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0. Introduction

Investigating Hilbert modular surfaces, Hirzebruch found a very interesting
relation between the signature defect associated to a cusp of a Hilbert modular
surface and the value at s = 1 of a certain L-series [24, §3]. Hirzebruch’s result
is interesting since it gives a topological meaning to these values of L-series.
However, Hirzebruch’s proof is based on very explicit calculations and gives
no deeper explanation of this connection between these topological and
arithmetic invariants associated to a real quadratic field. He uses his beautiful
explicit resolution of the cusp singularities of the compactified surface to
compute the signature defect of the cusps. On the other hand, C. Meyer [28]
has calculated the value at s = 1 of the corresponding L-series and it turns out
that this value coincides with the formula for the signature defect of the cusp
given by Hirzebruch. Guided by this result, Hirzebruch conjectured that for all
Hilbert modular varieties associated with a totally real number field of
arbitrary degree the signature defects of the cusp singularities are still given by
values at s = 1 of certain L-series associated with the corresponding cusp [24,
p- 230]. Actually, Hirzebruch’s conjecture is more general. It is related to
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“cusps”, which may not occur as cusp singularities of any Hilbert modular
variety (cf. [24, p. 230]). The L-series in question have been studied by Shimizu
[38]. Now, for higher dimensional Hilbert modular varieties the geometry of
the cusp singularities is much more complicated than in the two-dimensional
case, and there is no hope of getting explicit formulas. The attempt to prove
Hirzebruch’s conjecture was one of the main motivations for the work of
Atiyah, Patodi and Singer on spectral asymmetry [3]. Their work was an
attempt to understand the significance of Hirzebruch’s result in the wider
context of Riemannian geometry. In their paper they extended Hirzebruch’s
signature theorem to the case of manifolds with boundary. The main result of
[3] is that for a compact oriented Riemannian manifold with boundary Y,
which, near Y, is isometric to the product Y X [0, 1], the differential geometric
signature defect §(Y) is a nonlocal spectral invariant of Y. This is the so-called
Eta-invariant 7(0). A proof of Hirzebruch’s conjecture along these lines has
been developed by Atiyah, Donnelly and Singer [2]. The idea is to apply the
results of [3] to the boundary Y of a neighborhood of a cusp.

The purpose of this paper is to understand Hirzebruch’s result from a
different point of view. It turns out that Hirzebruch’s conjecture is a conse-
quence of a certain L%index theorem. To explain the main idea we consider
the Hilbert modular group. Let F/Q be a totally real number field of degree n
and class number 1. Let @ be the ring of integers and consider the Hilbert
modular group I' = SL(2, @;). I acts properly discontinuously on the product
H” of upper half-planes and I'\ H” has only one cusp. Let M = @ and
V = 0%2. The cusp oo is of type (M, V) in the sense of Hirzebruch [24]. Let
#3,(F\ H") be the space of I-invariant harmonic forms on H”", which are
square integrable mod I' and let 573 .(I' \ H") be the +1-eigenspaces of the
involution 7 defined by the *-operator. Then, using results of Harder [19], one
can show that

Sign(T'\ H") = dim 53, (T \ H") — dim 5£3_(T \ H").

Let A* = A*(I'\ H") be the space of I'-invariant differential forms on H” and
let A% = A*(I'\H") be the +1-eigenspace of 7. Consider the signature
operator D = d + d*: A* - A*. It has a well-defined L%*index, which is given
by

Ind ;> D = dim 53, (T \ H") — dim 5% _(T\ H").
Thus Sign(I'\ H") = Ind ;2 D. Now, one can use the method of the heat
equation as in the compact case to compute the L2-index. Let A, = D*D and

A_= DD* be the Laplacians on A*_. The restriction of A, to the space of
compactly supported differential forms has a unique self-adjoint extension A
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to an operator in L2A*i. Using the theory of Eisenstein series [20] one proves
that L?A*_admits an orthogonal decomposition

L*A%, = L3A% @ L2AY,

such that A , decomposes discretely in L7A*, and L2A*, is the subspace of

absolute continuity of A ,. Let A% be the restriction of A, to L2A* and
consider the corresponding heat operators exp(-tA% ). L3A* contains the
space of cusp forms L3A* (see the end of §3 for its definition). Using some
results related to Selberg’s trace formula, one can show that exp(-rA%)
restricted to the subspace LIA* C L3A*, is of the trace class for each ¢ > 0.
Moreover, by analysing the constant terms of the Fisenstein series, it turns out
that the orthogonal complement of L3A* in L3A*, is finite dimensional. Thus
exp(—1A%,) are trace class operators for each > 0 and

Ind ;> D = Tr(exp(-£A?)) — Tr(exp(-rA%)).

As in the compact case there is a smooth kernel K*(z,z’,t), which
represents the heat operator exp(-zA% ) and its trace is given by the integral of
tr K*(z, z, t) over '\ H". Selberg’s trace formula tells us how to compute this
integral. Each conjugacy class of I' makes a certain contribution to the trace of
exp(-tA%). A careful analysis of the different conjugacy classes shows that
only elliptic and parabolic conjugacy classes give a nonzero contribution to

f trK*(z,z,t)—f trK(z, z, t).
T\H" T\H"

If z € H” is an elliptic fixed point of I', then the contribution of the elliptic
conjugacy classes with fixed point z is precisely the cotangent sum &(z)
associated with the quotient singularity z [24, §3.3]. Let M = 0, V = 0%? and
let L(M,V, s5) be the L-series associated to (M, V) (see (5.53) for its definition).
Then the parabolic contribution turns out to be

i" 1/2
;,;d(M)L(M,V,l), where d(M) = (Dg,q) .
Thus, if z;,- - -,z,, € H” represent the quotient singularities of I' \ H”, then

m .n
Sign(T\H") = Ind;: D = ¥ &(z,) + #d(M)L(M,V, 1).
j=1
There is another formula for Sign(I'\ H”), proved by Hirzebruch [24, §3,
(20)]. The contribution of the elliptic fixed points is the same as above, but the
contribution of the cusp has to be replaced by the signature defect §(o0)
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associated to the cusp co. Thus, comparing these two formulas, we get
ihn
8(c0) = —5d(M)L(M,V, 1),

which is Hirzebruch’s conjecture in this particular case.

In the same way one can compute the L%index of other classical operators.
If we consider the Dolbeault operator d + 3 *: £, A??9 - £ _AP?9*1 it wurns
out that its index is related to the dimension of £2;"~7(T' \ H")—the space of
harmonic cusp forms of bidegree (p, n — p) on I'\ H". Using Selberg’s trace
formula, we compute the index of the Dolbeault operator. In this way we get a
formula for the dimension of 5£2;" 77 (I'\ H").

Of course, everything that we described for the Hilbert modular group
SL(2, Of) of a totally real number field F of class number one, can be extended
to an arbitrary irreducible discrete subgroup I' € (SL(2,R))" of finite co-
volume. However, if I' has several I'-inequivalent parabolic fixed points
X1, * *,X,, then by this method we only get

h .n h
L 8(x) = - L d(M)L(M,,V,1),
=1 =1

where §(x,) is the signature defect associated with x, and x, is of type (M, V,)
[24]. To overcome this difficulty, it is natural to consider Riemannian mani-
folds X, which are obtained by taking a single cusp, chopped off near infinity,
and gluing it together with a compact Riemannian manifold, which has the
same boundary. Each cusp of I'\ H” can be described by a lattice M in a
certain totally real number field F of degree n and a subgroup V C U, of
finite index [24], [38]. The Riemannian manifold X has a decomposition
X = X, U X;, where X, is compact and X is isometric to a cusp of type (M, V)
for some M and V as above. We call X a Riemannian manifold with a cusp of
type (M, V). Thus, the attempt to prove Hirzebruch’s conjecture by the meth-
ods described above, leads very naturally to the problem of extending the
results concerning the spectral resolution of the Laplacian of the locally
symmetric space I'\ H” to manifolds X with a cusp of type (M,V). This
problem has been considered by the author for manifolds which are natural
generalizations of the R-rank one case [30], [31]. In principle the same methods
can be used in our situation because the “analysis near infinity”, i.e. analysis
on the cusp, reduces to harmonic analysis. Selberg’s trace formula has to be
replaced by the asymptotic expansion of the heat kernel. Then, one can
compute the L%index of the signature operator as above. There are no quotient
singularities, but there will be the contribution [, L(p), where L(p) is the
Hirzebruch polynomial in the Pontrjagin forms. On the other hand, thereis a
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formula for Sign( X), which is analogous to Hirzebruch’s formula [24, §3, (20)}.
The proof of Hirzebruch’s conjecture will be a consequence of these calcula-
tions.

We are not going to carry out this program in the present paper. The locally
symmetric case which we shall consider in this paper illustrates that the
principle, which relates signature defects of cusps and values of L-series at
s = 1, is essentially based on a L%index theorem.

The paper is organized as follows. In §§1 and 2 we recall some facts about
homogeneous vector bundles, invariant differential and integral operators and
harmonic analysis. §3 collects the pertinent results from the theory of Eisen-
stein series and the spectral resolution of the regular representation. We
explicate these results for our situation. In §4 we discuss Selberg’s trace
formula. It turns out that for G = (SL(2,R))” and I' € G any lattice, the
restriction of the operator Rp\(f) to the discrete spectrum L2(T'\ G) is of
the trace class for all f € €*(G). Therefore, we can use the version of the trace
formula established by Osborne and Warner for a rank one lattice [32]. For the
applications we have in mind it is necessary to evaluate the different terms
occurring in the trace formula explicitly. We do this up to a stage which is
sufficient for our purpose. The case when f € C§°(G) is bi-invariant under
K = (SO(2))" has been treated by P. Sograf [39] for n = 2 and by 1. Efrat [15]
in general. In this case the trace formula has been brought to a final form. The
trace formula has been used by I. Efrat to establish Weyl’s law for the
asymptotic distribution of eigenvalues for any lattice in (SL(2,R))” with n > 2.

In §5 we use the trace formula to compute the index of the signature and the
Dolbeault operator. In this way we get our main result, Theorem 5.71.
Theorem 5.82 gives our formula for the dimension of »2;"~7(I'\ H"). This
generalizes parts of the results of Matsushima and Shimura [27] to the case of
nonuniform lattices.

Finally, in §6 we discuss briefly our approach to prove Hirzebruch’s conjec-
ture in general.

Acknowledgements. The author is indebted to W. Hoffmann (Berlin) for
some suggestions and for pointing out several mistakes. The work of D.
Barbasch and H. Moscovici [6], [29], which has been brought to our attention
by H. Moscovici, was important for the final preparation of this paper.

1. Preliminaries
Let G = (SL(2,R))"” and K = (SO(2))". K is a maximal compact subgroup
of G and we have G/K = H", where H is the upper half-plane. Let g O f be
the corresponding Lie algebras and let B be the Killing form of g. The
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orthogonal complement of f in g with respect to B will be denoted by p.
g = f ® p is the Cartan decomposition. If n = 1, we denote the corresponding
objects by G, K, g, £, Po- Let x, € H” be the coset eK. The projection
G — G/K induces an isomorphism p — T, H". Let 6: K — GL(V) be a finite
dimensional representation. To o corresponds a homogeneous vector bundle
E(o) » H". Let C*(E) be the space of C*-sections of E. C*(E) can be
identified with the space of K-invariants (C*(G) ® E)X of C*(G) ® E with
respect to the action k = R(k) ® o(k) of K, where R is the right regular
representation of G. Similarly, the space of L sections of E will be identified
with (L?(G) ® E)X. The tangent bundle TH" is associated to the adjoint
representation Ad,: K — GL(p). Therefore, a C*-vector field on H” can be
identified with a C*-map ¢: G — p¢ such that @(gk™) = Ad,(k)p(g),
k € K, g € G. Correspondingly, a p-form «w € A?(H") is a C*-map w:
G — APp, which satisfies w(gk™') = A?Ad%(k)w(g). Here pc = p ® zC.
Let 3(g¢) be the center of the universal enveloping algebra 11(g¢) of g and
let @ € 3(gc) be the Casimir operator. If A , is the Laplacian on A?(H") with
respect to the invariant metric, then we have Kuga’s Lemma

Qo=-A0, «e&A’(H").

Consider the following elements of 3[(2,R): W= (23), H=(} ) and Y =
(5)- Then £, = RW, p,= RH & RY and, if B, is the Killing form of g,
then By(H,Y)=0.Let Hand Y;,j = 1,- - -,n, be the elements of g with jth
component equal to H and Y respectively and the others equal to zero. Ad,:
K — GL(p¢) can be diagonalized. Eigenvectors are

(1.1) Ef=H +iY, j=1,-,n,
where
Ad(k)Ej* = exp(+2i6)E*,

cosf, sinb, .

kf_(—sinﬂj cosﬂj)’ J=1:mm.
Thus, if we choose § = f as the Cartan algebra of g, then the vectors (1.1)
are the nonzero root vectors. Let ® be the set of roots. We choose the system of
positive roots ¥ = {a,,"--,a,} such that g¢ = CE;". Note that each root is
noncompact. Let W be the Weyl group of (g¢, §c). Wehave W = {£1}".

Let G = UAK be the Iwasawa decomposition of G. Every g € SL (2,R) can
be uniquely written as

(12) =(1 x) yrooo0 (cos0 sin0)
) =10 1 0 y2)\-sinf cosf)



SIGNATURE DEFECTS AND VALUES OF L-SERIES 61

In this way we introduce coordinates (x, y, §) € R" X (R™)” X [0, 27)"
on G. Consider the C®-functions @*: G — b defined by @*(nak)=
exp(F2i0(k;)E*, j=1,---,n. Since p*(gk™") = Ad(k)9i(g), @ corre-
sponds to a vector field Z* on H" and a calculation shows that Z'=
4iy; 9/9z; and Z = -4iy;0/0z;, where z; = x; + iy,. Finally, note that the
Casimir operator on G is given by

o= g(H2+ 12— W)

j=1

We add some remarks about invariant differential and integral operators. If 7
is any representation of G on a topological vector space V, we denote by V¥
the space of K-invariant vectors in ¥ and by V' the space of C*-vectors. Let
o: K- U(E), i = 1,2, be two finite dimensional unitary representations of
K. K acts on U(gc) ® End(E,, E,) by Ad ® o, ® o7, where End(E,, E,) =
E, ® EF. Let (11(g¢c) ® End(E,, E,))X be the space of K-invariants with
respect to this action and let D =%,Z, ® C; be an element of (U(gc) ®
End(E,, E,))X. Let 7 be any unitary representation of G on a Hilbert space
2#,. Then we let 7(D) be the operator from (5, ® E,)X to (&£, ® E,)X with
domain (s> ® E,)X, which is defined by
(1.3) m(D) =Y 7(Z) ® C,.

1

Let E - H” be a homogeneous vector bundle defined by the isotropy repre-
sentation o: K = GL(V). Let L: C*(E) - C*(FE) be a G-invariant integral
operator. If we identify C*(E) with (C®(G) ® V)X, then the kernel e of L
will be an element of L*(G X G) ® End(V'), which satisfies

(1) e(gg 822) = e(81, 82)s
(ii) e(glkb gzkz) = U(kl_l)° e(g, 8)° U(kz)’
forallg, g, 8, € G,ky, k, € K.

If L is symmetric, then e satisfies symmetry

e(gl’ 82) = e*(gZ’ gl)a
where * denotes the adjoint operation in End(V'). Let h(g) = e(1, g). Then
h: G — End(V) and e(g;, g,) = h(gr'g,)- Moreover, by (ii) we get
(1.4) h(kigk,) = o(ky)oh(g)eo(ky).
The space of all C*-functions f: G — End(V') which satisfy (1.4) will be
denoted by L (G). We introduce some spaces of functions: ¥7(G,0), 0 <p

< o0, is Harish-Chandra’s space of p-integrable rapidly decreasing functions
of type o. It is defined as follows. For D;, D, € U(g¢) and f € L,(G) let
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f(D;; g; D,) have the usual meaning [40, p. 104]. If r € R, D,, D, € U(g¢),
f€ L,(G)and 0 < p < oo, define

1+ 8(g))’)”",
(2(g))*

where 8(g) = d(x,, gx,), d the geodesic distance on H", and

=(g) = [ exp(-p(H(gk)) dk

with the usual notations. Then
¢7(G,o0)
= {fe L,(6)In?8,,(f) < o, forall D;, D, € U(gc),r € R}.

(1.5) D,ng,r(f) = Sul();”f(Dl; g; Dz)”
gE

(1.6)

Finally, if T C G is a discrete subgroup, we denote by R r\; the regular
representation of G on L?(T'\ G) or C*(T'\ G). Let 6: K > GL(V) be a
finite-dimensional representation. Then we set

C*(T'\ G,0) = (C=(I'\G)® V)X,
L}(T\G,0) = (LX(T\G)® V)",

where K acts via Rp\g ® o.

1.7)

2. Harmonic analysis on G

In this section we collect some facts about unitary representations of
G = SL(2,R))". Let 7 be any irreducible unitary representation of G. There
exist irreducible unitary representations m; of SL(2,R) such that 7 = ® =,
[13, Proposition 13.1.8]. Let ©, be the character of 7. If ¢ € C°(G) is a
product

o(g) = 1jlqo,-(g..), 9, € CP(SL(2 R)),

then

6.(¢) = [T wn(9) - I16,(s)

where @, is the character of 7. This reduces harmonic analysis on G to that on
SL(2,R). Now, consider G, = SL(2,R), K, = SO(2). We denote by O,f,
A € R, the character of the principal series representation «,i and by ©,*,
n € N, the character of the discrete series representation «,*. ©;F and 0, are
tempered distributions. This follows from [40, Theorem 8.3.8.2] and the explicit
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character formulas for ®;F and ©,F [25]. Note that the complementary series
representations of G, do not have tempered characters [40, p. 174]. The matrix
( cos 6 sin0) c
-sinf cos @

will be denoted by k(). Let (7, H,) be an irreducible unitary representation
of G, and let H,C Hm, n € Z, be the subspace {v € Hu|n(k(8))v =
exp(inf)v}. Then dim H, < 1 (cf. [25]) and the restriction of = to K, has a
direct sum decomposition Hr = &,., H,. If H, # 0, we choose v, € H, with
[lv,l] = 1 and set

(21) ®,,(g) =(7(g)v, v,).

The spherical trace function ®, , satisfies @, ,(1) = 1 and
q)17,n(k(01)gk(02)) = exp(in(01 + 02))q)1r,n(g)'

Moreover, if f € C°(G,), then

0,(f)= X fG (82, .(g) dg.

nel 0
Assume that f € C(G,) satisfies f(k(0,)gk(0,)) = exp(-im(6, + 6,))f(g).
If we use the Cartan decomposition G, = K,45K, to calculate
J6,f(8) @, .(8) dg, we get

(22) 0,(/) = ["f(a).,(a)sh(20) dt,

wherea, € Aj. If r=mFf, AER, weset ®;f, =@, andifr =u7, meN,
m>2, weset ®* =& . The Casimir operator £ acts on a principal series
representation 7., s € iR, of G, by 7*(2) = (s> — 1)1/4 and on a discrete
series representation 7, , k € N, k > 2, by m*(Q) = k(k — 2)I1/4[17]. There-
fore

0

R@)27,(5) = - 07 (o).
2.3) 2

R(2)®;,(8) = =70 ,(g).

Let r(z, z’) be the hyperbolic distance on H. For g € G let 8(g) € [0,27) be
determined by g = nak(6(g)). By an easy calculation one can show that
. .\ -n/2
o (g)emo[ £22) 7
i— gi
is bi-invariant under K. The map ¢ € K\ G/K — chr(gi,i)€[1l,) is a
diffeomorphism. Therefore, there exists ¢, , € C*([1, 0)) such that

. .\ n/2
; 1+ 1 L
(24) ?,.(8) = e’"“g)(—f_ = ) CHERE
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Note, that ¢, , satisfies ¢, ,(1) = 1. We rewrite (2.3) in terms of ¢, .. It follows
as in [16] that @, , satisfies

2 2 A
(g_+ 2u_d n = g . -0,

=4 +
du?  uwr—-14du 2u+1)(u?-1) wu*-1

where

ks

(1-s5%)/4, ifr=arsciR,
k(2-k)/4, ifr=mt keNk>2.
Let A = (1 — s2)/4, s € C, and consider this differential equation with A

replaced by A. The unique solution ¢ which satisfies ¢(1) = 1 is the Legendre
function

2 \6*D2 (5+1 n s+1  n u—1
(2:5) ﬂm“)‘(1+u) ( 2 2 2 +5”u+1)
F denotes the hypergeometric series. Note that P, , satisfies P, , = P_ , and
PS n = PS,—"'

3. Eisenstein series and the spectral resolution

We start by recalling some facts about discrete subgroups of (SL(2, R))". Let
F/Q be a totally real number field of degree n. The ring of integers of F will
be denoted by @. Let ¥, be the algebraic group SL(2)/F defined over F and
let ¥= R, q%, be the algebraic group obtained from ¥, by restriction of
scalars 4 la Weil [42]. 9 is defined over @ and has Q-rank one. Let G = 4(R)
be the group of real points of ¢. G is isomorphic to (SL(2, R))". Moreover note
that 4(Q) = SL(2, F) and %(Z) = SL(2, 0;), the Hilbert modular group of
the field F. If we identify G with (SL(2,R))", then SL(2, F) corresponds to a
subgroup of (SL(2, R))". This subgroup is obtained by sending (¢ ) € SL(2, F)

to
@) (¢V) (n) (n)
(2252 ) e

aom cm g

where x = x is the ith embedding of F in R. Therefore SL(2, 0,.) = 9(Z)
is a discrete subgroup of (SL(2, R))".

A subgroup T' C G is called arithmetic if: (1) T € 9(@) and (2) T is
commensurable with ¥(Z).
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Thus, I is a subgroup of SL(2, F) which is commensurable with the Hilbert
modular group SL(2, 0). An arithmetic subgroup I' C G has the following
properties:

(1) T is a discrete irreducible subgroup of G.

(2) Vol(T'\ G) < oo.

(3) T has at least one parabolic fixed point on H”.

Moreover, rank(I') = 1 (see [32] for the definition of rank(I")). On the other
hand, Selberg’s rigidity theorem [37] states that any subgroup I' € G which
satisfies (1)—(3) is conjugate in G to a group commensurable with the Hilbert
modular group of some totally real number field F of degree n.

Let I' C G be an arithmetic subgroup. We discuss some aspects of the
spectral resolution of the regular representation of G on L?(T'\ G). We start
with the theory of Eisenstein series. The basic references are [20], [26] and [33].
For all details we refer the reader to these references. Since I' is arithmetic, we
can use Harish-Chandra’s approach [20]. Eisenstein series are associated with
the I'-cuspidal parabolic subgroups P C G [26], [33]. In our case one can
describe the I'-cuspidal subgroups P C G as follows. Let Z < SL(2) be a Borel
subgroup defined over F and let #= Rp,o%. #C ¥ is a Borel subgroup
defined over Q. Set P = Z(R). Then P C G is a I'-cuspidal subgroup and all
I'-cuspidal parabolic subgroups arise in this way (cf. [20]). Since rankgy 9 = 1,
all T'-cuspidal subgroups of G are I'-percuspidal (cf. [32]). We denote the
unipotent radical of £ by #. Let 7 C & be a maximal torus of . Jis defined
over Q and = % - 7. Let & C I be the Q-split component of Tand # C I
the anisotropic subtorus. Then = /- # and # = % - /- #. Consider the
corresponding groups of real points P = Z(R), M = #(R),---. Then P =
UAM. U is the unipotent radical of P. We call this decomposition of P
Langlands decomposition of P over Q. The group UM has the following
alternative description. Let a: # — G,, be the positive root. a induces a
homomorphism

a,:P=B(F®gR) > G, (F®gR)
and if we compose a,, with the norm homomorphism
v:(F®gR) > (R*)™
we get a homomorphism
laj: P> (R*)™.

Let °P = { p € P|laj(p) =1}. Then UM =°P and U\°P = U\ UM = M.
Therefore, we get a natural homomorphism p,: % > M. Let K, =
Tpm (K N°P), where K = (SO(2))". K, is a maximal compact subgroup of M
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and 7p),, is an isomorphism of K N°P onto K,,. Since T splits over R, it
follows that K ,, is finite. In particular (K,,)° = {1}. Let X,, = M/K,,. Then
X,, = M°/(K,)° = M°. Further note that ' N P =T N°Pand T N U\ U'is
compact. In our case U is abelian and isomorphic to R”. I' N U can be
considered as a discrete subgroup of translations of R”. Therefore I' N U\ U
is an n-dimensional torus (S')". Let

Ty = ’lTPIM(F N°P).

T, is an arithmetic subgroup of M. Since /# has Q-rank zero, it follows that
T, \ M is compact. Let

(3.1) Ty = (Ty - K)) N MO

Since M is commutative, we get T',,\ X,, = [y \ M°. Therefore, I';,\ X,,is a
torus of dimension n — 1. We have an exact sequence

1-TNU->TNP->T, -1

Let °X =°Px,, where x, € H" is the coset eK. °X c H” is a subspace of
codimension one. If we use the above remarks, it follows that

Tppe: T N P\OX = T\ X,

is a locally trivial fibration over T, \ X,, = (S')"! with fibre T N U\ U =
(S*)". This fibration has a description in terms of the number field F [38]. We
describe I';; and I' N U. There exists a unique x € (P;(R))” such that P is the
stabilizer of x in G. x is a parabolic fixed point of " and I' N P is the stabilizer
of x in T'. Let P_ be the stabilizer of oo € (P;(R))" in G. There exists
p € SL(2, F) such that °P = P_, where °P denotes conjugation with p. Thus
px = oo and x € P;(F). The group *T is again arithmetic and commensurable
with T'. Further *(T',) = (°T),,.

Lemma 3.2. Let p € SL(2, F) be such that °P = P, . There exists a subgroup
V, C 0% of finite index such that

- 0
= {[s per

Proof. Let U, A,M, = P, be the Langlands decomposition of P_. Then
P(Tyy) = (°T) M- Since PT' is arithmetic, we can assume that *T' =T and
P=P, Letd€T,, 8§=(§ %1). Since T), = M N (TU), there exists y € T
such that y = (& 2.1) with a, b € F. Since T is arithmetic, I' /T N SL(2, Op) is
finite. Therefore, there exists n € N such that y” = (§".-.) isin T’ N SL(2, 0,.),
ie, a",a™" € Op. Hence, a and a™ are algebraic integers. Since a € F, we get
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(8 891)€FM}~

Since T',,\ M is compact, I';, has rank n — 1. Therefore, it follows from
Dirichlet’s unit theorem that ¥; C 0% is a subgroup of finite index. Note that
¥V, is independent of the particular choice of p. q.e.d.

The group ?(I' N U) = (°T) N U,, consists of matrices (§%) with p € F.
Since I' N U\ U is compact, the set of all such p € F forms an additive
subgroup M C F of rank n, i.e. M C F is a lattice. The lattice M depends on
the choice of p, but the strict equivalence class of M is uniquely determined (M
and M’ are called strictly equivalent, if there exists a € F, a totally positive,
such that M = aM’). Thus we have

Lemma 3.3. For each T'-cuspidal parabolic subgroup P C G there exists
p € SL(2, F), a lattice M C F and a subgroup V| C O% of finite index such that
PP = P_ and *(I' N P) is an extension of M by V;

05>M=P(TAP)— ¥, 1,

a € OF. Let

V1={aem;;

where
1 p,)
eM e (I'np
peM- (o Herrap
and
e B
(0 8_1) e’ (TNP)—ce V.

Since I' N P is the normalizer of I' N U in I', we get an action of Iy, on
I' N U. This action corresponds to the action of ¥; on M which is given by
p— &u, e € V,, p € M. Let Uy be the group of all totally positive units & of
O such that eM = M. The group Uy is abelian of rank » — 1 [11] and
(V))?> € Uy is a subgroup of finite index. In general, ?(I' N P) is not the
semidirect product of M and V] with respect to the action of ¥; on M defined

above. However H2(V;, M) s finite.
The fibration I' N P\°X — T}, \ X,, is equivalent to the fibration

(34) (T 0 P)YN(°X) =* (Ta) \* (Xp)-

If P, =U_A_M, is the Langlands decomposition of P, over Q, then
P(Xp) = X, P(Ty) = (°T),_ and ?(°X) is the orbit of x, under U M,.
This is the subspace

W={zEH”

1:[1 Im(z,) = 1‘}
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Let

Y = {yE(R+)"

lj[lyi=1}.

(M,,)" is isomorphic to Y. This isomorphism is given by
(A 0
0 A!
Thus X,, = (M,)° = Y. The projection W — Y is given by z; > Im z;. The
group of units ¥, acts on Y by e-y = ((¢V)2y,- - -,(e™)?y,), e € V. Let
V = (V)2 V can be identified with a discrete subgroup of Y and *(T;,)\ X, M,
= V\ Y. U, is isomorphic to R". By sending p € M to (p®,- - -,u™) € R",
the lattice M is mapped isomorphically to a lattice in R” which we also denote
by M. The exact sequence of Lemma 3.3 shows that the fibration (3.4) is
equivalent to the fibration
(3.5) P(TNP)\W-V\Y

with fibre M\ R”. Let T" be the image of T in (PL;(R))". Then we have a
corresponding extension

(3.6) 0-M-="(TNP) >V -1,

where

Je (M) = (8 W) e v,

peM-—>(1 ,u.) e?(T' N P)
01
and

(8 ‘;)Ep(FOP)'—)eEV.
This is the description given in [24].

Now we turn to the theory of Eisenstein series on I'\ G. We recall the
general context in which Fisenstein series are defined. Let 6: K - GL(V) be a
finite dimensional representation. Let P € G be a I'-cuspidal parabolic sub-
group as above with Langlands decomposition P = UAM over Q. Let 3,, be

the center of the universal enveloping algebra of the Lie algebra m of M and
consider a representation

x: 8y = Homy (V,V)
of 3 ,,. We consider the vector space
L (Ty\M,0,x) = {y: Ty \ M > V|y € C*, y(mk™) = a(k)¥(m),
k € Ky, (Z4)(m) = x(Z)(¥(m)), Z € 8}
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Since T'),\ M is compact, we need no growth condition and &/ is a space of
automorphic forms in the sense of Langlands [20]. «is finite dimensional [20]
and coincides with the space L*( T,,\ M, o, x) of cusp forms of type (o, x).
We extend ® € (T, \ M, o, x) to a function
(3.7) ®:TNP\G-V,
depending on s € C, by ® (uamk') = o(k)®(m)e**P4 where u € U,
a€A* me M,k KandIln: A" > Lie(4) = R. ®,isin C*(T N P\ G, o).
The Eisenstein series attached to P and ® is defined as
(3.8) E(P,®,s,8)= ) 9(vg)

TNP\T
for Re(s) > 1. E(P, ®, s, g) has a meromorphic continuation onto the entire
s-plane. As a function of g it belongs to C* (I'\ G, 0) and it is slowly
increasing on any Siegel domain [20]. Let 3; = 3(acm¢). In our case we have
81 = S(ac)S(m¢). Let p: 83 — 3, be the Harish-Chandra homomorphism
[20,1,86). If Z € Blet p(Z) = X[_,§:q; with {; € S(m¢) and g, € S(ac). For
s € C let

u(2) = z o

Then the Eisenstein series satisfies
(3.9 R(Z)E(P,®,s,g) = x(n,(Z))E(P, ®,s,8)
for each Z € 3 [20, II, §2].

Let P,C G, i = 1,2, be two I'-cuspidal parabolic subgroups with Langlands
decomposition P, = U;4; M, defined over Q. Let ® € L(T, \ M,, 0, x) and
consider the Eisenstein series E(P;, ®, s, g) attached to P, and ®. The con-
stant term of E(P;, ®, 5, g) along P, is defined as

(3.10) EP(P,®,s,8) E(P,,®,s,u,g) du,,

'/1“0 U\,
where the Haar measure on U, is normalized by the condition
Vol ;. (I' N U,\ U;) = 1. For all facts concerning the theory of the constant
term and the functional equations satisfied by the Eisenstein series we refer to
[20], [26]. For simplicity we shall assume in the sequel that all I-cuspidal
parabolic subgroups are I'-conjugate. Thus, we can restrict ourselves to the
case P, = P, = P. Since P is fixed, we shall write E(®,s, g) instead of
E(P,®,s, g). The Weyl group W(A) of (G, A) operates in a natural manner
on the group B,, of characters of 8,,. Let w € W(A) be the nontrivial
element. There exists a linear map

(3.11) C(x,0,5): LA(T)\ M, 0,x) > LT} \ M, 0,"x),
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which is meromorphic in s € C, such that

(3.12) E"(®,s, g) = ®,(g) +(C(x,0,5)®)_,(g)
for each ® € L*(T),\ M, o, ). There is an orthogonal sum decomposition
(3.13) LT, \ M) = @ m(r,T},)H,,

re€K

where m(7,T,,) <1 and H, = Cr. Since M = M° X K,,, a character 7 is
uniquely determined by d7 and 7|, . From this one can conclude that
dim L*(T,,\ M, 6, x) <1 and L*(T,,\ M, 0, x) coincides with one of the
spaces H,. If w € W(A) is the nontrivial element, then we have w™'mw = m~,
m € M. Therefore, ¥x # x if x # 0. Thus, all characters x # 0 are unramified.
This is an important observation because it implies

Lemma 3.14. Let 6 €K, x € 3,, and ® € LXT,,\ M,0,%). If x # 0,
then E(®, s, g) is holomorphic in the half-plane Re(s) > 0.

Proof. The poles of E(®, s, g) and C(x, o, s) coincide. If so, Re(sy) > 0,
is a pole of C(x, o, 5), then s, is simple and s, € (0, 1], [20, IV]. Let

¥(sy) = —27Res (C(x, 0,5) ® C("x,0,5))
s=s¢

and consider y(s,) as an operator in
Lz((I‘M\ M,o,x) ® L*(T,,\ M, 0,"x).

v(s,) is a positive semidefinite operator (see [1]). The proof of this fact is
similar to the proof of Lemma 2.1 in [41]. On the other hand, y(s,) maps
L*(Ty,\ M, 0, x) into L2((Ty,\ M, 0,”x) and vice versa. If *x # x, then
L*(Ty\ M, 0,x) and L*T, \ M,o0,"x) are orthogonal subspaces of
L*(Ty,\ M). Thus Tr(y(sy)) = 0. But y(s,) is positive semidefinite. Hence
v(sy) = 0. There is another way to see this by using (3.9). If 5, € (0, 1] is a pole
of E(®, s, g), then it follows from (3.9) and (3.12) that Res,_; E(®,s, g)isa
nonzero L%-eigenfunction of 8 with character x( g (+))- Let Q ; be the Casimir
element of the jth component of G. If we appeal to Corollary 1.2 of [29], it
follows that R(R)),j = 1,- - -,n, are self-adjoint operators in L*(T\ G, 0).On
the other hand, an easy computation shows that x(p, (,)) is real for all ; iff
x =0. qed

We shall discuss now the Eisenstein series which occur in our situation. Let
P_, be the stabilizer of the cusp co. We shall describe only the Eisenstein series
which are associated to P_. The others can easily be related to these. For
simplicity we delete the index and write P instead of P_. Let P = UAM be the
Langlands decomposition over Q. The basic representation is A* Ad p: K —
GL(A*pe). If 6 € K occurs in A* Ad,, then it follows from (1.1) that
olg, = 1. Therefore, we shall restrict ourselves to characters o € K with
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0|, = 1. In this case we have

LTy \ M, 0,x) = L*(Ty\ M°, x),
where Ty is defined by (3.1). Note that K ,0,= {1} and T, K, \M =
I3\ MO M?is isomorphic to A = {A € (R)"[[T"_, A, =1}, where () %1) =
(ALs- - ,A,). According to Lemma 3.2 there exists a subgroup V; C @% of finite

index such that
0
Ty=1|° )
M {(0 et

Thus, T'Yy corresponds to the subgroup V] = {(|e®),- - -,|e™|)|e € V;} of A. V]
is free abelian of rank n — 1 by Dirichlet’s unit theorem. Let H C R" ! be the
hyperplane ¥ x, = 0 and let L C H be the additive subgroup of rank n — 1
which corresponds to V] under the map A, — log A ;. Then Ty\ M° = L\ H
= (SH" ! and

EEVI}.

LA(TH\M°) = @ m(r,Ty)H,,

reM°
where 7 is a character, H, = C7 and m(7, ') < 1. Each 7 is an eigenfunction
of the Laplacian A ,, of the torus I'y;\ M°. The characters 7 with m(7, TJy) # 0
can be described as follows.
Let {&,---,¢,_,} be a system of independent generators of the free part of
V, and let /,; = logle’, 1<i<n—-1,1.=1/n,j=1,---,n. The matrix

> “nj

(/;,) has rank n. A fundamental domain of L C H is the set

n—1
{x ER"x;= Y Lu,0<u < 1}.
i=1
Let
(3.15) B=(1,)"
The isomorphism L\ H = (S!)""!is given by

u, = 103(;;1 (Aj)"’*).

If @ € Z" ! let (Bw); be the jth component of B[§]. Then

e21ri(w,u) — I‘EI;(AJ')ZM'(B”)].

J
We define the character 7,;: M — C* by

A 0 ! mi(Bw);
(3.16) Tw((o }\_1))=11;11|;\j|2 (8o,
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Then 7,(T,,K,,) = 1. Thus m(7,, T) = 1 and each character 7 with m(7, Ty)
# 0 is of this form. Let ¢ € K, olg, =1 and 0w €Z"" 1. 7, determines a
character x, € 3 uyand 7, € L2(FM\M 0, X,,)- We shall denote the Eisen-
stein series which is associated to (7, ¢) by E (o, s, g). The constant term of
E (o, s, g) along P is of the form

(3.17) Ej(0,s,8) =2, ,(g) + C.(0,5)0,_,(g),

where @, is the function which is defined by @, (uamk) =
o(k) ', (m)e“*P"9 and C (o, s) is a meromorphic function of s € C. Let
2 € 3 be the Casimir element. It follows from (3.9) by an easy computation
that
52 -1 2 - 2

L (B)]|E(o.5. ).

j=

Let E* J =1,---,n, be the basis of b defined by (1.1). We set E; =
—iE} /4 j= ,n. Then E E; /4. We identify p ¢ with its dual p§ via the
Killing form and we mtroduce the following notations: By I, J, - - - we denote
subsets {iy,---,i,} of {1,--,n} withi; <i, <--- <i, The cardinality of I
will be denoted by |I|. For 1, J as above we set

(3.18) R(Q)E_(o0,s,8) =

(3.19) v =E A NE ANE A ---NE.
Let x: SO(2) — € * be defined by x(k(8)) = 2™ and put
(3-20) U[J(k)“ Hlx(k)l_[x( )

L€

The set {v;,;|I,J C {1,---,n}} forms a basis of A*pg which consists of
common eigenvectors of {A* Ad}(k)lk € K} with A* Ad}(k)v,; =
o; ;(k)v; ;. The Eisenstein series E (o, ,, 5, g) corresponds to a I-invariant
differential form on H" of bidegree (p, q), p = |I|, ¢ = |J|. For y € G, and
z€ H"let

. . . -1
Jra(v2) =Tty z) T1i(v, 2)7,
iel eJ

where j(y, z) = (cz + d)/(cz + d) if y = (?5) and z € H. Then
dz!  dz’
E (0;;,5,2z)=f, S, z2)— AN —,
(01005:) = sl ) 2
where dz’ =dz, A - A dz,, dz’ = dz; A --- Ndz;, yy=Tl,c;y and the
function f,, , ; satisfies

fw,l,J(Yz) =jI,J(Y’ z)fw,l,](z)
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for y € T. To describe f,, , ; we use the coordinates (x, y, #) on G introduced
by (1.2). It is easy to see that

fors(s:2)= ¥ jrs(z,0) " TLy(yz) ™ Ereen2,
'nP\T j=1
We calculate the constant term of E (o, ;, 5, §) along P. Let @, be defined
by
q’w’s(uamk) = Olyj(k)_lfrw(m)e(s‘Fl)lna

(for simplicity we suppress the indices 7, J). The constant term is given by

E:(UI,J’S’ g) = Z (Ds,y(g)»
TNP\T/TNU
where
®,.(g)= [ ®,,(vug) du
(TNUNYPN\U

[20, IT). If (I' N P)y(T N U) is the trivial double coset, then we get @ _(g) =
®, .(g). If y represents a nontrivial double coset, then U NP = {1} and
@, (8) = [y P, (yug) du. We have to insert the explicit expression for @,
and compute the resulting integral. To describe the final result, we introduce
some notation. Let S =IUJ — (INJ), S = (1,---,n} — S and d = |S|. For
w € Z"~! we define the I'-factor

- ~ amiBe), I'(s + 27i(Bw);)

Tora(s) = ,-I;Is 2-2mi(Be) I((s —1)/2 + mi(Bw);)T((s +3)/2 + 7i(Bw) )
' T'(s/2 + 7i(Bw);)

G2 1L G+ 072+ miBay)

Forp € F*let

n

(3.22) Xo(w) = IT[n?)

Jj=1

~27i(Bw),

If T is the Hilbert modular group SL(2, @;) of a field F with class number one,
then the cusp at infinity is of type (0, @}2). In this case x, is a Gros-
sencharacter of the field F as defined by Hecke [21]. Now, let

(_1)42(1—s)dﬂ(n+d)/2
Vol(T n U\ U)
)y Xo()IN(c)| D,

yeTNP\T/TNU

Cw(oI,J’ S) = rw,I,J(S)

(3.23)
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where y = (25) and N(c) = I1/_; ¢'. Then the constant term is given by

E:(OI,J’ 5, 8) = (Dm,s(g) + CQ(UI,J’ S)q)-w,—s(g)-
By similar calculations one can determine the constant term along any other
I'-cuspidal parabolic subgroup P C G.

If T is a principal congruence subgroup of SL(2, @), then one can describe
the intertwining operator C(s) explicitly in terms of L-series associated with
the field F. We consider the simplest example. Assume that F/Q is a totally
real number field with class number one and let I' = SL(2, O). Then there
exists only one I'-conjugacy class of I'-cuspidal parabolic subgroups of G. The
stabilizer of oo in I is

rn&=“£fJ
0 e

The cusp o is of type (O, 0F?) in the sense of [24] and the characters x,,
w € Z"1, defined by (3.22), coincide with Hecke’s Grossencharacters [21]. Let
us denote the infinite sum in (3.23) by £(s). An easy calculation gives

sE@}?,pE@F}.

L(s,x,)
£(s) = L(s+1,x,)
where
L(s,x,)= X Xo(m)IN(w)I™

RE(Or—0)/0F
Finally note that Vol(I' N U\ U) = (Dg,q)"/?, where Dy q is the discrimi-
nant of the field F. By these remarks we obtain
_1)99Q—s)d_(n+d)/2 L
1) 2 'Z 2 L.rs(s) (s x.) :
) / o L(s+1,x,)

(3.24) C,(0,,,5) =
(Pr/a

Let Rp\; be the right regular representation of G on the Hilbert space
L*(T \ G). Using the theory of Eisenstein series one gets an orthogonal sum
decomposition

(3.25) L¥(T'\G) = L3(T\ G) ® L}(T\ G),

where L7(I'\ G) and LXT\ G) are invariant subspaces in which Rp\g
decomposes discretely and continuously respectively. L3(T \ G) contains the
invariant subspaces L3(T'\ G) of cusp forms. Recall that f € L%(T'\ G) is a
cusp form if for each I'-cuspidal parabolic subgroup P € G with unipotent
radical U one has [r\yf(ug) du = 0 for almost all g € G. Let L% (T'\ G)

res

be the orthogonal complement of L3(I'\ G) in L%(T'\ G). L2 (T'\ G) is

res

generated by the residues of all Eisenstein series with respect to poles in (0, 1]
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[1]. The proof of this fact is essentially the same as the one given in [1]. Let
RY\ > Rf\g» R and Ri g be the restriction of Ry to the corresponding
invariant subspaces L3(I'\ G),---. Let a € ¥'(G). Then R}, ;(a) is a trace
class operator [33, Theorem 8.2]. In our case we have

Theorem 3.26. Let « € €'(G) be right K-finite. Then the operator R (a)
is of the trace class.

Proof. We know that R{’!\G(a) restricted to the space of cusp forms is of
the trace class. Since a is right K-finite there exist 6,,---,0, € K such that
R‘li\c(a) restricted to the orthogonal complement of &/_, L2 (T\ G,o0,) in
L2 (T'\ G) is zero. Each L2 (T'\ G, g,) is generated by the residues of the
poles, which lie in Re(s) > 0, of all Eisenstein series E(®, s, g) with ® €
L*(T,,\ M, 0,, x) and x runs over 3,. Let o € K be given. It follows from
Lemma 3.14 that the space of those Eisenstein series, which are associated to o
and ® € L%(T,,\ M, 0, x) and which can have poles in Re(s) > 0, is finite
dimensional. Since each Eisenstein series can have only finitely many poles in
the half-plane Re(s) > 0 [20, IV, §7], it follows that dim L2, (T'\ G, ¢,) < oo,
i=1,---,r. Thus R\ 5(a), restricted to L, (T \ G), is of finite rank. There-
fore, R‘l‘i\G(a) is a trace class operator.

4. The Selberg trace formula

Let I' C G be as in §3. In our computation of the index of the signature
operator we are going to use the Selberg trace formula developed by Osborne
and Warner [32] for a lattice of rank one. In this section we explain some facts
connected with the trace formula. For all details regarding the trace formula
the reader is referred to [1], [32). The situation which we consider is much
simpler than the general case of a rank one lattice treated in [32]). The
contribution of the various conjugacy classes to the trace formula can be
computed rather explicitly. The trace formula for the case where f € C{°(G) is
K-bi-invariant has been established by P. Sograf [39] for n = 2 and by 1. Efrat
[15] in general.

Let 0: K - GL(V) be a finite-dimensional representation and let ¥(G, o)
be defined by (1.6). For any f € €}(G, o) we set

(a1) Rro(f) = [ Reva(g) © /(5) d.

Rp\(f)is a bounded operator on the Hilbert space LT\ G)® V. Let

(4.2) P, =/KRF\G(k) ® o(k) dk
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be the orthogonal projection of L*(I'\ G) ® V onto its K-invariant part
L¥(T'\ G, o). Since f € €Y(G, o), it follows from (1.4) that

PoRr\a(f) = RF\G(f)Pa = Rr\c(f)-
Thus, relative to the splitting
L*(T\G)® V=L*T\G,o0) ® LA (T\ G,0)",
Rp\(f) has the form
“3) Rro(N) = (%4 0)
with R_(f) acting on L*(T\ G, o). Rp\g(f) is an integral operator whose

kernel is given by

(4.4) k(g g)= L f(g7'v8).

yel
The series converges uniformly on compact subsets. The Casimir operator
Q € 8(gc) induces an operator A, on CP(T'\ G,0) = (CP(T\G)® V)X
which we call Laplacian. By [29, Corollary 1.2] A, has a unique selfadjoint
extension A | to an unbounded operator in L%(T'\ G, o). Let

L}(T\G,0) = (LAT\G)® V)"
and

L3I\ G,0) = (LA(T\G)® V)".
From (3.25) we get a decomposition
(4.5) L*(T\ G,0) = L3(T'\ G,0) ® LT\ G, o).

A, decomposes discretely in L%(T'\\ G, 0) and continuously in L*(T'\ G, o).
This decomposition is invariant under R (f). Let R4(f) and R:(f) be the
restrictions of R_(f) to the corresponding subspaces. These operators are
integral operators. We denote by tr the trace in End(V).

Proposition 4.6. Let o: K — GL(V') be a finite-dimensional unitary represen-
tation and let f € €(G, o). Then R‘xi‘\c( f) and R4( f) are trace class operators.
Moreover, tr f € €Y(G), tr f is right K-finite and

TrRI(f) = TfRi{\G(f) = TTR‘Ii‘\G(tTf)-

Proof. o splits into characters 6 = ®/_,7,, 7, € K. Let v, -,v, € ¥V be an
orthonormal basis such that o(k)v, = 7,(k)v; and let £,;(g) = ( f(g)v;, v,).
With respect to the basis v,,- - -,v,, Rf\g(f) is represented by the matrix

( R‘I’-\G( fi;))- The f, , are right K-finite functions in €(G). Thus, by Theorem



SIGNATURE DEFECTS AND VALUES OF L-SERIES 77

3.26, Rf“\c( f;j) are trace class operators and this implies that Ri‘f\G( f)is of
the trace class. (4.3) shows that R%(f) is also a trace class operator and
Tr RI(f) = Tr R{\s(f). Since tr f = £_, f,,, tr fis a right K-finite element of
%(G) and it is obvious that

TfRf‘\G(f) =X TrR‘Ii‘\G(fii) = TrR‘Ii‘\G(trf)' q.ed.
i=1
Let K,(g, g’) be the kernel of R{\ (/). Then one has
(4.7) TrRiG(f) = [ trKo(g, 8) dg.
G

The integral on the right-hand side can be calculated along Selberg’s path [1],
[32]. By Proposition 4.6 it is sufficient to consider the case where 6 € K. Before
stating the trace formula, we have to discuss the classification of elements of T’
and to introduce some notation. All details concerning the classification of
elements of I' can be found in [32, §5], [38, §1].

Given y € I, we denote by G, (resp. I)) its G-centralizer (resp. I'-central-
izer). We write {y}¢ (resp. {y}) for the conjugacy class of y in G (resp. T').
Let Z be the center of I'. By our assumption, I' C G is an irreducible discrete
subgroup. An equivalent condition is that I contains no elementy = (v, - *,v,)
with v # 1 and v, = 1 for some i. The only possible central elements of I" are
+ 1. This follows from the assumption I' € SL(2, F) and [38, §1]. An element
YET,y= (v ",7,) is called elliptic, parabolic or hyperbolic if all compo-
nents y; as elements of SL(2,R) are of the corresponding type. Every element
of I" which is not central and which is different from all types above, is called
mixed. If y is mixed, then its components are either elliptic or hyperbolic. The
hyperbolic elements are divided in two classes. The first class consists of those
hyperbolic elements such that none of its fixed points on H" is a parabolic
fixed point of I'. The remaining elements are in the second class. If y # +1,
then I\ G, is compact, except in the case where v is a hyperbolic element of
type IL. If y is hyperbolic of type II, then I, \ G, is isomorphic to the product
of R and a compact group. For a rank one lattice I', Osborne and Warner
defined in [32, §5] a decomposition I' = Z U I'y U T, (disjoint union). Zy is
the center, I'y consists of elements y € I' with the property that {y} N P = &
for all T'-percuspidal parabolic subgroups P C G and I, is the complement of
Z:UTg in T. T, has an additional decomposition I', = I'p(7) U I'p(s) in
“regular” and “singular” elements (see [32, §5] for the definition). In our case
we have Z; C {+1}, I is the union of the elliptic, hyperbolic type I and
mixed elements, ['»(r) is the set of hyperbolic type II elements and I'p(s) is the
set of parabolic elements.
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To simplify notation, we make the following assumption about our discrete
subgroup T'.

Assumption. There is only one T-conjugacy class of T-percuspidal parabolic
subgroups P C G.

In other words, I'\ H” has a single cusp. We make this assumption to keep
the notation in a manageable form. But all our calculations can easily be
extended to the case of several cusps. An example of a discrete group, which
satisfies our assumption, is the Hilbert modular group SL(2, @) of a field F
with class number one.

We denote by P the stabilizer of co. Let P = UAM be the Langlands
decomposition of P over Q. Note that in our case M is commutative. This will
simplify some terms occurring in the trace formula. An element in I, is called
regular if its centralizer in U is trivial. Let I',,(r) C T, be the set of all regular
elements of Iy, and let I';,(s) < T,, be the complement of I',,(r). T,,(s) are the
singular elements of I';,. For § € T, we let ¢(§) = |[det(Ad(d)|u — 1)|, where u
denotes the Lie algebra of U.

Consider the orthogonal sum decomposition (3.13). Given x € 3,,, let
L*(T,,\ M, x) be the sum of the irreducible subspaces of L*(T,,\ M) with
infinitesimal character x. The Weyl group W(A) acts on 3,. If &€
W(A)\ B, let

LTy \ M, &) = %LZ(FM\M, x)-
X

For & € W(A)\ B,,and s € C let rs . be the representation of P = UAM on
L*(Ty,\ M, ) which is defined by r, ,(uam) = Ry, \ ,/(m)e*™¢ and let m,
= Ind§(r, ,). The Hilbert space 5, ; of m, ; consists of all measurable func-
tions ®: G —» L*(T,,\ M, #) which satisfy

®(uamg) = eC* VMR, |\ (m)(@(g))
and which have the property that

||<I>I12=/Kfr \M|cb(k)(m)]2dmdk< .

., is unitary if s lies on the imaginary axis. For o € K let H (o) be the
o th-isotypic component of 5 .. There is a canonical identification #} (o) =
ane R LT m \ M, o, x). The theory of Eisenstein series produces certain inter-
twining operators
Co(s): 3, > Hy,, D€ W(A)\B,,
which are meromorphic in s € C. Cy(s) maps #, (o) into #, (o) and it
satisfies the functional equation
Cs(5)Cy(—s) =1d
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(see [32], [33]). By Proposition 4.6, we can use the trace formula established in
[32].

Theorem 4.8. Let f be a K-finite function in €7(G), 0 <p <1. Then
R‘li\c( f) is a trace class operator and Tr R’f«\G( f) is the sum of the following
terms:

(1) (central)
T Vol( r\G)f 1(s7vg) dg.

YEZr

(ii) (elliptic, hyperbolic type 1, mixed)

(5) ¥ Vol(T. \G)f S(&7vg) ds.
{vir
The sum runs over all I'-conjugacy classes of elements of T's.
(iii) (zype 11 hyperbolic)

—Vol(rM\M){( ) T Gof f(8u) du

{8},

H0) T 4(0) [ 1)) |-

{8},
The sum runs over all T',conjugacy classes of elements of T',(r). Cy is a certain
constant depending on 8. It is defined in [32, p. 69). a is the positive root of A,
w € W(A) the nontrivial element of the Weyl group of A and H(wu) € a the
unique element which is determined by the Iwasawa decomposition of wu.
(iv) ( parabolic)

(5) T lim £ (:0(/,2)),
{8},
where (s)XL is the sum over all T conjugacy classes of elements of T'),(s) and

Us(f, z)

=ff f Y f(ma'ulyuam)e 2=*D™4 gy da dm.
Ty \M “TNU\U yesUNTp(s)
(v) (intertwining)
1 d )
-— T C 5)Cy(-s)]|ds
o R LRGP LA L) 21

(vi) (residual)

-hlr—*

Z (Wo,o(f)ca(o))-
3
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We shall apply this version of the trace formula to our situation. For this
purpose we have to compute some of the terms occurring in the trace formula
more explicitly. Let 0 € K and let 6 = ® " ,0;, where o: SO(2) - C*Xis a
character. Moreover, we assume that f(g) = Il7_, f,(g,), where f; € €7(G, o;)
with 0 < p <1 and f; satisfies f,(g) = f,(-g).

(i) The central term. Above we have seen that Z C { +1}. Thus, the central
contribution is

|Z[Vol(I'\ G)£(1).
(ii) The elliptic term. Let y € T be elliptic. We have I', = Z /IZ. Let y, € T,
be a generator of I,. v, is a primitive elliptic element and y = y§, 1 < ¢ < L y,
is conjugate in G to an element k € K with

cos —2W r sin —2" r
1 1 .
kj= am e |’ (,}_,1)=1’J=1,...,n_
—smTrj cos—i—rj

Moreover, G, = K. Hence Vol(T,\ G,) = (27)"// and

[ f(gvg)dg=[ f(gg) dg
G\G K\G

(4.9)
fi(g7%,g) dg.

Jj=1 j;(o\co

The corresponding orbit integrals on G, are calculated in [17]. We use formula
(2) of 1, §5.4in [17]. Let ¢ € ¥'(G,) and assume that p(~g) = @(g). Then

[ o(s7k(0)g) dg =~ {@)o*(w)—@o‘(qo)
Ko\Gp

" 4misin@ 2

(4.10) £y

m=2

(@;((p)ei(m—lw _ @r;((p)e—i(m—l)o)}
1 ° ch((16] — 7/2))
+ - N dX.
167sin |6 f_we* (9) ch(mA,/2)
(iii) The type 1 hyperbolic term. Let y € T be hyperbolic of type I. Let

Po= { (3 A?l)
v is conjugate in G to an element a € 17_, D, with
N(y))
0 N(Yj)_l ) ’

AeIRX}.

|N(Yj)| > 1,

a;
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where v; denotes the jth component of y, G, is conjugate to I'1 7-1Dy and
n
[ fe™ve)dg=[  flgag)dg=TI [ f(s7a8) ds.
G\G I D\G Jj=1 'D\G,

The orbit integrals on G, can be calculated as in [17]. Let ¢ € €'(G,) be such
that p(-g) = ¢(g) and let a = (§%-1), @ # +1. Then formula (2) of I, §5.3 in
[17] gives
1 oo ;

[ 5 (9™ an.

drla — a7 M J-w

[ w(gag) dg=
Do\Go
Let
1 ;
8(w) =5, [ @x(f)e™ an.

Then we obtain

1 r gj(logN(yj))
(4.11) fG y\Gf(g vg) dg jl:[l————4sh( N)

(iv) The mixed term. Let y € I' be mixed. Every component y; of y is either
elliptic or hyperbolic. The corresponding orbit integral splits again into a
product of orbit integrals with respect to G, and we can use the same
calculations as in (ii) and (iii).

(v) The type 11 hyperbolic term. According to Lemma 3.2 there exists a
subgroup V; C 0% of finite index such that

n={(s )

For v € V, let §, = (321). We determine I',,(r) and T,,(s).

Lemma 4.12. T,(s)= Zr.

Proof. Leté, € Ty (s). Then there exists u € U, u # 1, such that §,u = ud,.
This implies v = +1. Thus T,,(s) € {+1}. Recallthat Z. c {+1}.If -1 € T,
then -1 € T, and therefore I'y,(s) = {+1} = Z;.. Now assume that -1 ¢ T',
but -1 € I';,. Then there exists a € F, such that y = (3_¢) € I. Since T is
commensurable with SL(2, @), there exists k € N such that

(‘01 (2’”11)“) — y%+1 e T N SL(2, 0,).
Let b = 2k + 1)a. Then (75 %) € T N SL(2, 0;). On the other hand, since
(1 %) € SL(2, 0;) and T is commensurable with SL(2, 0) there exists m € N
such that

vE Vl}.

(1 2m + 1)b

e I'nSL(2,0.).
Lo ) 2.0,)
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This implies
_1=(-1 (2m+1)b)(1 2m + 1)b
0 -1 0 1

Therefore -1 & I'y, and I';,(s) = {1} = Z;. q.ed.

By Lemma 4.12 we have I',,(r) =T,,— Z; and the regular conjugacy
classes {8}, can be identified with the set V' — {+1}. The constant ¢(§) is
defined as |det(Ad(6)|u — 1)|. Hence

(8 %)) =G = Dl =N = o).

The integrals occurring in the contribution of the type II hyperbolic conjugacy
classes can be computed as follows.

fo(Svu) du:j-lifuoff((vg) (U(g)_l)u)du.

) €T NSLR, 0,).

Let

a, = (g }\91), AERX, A+ £1,

and let ¢ € €%(G,,0), 0 € KO. If we use formula 1.2 of V, §1 in [25] and
formula (2) of I, §5.3 in [17], then we get

A = -t
fuoqﬁ(axu) du ==X [ &
(4.13)

_ -21;(/: (6, (@)I\” +sign A 8, () \|"”) ""’)'

gla,g) dg

Let
1 *® iu
60 = 37 [ & (1) db.
Since v® - - - v = 1, it follows from (4.13) that
[ £(8,u) du = T1 g,(loglo")).
U j=1
For f € ¢'(G,) and A # +1 we put

1O = [ f(u ) ao(Hwow)) du,
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where w, = (_)3) and a, is the positive root. Then we get the following
expression for the type II hyperbolic contribution:

1 " )
SV(T,A M) T ¢, TTg,(loglo))
veV; Jj=1
v# +1

(4.14)

veE;
v#+1

X -0 E 1)) [T gk(log|v<k>l)},

where 1) denotes the product with jth factor deleted and C, is a certain
constant depending on v.

(vi) The parabolic term. According to Lemma 3.3 there exists a lattice M C F
such that T N U = {(} &)|p € M}. For p € M let

(6 %7}l 7))
T o 1) \o 1))

Recall that I'p(s) is the set of parabolic elements in I'. If § € I',,(s), then, by
Lemma 4.12, we obtain (8U) N T'p(s) = 8(U N I'p(s)) = 8(U N T). Using
these remarks we can conclude that

(s) X Up(f.2)

{3},
is equal to
|Zp|- Vol(T N U\ U)
4.15
( ) / Z f(m—la—lyuam)e—2(2+l)lna da dm.
LAM A4 yem—o0

By Lemma 3.2 there exists a subgroup V; C 0F of finite index such that
Ty = {(§ %)|v € V). If -1 & V,, then the map v € V; — v?> € (V;)? is an
isomorphism and if -1 € V, its kernel is { +1}. Let V = (¥;)2 Then (4.15) is
equal to

(4.16) Vol(T n U\ U)f f Y f(m‘la'lyuam)e‘z(’“)l““da dm.
M4 pem-ov

Let &) = p/|u)], j=1,---,n, and let e, € ' N U be the matrix with jth
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Further, let a, € 4 be the element which has all components equal to

(IN(#)IW" 0 )
0 NI
and let m, € M be defined by

( 11| )1/2 0
1/n
o | VNI

' 0 ( | )-1/2'
IN(p) /"
1. -

Then y, = m,a,¢,a, mnl. If we change variables in (4.16) by m — m,m and

a — a,a, then (4.16) is equal to

Vol(T N U\ U)
4.17
(417) y |N(I.L)|‘(z+1)f(m'la‘leuam)e‘z(”l)h”da dm.
M=A4 peMm-0)v
For € = (g,---,¢,), with g, € {11}, let u(e) € U be the element with jth
component equal to (}%),j = 1,- - -,n. Moreover, for Re(s) > 1, let
(4.18) MV, s)= X IN(p)I

re(M-0)/V
gp(j)>0

Then (4.17) can be rewritten as
Vol(T n U\ U)

Y MV, z+ 1)/ ff(m'la'lu(s)am)e‘z(”l)1““dadm.
M4

ee{+1}"

(4.19)

The integral is holomorphic at z = 0. Concerning {,(M,V, s) we have the
following

Lemma 4.20. For each ¢ € {+1}", {.(M,V, s) has an analytic continuation
to the entire complex plane with a simple pole at s = 1. The residue is indepen-
dent of e.

Proof. Fora € (Z/2Z)" let A , be the character of F* defined by

-1 (£2)°

j=1\ s

for p € F*. Set

Aa(w)
L(M,V,A,,s)= — Re(s) > 1.
( ) (M—Zo)/v 'N(l‘)l ( )
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The functions L(M,V, A, s), a € (Z/2Z)", and {,(M,V, s), ¢ € {£1}", are
linearly equivalent. Let A (&) = I1”_,(¢;)%. Then we have

(4.21) 2%, (M,V,s) =Y A (e)L(M,V, A, 5).

Using Hecke’s method [22], one can show that L(M,V, A, s) has an analytic
continuation to the entire complex plane. If A, # 1, then L(M,V, A, 5) is an
entire function. L(M,V, 1, s) has a simple pole at s = 1. This together with
(4.21) proves the lemma. g.e.d.

Let

$(MV, 5) = -——1+a0(e)+0(s—1)
be the Laurent expansion of {,(M,V, s) at s = 1. Then it follows from (4.19)
and Lemma 4.20 that the parabolic contribution is equal to

Vol(T n U\ U){—2a_12 fMj;ln(a)f(m'la‘lu(s)am)e'zh”dadm

(4.22) + Zao(e)/MLf(m'la‘lu(a)am)e'z"”da dm}.

We compute now the integrals occurring in (4.22). We start with some
comments on the choice of the invariant measures. The measure on M has been
normalized by the requirement

ff(g) dg = ffff f(uamk)e=2°19 dk dm da du,

UXAXMXK

f € Cy(G). The measure on K is normalized by the condition Vol(K) = 1 and
U has the measure induced from the natural Euclidean structure on u. On A4,
the measure is determined as follows. We have P = #(F ®qR), where # C
SL(2) is the standard Borel subgroup. The fundamental dominant weight a:
# — G,, induces a homomorphism |af: P — (R*)*, which is the composition
of a,: B(F ®qR) = G, (F ®¢R) and the norm homomorphism »: (F ®4R)
— (R, The kernel of |a| is UM and |a| induces an isomorphism |a|:
A - (R*)*. We choose the measure on 4 which corresponds to dt/¢ under |a|.
Furthermore, we have M = M° X K,,, where K,,= M N K and AMO =

I1}_, A, Let dm be the measure on M % so that da dm, = I1}_, da,. Then the



86 WERNER MULLER

normalized measure on M is dm = dm /2". This implies

fff(m‘la’lu(s)am)e‘zm“dadm
M4

(4.23) —jl;llff a'u(e,)a)e 2" da
,Ulf f(87'u(e))g) dg,

where u(e;) = (}%). In order to calculate these integrals, we use Theorem 6.7
of [5]. Let ¢ € C°(G,) and u = (5 *1). Then this theorem states that there
exists a constant C, which is independent of ¢, such that

(4.24) hm 0/ <p(g‘1k(i0)g dg = Cf g 1uJ_rg) dg.

This theorem can be extended to functions ¢ € ‘€ 1(G0). Using formula (2) of
I, §5.4 in [17], one can compute the left-hand side of (4.24). The result is

s o[ 3000 - 050 + £ (01(s) - 05(s)]
(4.25) L .
+ ﬁ(‘[_w@{((p) ar+ [~ 65(9) ax).

The constant C in (4.24) can be determined as follows. Using formula (2) of I,
§5.3in [17] and formula 1.2 of V, §1 in [25], we obtain

f(p(a u,a)e 21““da+f alu_a)e 2" dg
Ao

=2 f7ol(o ez ollo )@z g a
% ?\/(p(a)\u)du —11m|>\ A‘|f (p(g layg) dg
- ([Ter ) an+ [T07 (9 a0), whereax=(3 o)

(Note that our integral is 2/(a,) in the notation of [17, I, §5.3].) Combined
with (4.25) this gives C = 1/2. Now, let us assume that ¢ satisfies p(-g) =
@(g). If we use (4.24) together with (4.25) we obtain

fU\qu(g"uig) dg=+ 2_;'{%(@;(‘1’) ~ 65 (9))

(4.26) o oo .
+ 3 (83(0) - 0;(0)| + 5 [ 705 (s) an.
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We apply this formula to each f; € ¢7(G,, o;), j = 1,- - -,n, and compute in
this way the second integral occurring in (4.22). Now we turn to the first
integral in (4.22). We introduce the following distributions on G,: For f €
%'(G,) and u € Uy, u + 1, we set

F(f,u) =f f(a'ua)e 2%da,
4o

G(f,u) =L In(a)f(a'ua)e 2% da.

0

As above we obtain

/M_/;ln(a)f(m_la‘lu(e)am)e‘zlﬂ“dadm
(4.27) n .
= £ 6(4 u(e) [TF (s, uter)

Jj=1

where I1¢") denotes the product with jth factor deleted. By changing variables
we get

F(f,u+)+F(f,u_)=fO°°f((}) A{Z))%%wf(((l) _?_2))%
= %fuof(u) du.

We assume that f satisfies f(g) = f(—g). If we use the calculations by which we
pinned down the constant in (4.24) then we get

-1 e+

fuof(u) du = 5 f_wé)x(f)dk.

By similar arguments one can show that
1 fx 1
6(f.u)+6(fu)= -3 [ Gaps((§ 7)) ax
Let
1 A
gj(u) = E/: @}f(fj)e”‘" dX.

If we sum over all e € {+1}" in (4.27), then we get the following expression
for the first sum in (4.22):

@29 ZLvarn N E [ s (5 7)) a T19 8.0

j=1"-
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(vii) The intertwining and the residual term. By our assumption we have
f € €7(G, 0), where 6| = 1. Let & (o) be the o th-isotypic subspace. Then
7y ,(f) maps #;  into #; (o). Since 6|, = 1, we have by §3 that

#; (o) = @ L (Ty\M,0,x) = @ L(TH\M° x).
XE?Y XEP

The restriction of the intertwining operator Cy(s) to # (o) coincides with the
operator &, _, C(x, o, 5), where C(x, o, s) is the operator (3.11). There exists
w € 2" ! such that LX(T%\ M, x) = Cr,, where 7, is the character (3.16).
We introduce the quasicharacter x,, ;: P = C* by x,, ,(uam) = 7, (m)e 2.
Let 7, , = Ind§(x,,,) and let ®, , be the character of =, ;. Then the trace of
7y o(f)(d/ds)Cy(5)Cy(~s) coincides with the trace of this operator restricted
to ¥ (o) and this trace is equal to

00s(/) 2 C(0,5)C(0,-5) + O, (/) 2C_(0,5)Cu(0,~5)

if w # 0, and

0us(/) 20, 5)C,(0,-5)

if w = 0. Thus, the intertwining term is

42 g T [ 6..(f)gCulo)Culo,5)lds]

wez" 1

In the same way one can show that the residual term is given by
(4.30) —%Go,o(f)Co(o,O).

5. The index of the signature and the Dolbeault operator

Let I' € G be as in §3 and assume that n = 2p, p € N. We shall now
investigate the L?-index of the signature operator on I'\ H” by using Selberg’s
trace formula. Since I' may have elements of finite order, we have to modify
the usual definition of the signature operator. Let A*(I'\ H") be the space
of C>-differential forms on H” which are T'-invariant. According to §1,
A*('\H") can be identified with the space C*(T'\ G, A*Ad¥). By
AB(T'\ H") we denote the subspace of A*(I' \ H"), consisting of forms with
compact supports mod I'. Since I' acts by isometries on H", it follows that
A*(I'\ H") is invariant under the Hodge *-operator. Let 7 be the involution
on A*(T'\H”") defined by 7® = i?»"D*"x® for & € A?(I'\ H"). The
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+ 1-eigenspaces of 7 are denoted by A* = A*(I'\ H"). Let 8 be the codif-
ferential on A*(I'\ H"). d + 8 anti-commutes with 7 and its restriction to
A*(T'\ H") is by definition the signature operator

(5.1) D: A*(T\H") - A*(T'\H").

Let 2 C H" be a fundamental domain of T. The L2-norm of ® € A*(I'\ H")
is defined as

@) = fg‘b A *®.

We denote by L2A*(T'\ H") the Hilbert space of L*forms. L2A*(T'\ H") can
be identified with L*(T' \ G, A* Ad}). By L>A*(T'\ H") we denote the +1-
eigenspaces of 7, acting on L?A*(I'\ H"). Now, consider D with domain
AS (T'\H"), where A} (' \ H") are the +1-eigenspaces of 7 restricted to
A%(T'\\H"), and let D be its closure in L2 The L%*index of the signature
operator is by definition

Ind;> D = dimker D — dim coker D.

We have to show that this number exists. Let D*: A*(I'\ H") - A*(T'\ H")
be the formal adjoint operator to D and let D* be the closure in L? of D*
acting on A} _(I' \ H"). Note that D* is the restriction of d + & to A*(I'\ H").
D* is the adjoint operator to D. If T' has no elements of finite order, then
I' \ H" is a complete Riemannian manifold and the assertion is a consequence
of the results of [12]. In general, I' has a normal subgroup I'; of finite index
which contains no elements of finite order [36]. Since I'; \ T is finite, we have

L2A*(T\ H") = L’A*(T,\ H") "™\ c L2A*(T,\ H")
and this reduces our problem to the torsion free case. Let
A*=D*D and A= DD*.
A* are the Laplacians on A*(I'\ H"). By using the same arguments as above,
we obtain that A%, acting on A} ,(I'\ H"), is essentially selfadjoint. We use

the same notation A* for the unique selfadjoint extension to L*A*(T \ H").
Then ker A*= ker D and ker A~ = ker D*. Let

HE(C\H") = {® € AX(T\H")|A® =0, |[®] 2 < o0 }.

This is the space of I'-invariant square integrable harmonic forms on H”. The
involution acts on 3 (I'\ H") and we denote by 53 .(I' \ H") the corre-
sponding + 1-eigenspaces. Then ker A*= 5¢73) (I'\ H").

Proposition 5.2. The spaces 3, (I \ H") are finite dimensional and the
L*-index of the signature operator D is given by

Ind,: D = dim 53 (T \ H") — dim #%,_(T\ H").
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Proof. It follows from Theorem 5.5 in [10] that 53 (I'\ H") are _finite
dimensional. Above we have seen that ker D = 53 (I'\ H") and ker D* =

#3, (I \ H"). This proves the second statement. g.e.d.

Let #5(I'\ H") be the space of I-invariant square integrable harmonic
p-forms on H". Since 7: #Z(F\H") - #3"?(T\H"), it follows that
HH(T\H") 699{”( “('\H" ), 0 < p <n, and H#(I'\ H") are invariant
under 7. Let #J (F'\H") and 53 ,(I' \H") be the corresponding +1-
eigenspaces of 7. Then

#5(T\H") = & 5. (T\H").

O<p<n
Moreover, if 0 < p < n, then
#5 (T\H") = {® + 7®|® € ¢ (T\H")}.
Thus dim 55 . (I'\ H") = dim H#5 (I \H") for p < n and therefore
(5.3) Ind ;> D = dim 5 , (T \ H") — dim 53 _(T\ H").

We can continue now as in the compact case. Let LIA*(T'\ H")C
L*A* (T \ H") be the subspace which is spanned by the eigenforms of A*. By
Theorem 5.5 of [10], the eigenspaces of A* are all finite dimensional. D carries
eigenforms into eigenforms with the same eigenvalue and it defines an isomor-
phism on the eigenspaces which correspond to nonzero eigenvalues. Let A% be
the restriction of A* to L3A*(I'\ H") and consider the corresponding heat
operators exp(—tA%), + > 0. We will show that exp(-tA%) are trace class
operators. Thus

(54) Ind ;. D = Tr(exp(-tA})) — Tr (exp(-tAy)).

As in the compact case there are kernels which represent the heat operators
exp(—tA%). They are obtained from the kernels of the heat operators exp(—tA%)
by subtracting the continuous part. The heat kernels we are considering are
closely related to the spinor heat kernels studied by Barbasch and Moscovici in
[6]. We shall use the results of [6] to determine the relevant properties of our
heat kernels.

Let 7: A*pe — A*p. be the involultion defined by 7X = i?(P~D*nx X if
X € APpc, and let A* b be the +1-eigenspaces of 7. A* Ad} decomposes
into two representations

(5.5) o*: K - GL(A%b¢).

Let A* be the Laplacians on A*(H") = (C®(G) ® A* pc)X. A* is the restric-
tion of —~R() ® Id,. ,  to the K-invariant part of C*(G) ® A% pc. If we
restrict A* to (CP(G) ® A* * be)X, then it has a unique selfadjoint extension to
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an unbounded operator in L*A*(H") = (L*(G) ® A* p¢)X, for which we use
the same notation A* (see [29, Corollary 1.2]). For each 7 > 0, the heat
operator exp(—tA¥) is a G-invariant smoothing operator. Therefore, there exists

h¥:G — End(A*be)
which is in C*® N L? and which satisfies (1.4) with respect to o *, such that

(5.6) exp(~18+)@(g) = [ n*(g7'8") ®(g") dg’

for ® € (L*(G) ® A* pc)*. We have to show that b} € €7(G,0%),0 <p <
1, where ¢ * is the representation (5.5), and that exp(—tA%) = R4 t\g(h). For
this purpose we consider the Dirac operator. We choose f) = f¢ as a Cartan
subalgebra of g.. The vectors EI.J—r € pe,j = 1,---,n, defined by (1.1), are the
nonzero root vectors and all roots are noncompact. The system of positive
roots y is chosen as in §1. Moreover, p = %Zae‘p a and W is the Weyl group of
(g¢s be) Now, let

s*: Spin(p) - GL(S %)

be the half-spin representations [34] and let s*: 30(pbc) = End(S?*) be the
differential. Via ad, ¢ operates on pc. When b is endowed with the Killing
form, this action becomes skew symmetric.

ad: fo = 80(be).
Let

7% fc = End(S %)
be defined by 7*= s*cad. For w € W let V,,, be the irreducible f;-module
with weight wp and let

Tp' te End(pr)
be the corresponding representation. Then we have
(5.7) = D ¥,

wew
det(w)=+1

as fc-modules (see [34, Lemma 2.2]). Now, let b , = S LCE*. Then p¢ =
b,® p_. We consider A*p_. Since E,” A -+ A E 1 <ip<--- <i,<n,
is a basis of A*p_, it follows from (1.1) that the welghts of the f-module
A*p_ are given by {-a; — - — @; |1 < i < --- <i, < n}. Moreover, for
each weight —a; — -+ — a, there exists a unique w € Wsuch thatp — a; —

- —a; = wp. Thus the welghts of ¥, ® A*p_ are given by {wp|w € W}
and (5. 7) implies that

(5.8) S*e ST=V,® A*p_
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as f c-modules. In the same way one can show that
(5.9) Stes=V, ® A*p,
as f c-modules. Since pe = p,® p_, we get
A*pe = (A*p,) @ (A*p ) = (ST@ S7)®(S7@S7).
On the other hand, it is known [4] that
[Atpc] —[Arpc] = [ST@ STN([ST]-[s7])

in the representation ring R(f). Therefore

(5.10) Apc=(S"eS)e st
as f-modules. For w € W we set
(5.11) Ef=V,®S8%,

where V,, is defined above. The representation ,, ® s *: f¢ — End(E}) lifts
to a representation of K. Each X € p defines a map c(X): S*— S ¥ which is
the Clifford multiplication by X. Let { X}, - -, X,, } be an orthonormal basis of
p and set

2n
(5.12) Dr=Y X;®1d, ®c(X).

i=1
Then D} € U(gc) ® Hom(E}, E,F) is K-invariant. Therefore, it defines a
G-invariant first-order differential operator 2 from (C*(G) ® E})X to
(C*(G) ® E,[)*by

2n
(5.13) 22 = L R(X) @14, ®c(X).

i=1
97 is the Dirac operator. Let AX = 29 *. We use Proposition 3.1 of [34] to
compute A%, In our case we have p = p,, p, = 0 and ||wp||?> = ||p||%. Thus, we
get

(5.14) A = R(Q)®Idg:.

But —R(Q) ® Id; is the restriction of ~R(2)® Id,., to the subspace
(C*(G) ® E;f)* and A*= —R(Q) ® 1d, , by Kuga’s Lemma. A%, restricted
to (CP(G) ® EF)X, has a unique selfadjoint extension to an operator in
(L*(G) ® EF)X [29]. We shall use the same notation A% for this selfadjoint
extension. Let exp(-tAt), ¢ > 0, be the semigroup generated by A*. For each
t>0, exp(—t&ﬁ) is a G-invariant smoothing operator. Therefore, by §1, there
exists a kernel function

hf,: G- End(E})
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which is in C® N L? and which satisfies (1.4) with respect to the representation
T, ® st K - GL(E).

If 7 is a unitary representation of G, @ the Casimir operator and D, the

operator (5.12), let #(2) and = (D,}) be the operators defined by (1.3). One can

generalize Proposition 3.1 of [34] to the case of any unitary representation =
(see [6, 1.3.6]). If we apply this formula to our situation, then we get

(5.15) a(D])m(D;f) = -m(Q) ® Id s,
because p, = 0 and ||wp||? = ||p||>. Now, let
‘@wi,d = R‘I{\G(Dwi)'

2., is an operator from (L3(I'\ G) ® Ef)* to (L3(T \ G) ® E,7)X. Further-
more, let

Ai,d = —R?‘\G(Q) ® IdEE .
It follows from (5.15) that

‘@wx,d‘@wi,d = A:vtv,d'
If we apply Proposition 2.1 of [6], then we get
(5.16) exp(~1A3,4) = Ri\g(h,)-
On the other hand, we have Af = —R%\G(Q) ® Id . ,, and, by (5.8) and
(5.10),
LIA%(T\H") = (L3(T\ G) ® A% pc)"
= @ (Li(T\G) e E¥)".
weW

Therefore, A% , is the restriction of A to the subspace (L3(T'\ G) ® E,})X.
Let P, be the orthogonal projection of LZA*(T'\ H") onto (L3(T\ G) ®
E})X. Then it follows from these remarks that
(5.17) exp(-tA3) = Y. exp(-1A% ,)P,.

weWw

Let p,: A* pc — EF be the orthogonal projection with respect to the identifi-
cation of A* p¢ with (S*® §7) ® S * by (5.10). It is clear that

(5'18) hti(g)= Z h»%,t(g)"Pw,

weW

where h * is the kernel of exp(—¢A®). Then (5.16) and (5.17) imply that
(5.19) exp(-tA%) = REG(h}).
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Moreover, it follows from Proposition 2.4 of [6] that hE, € ¥7(G, 7 Tp ® S )
for all p > 0. Thus, by (5.18), hfe €¢*(G,0%) for all p>0. If we use
Proposition 4.6, then we can summarize our results by

Theorem 5.20. Let h* be the kernel of the heat operator exp(~tA%), acting on
L*A*(H"). Then h}} € €7(G, 6 ?) for each p > 0, where ¢ * is the representa-
tion (5.5). If A% is the restriction of A to the subspace L3A*(T \ H"), then

CXP( 1A ) r\c(h )

and R‘xi*\c(h ) is a trace class operator.
Corollary 5.21. Let D: A*(I'\ H") = A*(I'\ H") be the signature opera-
tor. Then its L*-index is given by

Ind;. D = TrR{;(tr b)) = TrRE G (tr k).

Proof. Since exp(-tA%) are trace class operators, we can use (5.4). The
corollary follows from Theorem 5.20 and Proposition 4.6. q.e.d.
Let h, = trh} — trh; . Then, by Corollary 5.21, we have

(5.22) Ind,: D = TrRE(h,).

We shall now use Selberg’s trace formula to compute the right-hand side of
(5.22). For this purpose we have to describe the function h, explicitly. This
problem can be reduced to the description of the heat kernel on the upper
half-plane.

The representations (5.5) can be decomposed into one-dimensional represen-
tations:

of= @ [x:0*]x.
x€K

where [x: o *] denotes the multiplicity of the character x in o *. For x € K let
L*(G,x) = {fe LX(G)|f(gk™") = x(k)f(g). k€K }.

Moreover, let E (x) C A* b be the x-isotypical subspace. Then

(L7(6) 8 A4pe) " = @, (L2(G.x) @ B4 (x))-
X€E

L*(G, x) € L*(G) is invariant under R(Q), because & € 8(g¢). Let A =
~R(Q)| 12, 5, and let P.* be the orthogonal projection of (L*(G) ® A* pc)"’
onto the subspace L2(G X) ® E (x). Then it is clear that

(5.23) exp(-tA%) = ¥ (exp(—iA,) @ 1d s ) B

x€K
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exp(—zA x) is a G-invariant smoothing operator. Let X € C*(G) be its kernel
and let p* be the orthogonal projection of A* b onto E (x). It follows from
(5.23) that

hE=Y (kX ® Idg )° Pt

X

Therefore

(5.24) trhi—trh; = Y ([x:0%]—[x:07])hX
xek

On the other hand, we have

(5.25) trot—tro =Y, ([x:07]—[x:07]x.
xef(

Consider the half-spin representations 7 *: £ — End(S *). Then, by (5.10), we
getot=(t*®@ 7))@ 7t Thustro*— tro = (trr*+ tr77)(tr 7*— tr 77) and,
using (5.7), we get

trot—tra =[] (e*?+ e %) [] (e?/? — e-%/?)

(5.26) sy o<y
=JT(e*—e )= ) det(w)e?r.
aEY weW

Let w: SO(2) — C* be defined by w(k(8)) = e**. For each w € W we define
the character x,, € K by

(5.27) X (k) = TTw((k))™),

Jj=1
where w; is the jth component of w. Put A7 = hi~. If we combine (5.24)—(5.26),
we get
(5.28) trhi—trh;= Y det(w)h?.
weWw
This together with Corollary 5.21 gives
Proposition 5.29. The L*-index of the signature operator is given by

Ind;2D = ) det(w)TrRig(h}).
wew

Our problem now is to determine A}. Let x € K. Then x = ® X where
X; € R,. Thus

n
LG, x) = ® L*(Go, x;)
2
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and R(Q) = X7}_, R(%;), where Q; is the Casimir operator of the jth compo-
nent of G. Therefore, it is sufficient to consider the case of SL(2,R). For/ € Z
let o, SO(2) > C* be defined by a,(k(8)) = e*". L*(G,,s,) C L*(G,) is
invariant under R(f). Let A, be the restriction of —R() to the subspace
L?*(G,, 6,). A, is the Laplacian on the space of automorphic forms of weight /
on the upper half-plane [16]. With respect to the coordinates (1.2), A, is given
by
a2 a2 .0
A= -yz(ﬁ + 5;5) + 2115.
Let p{’ € C*(G,) be the kernel of the heat operator exp(-tA,), ¢t > 0. For
w € WletI,, = {i|lw, = 1d}, where w = (wy,- - -,w,). We shall write p,* instead
of p{*V. From the considerations above it follows that

(5.30) k() = 11 p7(s) l_; pi(g))

We continue with the study of the kernel p{". It is easy to relate A, to a certain
spinor Laplacian by using the same arguments as above. Let ()¢ = (f,)¢ be
the Cartan algebra of (g,)¢ and let a be the root which is given by a(( §5)) =
2i. Let s¢: (¥4)c — End(S;t) be the representations induced by the half-spin
representations. The weight of the (f,)c-module Si* is +a/2. Let ¥, be the
(,)c-module with weight (/ — 1/2)a and let F;* = V; ® S;*. Then L*(G,, o,)
= (L¥(G) ® F,*)X. Let

D/ (L3(Gy) ® F*) " - (LX(G,) @ F7)"
be the Dirac operator [34]. Then by Proposition 3.1 of [34]
D; o Df=-R(Q) ® Id.+ 4)/(I - 1)1
=A,+ 4(1 - 1)d.

Thus exp(-tA,) = exp(t4|l(I — 1)|)exp(=tD; = D;"). If we apply Proposition
2.4 of [6], we get p{’ € €”(G,, g,) for all p > 0. Since p{” is the kernel of the
heat operator exp(—tA)) it has the following properties:

() 3p{"/3t = -R(Q) p{".

(ii) p{P, as t — 0, converges to the Dirac delta measure at 1.

In addition, we have seen that

(iii) p{P € €7(Gy, o)) for all p > 0.

It is known that the characters of the discrete series and of the principal
series are tempered distributions (§2). Since p{’ € €7(G,), p > 0, we can use
the Plancherel formula for SL(2,R) [25, VIII, §4] to expand p{" in terms of
spherical functions. Note that p{’(-g) = p{’(g). This follows from the fact
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that p" satisfies p{(gk) = 0,(k)p{"(g), k € K. Thus, the Plancherel expan-
sion of p{" is given by

PO(s)= X "2 (Te (g (p0) 73 (8)%) + T (m (50 7 (8)*))

m=2

(5.31) +%/{;wTr(ﬂf(p,(’))7r{(g) )Ath( )dx

We have to compute the traces occurring in (5.31). We start with
Tr(m(pP)m¥ (g)*). Choose v € Hy with ||v]| =1 and 7 (k(8))v = e2"%.
Since p{) € €7(G,, 0)), it follows that

Tr(w,f(p,(’) (8) <7f>\ (1) U T\ (g)v)

Let ®,(t, 8) = <'rr,‘ M), ) (g)v> and recall that the Casimir operator
acts on H,! by #n{(Q) = —(1 + A%)Id/4[17, 1, §3]. Therefore, by (i), we get

x( t,8)= +}\

A( t, g ) .
Moreover, by (ii),

lim 7 (p")vo= lim | p®(g)mi(g)vdg=rv.
Jim 73 (p0)o = tim [ pO(g)i (g)odg = o

This implies

Tr( ( (I)) +(g) )_exp(_t1+}\2

(v ()0)
(5.32) .

B s).

In the same way one can determine Tr(7,*( p{"’)m*(g)*). The Casimir opera-
tor acts on the discrete series representation = by = i(SZ) =m(m — 2)Id /4,
(see §2). Let H(*™ be the space of the representation #,* and let H{*™ =
{v e HE™|7x(k(8))v = e'P%}. Then

= exp(

H™= '@ H™ and H-™= @® HC™.
p=zm p<-m
p=m() p=m(2)

Assume that H{™ = 0 (H{;™ = 0). Since p{" € €”(G,, 0,), it follows that

at(p?)=0 (wm(p,(’)) = 0). Thus, if / > 0 (/ < 0), only those discrete series
representations =, (7, ) can make a nontrivial contribution to the Plancherel
expansion of p{", for which m = 2k and 1 < k < |/|. Now let m = 2k > 0 be
such that H{*™ # 0. Choose v € H{;*™ with ||v|| = 1. Then

Tr (7,5 (p") 7,5 (8)*) = (mE(p") 0, 7,5 (8)0).
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If we use the properties (i) and (ii) of p{" in the same way as above, we get

(5.33) Tr (szli ( Pz(l))ﬂ'ﬁ (8)*) = ek(k_l)’62jfc,21(g)»

where @7, ,, are the spherical trace functions introduced in §2. Thus, we have
proved

Lemma 5.34. The Plancherel expansion of the kernel p{" of the heat operator
exp(—tA,) is given by

[O) = 2k — 1 k(k=1)t( G+ =_
rP(g)= X “oa € (®121(8) + B35, 5(2))
1<k<ll|
1 [ 14+ M\, aA

+ 4—7;./(; exp(_tT)(p)\,zl(g)Ath(T) d\.

Moreover, the discrete and the principal series characters have the follbwing
values at p{":

1+ A2 _

05 (5") = (15 0 (5i?) =0

0 (p") = {exp(k(k—l)t) ifl1>0,m=2k,1<k<]|,
mAs 0 otherwise,

0 (p) = {exp(k(k —-0t) ifl<0,m=2k,1<k<-I,
mAs 0 otherwise.

Remark. The values of the characters of the discrete and principal series
representations at p(” are independent of the choice of the invariant measure
on G, If the Haar measure dg is multiplied by C > 0 then the heat kernel with
respect to the measure Cdg is p{"/C.

We can now evaluate the contribution given by each term in the trace
formula to the L*index of the signature operator. We shall use the expression
for the index which is given by Proposition 5.29 together with formula (5.30)
for hY. For the description of the various terms occurring in the trace formula
we refer to §4.

(i) The central contribution. By Proposition 5.29, the central contribution to
Ind;: D is given by

|Z[Vol(T\ G) Y, det(w)h(1).

weW

It follows from Lemma 5.34 that
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Thus, by (5.30), £7(1) is independent of w € W. Since W = { +1}", we get

(5.39) T dei(w) = L (-D7(}) - o0.
wew q=0
Hence, the central contribution to the L%-index of D is zero.
(ii) The elliptic contribution. The elliptic contribution is

(536)  (E) L Vol(T,\G,) ¥ det(w) f r(87vg) d,
{vir wew

where the sum runs over all elliptic conjugacy classes of I'. There are two cases
depending on whether -1 € T or -1 & I'. First, we assume that -1 € I". Let
y € T be elliptic and let y, be a generator of I,. y, is primitive elliptic. Since
-1 € T, the order of v, is even. Namely, assume that y € T’ is elliptic of order
m, m odd. Then (-y)"*! =y and —y € T is of order 2m. Therefore, each
elliptic element in I' has even order. Thus, I, = Z/2/Z. We consider the
contribution of the elliptic conjugacy classes {751 LA{-vd}, 1< q <1 to(5.36).
Yo is conjugate in G to an element k € K with

™ .
COS < 7; SIn—r;

1/ 1/ .
(537) kj= @ . s (21,’})=1,]=1,,n
—smlr COST"I

If we use (4.10) and Lemma 5.34, we get

+o-1( 1 _ __ +i T
‘/;(o\Gopt (g (k’) )dg 47rsm(qu/l) p( 1 q)
1 + A2 exp(—27rrjq}\/l)
: YT dX.
(5-38) 4 sin( -rrrq/l) f ( ) 1+ e 272

Let bj(¢) = -1/47 + 2nd summand of (5.38), j=1,---,n. For w € W let
I, = {jlw; = 1d}. Then it follows from (4.9), (5.30) and (5.38) that

fG\ (87 (v0) ) dg = T1 (4— cot(7r,q) +b¢(t))

\C e,

- T1 (—Z—cot(l )+b(z))

Since pX(-g) = p(g), we get the same result for —(y,)? Moreover,
Vol(T,\ G,) = (2m)"/2l. Further, note that det(w) = (-1, Thus, if we sum
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over w € W, then we get the following contribution of the elliptic conjugacy
classes {(v5)?}, {—(70)?}, 1 < g < [, to the index:

in n l -
ey I ool o) = 7 2 T 00)
We turn now to the second case, where Z. = {1}. In this case each elliptic
element y € T’ has odd order. Indeed, if y € T is elliptic of order 2p, then
vy? # 1 and (y?)? = 1. Since T is irreducible, it follows that y? = —1. Thus
-1 € T, which contradicts our assumption. Let y € I be elliptic of order /, /
odd, and let v, be a generator of I,. y, is conjugate in G to k € K with

(5.39) 2Vol(T,\ G )2"

27 27
COS-l—rj SlnTl‘
(5.40) k= . 2w 2o |’ (hr)=1.
TSI oS,

If we use the same arguments as in the first case, we get the following
contribution of the elliptic conjugacy classes {(v,)?},1 < g <

i I-1 n
(5.41) — Z Il cot(—-r q)
g=1J=1
If 1 < g < I, then 24 also runs over all nonzero residue classes mod /. There-
fore, (5.41) is equal to

n =1 n
(5.42) Y T1 cot(zr.q).

A R VK,
(5.39) and (5.42) are precisely the cotangent sums associated in [24] to the
quotient singularities of I'\ H” via the equivariant signature theorem of
Atiyah-Bott-Singer. More precisely, let I' = T'/Z. and recall that Z. ¢ {+1}.
I' acts effectively on H”. Let z € H" be a fixed point of y € T, y # 1. Then y
is elliptic and T, = T, /Z;.. T, is a cyclic group of order /. We choose around z a
sufficiently small geodesic ball B,. B, is invariant under T. Let { = ¢?™// and
let v, be a generator of T',. There exist integers (ry,- - ,7,), which are prime to /,
such that the action of T, on B, is given by

(o) “(uy, -+ u,) = (§"%uy,- -+, ™),
where (u,,- - -,u,) are geodesic coordinates at z. The integers (ry,---,r,) are
determined by either (5.37) or (5.40). The cotangent sum associated with the
quotient singularity of I' \ H”, represented by z € H", is given by
jn 11

(5.43) 8:)=2 % I [ cor{ F10)

g=1J=1
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(see [24, p. 225]). If -1 € T, then T} is of order 2/ and f‘z has order /. Thus,
(5.43) coincides with the contribution (5.39) of the elliptic conjugacy classes
{(v0)?), {—(¥6)?}, 1 < g <, to the L*index of D. If -1 ¢ T, then Z = {1}
and T, = T,. In this case, (5.43) coincides with the contribution (5.41)~of the
elliptic conjugacy classes {(y,)?}, 1 < g </, I the order of I, =1I,. Let
z,,- - *,z, € H" be a complete system of I-inequivalent elliptic fixed points of
T. Then, the contribution of the elliptic conjugacy classes of T to the L*-index
of D is given by

(5.44) és(z,.),

where §(z;) is the cotangent sum (5.43) associated with z;.
(iii) The type 1 hyperbolic and the mixed contribution. This contribution is
given by

(HM) ¥ Vol(T\G,) ¥ det(w) [ h(g7vg) dg,
(v)r wew G\G
where the sum runs over all type I hyperbolic and all mixed conjugacy classes.
First, consider the case where y € T is hyperbolic of type 1. By Lemma 5.34,
we have O (p*) = exp(~t(1 + A?)/4). Therefore, if we use (5.30) and (4.11),
we obtain

2
(5.45) f ne(g-tvg) ds = ﬁ exp(—t/4 —(log N(yj)) /t)
' GN\G | & v8) e j=1 Waxt sh(N(yj)) ’

where v; is the jth component of y and y; is conjugate in G, to the diagonal
matrix with entries N(y;) and N(yj)’l. In particular, (5.45) is independent of
w € W. Therefore, (5.35) implies that the contribution of the type I hyperbolic
conjugacy classes to the L2-index of D is zero. Now let y € T be mixed. Each
component of y is either elliptic or hyperbolic, and there is at least one
component, say y;, which is hyperbolic. The orbit integral fG,\c hY(g 'vg) dg
splits into a product of orbit integrals on G,. Each of these integrals can be
calculated as in the case where v is elliptic or hyperbolic of type I. The orbit
integral, which corresponds to the hyperbolic component v, is equal to

2
exp(—t/4 - (log N(yj)) /t)
2V4xt sh(N(v;))
for all w € W. This follows as above from (5.30), (4.11) and the fact ©; (p,*)

= exp(— t(1 + A%)/4). Let w,w’ € W be such that w,=w/, if i #j, and

w; = —w/. Since the orbit integral which corresponds to v, is independent of
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w € W, we get
[ meve)dg=[ hr(g'vg) dg.
G\G G\G
But det(w) = —det(w’). This shows that

)y det(W)f hy(g7'vg) dg =0
wew
for any mixed element y € I'. Thus, the contribution of the mixed conjugacy
classes to the L%-index of D is zero too.

(iv) The type 11 hyperbolic contribution. For each j, j = 1,- - -,n, we define o;:
W — {£1} by 0;(w) = +1if w; = 1d, and 0;(w) = -1 if w; = -Id. It follows
from (4.14), (5.30) and Lemma 5.34, that the contribution of the type II
hyperbolic conjugacy classes to Tr RF\G(hj’) is given by

_ — -t/4 n _
%Vol(I‘M\M)eXP( (n=Di/4) | 5 o e 1 peaise

(wr)" P72 ver, vt j=1
(546) v#+1
+ ¥ IN(v -] E 1( <o(w»)(v<j)) ﬁ(/)e-(loslv""l)z/t ,

veEV, k=1

v#+ +1
where
(5.47) 1(p)N) = [ pi (ulau) ag(H(wou)) d,

(]

and the notation is the same as in §4, (v). The first sum in (5.46) is independent
of w € W. In order to determine the dependence of the second sum in (5.46)
on w € W, we have to investigate the integral (5.47). For this purpose we
prove the following

Lemma 5.48. The heat kernels p;* satisfy

p (u'au) = p; (uau™)
foru e Uy, a € A,
Proof. According to Lemma 5.34 we have

1= 1 (= 1+ A\~ A
P (6) = 3, 8iale) + 47 [ o Bratemal T an
= 1 F 1 ® 1+A2 = a\
P, (g)=ﬁ‘1’z,.z(g)+gfo exP(—t 2 )Qf,_z(g)kth(T)dx.
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Therefore, it is sufficient to prove that ®;,(u"'au)= @, ,(uau™) and
5 ,(u'au) = ®5_,(uau™) for u € U, a € A,. If we use (2.4) and the fact
that ¢, , = @, _,, then an easy computation gives the desired result. q.e.d

Let u = (} ). Then ay( H(wyu)) = -log(1 + x?). Thus
(5.49) ao( H(wou)) = ag(H(wou)), uel,.
If we change variables in (5.47) by u — u~! and use (5.49) and Lemma 5.48,
then we get I(p,"Y(A) = I(p; )(A). This shows that (5.46) is independent of
w € W. Thus, by Proposition 5.29 and (5.35), the contribution of the type II
hyperbolic conjugacy classes to the L?-index of D is zero.

(v) The parabolic contribution. If we use (4.22), (4.28), (5.30) and Lemma

5.34, then we get the following expression for the parabolic contribution to the
index:

Vol(TNnU\U) Y det(w)ZaO(e)/ /h m~a"'u(e)am)e 2" da dm

weWw

—(n — 1)1/4
(5.50) +a_ Vol(T N U\ U) exP((4::l)(n_1))/tz/ )

n

-y det(w)Zf ln|x|p°(w)(((1) )1‘)) dx,

wew Jj=1 -

where o;(w) = 1if w; = 1d, and 0;(w) = -1 if w; = -Id. Recall thate € { +1}".
The integral in the first sum can be computed by using (4.23) and (4.26). It
follows from (4.26) and Lemma 5.34 that

(5.51) [ (g u(e)g) dg = + ——e, + e/t
' (/O\Gopt g g g 2‘”8] 4m .

Put b(1) = e™"/*/4Vmt and let I, = { jlw, = Id} for w € W. If we use (4.23),
(5.30) and (5.51) then we get

Y det(w)f fh“’m a~lu(e)am)e 2" da dm

wew

= £ (0™ (704 50) TT (-556 + 50)

wew jeI,

N(e),

where N(&) = ¢, - - - €,. Hence, the first sum in (5.50) is equal to

i"
a”

(5.52) ;— Vol(T N U\ U)Y.N(e)a,y(e).
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We introduce the following L-series:
ign N
(5.53) LM V,s)= Y Eﬁn—(‘:), Re(s) > 1,
pem-onN IN(p)
where M C Fand V C Uy are given by (3.6). If {,(M, V, s) is the zeta function
defined by (4.18), then we have

(5.54) L(M,V,s) =Y N(e)¢.(M,V, s).

We can now appeal to Lemma 4.20, which tells us that L(M,V, s) has an
analytic continuation to the entire complex plane with at most one simple pole
at s = 1. Moreover, the residue a_;(¢) of the pole s =1 of {(M,V,s) is
independent of . Hence, the residue of L(M,V, s) at s = 1 is equal to

a_ 3. N(e).
But e
(559) N = T (1(;) =0.
This implies E "

Lemma 5.56. The L-series L(M,V, s) defined by (5.53) has an analytic
continuation to an entire function in the complex plane. If a,(¢) is the constant
term of the Laurent expansion of { (M, V, s) at s = 1, then

L(M,V,1) = Y N(&)ay(e).
Let (B;,- - -, B,) be a basis of M and set

d(M) =|det(B)|,
where x € F— xY) € R is the jth embedding of F in R. Then
Vol(T' N U\ U) = d(M). This gives the following expression for (5.52):

(5.57) ;—:d(M)L(M,V, 1).

It remains to investigate the second sum occurring in (5.50). By arguments
similar to those given in the proof of Lemma 5.48, one can show that
p(u) = p7(u™"), u € U,. Therefore
Dot (g 5] = [ e (g 7))
j:ooln|x|p, 0 1 dx j:ooln]xlp, 0 1 dx.
This together with (5.35) implies that the second sum in (5.50) is zero and the
parabolic contribution to the L%index of D is precisely (5.57).
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(vi) The intertwining and the residual contribution. Recall that h} €
%?(G, x,), where x,, € Kis given by (5.27). Moreover, ©,, ( is the character of
Ind?,(xm), where x , (uam) = 7,(m)e*™™4 and 7, is defined by (3.16). Thus
by (5.30) and Lemma 5.34, we get

®w,i}\(h:’) = I—I;GI+W(Bw)j(ptqj(W))

j=

(5.58) X
n 1+(A+7(Bw);
=11 exp(— ( :’( ‘*’)1) '
j=1
By (4.29) and Proposition 5.29, the contribution of the intertwining term to

the L%-index of the signature operator is

1 w.d
(5'59) I;T‘ Z Z det(w)_/;{e(s)=0®”’5(ht ) ds Cw(Xw’ S)Cw(XW’—s)IdSI'

weZ" l wew

C,(x,,s) was computed in §3. Let I, = {i|lw;=1d} and J, =1I,. Then
Xw = 05, Where o, ; is given by (3.20). It follows from (3.21) and (3.23)
that C,(x,,s) is independent of w € W. Thus, by (5.58), the integral oc-
curring in (5.59) is independent of w € W and (5.35) implies that the intertwin-
ing contribution (5.59) is zero. The same argument, applied to the residual
term, shows that the contribution of the residual term to the L%*index of D is
zero too.

This completes our computation of the L%index of the signature operator.
The calculations above have been carried out under the assumption that
T'\ H" has a single cusp. But it is clear that everything works equally well in
the general case. Every cusp gives a contribution like (5.57). This is the only
difference to our assumption. We shall now summarize our results. Recall that
to every parabolic fixed point of I' there corresponds a lattice M C F and a
subgroup V C Uy of finite index [24], [38]. The strict equivalence class of M
and the group V are uniquely determined by the parabolic orbit. Let L(M, V, s)
be the corresponding L-series (5.53). We have proved the following

Theorem 5.60. Let F/Q be a totally real number field of degree n and let
I' € SL(2, F) be an arithmetic subgroup. Let z; (1 < j < r) be a complete system
of T'-inequivalent elliptic fixed points of T' and let x, (1 < ¢ < p) be a complete
system of T'-inequivalent parabolic fixed points of I'. With each z; we associate the
cotangent sum (5.43) which we denote by 8(z;). For each x, let M, C F and
V, C Uy, be the lattice and the group of units which correspond to x,. Then

r n 14
Ind;.D =Y 8(z) + ;— Y d(M,)L(M,,V,1).
Jj=1 =1
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It is well known that for a closed Riemannian manifold X, the index of the
signature operator on X coincides with the signature Sign(X). In our case it
turns out that the L%index of the signature operator is indeed the signature of
the rational homology manifold I'\ H”. Recall formula (5.3). We use the
results of Harder [18], [19] to relate 53 .(I' \ H") to the usual cohomology.
For this purpose we have to pass to a torsion free subgroup I} C I'. According
to Selberg [36] there exists a torsion free normal subgroup I} C T' of finite
index. It follows from reduction theory that I', \ H" has the homotopy type of
a compact manifold with boundary [8].

Let

Ha(T\H") c #3(T\H")
be the space of harmonic cusp forms. If we identify L?A*(I'\ H") with
LX(T'\ G, A* Ad}), then it follows from the results concerning the spectral
decomposition of L?(T \ G) that the orthogonal complement of 5 (I \ H")
in# 5 (I \ H") is generated by harmonic residues of Eisenstein series. We
denote this space by 5% (I' \ H"). Thus
(5.61) #5(F\H") = #3(T\H") @ #£%(T \H").

In our case, 5£%(I' \ H") has an explicit description. Let w; be the volume
form (dz; A dz;)/y? on the ith factor of H” and equal to one on the others.
For any subset I C {1,---,n} we put
(5.62) w, = A\ w,.

ier
Each w, is a G-invariant differential form on H". Thus, it defines a differential
form in A*(I'\ H"), which is easily seen to be harmonic and square-
integrable. Moreover, «, is orthogonal to % (I'\ H"). Hence w, €
#2,(T \ H") by (5.61).

Lemma 5.63. The set {w;| C {1,---,n}} is a basis of X (T \ H").

Proof. 1t is clear that the forms w,, I C {1,---,n}, are linearly indepen-
dent. We show that they generate J£X(I'\ H"). According to (3.18) and
Lemma 3.14, the only possible harmonic residues of Eisenstein series can arise
from the pole s = 1 of the Eisenstein series with w = 0. For I, J € {1,---,n}
let Ey(o; ,, s, z) be the Eisenstein series associated to w = 0 and o; ;, where
o; ; is given by (3.20). The intertwining operator C,(a; ,, 5) is given by (3.23).
The poles of Ey(o; ;, 2, 5) coincide with the poles of Cy(o; ;, 5) and Cy(o; 5, 5)
has at most a simple pole at s = 1 [20, IV]. Assume that I # J and that
Co(0; 5, 5) has a pole at s =1. Then TUJ — (I NJ)# . Thus, by (3.21),
To.;,;(s) has a zero at s = 1. It follows from (3.23) that

Y N

TNP\T,/TNU
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has a pole of order > 2 at s = 1. On the other hand, using (3.21), we see that
To,7,1(1) # 0. Thus, by (3.23), Cy(0; ;, s) has a pole of order > 2 at s =1,
which is impossible. Therefore, the only possible Eisenstein series with a pole
ats = 1 are the Ey(o; ;, 5, z). But Ey(0; 4, 5, 2) = E(s, z)w;, where

E()= ¥ TTIm(y0(z))""™

I'nP\T j=1

E(s, z) has a simple pole at s = 1. This shows that the set {w,| C {1,---,n}}
generates £, X (I'\ H"). q.e.d.

Now, let I, € T be a torsion free normal subgroup of finite index and let
H¥ (T, \ H"; C) be the image of the cohomology with compact supports in the
usual cohomology. H¥(T'; \ H"; C) has the following description. Let 4*(H")
be the space of G-invariant differential forms on H”. The forms w,, I C
{1,- - -,n}, defined by (5.62), form a basis of 4(H"). Since each w, is closed, we
get a homomorphism

(5.64) A*(H") - H*(T,\ H"; C).

Let H*(I', \ H"; C) be the image of A*(H") in H*(I', \ H"; C). If p > 0, then
H2(I';\ H"; €C) c HP(I', \ H"; C) and the kernel of the homomorphism (5.64)
is equal to 42"(H") [19, Proposition 2.3]. Moreover, the canonical homomor-
phism

%:s(n\H") - H;“(I‘l\H";C)
is injective and, if p > 0,
H?(T,\H";C) =4 (T, \H") ® H;(T,\H"; C)

(see [19)]). If we combine these results with (5.61) and Lemma 5.63, we see that
we have proved the following
Propostion 5.65. The canonical map

#4 (I \H") > H?(T,\ H"; C)

is injective for p<2n. If 0 <p <2n, then the image of this map is
HY(T,\ H"; C).

The involution 7 acts on H'(T; \ H”; C) and we denote by H;" (T, \ H"; C)
the + 1-eigenspaces. Then we get

Corollary 5.66. 5 (I')\H";C) = H/ (I} \H";C).

Let N=T;\T. N acts on I}, \ H"” by isometries and I'\ H" =
N\ (T, \ H"). By Borel [7, Chapter III] one has H'(I)} \H";C)=
H/(T; \ H"; C)". Moreover, s#3 (I \ H") = #3(T; \ H")V. Note that
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H(T,\ H"% C)" is the image of the projection
P: H(T,\H" C) - H} (T} \H";C),
defined by
"™ I
Since the cup product is preserved under P, P takes H; (I'\ H"%C) to
H(T,\ H"; C)". Thus, we get
Sign(I'\ H") = dim H;, (T\ H"; R) — dim H; (T \ H"; R)
= dim P(H;, (T, \ H";R)) — dim P(H; (T, \ H";R))

|N| Y {u(glH (T,\H"R)) - tr(g|H_(T, \H"; R))}

gEN

1
=7 E, (i (817 (1 \ 1) - (g, (1 \ 7))
ge

= dim #3 (T \ H") — dim ¢35 _(T\ H").

This proves
Proposition 5.67. The signature of T \ H" is given by

Sign(T\ H") = dim 53, (T \ H") — dim s _(T\ H").
Corollary 5.68. Let the notations be the same as in Theorem 5.60. Then

Sign(T\ H") = Z 8(z;) + — Z dM,)L(M,V,1).
Jj=1

Proof. The corollary follows from Theorem 5.60, (5.3) and Proposition
5.67.

Now, we compare our result with Hirzeburch’s formula for the signature of
I'\ H" [24, p. 228]. We recall the definition of the signature defect associated
to a cusp of I'\ H" [24, §3]. We assume that n = 2k. Let x € (P;(R))" be a
parabolic fixed point of I'. There exists p € SL(2, F) such that px = oo. Let T,
be the stabilizer of x. pT, p~! acts on

n
[ Im(z;)> d}, d> 0.
j=1

Let W = (pI,p"})\ W(d) and Y = dW. There exists a natural framing of the
stable tangent bundle 7Y & R, which is induced from a framing of TW(d).
Therefore, Y bounds a 4k-dimensional compact oriented manifold X. Since

w(d) = {z € H"
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TY ® R is framed, we can push down the tangent bundle 7X to a SO-bundle
over X/Y. Let p,€ H “(X/Y;Z) be its Pontrjagin classes. The signature
defect of the cusp x is defined as

(569) s(x)__“Lk(i’l""’i’k)[X’ Y] _Slgn(X)’

where L, is the Hirzebruch polynomial. In [24, p. 228] Hirzebruch proved the
following formula for the signature of I' \ H”:

(5.70) Sign(T'\ H") = ga(zj) + éS(xl),

where z,,- - -, z, is a complete system of I'-inequivalent elliptic fixed points of I’
and x,,- - -,x, is a complete system of I'-inequivalent parabolic fixed points of
T. 8(x,) is the signature defect (5.69), associated to x,, and 8(z;) is the
cotangent sum (5.43), associated with the elliptic fixed point z,. If we compare
(5.70) with Corollary 5.68, we get our main result:

Theorem 5.71. Let F/Q be a totally real number field of degree n = 2k and
let T c SL(2, F) be an arithmetic subgroup. Let x,, 1 < ¢ < p, be a complete
system of T'-inequivalent parabolic fixed points of T’ and let §(x,) be the signature
defect (5.69) of x,. Moreover, let (M,,V,), M, C F a lattice and V, C Uy, be
associated with x, and let L(M ,V,, s) be the L-series defined by (5.53). Then

i 14

5 8(x) = 1= 5 d(M)LM,.V,.1).

n
=1 m =1

If I' \ H" has a single cusp x, then it follows that
8(x) = #d(M)L(M,V,l).

This is part of Hirzebruch’s conjecture for groups I' with a single parabolic
orbit.

We turn now to the Dolbeault operator. Its L*index can be computed by
the same method. We shall not carry out all the details, because most of the
arguments are similar to those used in the case of the signature operator. It
turns out that the L%*index of the Dolbeault operator is related to the
dimension of the space s£7;9(I'\ H") of harmonic cusp forms of bidegree
(p,q). In this way we get a formula for the dimension of the space of
harmonic cusp forms of a given type. This generalizes the results of Matsushima
and Shimura [27] who treated the case when I' C G is cocompact and torsion
free, and it answers a question raised in [19, §3].

Let A?9 = A?9(T'\ H") be the space of I'-invariant C*-differential forms
of bidegree ( p, ¢) on H". We consider the d-complex:

3

F) E) )
0—>AP'°30>A1”1—1> s S S
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and the corresponding elliptic operator
9 + 9*: ZAplq - ZAP’Z"H.
q q
This is the Dolbeault operator D,. Let A7 = Af%(I'\ H") be the subspace of
AP-9 consisting of forms with compact support mod T, and let L?A?-9 be the
closure of A% in L*A*(T\ H"). Let Ep be the closure in L? of D,, restricted
to X, A§?% The L*indx of D, is by definition

Ind;: D, = dimker Bp — dim coker l_)p.

Let 59T \H") c #5(IF'\H") be the subspace of square integrable
harmonic forms of bidegree ( p, ¢). By arguments similar to those which we

used in the case of the signature operator, one can show that
n

Ind;:D, = ) (-1)%dim #g%(T\ H").
q=0

From (5.61) we obtain the decomposition
(5.712) HH(T\H") = #LA(T\H") @ #L(C\H").

Let I < {1,---,n} be such that |I| = gq. The form w,;, defined by (5.62), is of
bidegree (g, q). Thus, if we appeal to Lemma 5.63, we get
0, pP#q,
dim #£24(T\H") = { (n .
(p)’ p=4q
This implies
(573)  Ind.D,= ¥ (-1)7dim 24T\ H") +(-1)"(").
q=0
One can extend the method of Matsushima and Shimura [27, §3, 4] to prove
the following vanishing theorem:
Theorem 5.74. Ifp + q # n, then#5;4(I'\ H") = 0.
Proof. We shall use the notations introduced in §3. Each form ® €
A*(I'\ H") can be decomposed as

dz!  dz’
=) f,—N—,
,,Z, oy Uy
where I, J run over ordered subsets of {1,---,n} and f; ; satisfies

fl,J(YZ) =j1,J(Y, Z)fi,](z)
forally € T. Let

dzt  dz’
®,,=f % A
s =Jrs Ny,
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If o, ; is the character defined by (3.20), then ®; ; can be considered as an
element of C®(I"\ G, ¢; ;). This space is invariant under R({2). Therefore, by
Kuga’s Lemma, it follows that @ is harmonic iff each ®; ; is harmonic. Thus, it
is sufficient to consider harmonic forms of type (I, J). Let ® € 5229’ \ H")
be a harmonic form of type (I, J), i.e.

with |I| = p, |J| = q. On a complete Riemannian manifold, a'L>-form w is
harmonic iff dw = 0 and §w = 0 [12]. If T has elements of finite order, we can
choose a torsion free normal subgroup I} C I' of finite index [36]. Thus
T';)\H" - I'\H" is a finite covering of I' \ H” by a complete Riemannian
manifold. This shows that d® = 0 and §® = 0. Now, let p + g # n. First, we
assume that p + g < n. Then |I U J| < n and there exists j, 1 <j < n, such
thatj & I U J. Since d® = 0, we get
9 _ 0 and _(i{: =0.
0z; 3z,

J

Hence, f does not depend on the variable z;. From the definition of the
automorphy factor j; ;(v, z) it follows that j; ;(y, z) does not depend on the
variable z; and the component y; of y. Let G’ = (SL(2,R))""! and let =:
G — G’ be the projection defined by (g, ,8,) = (81,-*,&;»" - ", 8n)- Let
I’ = #(T). Then f can be identified with a function f € C*(H""'), which
satisfies f(y'z") =Jrs(Ys 2')f(z") for 2z € H"' and y’ € I". Since I' C G is
an irreducible lattice, T’ = #(T') is dense in G’ [35, Corollary 5.21]. Therefore, f
satisfies
(5.75) f(g'z") =irs(8", 2)f(2)
for all g’ € G’, 2 € H"". Let z, € H"™! be the point (i,- - -,i). If f(zy) = 0,
then (5.75) implies f= 0. Assume f(zo) # 0. It follows from (5.75) that
Jrs(k’, zo) = 1 for all k’ € K’ = (SO(2))"~". Suppose that I # J. Let « € I,
t & J and let k&’ € K’ be such that k; = 1 for / # ¢ and
_ ( cos 0 sin0)

: -sinf cos@)
Then we get j; ;(k', zy) = e~2 Thus I = J and therefore ® = fw,, where w, is
the form (5.62). Since w; is G-invariant, we have f € C*(I'\ H"). By our
assumption, ® is a harmonic cusp form. In particular, ® € L?2A*(T'\ H") and
this implies f € L2(T \ H"). Moreover, A¢ = (Af)w,. Hence Af = 0. There-
fore, fis a constant C. But Cw, is a cusp form iff C = 0. Thus£2;9(T'\ H") = 0

cus

if p + g < n. Now, note that the Hodge *-operator is an isomorphism of
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H AT\ H") onto #377""%T\ H") which carries cusp forms into cusp
forms. Thus S 7"~4T \ H") = s2;9(I' \ H") and this proves the theorem.

cus

From (5.73) and Theorem 5.74 we get

(5.76)  dim 2" P(T\H") = (-1)""Ind 2 D, +(-1)""(").

Let A7 = 3*3, + 9, ,07_, be the Laplacian on A?*%. As above one can show
that A?-9, restricted to A%9, has a unique selfadjoint extension to an operator
in L?2A?-9. We denote this extension again by A?*%. Let LZA?'9 C L?A”"9 be the
subspace spanned by the eigenforms of A?°9 and let A%'? be the restriction of
AP to LZAP9. Let exp(-tA%9) be the semigroup generated by A%7 By
arguments similar to those used in the case of the signature operator one can
show that exp(—tA#?) is a trace class operator for each > 0 and

(5.77) Ind,. D, = } (-1)7Tr(exp(-tA%7)).
q=0
Let A?9pc C A*pc be the subspace spanned by the vectors v, ,, defined by
(3.19), with |I| = p, |J| = ¢, and let
679: K - GL(A?p¢)
be the corresponding representation. Consider the Laplacian A?9 on
L2AP-9(H"). exp(~tA?+9) is a G-invariant smoothing operator. Therefore, it has
a kernel
h?9: G - End(APp¢),
which is in C® N L? and satisfies (1.4) with respect to the representation 77,
As above it turns out that k77 € €'(G, ¢77) for each r > 0 and

(5.78) exp(~1A29) = RE G (h?7).
Let
ef =Y (-1)%trhP.
q=0
Then Proposition 4.6 and (5.77) imply
(5.79) Ind,: D, = Tr Ré g (e?).

The representation ¢ 79 splits into characters

o”9= @ [7:67]r,
Trek

[7: 679] being the multiplicity of 7 in 0”9 For 7€ K let L*G,1)=
(€ L¥G)If(gk™) = 7(k)f(g). k € K } and let A, = ~R(R)| ;2. I A} is
the kernel of exp(-tA.), then we get as in (5.24)

= () [rorali;

T7€K ¢=0
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Thus

(5.80) Ind;:D,= Y X (-1)[r:07] Tr REG(R]).

T7€K ¢=0
Each of the characters 7 occurring in 077 is of the form o, ;, where o, , is
defined by (3.20). Suppose that /N J = @ and let L = {1,---,n} — (1 U J).
By using the same considerations which led to (5.30), we get

(5.81) h;(g) = ,-Q pf(g.-)jlg p,‘(g,)lg (1),

where 7 =0; ,, p* =p{*" and p} = p® in the notation of Lemma 5.34.
Now, one can use Selberg’s trace formula to compute Ind ;. D, as above. It
follows from (4.11), Lemma 5.34 and (5.81) that the contribution of the type I
hyperbolic conjugacy classes to Tr R{\ (k) is independent of . Since

n n

Y (-1)%dim A”%pe = (1) ¥ (-D)(]) =0,

q=0 i q=0

the type I hyperbolic contribution to the L%index of D, is zero. By a more
subtle argument one can see that the mixed and the type II hyperbolic
contribution to the L%index of D, is zero too. The contribution of the
remaining conjugacy classes can be easily determined by passing to the limit as
t — o0, because the left-hand side of (5.80) is independent of ¢. The intertwin-
ing and the residual terms approach zero if ¢ = oco0. To compute the central
contribution, we use Lemma 5.34. The central term of Tr R‘I{\G(h:) is

1Zp[Vol(T'\ G) A7 (1).

It follows from Lemma 5.34 that p (1) = 1/27 + a(¢) and p2(1) = a(¢) with
lim,_, ,a(t) = 0. Thus, if we pass to the limit as # — oo, then the central term
of Tr R‘I’-\G(h{) tends to zero, except when 7 =0, ,withINJ = &, |I| + |J|
= n and || = p. In the latter case we get in the limit |Z|27) " Vol(T'\ G).
Thus, by (5.80), the central contribution to the L*index of D, is
n—p(n Vol(T'\ G)
1) (") Ze| —————=
( ) (p ) | FI (277_) n
If we use on G, the measure e ~2'"“ du da dk with dk normalized by Vol(K,) =
1, then, under the isomorphism G,/K, = H, this measure corresponds to

(dx dy/y?)/2 with respect to the coordinates (1.1). Thus Vol(I'\ G) =
(|Zg)~'27"Vol(T \ H") and the central contribution is

n_p(m Vol(T\ H"
R
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In the same way one can determine the elliptic and the parabolic contribution.
The parabolic contribution to Tr R% f\c(h7) is given by (4.22) and (4.28), where
f = h}. First we consider (4.28). It follows from Lemma 5.34, (2.4) and (2.5)
that

[CampO((5 7)) ax 1=0. 41,
0 1
is bounded as t > o0. By Lemma 5.34 we have
> [0k (p0) dn = (me) e
Thus, if n > 1 and if we put f = hJ, then it turns out that (4.28) tends to zero if
t — oo. Moreover, by (4.26) and Lemma 5.34, we get

fuo\cop (g 'u(e; )g) dg= + 2 5—¢ + b(1),

f pY(g7'u(e,)g) dg = b(1),
Uo\Gp
with lim,_, _b(¢) = 0. Let n > 1. Then it follows from (4.22), (4.23) and (5.81)
that the parabolic term of Tr R4 t\c(h7) tends to zero as t — oo, except when
T=o0;,withINJ= & and|I| + |J| = n, |I| = p. In the latter case the limit
is equal to

(-n*~* e)N(e
(2 )
N(e) =& --- ¢,. Now, we can proceed as in the case of the signature operator.
Let x,,- - -, x, be a complete system of I'-inequivalent parabolic fixed points of

T, and let (M,, V,) be associated with x, as above. Then the parabolic contribu-
tion to the L*-index of D, is given by

()(z)tl “”

The computation of the elliptic contribution is similar. One has to use (4.9) and
(4.10). Together with (5.76) this gives the following

Theorem 5.82. Let F/Q be a totally real number field of degree n > 1 and
let I' C SL(2, F) be an arithmetic subgroup. Let z;,1 < j < r,and x,,1 < 1 < h,
be complete systems of T'-inequivalent elliptic and parabolic fixed points of T
respectively. Each y € T -, IS conjugate to some k € K and we denote by 6/() the
angle of the component k of k. Further, let Z, C { +1}" be the subset of those &
which have precisely p components equal to one. Let M, C F, V,C Uy, be

).
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associated with x, as above. Then

dim #2:m-P(D\ H") = (2)% +(-0"(’)

L " exlief (1))

_] 1yeF e€Z, Ir I’ Sinal(y)
y#l

+(-1)"P( (2 ) oV 1).

Note, that the parabolic contribution vanishes if n is odd. This theorem
together with Corollary 5.68 gives
Corollary 5.83.

Sign(T\H") = Y. (-1)"dim #£%*(T\H").
p.q=0
This is the analogue of the signature formula for compact Kahler manifolds
[23, §15.8].

6. The Hirzebruch conjecture

In this section we discuss briefly how one can prove Hirzebruch’s conjecture
in general. As explained in the introduction, we will not carry out the details
since this is part of a future publication which treats spectral theory of the
Laplacian on Riemannian manifolds which are locally symmetric near infinity.

We recall Hirzebruch’s conjecture [24, p. 230]. Let F/Q be a totally real
number field of degree n. Let M C F be a lattice V C U,; a subgroup of finite
index in the group Uy of totally positive units which transform M into itself.
Suppose that G is a group of matrices (§4) (withe € V,u € F, and p € M if
€ = 1) such that the sequence
(6.1) 0-M->G->V-1l
is exact. The group G acts freely and properly discontinuously on H".
G\ H"= G\ H"U {00} is a normal complex space with an isolated singular-
ity. We call this singular point a cusp of type (M, V). With the cusp oo one can
associate its signature defect §(G), which is defined in the same way as the
signature defect (5.69). On the other hand, we have the L-series L(M,V, s)
associated with (M, V) via (5.53). Hirzebruch conjectured that

8(G) = %d(M)L(M,V,l)
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for every extension (6.1). In particular, §(G) depends only on (M, V) and not
on the extension (6.1). There are two problems which prevent us from proving
Hirzebruch’s conjecture by the methods of the previous paragraphs:

(i) The group G may not occur as pI', p~!, where T is the stabilizer of a cusp
x of some irreducible discrete subgroup I' C G with finite covolume and p € G
is such that px = 0.

(i) I' \ H"” can have several cusps.

To overcome these difficulties, we replace I' \ H” by a manifold which
consists of a single cusp, chopped off near infinity and glued together with a
compact Riemannian manifold, which has the same boundary. More precisely,
consider an extension (6.1). For d > 0 let W(d) = {z € H"[[I}_,;Im(z;) > d }
and let Y(d) = G\ W(d). The stable tangent bundle of the boundary 9Y(d)
has a canonical parallelization. Therefore, there exists a compact oriented
manifold N with boundary 9Y(d). N and Y(d) can be glued together along
their common boundary. Let X be the resulting manifold. We choose a smooth
Riemannian metric on X which coincides with the given metric on Y(d). We
call X a manifold with a cusp of type (M, V). X has a decomposition X = X, U
X;, where X, is a compact Riemannian manifold with boundary and X; is
isometric to Y(d) for some d > 0. The point is that one can extend all results,
concerning the spectral resolution of the Laplacian on the locally symmetric
space I'\ H”, to Riemannian manifolds with a cusp of type (M, V). This
program has been carried out by the author for manifolds which are natural
generalizations of the R-rank one locally symmetric spaces [30], [31]. In this
case the cusps are Riemannian warped products. This means that each cusp is
isometric to a product R* X X, where X is a closed Riemannian manifold with
metric tensor g and the metric ds on the product is given by ds? = dy? + e~ 2’g.
In principle, the same methods can be applied in our situation. The hard work
is to do analysis on the cusp. But in our case this reduces to harmonic analysis
on G\ H”". Selberg’s trace formula, which we used in the locally symmetric
case, has to be replaced by the asymptotic expansion of the heat kernel. Let

D=d+8:A*(X)—> A*(X)

be the signature operator. Then, using these methods, one can compute the
L?-index of D. It is given by

(6.2) Ind,. D = fXL(p) + ;—:d(M)L(M,V,l),

where L( p) is the Hirzebruch L-polynomial in the Pontrjagin forms of X. To
prove that Ind (D) is equal to Sign(X), we have to extend the results of
Harder [18], [19] on cohomology of I' \ H” to manifolds with a cusp of type
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(M, V). Harder uses the theory of Eisenstein series. In our case we have a
corresponding theory of Eisenstein forms, which satisfy the same properties as
the Eisenstein series in the locally symmetric case. In particular, they satisfy
the same system of functional equations. Using the Eisenstein forms one can
extend the results of Harder to our situation and in this way we get

(6.3) Sign(X) = Ind 2 D.

Finally, we prove a formula which is similar to Hirzebruch’s formula (5.70).
For d > 0 let X, = X — Y(d). We orient 9Y(d) by the orientation induced
from the canonical orientation of Y(d). Let p, € H 4(X,/9X,; Z) be the
Pontrjagin classes of the SO-bundle over X,/0X, obtained by pushing down
the stable tangent bundle of X,. Suppose that dim X = 4k. It follows from the
definition of the signature defect §(G) that

Sign(X) = L, (1, .B)[ X4, 0X,] + 8(G).

If we apply the arguments used by Hirzebruch in the proof of formula (20), §3,
in [24] to the Pontrjagin forms, then we get

Sign( X) =/XL(p) +8(G).

This result combined with (6.2) and (6.3) gives a proof of Hirzebruch’s
conjecture.
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