get that Jfp_lq+1(R, SdV)
is an Eτ term of this sequence. All the differentials emerging from this term
have target zero, while the dfs coming in have sources which are quotients of
subspaces of

l2ΛΪ\ JίΓ (Bk~ι S!dV) (8 F ^ ' 1 ' ) r>l>Λ

Our hypothesis k + (q — \)d > p implies q > -[k/d] and also implies, for
all / > 1,

(2.14) (k — I) + (q + / — 2)d > p — I.

If we do an induction on p, (2.14) implies that the groups in (2.13) all vanish,
and hence

Λp_ι q+ιyi\, o v ) — υ

which we have seen implies

or equivalently

Λ;,,(PΓ, H", Hd) = o,

as desired. To complete our induction, it remains to check the case p = 0. We
must check that

(2.15) SdV 0 sk+d(q~1)V -» Sk+dqV

is surjective if k + d{q — 1) ^ 0; however, this is an elementary property of
polynomials.

Remark. Since GL(F) acts equivariantly on the Koszul complex

• -» Ap+ι(SdV) 0 sd(q~l)+kV -» Ap(SdV) <S> Sdq+kV

-> κp-\sdv) 0 sd(q+1)+kv -> •

one ought eventually to have a formula
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where V = i/°(PΓ, <V(1)) and the p, are representations of GL(F). The p, will

depend on p, q, k and d\ however, they are independent of r (except that

certain representations will have dimension zero if r is small). It would be

interesting to have these formulas, of which Theorem 2.2 would be a special

case.

In applications, it is important to be able to compute the Xp q

9s when we use

a linear subsystem of SdV.

Theorem 2.16. Let W c i/°(PΓ, Θpr(d)) be a base-point free linear system.

Then

(2.17) XpJPr,Hk,H

provided dim(SdV/W) < d + 1.
Proof. By the Duality Theorem (2.C.6) of [2], for any fixed W, d and k, the

theorem is true for all p when q is sufficiently large. For a fixed k9 d, W, say

(2.17) fails for p = p0, q = q0, but is true for every p for all higher q. By

Proposition l.b.l, there is a spectral sequence with (taking / = p0 + q0 +

(2.18)

(2.19) £ i * = Gr°(jςo+go+^(sdy/w)_a_b,a+b(Pr

9 Hk, Hd)).

So

(2.20) E{O+^-PO = Λ ^ ^ ^ ^ ί S ^ F / P Γ ) β ^ 0 , J P r , Hk, Hd,W).

Further,

(2.21) ^ = 0 for a< po + qo

as the exterior power on the right-hand side of (2.18) vanishes. Another

consequence of (2.18) is that for any m e Z,

EPo + Ίo + m + i-Po-m

(2.22)
* * s ' v / » r \ ι ) ( Hk, Hd,W).

By hypothesis,

k+(q0- ί)d >pQ

from which it follows that

(2.23) k + qod> dim(SdV/W) +po + m,

whenever m < d. Thus using our reverse induction on q, the Koszul group on

the right-hand side of (2.22) vanishes for m < d, while the exterior product on
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the right-hand side of (2.22) vanishes for m > dim(SdV/W). Under the
hypothesis dim(SdV/W) < d + 1, this exhausts all possible m. So
(2.24) EPo + qo + rn + ̂ -Po-m = Q f o f a U m ^ Q.

This implies that all differentials emerging from Efo+q°~Po are zero, while
(2.21) implies that all differentials with target E{0+^-p° are zero. Thus

Pr, Hk, Hd)).

By Theorem 2.2 this vanishes. Comparing this with (2.20), we conclude that

completing our reverse induction.

3. Koszul cohomology of sufficiently ample bundles

Definition 3.1. We will say that a property holds for sufficiently ample line

bundles on a variety X if there exists an analytic line bundle Lo -> X such that
the property holds for all analytic line bundles L -> X satisfying L > Lo, i.e.
L ® LQ1 is an ample line bundle. We will denote this by L :» 0.

Theorem 3.2. Let X be a smooth complete algebraic variety. For any p o e Z
and any analytic vector bundle E -> X,

(3.3) J ί^(* , i<,L) = 0 forallp^Pθ9q>2

for L sufficiently ample.
Proof. Let

777 ^ : X'
Δ

^x2

cjf!

-^x2

i times

>χi) e x \χj= χk)->

be the canonical projections,

be the diagonal,
be the associated line bundle,

(3.4)

(3.5)
B'=

B° = φ 5° = 0 i/°(X, £ )

L") ® π
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We regard the Bi as graded S(V) modules. From the restriction sequence

(3.6) 0 - Mrf+1 - Θχi+, -> 0 Δ / | + i -> 0

we have a long exact sequence

0-> 2 ^ - > ̂ I I ® V +B*-1

(3.7) -> Hι(Xi+1, M£ 0 0 MΛVI 0 < ( £ 0 L*"1) 0 77*(L)

0 0 * i + 1 ( L ) ) - > . - - .

If # > 2 and L » 0, then H1 above is zero. Using the truncation notation of

§l(a), we obtain an exact sequence of graded S(F)-modules

(3.8) 0 -> T^B^i-l) -> T^Bt-^i-ΐ) ® V^ T^B*'1) -> Λj-1 -> 0.

From the spectral sequence (l.d.3) of [2] associated to this, using the remark

(l.a.4) on Koszul cohomology of truncations,

(3-9) srPtq_1(Bi-\v)®v^jςtίl(Bi-\v)^jrp_hq(Bi,v)^- -,

where the first map is zero by (l.b.ll) of [2]. There is thus a sequence of

injective maps for q > 2:

Jfp^{B\V)^Jtp_^q{B\V)^ . . .

(3.10) ^ χ Oq(B*>, V) ^ jr_ltq(B'+\ V)

II
0

The one thing we must be careful of is to use the hypothesis L » 0 only a

finite number of times; this is all right if we restrict/? < p0. We conclude

or equivalently

JTp9q(X,E9L) = 0 f o r p < p o , q > 2.

4. An improvement of the Noether-Lefschetz Theorem

for surfaces in P 3

Let Ud c pC'j3)"1 be the open set of nonsingular surfaces of degree d in P 3 ,

and let Udk c Ud be those surfaces which contain a curve of degree k which is

not a complete intersection. (By a complete intersection C of a nonsingular

surface S in P 3 we mean that C is not in the linear system cut out on S by

surfaces in P 3 of any degree.) We answer a question raised in [1] by showing
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Theorem 4.1.

(4.2) codimUdJc>d-3.

Note. The classical Noether-Lefschetz Theorem states that codim Udk > 0.

Remark. What we show is actually somewhat stronger than (4.2). Let

So e Ud and γ e H^(S0,Z). Let V be a small open neighborhood of So in

Ud, chosen so that for S ^ V, there is a natural isomorphism

(4.3) i/2(S,Z)^i/2(S0,Z).
as

Let

(4.4) Ud(y)= ( S G F l ^ H ϊ ) has type (1,1)}.

Then we will show that

(4-5) codimΓ S o , Z a r (t/ ί / (γ))></-3,

which implies (4.2).

It remains an open question whether, if equality holds in (4.2) for some

component of Udk, this component consists of surfaces having a line, i.e. the

curves of degree A: on a generic S in this component of Udk are residual to a

multiple of a line under a power of the hyperplane series.

Proof of Theorem (4.1). Let S e Ud and γ e H^(S, Z). As in the discus-

sion of [1], if

V = i/°(P 3, 0p 3(l)) and F <= SdV, S = divF,

and

is the Jacobi ideal of F, then

(4.6) H°(S, Ks) = S"-*V,

(4-7) ^ ( ^ Ω ^

(4.8) H2(S, Φs) =

Furthermore, 7s,zar(^ί(y)) is the left annihilator of γ under the map

(4.9) SdV ® S2d-4V/J2d_4 ^ S3d~4V/J3d_4.

Using the duality of Macauley's Theorem, if W = Ts:Zat{Ud{y)) c SdV, then

the image of

(4.10) W ® S r f - 4 F
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is orthogonal to γ. Thus, a fortiori, the map

(4.11) W ® Sd~4V ^> S2d~4V

is not surjective, i.e., Jfol(P3,(</ - 4)#, dH, W) Φ 0. Since JdcW and F is

nonsingular, we know that W is base-point free. We can now invoke Theorem

2.16 to conclude that, if codim Win SdV\s < d - 4, then

This would be a contradiction, so W has codimension > d — 3. This proves

(4.5) and hence Theorem 4.1.

Remark. If one does not stop to prove the vanishing of other Koszul

groups, there exist much simpler ways to see that if (4.11) is not surjective and

WΊs base-point free, then JFhas codimension > d — 3 in SdV.

Added in proof. By a variant of the argument given, using an induction on

dim(SdV/W), the hypothesis d\m(SdV/W) < d + 1 of Theorem 2.16 and

therefore (0.4) can be dropped.
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