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SELF-DUAL YANG-MILLS CONNECTIONS
ON NON-SELF-DUAL 4-MANIFOLDS

CLIFFORD HENRY TAUBES

1. The principal results

The purpose of this article is to prove that self-dual Yang-Mills connections

exist on a large class of four-dimensional Riemannian manifolds, specifically

manifolds with no two dimensional anti-self-dual cohomology.

The differential geometric context is the following. We take M to be a

compact connected oriented Riemannian 4-manifold, G a compact connected

semi-simple Lie group, and P over M a principal G-bundle. The Yang-Mills

functional is defined on the space of smooth connections Q(P) on P as

where FA is the curvature of A, and (1.1) is a norm defined in terms of the

Riemannian metric on M and the Cartan metric on the Lie algebra Q of G.

This functional has been the subject of recent investigations by many authors

in particular, [1], [11], [23].

The critical points of ίΦ(9!t( ) on Q(P) are called Yang-Mills connections. A

critical point A E β ( P ) is distinguished by having harmonic curvature in the

sense that

(1.2a) Ό\ FA = 0 (Yang-Mills equation),

(1.2b) DA FA = 0 (Bianchi identities),

where DA is the covariant exterior derivative.

Let Q = P XAάG 8 denote the vector bundle which is associated to P by the

adjoint representation. The Hodge duality operator * acts on sections of
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g ® ίip, and defines an automorphism of g ® Λ2 with eigenvalues ±1. Thus
g Θ Λ2 = (g 0 P+ Λ2) Θ ( g 0 P_Λ2) where

(1.3) P ± = i ( l ± ).

The curvature i^ G Γ(g ® Λ2), and if P_i^ = 0 the connection is said to be
self-dual while if P+ FA = 0, the connection is said to be anti-self-dual. If
A G G(P) is self-dual, then (1.2b) implies (1.2a); so every self-dual connection
is a Yang-Mills connection. In fact, self-dual connections minimize ^91L( )
over all Λ ε β ( P ) .

For very basic reasons, a straightforward steepest descent method to find the
global minima of ^91L( ) is not successful in 4 dimensions, although this
technique works in dimensions 2 and 3, [23]. In fact, the problem of finding
critical points to ^91L( ) in 4-dimensions is similar in many respects to the
harmonic map problem in 2-dimensions and other conformally invariant
variational problems. (See, for example, Uhlenbeck's review [24].) In the few
cases where self-dual connections have been shown to exist, a high degree of
symmetry m the base manifold has been exploited. This symmetry is mani-
fested in the vanishing of the traceless, anti-self-dual Weyl tensor %_, which is
part of Riemann curvature tensor. The Riemann curvature defines a self
adjoint transformation

(1.4) & : Λ 2 - Λ 2 ,

and %_ is the restriction of <3l to the traceless endomorphisms of P_A2. Atiyah,
Hitchin and Singer [3] studied the properties of self-dual connections over base
manifolds M which have positive scalar curvature and %_= 0 (self-dual
spaces.). In this case, the bundle of projective anti-self-dual spinors PV_ has a
complex structure and the following correspondence holds:

The Ward correspondence. Let E be a hermitian vector bundle with self-dual
connection over a self-dual space M, and let F — p^E be the pulled back
bundle. Then

1. FΊs holomorphic on PV_ with holomorphically trivial fibre.
2. There is a holomorphic isomorphism σ: τ*F -» i7*, where T: PV_^> PV_ is

the real structure, and σ induces a positive definite hermitian structure on the
space of holomorphic sections of F on each fibre.

3. Every such bundle on PV_ is the pull-back of a bundle E -» M with
self-dual connection.

When M = S4, the Ward correspondence has led to the construction of all
self-dual connections on G-bundles over S4, [2], [5], [13], [14], [15]. In this case,
PV_ is naturally identified with PC 3, and algebraic techniques are used to
construct the relevant complex structures [14], [15].
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In this article self-dual connections are studied by analytic techniques, a

result of which is that the self duality of the Riemannian curvature of the base

manifold M is not required. Rather, we require that there be no anti-self-dual

harmonic two-forms on M. That is,

(1-5) P-H&n*J{M) = 0,

where H^eRham(M) is the second cohomology group of the De Rham Com-

plex: 0 -> T(A°)iτ(Aι)iτ(A2)iτ(A3)iA(A4) -> 0, and d is the exterior

derivative. Our existence and classification results are Theorems 1.1, 1.2 and

1.3 below.

Theorem 1.1. Let M be a compact oriented Riemannian manifold of dimen-

sion 4. Assume that PMueRhami^) ~ 0 Let G be α compact semi-simple Lie

group. Then there exist principal G-bundles P -» M which admit smooth irreduci-

ble self-dual connections.

For G compact and semi-simple, principal G-bundles over M are classified

up to isomorphism by the set of homotopy classes of maps from M into the

classifying space for G, BG. (See the Appendix.) This set is denoted by

[M; BG], and there is a surjection

(1.6) φ:[M;BG] ^Z'^0,

where / is the number of nontrivial simple ideals which compose the Lie

algebra of G. Let P -> M be a principal G-bundle. Then the Pontrjagin classes

{/>i*(8)}/k=i of the associated vector bundle g = P X AdG Q specify the map

φ. If G is simply connected, then φ is a bijection. If G is not simply connected,

there is in addition, a map

η:[M;BG]-*H2(M;nλ(G)).

Now the map φ is a bijection on the kernel of the map η.

Theorem 1.2. Assume as in Theorem 1.1 that M is a compact oriented

^-dimensional Riemannian manifold which satisfies P-H^^^^M) — 0. Let G

be a compact semi-simple Lie group. Let P -> M be a principal G-bundle, all of

whose Pontrjagin classes {P\k(Q)}lk=\ are nonnegatiυe. In addition, assume that

the image of the isomorphism class of P under η in H2(M; Πj(G)) is trivial. Then

the following statements are true:

(i) The space &(P) contains a smooth self-dual connection.

(ii) // the principal G-bundle over S4 with the identical Pontrjagin classes

admits an irreducible self-dual connection, then Q(P) does also.

(iii) If M is a real analytic manifold, then there is a real analytic principal

G-bundle P' which is isomorphic to P, and on which (i) and (ii) above are satisfied

by real analytic connections.
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The conditions which make statement (ii) of Theorem 1.2 applicable have

been determined by Atiyah, Hitchin and Singer [3]. These conditions are

restated in Theorem 7.1.

We have nothing to say when the image under η of the isomorphism class of

P in H2(M; U^G)) is nontrivial. It is possible that a combination of our

techniques with the steepest descent techniques of Uhlenbeck [23] will yield

results in these cases.

To count self-dual connections on P, we must take into account that the

gauge group Aut P = T(P XAάc G) has a natural action on β(P); cf. [11]. We

denote this action by (g, A) -> g(A) for (g, A) G Aut P X 6(P). The action

respects both (1.2) and the condition of self-duality. For this reason, it is

natural to consider the space of orbits in Q{P) under the action of Aut P. The

set of irreducible self-dual connections in Q(P) modulo this action is called the

space of moduli of self-dual connections in β(P). Atiyah, Hitchin and Singer

proved that when M is a self-dual manifold, these moduli spaces are finite-

dimensional manifolds. The generalization to those M where (1.5) holds is the

next theorem.

Theorem 1.3. Assume the conditions of Theorem 1.2. Suppose that P -> M is

a principal G bundle with G compact and semi-simple. Let A be a connection

given by (ii) of Theorem 1.2. Then in a neighborhood of A in β(P)/Aut P, the

space of moduli of irreducible self-dual connection is a manifold of dimension

(1.7) />,(§)-HdimG)(χ-τ),

where p}(Q) = Σy= i /?/(§) ^ ^ e s u m °f ^ e ' Pontrjagin classes of g, χ is the

Euler characteristic of M, and r is the signature of M.

Theorem 1.3 is a local result on the space of moduli. That is, there may be

irreducible self-dual connections in &{P) for which the conclusions of the

theorem do not hold. To state a stronger result we need assume more.

Theorem 1.4. In addition to the assumptions on M and P in Theorem 1.3,

assume that the following is true: The Riemannian metric tensor g on M is

pointwise conformal to a metric g' on M whose curvature satisfies

(1.8) j'-3w'>0,

where s\x) is the scalar curvature of g\ and w'_(x) = sup ξ G S2 c R3 %y{x)^ι^j is

the largest eigenvalue of the traceless anti-self-dual Weyl tensor of g'. (The

metrics g' and g are pointwise conformal if g' — v2(x)g with v(x) a smooth,

strictly positive function on M.) Then the space of moduli of irreducible self-dual

connections is globally a Hausdorff manifold of dimension given by (1.7).

We remark that condition (1.5) implies that χ — r < 2, so an immediate

corollary of Theorems 1.3 and 1.4 is the following: Fix/ ^g). Expression (1.7)
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is a function on the set (4-manifolds which satisfy the conditions of Theorem

1.4}. This function is minimized by the 4-sphere, because χ(S4) — 2 and

τ(S4) = 0.
Using the Ward correspondence and Theorems 1.2 and 1.3, we have the

following existence theorem for complex structures.

Theorem 1.5. Let M be a ^-dimensional compact oήentable Riemannian

manifold with positive scalar curvature and %_— 0. Let p: PV_^> M be the

bundle of projective anti-self-dual spinors. Let G be a compact semi-simple Lie

group which has a unitary representation on a vector space L. There are

holomorphic vector bundles F with fibre L over PV_ with the following properties:

(1) F is holomorphically trivial on each fibre.

(2) σ:| τ*F -> F* is a holomorphic isomorphism.

Theorems 1.1-1.4 imply that the self-dual connections on S4 are stable with

respect to all deformations of the standard Riemannian structure. In addition,

(1.5) is satisfied on S3 X S\ where the product metric satisfies (1.8), and on

P C 2 , where the Fubini-Study metric satisfies (1.8). Therefore these spaces

admit bundles with irreducible self-dual connections as given by the preceding

theorems.

The question of whether irreducible self-dual connections exist when (1.5) is

violated is not known in general. Thus for S2 X S2 and the K3 manifolds, we

have no results. As an aside, we note that there are self-dual and anti-self-dual

SU(2) connections on R2 X S 2 , [21]. However we do prove the following

approximation theorem. (See also Theorem 3.2.)

Theorem 1.6. Let M be a compact oriented Riemannian A-manifold with no

assumption on its Riemannian curvature. Let G be a compact semi-simple Lie

group. Let P -> M be a principal G-bundle all of whose first Pontrjagin classes are

nonnegative. In addition, assume that the isomorphism class of P has trivial

image under η in H2(M; Π^G)). Then given δ > 0, there exists A E G(P) with

\\P-FA\\Li<8.

As for anti-self-dual connections, note that reversing the orientation of the

base manifold interchanges self-dual and anti-self-dual forms. Therefore

Theorems 1.1—1.6 and the preceding discussion hold when self-dual P_,

PI(Q)9 T and 6lfi_ are replaced by anti-self-dual P+9 -px(o>), -τ and 6ISS+9

respectively.

The remainder of this article contains the proofs of the preceding theorems,

and it is organized in the following way. The proofs require three crucial

technical theorems, Theorems 3.2, 6.1 and 8.2. §2 establishes our notation and

convention and §§3-6 contain the proofs of Theorems 3.2 and 6.1. Theorem

8.2 is a generalization of Theorem 1.6, and the proof requires §§7 and 8. §7 is a

review of certain facts about self-dual connections on S4 and R4. These facts
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are used in §8 to complete the proof of Theorem 8.2. Finally, in §9, are the
proofs of Theorems 1.2-1.4 completed. The appendix is a review of character-
istic classes and the classification of principal bundles on 4-manifolds.

2. Notation

The purpose of this section is to establish our notation. Let P -* M be a
principal G-bundle where G is a compact semi-simple Lie group. The /?'th
exterior power of the cotangent bundle Ap is a vector bundle over M with
structure group SO(4). Hence a connection A G S ( P ) and the Riemannian
connection on Ap define the covariant derivative

(2.1) \?A: A(fi ® Λ*) -> Γ(ft ® A' ® Λ1).

The natural projection a: Ap ® Λ1 -> A^+1 allows one to define the exterior
derivative DA\ Γ(§ ® Λ^) -> Γ(§ ® Λ*+1) as Z)̂  = α o V / ί . The curvature i^
of the connection Λ is a section § ® Λ2; its relation to DA is

(2.2) Z^ Ẑ σ = FAΛσ-σΛFA

for σ e Γ(g ® Ap). The full curvature of V^ is a direct sum of FA and the
Riemannian curvature of M. The Riemannian curvature is the SO(A) Lie
algebra valued 2-form

(2.3) a = ^μvaβω
μ A ωv θ ωa A ωβ,

where {ω"}*=1 is a local orthonormal frame for A1, and we have identified the
Lie algebra S6(4) with A2. The Lie algebra S6(4) « §0(3) θ S6(3), and this
corresponds to the identity A2 = P+ A2 θ P_Λ2.

Let {x'± }?=1 be a local orthonormal basis for P±A2, respectively. Then 91
has the decomposition

^ Ϊ ijx\ ®xί

where Wϊ are traceless, and are respectively the self-dual and anti-self-dual
parts of the Weyl tensor. The function s on M is the scalar curvature, and %ιj

is the traceless Ricci tensor. The above representation decomposes 91 into its
irreducible components with respect to SO(4) (See [10] for more details.)

The Riemannian metric and the Cartan form on g give IXgΦΛ77) a
pointwise inner product ( , •), the L2 inner product ( , )L z, and the Lp norms

(2.5) [ f η
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It is with respect to the L2 inner product that the adjoints y ^ and DA^ are

defined. Of particular interest are these operators and their Laplacians on

Definition 2.1. The operator %: Γ(g ® Λ1) -* Γ(g ® P_A2) on a G Γ(g Θ

(2.6) ^D.fl = P_DAa:

its formal adjoint on u G Γ(g 0 P_Λ2) is

(2.7) *D> = ^ I I .

Propositioin 2.2. Let u G Γ(g <S> P_Λ2). 7%e« w/ίΛ respect to a local ortho-

normal frame {xi_γi=] ofP_A2,

where P_FA

k = (x_k,P_FA).

Proposition 2.3. Let a G Γ(g Θ Λ1). 7% «̂ w/7Λ respect to a local orthonormal

frame {ωv}*=ι of A\

(2.9) (2Φjj^β + V ^ V » α = ( v J | V ^ ) β " 2[i>+Fα ; 8, aβ] + ap<&pβaβ,

where VA is the adjoint of VA: Γ(g) ^ Γ(§ ® Λ1). (2.8) αwd (2.9) «re fc«ow« as

Bochner-Weizenbόch formulas', cf. [11], [9].

3. The self duality equations

As in §2, G is a compact semi-simple Lie group, and P -> M is a principal

G-bundle. Let v40 G β(P) be fixed. Because 6(P) is an affine space, any

connection A G &(P) can be written uniquely as

(3.1) A=A0 + a with** G Γ ^ O A 1 ) .

Therefore if A G β(P) has self-dual curvature, then

(3.2) 0 - P_FAQ + %a + a#a,

where we have defined

(3.3) a#b = iP_(α Λ H f t Λ α ) .

Conversely, if α G Γ(g ® Λ1) satisfies (3.2), then A = Ao + a G β(P) has

self-dual curvature. In order to find a self-dual connection, it is sufficient to

find Ao G G(P) such that (3.2) has a smooth solution in Γ(§ Θ Λ1).

Because the operator ^ is not properly elliptic, it is convenient to write

a = tyu for M G Γ(Q <S> P_Λ2) and replace (3.2) by

(3.4) %^AU + ^
^ / An ΛQ
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(3.4) is a properly elliptic system. Notice that if ^40 is itself self-dual, then
(3.4) automatically has a solution, namely u = 0. If FA is small in an
appropriate norm, but nonzero, it is still reasonable to assume that (3.4) has a
solution u E Γ(g ® P_Λ2) which is also small. This is the case, and the proof of
Theorem 1.2 requires the construction of an implicit function theorem for
(3.4). A similar technique was used successfully to prove the existence of static
solutions to the Yang-Mills-Higgs equations on R3 (see [16, Chapter IV], [22]).

The operator fyAfyA* is an elliptic self-adjoint operator on the space of
square integrable sections of g ® P_A2. It is a standard result that the spectrum
of tyAtyAQ is discrete, and the lowest eigenvalue is nonnegative.

Definition 3.1. For A E β(P), define

μ(A) = lowest eigenvalue of ^/t)/.

If μ(A) > 0 , define

(3.5a) ξ(A) =μ{A)-λ/\\ +μ(A) + WP.FJ

(3.5b) δ(A) = \\P_FA\\L2 + ξ(A)\\P_FA\\LJ\ + \\FA\\J.

Uμ(A) = 0, define ξ(A) = δ(A) = +oo.
The basic existence theorem is
Theorem 3.2. Let M be a four-dimensional compact oriented Riemannian

manifold. Let P -* M be a principal G-bundle with G a compact semi-simple Lie
group. There exists ε0 > 0 which is independent of Ao E Q(P) and P with the
following significance: If

(3.6) δ(A0)<e09

then there exists a solution a E Γ(g ® Λ1) to (3.2). In fact, a = ^u where
u E Γ(g ® P_Λ2) is a solution to (3.4). Further, there exists a constant c < oo
which is independent ofA0 G 6 ( P ) and P such that

(3.7) (V Λ a, VAa)Li + (a, a)Li < cδ(A0).

Corollary 3.3. The connection A = Ao + a E 6(P) is self-dual.

4. An Lp threshold for self duality

The proof of Theorem 3.2 comprises this and the next section. The solution
u to (3.4) will be given by a convergent expansion

(4.1) « = ! « „ .
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The expansion parameter is δ(A0). Each term un in this expansion is a solution

to a linear equation of the form

(4-2) W = q

for ϋ G Γ ( § ®P_Λ2). The relevant properties of a solution t; to (4.2) are

summarized in the following theorem which is proved in §5.

Theorem 4.1. Lέtf P and M be as in Theorem 3.2. Let Ao E β ( P ) α«d

suppose that μ(A0) > 0. Le/ # E Γ(g ® P_Λ2). TTien there exists a unique C°°

solution v to (4.2) such that

(4-3) l

( 4 - 4 ) ( J o ) 2 o 2 )

< C^qUί^ ξ(Aoy
l\\q\\LJ\ + \\FAO\\LA)},

(4.5) > {

The constant Cx is independent of P, Ao E Q(P) and q.

Proof of Theorem 3.2 assuming Theorem 4.1. The proof uses an iterative

method for solving a quadratic equation.

The formal aspects of the proof are the following. Each uk in the sum (4.1) is

the solution to the linear equation

(4.6) GύA

Θύ\uk- qk,

where

(4-7) qx = -P.FAo,

and for k > 1

k-2

(4 8) Λ _ 2 V όj)̂  tι.#6j)1' w — ^ u #^D^ M

Assuming each uk exists, define the partial sums

m

(4.9) * m = 2 ^ -

Then as a consequence of (4.6)-(4.9) we have

(Λ ]()\ p p j - 6f) 6j)Ί c -uόj^^c #6j )^ c = 0
V / /»Q /I r\ f\ f\ tfl J\ r\ wit 1 /Ί Q f * ί 1

Hence if the l i m w ^ 0 0 5 m = u exists in the appropriate sense (cf. Lemmas 4.5

and 4.7), then u is a solution to (3.4), and a = ^Dj w is a solution to (3.2).
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We now use Theorem 4.1 to justify the preceding analysis. The proof of
Theorem 3.2 is considerably simplified by introducing Hubert spaces of
sections of § ® Ap.

Definition 4.2. For M , ϋ 6 Γ ( g 0 A ^ define

, v <w> V)H = (V^w, VAv)Li + (u, v)Li,

Wu\\H=(u,u)ψ.

Definition 4.3. The Hubert spaces %= %(A0) and 3C= %(A0) are the
completions of Γ(g ® P_Λ2) and Γ(§ ® Λ1), respectively, in the norm || || H.

The space % depends on the choice of Ao E β(P). This should be kept in
mind. Technically any two %(A0) and %{AX) are isomorphic, but not isomet-
ric. A similar remark is true for %.

Proposition 4.4. Let ε0 in (3.6) satisfy

with Cx given in Theorem 4.1. Then each uk, qk exists and is C°°. Further for

each k^ 1 we have

(4.12) \\^Auk\\L2<j^-(ϊ6φ(A0))k(l + \\FAo\\Lj\

(4-13) '

Proof. The proof is by induction on the integer k. The induction begins
with k = 1. Then qλ = -P_F0. Since δ(A0) < ε0, Theorem 4.1 states that there
exists a unique uλ GΓ(g<8> P_Λ2) which satisfies

(4.14) %^Aux =qx = -P_F0.

(4.12) and (4.13) follows from (4.3)-(4.5) and the definition of
The induction proof is completed by demonstrating that if (4.12) and (4.13)

are satisfied for j < k, then they are satisfied for j = k. Indeed, since qk

depends on the functions {uβ j ^ k — 1}, we have

2
7 = 1
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It follows from the hypothesis on Uj ίovj < k that

(4.16)

and that

(4.Π) H^IIL <

In the above analysis, it has been assumed that ε0 ^ (32C2)"1. Holder's
inequality gives

(4.i8) iifcii^,^ Hi* uplift iik;2.

Thus qk E L2 Π L 4 / 3 Π Γ2(g ® P_A2) Theorem 4.1 states that uk exists and
is an element of Γ2(§ ® P_Λ2). Finally (4.3)-(4.5) and (4.16)-(4.18) give

+

(4.19)

Making the cancellations in (4.19) proves that the induction hypothesis is
satisfied for uk as claimed.

We now prove that the conditions of Proposition 4.4 ensure the convergence
of the partial sums sm and D̂jj sm to a limit which satisfies (3.4).

Lemma 4.5. Let Ao satisfy the conditions set forth in Proposition 4.4. Then

the sequence {sm}™=x defined by (4.9) converges to a limit u E %(A0), and the

sequence {̂ Dj s

m)(m=\ ίΌ a limita =̂ 3C(^o) Further

(4.20) tyu = a.

In order to prove this lemma, a technical result is needed. The proof is
deferred until §5.

Lemma 4.6. There exists a constant 0 < C2 < oo which is independent of
Ao E Q(P) andP with the following significance: Ifμ(A0) > 0, then

(4.21) (

forallv<Ξ%(A0).
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Proof of Lemma 4.5. To prove the convergence of {sm} and {̂ Djj sm) we

show that these sequences are Cauchy. Indeed, from Proposition 4.4 one has

for all Λ2, m> N

Thus both sequences are Cauchy. (4.20) is a standard result.

Lemma 4.7. The functions

converge to zero in L2.

Proof. A calculation based on the fact that βί)A = P_6ί>A gives

(4.23) \\%b\\L2<S\\b\\H!

for all b G Γ(g ® Λ1). Let n,m> N. Then

(4.24) K-^Jk3

where we have used the fact that the # operator is symmetric. Holder's

inequality and Proposition 4.4 yield

(4.25) \\vn-vm\\Ll<O(2-N).

Thus the sequence {vn} is Cauchy. Using (4.10) and Proposition 4.4 one can

show similarly that the strong limit of the sequence {vn} is zero as claimed.

Proof of Theorem 3.2 (completion). Since vn -> 0 in L 2 , u — limm^O0sm is a

weak solution to (3.4) in the following sense: For all t ) G L 2 ( g ^ P_Λ2),

(4.26) (v P F + D̂ ffi u + ffl w#6Dtl u) — 0.
V / \ * — AQ AQ AQ AQ AQ / L>2

Since Ao is smooth, u G L|(δ ® ̂ _Λ2) (cf. [9] for definitions). The claim that

w G Γ(g ® P_Λ2) follows from standard Lp estimates for elliptic systems. We

omit the proof (cf. [18, Chapters 5 and 6]). (3.7) follows by summing (4.12) and

(4.13).

5. The linearized equation

For fixed Ao G β ( P ) , we study the properties of the equation

and prove Theorem 4.1 and Lemma 4.6. This will complete the proof of
Theorem 3.2.
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The solution u to (5.1) is formally a critical point of the functional

(5 2) Sglu] =
 ^ ( V A " ' VA°U)L>

 + 4 ( "

1 ^
In terms of local orthonormal basis for g 0 P_Λ2,

(P.^ 0 («)) ' =

(5-3) ( 5 U ) ' = su't

Clearly SJw] is finite for w e Γ(g ® P_A2), and for such w we have

(5.4)

Proposition 5.1. Let M and P be as in Theorem 3.2. Let Ao E G(P).
Suppose that μ(A0) > 0 and q E L 4 / 3 . Then there is a unique weak solution
u G%to (5.1) in the sense that for all D G Ϊ C ,

(5.5)

If q is C0 0, then u is C°° and (5.1) is satisfiedpointwise.

Proof. The Proposition is proved by using the calculus of variations. We
begin by establishing an important property of the Banach space %, namely
that % imbeds in L4 with imbedding constant independent of Ao and P. With
this fact established, it is straightforward to show that the functional Sq{ } can
be defined on % by representing elements in % by Cauchy sequences in
Γ(§ ® P_Λ2) with respect to the if-norm. Lemma 4.6 will follow immediately
also. Lemma 4.6 implies that Sq[ ] is a strictly convex functional which satisfies
a coercive lower bound. An additional technical lemma concerning the strict-
convexity of Sq[ ] and its differentiability is needed to apply known results
from the calculus of variations. After appealing to these results, Proposition 5.1
will follow. We now present the details.

Lemma 5.2. Let u E %(or %). Then \u\is an L\ function and

(5.6) \\\u\\\U2<\\u\\H.

In addition, there exists a constant C4 which is independent ofA0^Q(P) and P
such that for all uE%(or%)

(5.7)
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Proof. Recall that the L\ norm on functions [19] is

(5.8) Uf\\L>2

for / E Γ(M). The first statement of the lemma and (5.6) is Kato's inequality
[16, Chapter IV]. (5.7) follows from (5.6) and a Sobolev inequality [19].

Lemma 5.3. If q E L 4 / 3 , then Sq[ ] extends to a finite functional on %. In

addition (5.4) holds for all ι / G l

Proof. We remark that the right-hand sides of both (5.4) and (5.2) define
strongly continuous functional on %. In fact for u E Γ(g ® P_Λ2), the right-
hand side of (5.2) is bounded by

(5.9) + \ ^ - \ \ \ L J i J ί

< const. (\ + \\P.FAo\\L2)\\u\\2

H + C 4

2 | | ί | | | 4 / 3 ,

where we have used Holder's inequality and (5.7). Meanwhile, for u E Γ(g
P_Λ2), the left-hand side of (5.4) is bounded by

( 5 ' 1 0 ) <ioιι M | i 2

f f +c 4

2 ιι<7iιi 4 / 3 .

The extension of Sq[ ] to % and the equality of (5.2) and (5.4) follow from (5.9)
and (5.10) by representing an arbitrary u E % as a limit of sequences in
Γ(g<S> P_A2) which are Cauchy sequences with respect to the norm || || H on

Lemma 5.4. There is a constant C2 > 0 which depends only on the Rieman-
nίan structure of M with the following significance: If μ(A0) > 0, then for all
u E %andq E L 4 / 3 ,

(Recall that ξ(A0) is defined in (3.5).)
Proof. It is enough to establish (5.11) for u E Γ(g ® P_Λ2). Using (5.4)

and (5.2) respectively, we obtain the estimates

(5.12a) Sq[u]>μ(A0)\\u\\2

L2-(q9u)L29

i ^ W > HV^II12 -
(5.12b)

-C(M)\\u\\l2-(q,u)L2.
In (5.12b) we have used Holder's inequality. The constant C(M)deρends only
on the Riemannian structure of M. (5.7) is used to estimate the \\u\\L terms;
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thus from (5.12b) we have

(5.13) Sq[u] >\\\u\\2

H - Hu| l i a C(M)(l + H P ^ J I i , ) " (q, u)^

where C(M) is a (different) constant which depends only on the Riemannian

structure of M. (5.12a) is used to bound || u II \2. The resulting inequality is

(5.14) ( l + C(M)μ(Aoy
l(l + I I P _ ^ o H i 3 ) ) ( S j M ] + (q,u)Ll)

Finally, we obtain (5.11) by using the fact that

(q,u)L2<\\q\\LJ\u\\Li<C4\\q\\LJ\u\\H

with

(5.15) a = l

Proof of Lemma 4.6. Set q = 0 in (5.10) and (5.11).

Lemma 5.5. For q E L 4 / 3 , the functional Sq[ ] is differentiable on %, and

(5.16) grad Sg[u; v] Ξ DvSq[u] = (tyυ, ^ D » L j - (v, q)Li

is jointly continuous inv,u E%.

Proof. The difference quotient for the directional derivative for smooth

M, v is

r'{Sq[u + tv] - Sq[u]) = DvSq[u] + tS0[v].

Hence (5.16) is valid for u, v E Γ(g Θ P_Λ2). The extension of (5.16) to

M, v E % is straightforward and is similar to the proof of Lemma 5.3.

Lemma 5.6. Assume that the conditions of Proposition 5.1 are met. Then the

functional Sq[u] is strictly convex.

Proof. Since u -> {u,q)Li is linear and continuous, it is convex. We prove

that u -> ll6ί)y5oM|||2 is strictly convex. The quadratic functional IÎ Dj «IIL 2 is

necessarily convex (cf. [16, §VI, 7.9]). By Lemma 4.6, it is an equivalent norm

on 3C, so it is strictly convex.

Proof of Proposition 5.1 {completion). The functional Sq[ ] is differentiable

strictly convex and hence weakly lower semicontinuous. It satisfies the bound

(5.11) so by standard arguments [16, §VI, 8.5] it has a unique critical point

u E %, and u minimizes Sq[ ] on %. Thus (5.5) holds. For q E C 0 0, standard

arguments give u E C0 0, [18].

The proof of Theorem 4.1 is completed when the apriori estimates (4.3)-(4.5)

are established.
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Proposition 5.7. Let Ao G G(P) and suppose that the conditions of Proposi-

tion 5 A are satisfied with q G Γ(g ® P_Λ2). Let u G Γ(§ ® P_Λ2) fee

solution to (5.1).

(5.17a)

(5.17b)

(5.17c) II^VllΔ4<c,{ML2 + fKr^llL 4 / 3(i + I I ^ J J } ,

where Cλ < oo is independent ofA0 Ei G(P), P and q.
Remark. If it is known only that q G L 4 / 3 Π L2, then (5.17a)-(5.17c) are

true for the unique weak solution u G % to (5.1). Further, tf)\ w G %. Since
this generality is not required for the proof of Theorem 4.1, Proposition 5.7
will be proved with the stated assumption that q G Γ(g ® P_Λ2).

Proo/ of Proposition 5.7. Note first that (5.17c) follows from (5.17b) by
using Lemma 5.2. To prove (5.17a), use (5.5) with v = u to obtain

(5.18)

The last step uses Holder's inequality. Now use Lemmas 5.2 and 4.6. As for
(5.17b). Let b = <%\u. Then b satisfies

(5.19a) %b = q

(5.19b) V,V> = - * ( P _ ^ o Λ u ~ u Λ P F j ,

where vjjo: Γ(g ® Λ^ -* Γ(g) is the adjoint of V^: Γ(g) -> Γ(g <8> Λ1).
The estimate of Hfell̂ - comes from the integrated form of (2.9). Substitute

b = fy^u in (2.9), and take the L2 inner product of both sides with b.
Integrating by parts and using (5.19a), (5.19b) with Holder's inequality yields

(520) " ^ i i

Now use (5.17a), Lemma 4.6 and Lemma 5.2 to obain (5.17b). This completes
the proof of Theorem 4.1.

6. Moduli spaces

The purpose of this section is to establish results which are necessary for the
proof of Theorem 1.3. In addition, Theorem 1.4 is proved. We remarked earlier
that Theorems 1.3 and 1.4 are proved by Atiyah, Hitchin and Singer [3] in the
cases where the Riemannian curvature of M satisfies % = 0 and s > 0.
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As explained by Atiyah et. al., if a self-dual connection A exists in β(P),

then a one-parameter family of self-dual connections on P defines an element

in the first cohomology group H\(Q) of the following elliptic complex:

(6.1) 0 - Γ(8) - Γ ( 9 ® Λ 1 ) - ^ ® P_A2) -> 0.

Notice that 6ί>ADA = [P_/^, ] = 0 because A is self-dual. The aim is to com-

pute i/J(3) and then to show that it is the tangent space at A to a local space

of moduli. One then shows that the local space of moduli is a Hausdorff

manifold.

Theorem 6.1. Let M and P be as in Theorem 3.2. Suppose that A E Q(P) is

self-dual and irreducible, and that μ{A) > 0. Then the orbit of A under Aut P is a

point in a local moduli space of irreducible self-dual connections. In addition, the

moduli space in a neighborhood of A is a Hausdorff manifold of dimension

is ~\ «/ Λ \ d i m ( j , v

(6.2) P,(β) γ-(χ-τ).

If every irreducible self-dual connection inQ(P) satisfies μ( ) > 0, then the space

of moduli of irreducible self-dual connections is a global Hausdorff manifold of

dimension given by (6.2).

Proof of Theorem 1.4 assuming Theorem 6.1. The functional ^?)1L( ) and the

condition of self-duality are invariant under pointwise conformal transforma-

tions of the Riemannian structure, hence we can assume that sδiJ — 36llΓ7 is a

strictly positive matrix. Under this assumption, Proposition 2.2 and equation

(2.8) ensure that ^^DjJ has strictly positive eigenvalues whenever || P_FA \\L is

sufficiently small. Thus every self-dual connection in β ( P ) satisfies μ( ) > 0.

Proof of Theorem 6.1. The proof is sufficiently similar to that of the case

treated by Atiyah, Hitchin and Singer, so we only outline the argument and

refer the reader to [3].

The first step is to compute hι — dim HA(Q). Since A is irreducible, h° =

ker DA = 0. Further h2 = 0 because h2 = ker ^

(6.3) \\tyu\\2

L2> μ(A)\\u\\2

L2,

for all u E %. We now compute h° — hι + h2 by the Atiyah-Singer index

theorem [4]. The result as in [3] is

(6.4) h ^ ψ

Since μ(A) > 0, ju( ) > 0 in a neighborhood of A E 6(P). (This is still true

if we give β ( P ) the Banach space structure of an Lk

p space for p > 2, k > 1.)

This remark and (6.3) allow us to conclude that there exists in a neighborhood

of A, a local moduli space which is a Hausdorff manifold of dimension A1. As
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in [3] one also shows that if μ(A) > 0 for every irreducible self-dual A E G(P),

then these local moduli spaces give local coordinates on a global moduli space,

and that this global space is a Hausdorff manifold.

7. Self-dual connections: S4 and R4

We have yet to produce connections which satisfy the conditions of Theorem

3.2. In the next section, these connections will be explicitly constructed; the

result is Theorem 8.2. This construction is a "cut and paste" operation which

uses the self-dual connections on S4. For this reason it is helpful to review their

properties. Their existence has previously been established: Theorem 7.1 lists

the principal bundles which admit self-dual connections. The self-dual connec-

tions over S4 pull back via stereographic projection to self-dual connections on

R4. Theorem 7.4 and Corollary 7.5 establish apriori estimates on the size of

their curvature as | x | -* oo on R4. These estimates are crucial to the patching

theorems in the next section. Finally, Proposition 7.7 summarizes the behavior

of self-dual connections under scale transformations on R4.

When G is a compact semi-simple Lie group, the question of classifying all

irreducible self-dual G-connections over S4 has been solved. It was pointed out

by Atiyah, Hitchin and Singer [3] that it is only necessary to consider groups G

which are simple and simply connected. The reason is the following: If P -> S4

is a principal G-bundle, then a connection on P has a unique lifting to a

connection on the universal covering group bundle (see the Appendix). The

universal covering group bundle is a direct product of principal bundles with

structure groups which are simple and simply connected Lie groups. This

means that the connection on the universal covering group bundle is a direct

sum of connections on the bundles which make up this direct product. By

Proposition A.I, a principal bundle over S4 with simple and simply connected

structure group is classified by an integer k, called the Pontrjagin index

(k = />,(8) r~x with rQ given in (A.5)).

Theorem 7.1. (Atiyah, Hitchin and Singer [3]). There exist irreducible self-

dual G-connections on S4 when the associated vector bundle § has Pontrjagin

index k if and only if for Sp(n\ k^n\ SU(n% k > τi/2; Spin(n), k > n/4; G2,

k ^ 2; F 4, E69 E7, Es, k>3.

This theorem, the preceding discussion and Theorem 1.4 solve the existence

question on S 4 . The following are two useful extensions of Theorem 7.1.

Corollary 7.2. There exist self-dual connections on a principal G bundle

P -* S4 with structure group G compact and simple when the associated vector

bundle g has positive Pontrjagin class.
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Proof. For G compact and simple, there is an embedding SU(2) C G which

induces an isomorphism of homotopy groups H3(SU(2)) -> Π 3 (G), [7]. Hence

G-bundle of index k over S4 are reducible to S£/(2)-bundles with the same

index. Therefore self-dual SU(2) connections exist in 6(P) as reducible

elements.

Proposition 7.3. A self-dual connection over S4 is equivalent via a G-bundle

isomorphism to a real analytic connection on a real analytic principal bundle.

Proof. See, for example [3], [25].

The self-dual connections on S4 can be pulled back to R4 to give self-dual

connections there. This is our next topic.

Let p denote the north pole of S 4, and p the south pole. The open sets

{Uλ = S4 \p9 U2 = S4 \p) are a trivializing cover for any bundle P -> S4. Thus

if P is a principal G-bundle over S 4, it is uniquely determined by its transition

function h: £/, Π U2 -> G. The connection A E &{P) is equivalent to a pair of

Lie algebra valued one-forms^7 6 Γ(g 0 Λ11^.) which satisfy in Uλ U U2

(7.2) A2 = h'xdh + AdίA- 'K^ 1 ) .

The curvature of A is

(7.3) F^dA + A* /\A* (ί = 1,2)

in Ui9 and

(7.4) F* {

in Uλ Π ί/2.

Let s: R4 -> t^ be the stereographic projection from /?. The map s is a

conformal diffeomorphism. Thus if A is a smooth solution to (1.2a) and (1.2b)

on S 4, then s*(A) is a smooth solution to the same equations on R4. If we

denote the canonical flat G-connection on R4 by Γo, then

(7 5b) Fs.<A) = s*(FA>).

Theorem 7.4 (Uhlenbeck [25]). Let G be compact and semi-simple. Let A be a

smooth connection on a principal G-bundle over S4 which satisfies (\.2a) and

(1.26). Then

K
(7.6) \s*(FA)\(x)

(1 + 1

where K is a finite constant which depends on A.
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Corollary 7.5. Let A be as in Theorem 7.4. There exists a gauge transforma-

tion g G §(S4 \ {/?, p}\G) such that

(7.7) \s*{g(A)) - T0\<\κ \
1 \x\ (1 + \x\ )

forxER4\{0}.

Proof. Let s: R4 -» U2 be the stereographic projection from/?. By making a

smooth gauge transformation g2 E T(U2; G) we arrange that

(7.8)

satisfies

(7.9)

where c = xv(d/dxv) E T(T* | R 4 ) . K. Uhlenbeck proved that g2 always exists.

Now let

(7-10) g = g2h.

Then

(7.11) s*(g(A)) = T0 + s*(A1).

In order to estimate | s*(A*) \ we use the fact [25] that

(7.12) (s*(*)

(7.7) follows from (7.12), in consequence of (7.6) and the relation

|2 '(7.13) i*((*- ! )*(* '))= | 2

1*1
valid for x G R 4 \ { 0 } .

Definition 7.6. For λ > 0, the scale transformation λ: R4 -» R4 is given by

(7.14) λ*(x") = ;cyλ.

The Yang-Mills functional (1.1) on R4 is scale invariant. Thus if A is a solution

to (1.2a) and (1.2b) on R4, then λ*(^4) is also a solution, and

(7.15) ^9 ϊ t (λ*(Λ)) = <%<ΰl(A).

We see that λ* maps self-dual connections into self-dual connections. How-

ever, λ* affects the C° norm of a connection in the following way.

Proposition 7.7. Let λ G (0, oo). Let A and g be as in Theorem 7.4 and

Corollary 7.5 respectively. Then the following are true:

(a) \\*(s*{FA))\(x)< λ2K

(7.16) (λ 2 + | jc | 2 )

(b) IfΛ:GR4\{0},/Λe«
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(7.17)

Proof. Use the fact that if ω is a one-form on R4, then

8. Almost self-dual connections

In this section, M is any compact orientable Riemannian manifold, and G is

a compact semi-simple Lie group. A principal G-bundle P -> M and a connec-

tion A E β ( P ) satisfying the requirements of Theorem 3.2 will be constructed.

An outline of this construction follows: Choose a point m E M and Gaussian

normal coordinate system centered at m. This coordinate system covers a ball

B of radius R > 0 also centered at m. The coordinate functions provide a

diffeomorphism of B to the ball B of radius R centered at {0} E R4. Let s*W

be a self-dual irreducible connection on R4 X G, which is the pull back from

S4 of a self-dual connection W on the principal G-bundle over S4 with the

requisite Pontrjagin classes. The pull back is via stereographic projection. By

using the scale transformation (7.14), we can demand that λ*s*(W) have most

of its curvature in B. We then modify λ*s*(W) to produce a connection W

which is flat outside B. Finally we define A to be the pull back of W in B, and

to be flat in M \ B. This serves to define the bundle P as well. The associated

vector bundle § has the correct Pontrjagin classes, and by adjusting λ one can

make δ(^4) of Definition 3.1 arbitrarily small.

The condition δ(A) < δ is an open condition on β(P), so apriori, there are

irreducible connections A E β ( P ) with δ(^4) < δ. A measure of irreducibility

is required. Because M is compact, there exists p0 > 0 such that for each

m E M, the open ball Bp(M) of radius p0 > p > 0 centered at m is diffeomor-

phic to the unit ball in R4. For p0 > p > 0 and m E M let

(8.1) T(p,m) = \σ E T[Bp(m); § ) : / * | σ | 2 = 1

Definition 8.1. For A E β(P) and m E M, define

(8.2) L U ) = sup (_ inf i f * | V , σ | 2 ) )

Clearly, $m{A) is finite, for if σ0 E T(Bpo(m); §) satisfies | σ0 | (x) = 1, then

(8.3) 3
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On the other hand,

(8.4) }m(A)> inf /
σ<ΞT(po,m) \JBpo(m)

Standard techniques from the calculus of variations [18] allow us to conclude

that the infimum on the left-hand side of (8.4) is achieved by some ω G

Γ(p0, m). What is important is that A is reducible only if fm(A) = 0 for all

m£M.

The measure %m(A) is used in the following theorem.

Theorem 8.2. Let M be a compact oriented Riemannian manifold, and let G

be a compact semi-simple Lie group. Suppose that p -» M is a principal G-bundle,

all of whose Pontrjagin classes are nonnegatiυe. In addition, suppose that the

image of the isomorphism class of P in H2(M; Π^G)) is trivial (see the

Appendix.) Given 8 > 0.

(i) There exists A G G(P) with \\ P_FA \\ Lp < zλδ
λ/p, with zx independent of δ

(ii) Suppose that the principal G-bundle Pr -> S4 with the same Pontrjagin

classes as P admits an irreducible self-dual connection. Then there is a constant

z > 0 which is independent of δ with the following significance: There exists

A G G(P) such that δ(A) < δ and for some m G M, fym(A) > z.

(ϋi) If P_HveRham(M) = 0, there exists a constant a > 0 which is independent

ofδ with the following properties: There exist A G 6(P) with δ(A) < δ, μ(A) >

α, and in addition A satisfies (i) and (ii).

The reader is referred back to §7 and Theorem 7.1 for the conditions where

(ii) is applicable. Theorem 8.2 supercedes Theorem 1.6.

The proof of Theorem 8.2 requires the introduction of a function β G C°°(R4)

with the following properties:

(8.5) β(x) = l if I -x I< 1,

j8(*) = 0 if I J C | > 3/2.

For r > 0, define #.(*) = β(x/r).

Proof of Theorem 8.2. A principal bundle is uniquely determined by its

transition functions, so P will be defined by giving an open cover {Vb}beA of

M and functions {gby. Vb Π Vb, -> G}b>yeA, where Λ is a finite indexing set.

The functions {gb b,} satisfy gbb — \G as well as the cocycle condition

(8-6) 8b

in vb n vb. n vh...



SELF-DUAL YANG-MILLS CONNECTIONS 161

The connectionΛ e β(P) will be defined by a set {Ab E T(Vb; § Θ Λ 1 )}^^
which respects the cocycle condition

(8-7) Ab' = g^dgb^ + Kά{g-b]b){Ab)

in Vb Π K,,
Fix a point m EL M. There exists a coordinate neighborhood U 3 m and a

coordinate chart

(8.8) φ : t / ^ R 4

with the following properties
(i)φ(m)={0}GR 4 ;
(ii) the components of the Riemannian metric, as defined by

(8.9) g^(m') = (φ*(dx»), φ*(dx"))(m'),

satisfy

gμv(m) = δ^9

(8.10) (dgμv)(m) = 0,

\gμw(m') - δ"'\<\φ(m')\2p(m)

for all m! E U9 where ρ(m) is a finite constant which depends on the
Riemannian curvature of M [17]. Choose R > 0 and sufficiently small so that

(8.11) ξ = R2p(m)«\9

and set BR = {mf E U\ \ φ(m') \< R}. Then for all mf E BR,

(8.12) | g μ i / ( m θ - δ ^ | < ? « l .

Let P' -» 5 4 be a principal G-bundle such that the Pontrjagin classes of the
associated vector bundle g' are all nonnegative. By Theorem 7.1 and Corollary
7.2, there exists a self-dual connection W E 6(P'). Using the notation of §7,
W defines one-forms {Wi E Γ(^ ; G)}?=1 where in ^ Π ί/2,

(8.13) ί^2 - h-χdh + Ad(h-χ)(Wι)9

and Λ G Γ(ί/, ίl ί/2: G) is the transition function. The connection W defines
the gauge transformation g E T(UX Π U2; G), which is given in Corollary 7.5,
and the one-form W2 E Γ(t/2; g ® Λ1):

(8.14) fF^g-^g + Adίg"1)^1).

Let λ: R4 -> R4 denote the scale transformation of Definition 7.6, and let
,s: R4 -> ί/j be stereographic projection.

Definition 8.3. ΓΛe Z?M«ί/te P λ : These are defined for λ G (0, min(l, \R2)).
Cover M by the two open sets

(8.15) {Vx=Bfi(m),V2
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The transition function in Vλ Π V2 is

(8.16) g,,2 = Φ*(λ*(**g))

Definition 8.4. The connections Aλ: These are also defined for λ E

(0, min(l, ̂ R2)) as connections on Pλ. In F,, set

(8.17) Aι=φ*{λ*(s*(W1))),

and in V2 set

(8.18) A2 = φ*(βφ;.λ*(s*(W2))).

Notice that (8.14) and (8.16) ensure that (Aι

λ, A\) satisfy the cocycle condition

(8.7) in F, Π F2.

The first properties of ( P λ , ,4λ) to calculate are the Pontrjagin classes.

Proposition 8.5. The vector bundle g λ which is associated to Pλ via AdG has

the same Pontrjagin classes as the vector bundle §' -> S4 which is associated to P'

via Ad c . Further, the image of the isomorphism class of Pλ in H2(M\ Πj(G))

under the map η is the trivial element.

Proof. Both statements follow from the functorial properties of the set

{isomorphism classes of principal G-bundles over M} and the fact that

Pλ -+ M is the pull back of P' -» S4 via a degree 1 map from M onto S4.

As for P-FAχ, one has the following upper bound:

Proposition 8.6. There exists a constant zλ < oo which is independent of λ

such that for p E [1, oo),

(8.-9) »-Wf''
\\FλΛ\L < z , λ 4 / / > " 2

Proof. We are required to estimate l l i^JI L , \\P_FAχ\\Lp. This is done by

breaking M into the three sets M \ B2]fi9 B2]fi \ Bfi and B^, and computing

the integrals over each set separately. In fact, since FA = 0 in M\B2}fi9 only

B2)fi \ Bfi and B^ need be considered. The set B2]fi is diffeomoφhic via the

coordinate chart φ to the ball of radius 2]/λ in R4. Therefore the metric tensor

gμp can be pulled back using φ"1 to Φ(B2]/χ\ and the calculation can be done

there. Let | | denote the pointwise inner product which is defined by this

pulled back metric (which we still denote by gμv). The norm defined by the flat

Euclidean metric is denoted | | . To avoid confusion '*g' will denote the

Hodge duality operator which is defined by gμp. For notational convenience,

we denote y E B2fi and x = φ(y) by x.

Fix x E Bfi. Using (8.10) and (8.11) we conclude that

(8.20) I FAχ - *gFAχ \g (x) <kx\x\2\FAx\ ( x ) ,
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(8-21) \FAJg(x)<k1\FAχ\{x),

where A:, is a finite constant which is independent of λ. In fact, for x e Bfi,

(8.22) FAλ = φ*(λ*(s*(Fw)))

is self-dual with respect to the flat metric. We now use Proposition 7.7 to
obtain the following estimates:

(8.23) \FA-*gFAλ\g(x)<kιK\x
(λz

(8.24) \FAλ\β(x)<kιK ^
(x1 + λ2)

Inequalities (8.23) and (8.24) along with (8.10) and (8.11) imply the integral
bounds as follows:

(8.25) (/ Jg~d*\FAχ-*gFAχ\g(x)) "<k2λ
2/",

(8.26) (/ Jgd<x\FAJg(x))

where yfg — (det g μ ") ι / 2 , and k2 is a finite constant which is independent of λ.
Because B2y^ \B^ C V2, the curvature of Aλ at a point x G B2]^\B}/^ can

be computed from A\ which is given by (8.18). Thus we find that in B2yj^ \

(8 27) FA>
 =

where Fw — dW2 + PΓ2 Λ W2. An upper bound on the norm | FAχ \ in
B2]/χ \ Bφ^ follows from (8.11), Proposition 7.7 and the scaling relation

(8.28) \dβfi\{x)η=

Since s*(W2) = s*(g(A)) - Γo, we obtain

λ

for x G ̂ 2 v ^ \ #0^, where A:3 is a finite constant which is independent of λ. The
three terms in (8.29) correspond to the three terms in (8.27). Because λ < 1 and
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x > }/λ9 (8.29) implies that

(8.30) \FAχ\g<k4 if

The finite constant k4 is independent of λ. Hence we obtain the integral
inequality

(8.31) (/ βΛ

Putting (8.25), (8.26) and (8.31) together yields

V * / — Aχ Lip I > Aχ Lp 1 '

where zx does not depend on λ.
Now assume that Px -> S4 admits an irreducible self-dual connection.
Proposition 8.7. If W of Definition 8.4 is irreducible, then

(8.33) inf f * | vAσ\2>z>0,
σ<ΞT(λ,m)JBλ(m)

and z is independent ofλ.
Proof. Because s*(W) is gauge equivalent to a real analytic connection and

is ireducible,

(8.34) (ί]χlj
4χ\σή (/ rf4*l^^|2)>^2>0

for all nonzero σ: R4 -> g. By rescaling the integrand in (8.34), we obtain for
λ G (0,1] that

(8.35) λ2if d4x\λ*(σ)\2) if d4x\vwιV))λ*(σ)\2\>z,>0.

Hence, for all nonzero σ: R4 -• 9,

(8.36)

Using (8.12) we conclude that for all nonzero σ: R4 -» g,

(8.37) [l^fid** I * I2) [L^fid*x I vλV(κo>σ \l) > z > °'

where z is independent of λ. This last expression is just (8.33) which proves
Proposition 8.7.

Next assume that P-HϋeRham(M) = 0.
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Proposition 8.8. //P-Hγ)eRham(M) — 0, there exist constants γ, a > 0 which

are independent ofλ such that ifλ < y then μ(Aλ) > a.

Proof. By construction, Aλ is flat over M\B2)/χ\ as bundles with connec-

tion,

(8.38)

Define a map ": Γ(g λ <8> Λ*) -> Γ(Q X Λ^) by

(8.39)

Then ψ = j82Vs;ψ + ψ, and for ψ E Γ(g ® P_Λ2),

(8.40)

Now suppose that ψ is a L2-normalized eigenvector of ^ ^ ^ with eigenvalue

μ. We want to derive a lower bound for μ. To estimate the last term in (8.40)

we use (5.4), (5.2) and Lemma 5.2. Thus

(8.4,)
11, - C(M)(\

where C(M) is a constant depending on the Riemannian structure of M, and

we have used the fact that the support (j82v^Ψ) c #3v5Γ(w) Standard Sobolev

inequalities [ 14] imply that

(8.42) 11

Hence using (8.42) and Proposition (8.6) we obtain, for λ sufficiently small, the

bound

(8.43) l l^&v^HL > C2(M)λ-ι\\β2^\\l2.

As for the second term in (8.40), we use the identities

(8 44) ^*(&V5ΓΨ) = * ( ^ Λ

to obtain the bound

(8.45)
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To estimate | | Ψ | | L we must use the eigenvalue equation in integrated form,

namely for all η E %

or

(8.46) ( V ^ ' V"λΨ>L2 + ^ P-F^)}^ + f

Let 0 < / E C°°(M; R), and set ϋ = (1 + | ψ | 2 ) 1 / 2 and TJ = /ϋ^ψ Since

VAr\ = V/b"V -fv~2Vvχp + /tΓ1Vψ,

we obtain that

(8.47) < V/, Vϋ>L 2 - y/2 (t>/| P_F^ | > i 2 - (c 3 + μ)(υ, f)Li < 0,

where c3 depends only on the Riemannian structure of M. Appealing to

Morrey [18, Theorem 5.3.1], we obtain a uniform bound on || υ IIL of the form

(8.48) HψH^ < l lo l l^ < c4(M; μ ) ( | | ψ | | L l + l ) < 2 c 4 | | ψ | | L 2 ,
2,

since we have normalized ψ so that llψllL2 = 1. Hence the right-hand side of

(8.45) is bounded by

(8.49)

where C(M) is a (different) constant which is independent of ψ and λ.

On the other hand, because P-H^^^^M) — 0, there exists a constant

μx > 0 which is independent of λ such that

(8.50) λ 2 2 2

Together, (8.40), (8.43), (8.47) and (8.48) imply that for λ sufficiently small,

(8.51) | | ^ λ ψ | | | 2 >μ2(llψlli2

as claimed.

Proof of Theorem 8.2, the completion. Propositions 8.5 and 8.6 imply that

for λ sufficiently small, the principal G-bundle Pλ and ^ λ 6 β ( P λ ) satisfy

statement (i) of Theorem 8.2. Proposition 8.7 ensures that statement (ii), when

applicable, is satisfied by Pλ and Aλ E β ( P λ ) . Propositions 8.7 and 8.8 ensure

that statement (iii) of Theorem 8.2 is satisfied by Pλ and Aλ E G(Pλ) for all λ

sufficiently small. Hence all bundles isomorphic to Pλ satisfy statements (i), (ii)

and (iii) of Theorem 8.2.
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9. The existence of self-dual connections

The proof of Theorem 1.2 is completed in this section. It is now a direct

consequence of Theorems 3.2 and 8.2 as explained below.

From Theorem 8.2, a principal G-bundle P -> M in the stated isomorphism

class admits a connection Ao E &(P) with the property that S(A0) < ε0 as

required by Theorem 3.2. Then Theorem 3.2 states that there exists a E Γ(g 0

Λ1) which satisfies

(9.1) %a + a#a + P_FAo = 0.

In other words, A = Λo + a E β ( P ) is self-dual.

Assume that the conditions of statement (ii) of Theorem 1.2 are met. We will

use the measure %m(A) which is defined in §8 to prove the existence of

irreducible self-dual connections in β(P) .

Suppose that Ao satisfies the requirements of Theorem 3.2 so that Ao + a is

self-dual and a satisfies (3.7). We obtain for σ E Γ(p, m) the apriori estimate

2 / * I VAo |2 > / * I VAo |2 - 4 | | σ | l l 4 ; β p ( m ) | | α | l l 4

(9.2) / v

> / * |V,σ | 2 \(\ - C{δ(Aof) - CMA0)\
\ Bp(m) I

where Cλ is independent of Ao E β(P), and the last line follows from (3.7) and

Lemma 5.2.

By Theorem 8.2, a principal G-bundle P -» M in the stated isomorphism

class admits a connection Ao E β ( P ) with the following properties:

(a) δ(^40) < ε0 as required by Theorem 3.2.

(b) There exist p > 0, m E M and z > 0 such that

(9.3)

and that

(9.4) inf I / * I v . σ l 2 I > z > 0.

It follows from Theorem 3.2 that there exists a E Γ(g 0 Λ1) such that A = Ao

+ <z is a self-dual connection. Meanwhile, (9.2)-(9.4) ensure that there exists

m E M that %m(A) > 0. Thus 4̂ is irreducible as well.

Statements (i) and (ii) of Theorem 1.2 have been established. Statement (iii)

of the Theorem is a standard result; cf. [23], [25].
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Appendix: classification of principal bundles

Let M be a compact connected 4-dimensional Riemannian manifold, and

suppose that G is a compact connected semi-simple Lie group. The isomor-

phism classes of principal G-bundles P -» M are in one-to-one correspondence

with the set of homotopy classes of maps from M into the classifying space BG

for G, [8], [12]. This set is denoted by [M; BG]

Proposition A.I. Let G and M be as described above. Then there is a

surjection

(A.I) φ:[M;BG] -> Z ' -> 0

which is a bijection if G is simply connected. Here I is the number of nontrivial

simple ideals which compose g.

Proof. The / Pontrjagin classes, [8], [12], {p\{g)}lk=\ of the associated

vector bundle § = PxAdcQ provide a surjection

(A.2) [M BG] -> Z7 -* 0.

Now assume that G is simply connected. Both M and BG are CW complexes.

The manifold M has cells up to dimension 4, whereas the 4-skeleton of BG is

homotopically a disjoint union of / 4-spheres, [6], [7], Every map from M into

BG is homotopic to a map of M into the 4-skeleton [26]. Thus

(A.3) [M S4]1 ^[M BG] -* 0.

By the Hopf classification theorem we have [M; S4] « Z, and this isomor-

phism is given by the degree. Hence for G simply connected, [M; BG] « Z7.

If G is not simply connected, then G has a universal covering group

p: G -> G which is a compact simply connected semi-simple Lie group. The

covering projection p is the quotient of G by finite subgroup Z o of the center

Z C G, [20]. Thus Π,(G) » Z o . If P is a principal G-bundle over M, the

projection /? induces a natural bundle map //: P -+p'(P)9 and /?'(/) is a

principal G-bundle. The induced map on § = PxAά ~ 9 is a bundle isomor-

phism.

Proposition A.2. Let M, G be as in Proposition A A. Then there is a map

(A.4) η: [M\ BG] - H2{M; πx(G))9

and φ is an isomorphism when restricted to the kernel ofη.

Proof. If P is a principal G-bundle, there is an obstruction to the existence

of a principal G-bundle P such that p\P) — P. The obstruction is an element

of H2(M; Π,(G)) [cf. 26], and is invariant under bundle isomorphisms, hence

(A.4). It follows from Proposition A.I that// induces a bijection from [M; BG]

onto the kernel of η in [M; BG]. The last statement of Proposition A.2 follows

from this bijection.
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As we remarked earlier, the map φ is specified by the Pontrjagin classes
{/>f(8)}U.Let

rQ = An for Q — Lie algebra of SU(«)

4n — 2 Spin(«)

4Λ2 + 4 Sp(«)

(A.5) 16 G2

36 F4

48 E6

72 £ 7

120 Es.

Then φ is given by (see [3] for the derivation)

(A.6) (Isomorphismclass of P) -> (r~}

ιp\(&)9- ',r-*p\(&)).

The Chern-Weil construction represents the characteristic class /jf(g) by an
element in H^JίM). For A

(A.7)

where the integral is independent of the choice of A E β(P).
Notipe that if Λ ε β ( P ) is self-dual, the integrand in (A.7) defines a

nonnegative measure on M. Thus a necessary condition for P -> M to admit a
self-dual connection is that the Pontrjagin classes {p\($)}ι

k=\ be nonnegative.
The Riemannian curvature defines a two characteristic classes: the signature

T = %pλ(Λ}) and the Euler characteristic χ(M):

(A.8)

while

(A.9)
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