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1. The results
l.l Spaces, surfaces, curves, boundaries of domains and so on are sup-

posed to be of class C°° unless otherwise stated or subtended. A set S in a
Riemannian space will be said to be convex if for any two points of S there
exists a geodesic in S not longer than any other arc in S between the two
points.

A Riemannian space M will be said to be enlarging {reducing) if for any
two convex compact domains Do and Dλ c M homeomorphic to a ball, the
integral Gauss curvatures Go and Gλ of their boundaries with respect to the
interior normals satisfy Go < Gι (Go > Gx) when Do c Dv (By Gauss curva-
ture we mean product of principal normal curvatures.)

A space M either enlarging or reducing will be said to be monotonic.
1.2. For dimension n = 2, Gauss-Bonnet theorem yields a clear idea

about monotonic space: those of nonpositive (nonnegative) curvatures are
enlarging (reducing) and those of alternating curvature are not monotonic.
Moreover, for n = 2, the requirement of convexity and homeomorphism to a
ball can be omitted in the definition above.

We study in this paper to what extent this situation survives for n > 3.
One can hardly expect that a space Λf can be enlarging (reducing) if it

contains a point/? and a 2-dimensional direction σ at/? where the sectional
curvature is positive (negative). If for example the geodesies emanating from
p and tangent to σ form a geodesic 2-dimensional surface S in a neighbor-
hood of /?, then for any distinct compact convex domains D o c Dλ c S close
to p and homeomorphic to a circle, the total curvatures Co and Cλ of their
boundaries satisfy Co > C\ (Co < Cλ). But Do and Dx can be treated as
(degenerate) convex domains in M described in §1.1. Then Co > Cλ implies
Go > Gl9 and Co < Cx implies Go < Gv

For this reason, we consider only spaces of nonpositive (nonnegative)
curvature for the purpose of studying enlarging (reducing) spaces. In contrast
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to the 2-dimensional case, this condition (nonalternating curvature) is far
from being sufficient for the monotonicity even though only convex domains
are involved. In §4 we construct a space Mx of dimension n > 2 which is
arbitrarily close to a part of a sphere by its metric and curvature but is not
reducing. At the same time, we prove that spaces of constant positive
(negative) curvature are reducing (enlarging). This fact arises easily from
Gauss-Bonnet type inequalities (1.3.1) and (1.3.2) of the following theorem.

13. Theorem. Let M be an n-dimensional, n > 2, space of constant curva-
ture k, and compact domains Do c Dx c M be homeomorphic to a ball.
Suppose the normal curvatures of their boundaries on the side of the interior
normals are not less than some K > 0. Then the volumes Vo, Vx of the domains
and the integral Gauss curvatures Go and Gι of their boundaries satisfy

(1.3.1) Gx - Go > - (n - \)κn~2k{Vx - Vo) ifk < 0,

(1.3.2) Gx - Go < - (n - l)κ»-2k(Vx - Vo) ifk > 0.

The theorem is proved in §2. The equalities hold when n = 2 (by Gauss-
Bonnet theorem) and when k = 0.

Later on we denote by P£ an n-dimensional sphere, or a Euclidean, or
hyperbolic space of curvature k. For k > 0, P^ is a closed curve of the length
2m Vk . For k < 0, we put P£ = R. P? will denote a point.

The equality in (1.3.2) holds also in P£, k > 0, n > 2 for domains Do and
Dx bounded by halves of different spheres P£~ι spanning the same (n — 2)-
dimensional equator /^~2. In this case Go = Gx = K = 0.

1.4. The following example shows that the assumptiion of convexity of Do

in Definition 1.1 is important, i.e., that without the assumption the monoton-
icity can fail even in spaces of constant curvature.

Let Dλ be, say, a convex ball in Px (P^), and Do c Dx be an arbitrary
domain homeomorphic to a ball. Denote by S the area of the boundary dD0

of Do. Integration of Gauss "Theorema Egregium" over 3D0 and application
of Gauss-Bonnet theorem yield Go = 4π — S (Go = 4π + 5). So for suffi-
ciently large S one has Gx > Go (Gx < Go).

The assumption of convexity of Dx is also important in the same sense. An
appropriate example is an odd-dimensional sphere where Do is its half and Dx

is some larger ball.
1.5. The inequalities (1.3.1) and (1.3.2) allow us to establish inequalities

similar to Gauss-Bonnet type for a convex domain Z>, homeomorphic to a
ball, in a space of constant curvature. Let Dx be as in §1.3, and Do c Dx be a
compact metric ball. When Do is sufficiently small, the normal curvatures of
its boundary > K, and the inequalities (1.3.1) and (1.3.2) hold. Passing now to
the limit as Do contracts to its center (and omitting the index 1 at Dx, Gx, Vx)
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one obtains

(1.5.1) G - cn > - (n - \)κn~2kV if k < 0,

(1.5.2) cn - G > - (n - l)κn-2kV if k > 0,

where cn is the volume of P " " 1 . The equalities hold when n = 2 (by Gauss-
Bonnet theorem) and when k = 0.

1.6. Let Cβ, 0 < ε < 1, be the class of spaces with sectional curvatures
varying in the segment [1 — ε, 1 + ε]. The example Mx (see §§1.2, 3.1-3.4)
shows that Cε contains nonreducing spaces (Mλ and close ones) for any
ε ^ O , while Co consists entirely of reducing spaces.

We do not have a similar example for spaces with negative sectional
curvature. However, we still can show that for any negative numbers -u2 and
-v2 satisfying u2/v2 > 2 and for any n > 2, there exists an ^-dimensional
space M2 with sectional curvatures varying in the segment [-t/2, -υ2] which is
not enlarging. M2 is constructed in §§3.5-3.8.

In connection with a possible interest in the set of all monotonic spaces, we
would like to mention the following observation.

Let M be an n-dimensional, n > 3, space of nonnegative (nonpositive)
sectional curvature. Suppose in M there is a point/? such that the minimum a
and the maximum b of absolute values of the sectional curvatures at the point
p satisfy

b > 0, T < T — — - » ° 0 8 5
b 2 V2 + 1

Then M is not reducing (is not enlarging) and hence not monotonic. The
appropriate domains Do c Dx illustrating this statement are constructed in a
small neighborhood of the point p. Their exact description and the calcula-
tions involved are rather long and not produced here. The constant 0.085 is
certainly not exact.

1.7. One can hardly generalize the inequality (1.3.2) to spaces of positive,
other than constant positive, curvature. A "reasonable" generalization would
look like

Gλ- Go< -(n- l)κn~2 ( XdV,
J \ D

where the quantity X turns into k if the space approaches a space of constant
curvature k > 0. Then on a certain stage of the approximation there should
be X > 0 and Gλ - Go < 0 which is not always true according to the
example Mv
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1.8. If k φ 0 and K > 0, the inequalities (1.5.1) and (1.5.2) yield the
proper upper estimates of the volume V of the compact domain D in §1.5.
When K = 0, the established monotonicity of the space still allows us to
estimate V in terms of G if the domain D is not "too degenerate". Denote by
b and B the inscribed and circumscribed closed metric balls of the domain D
with radii r and R, respectively. Suppose that r/R > ε > 0, and also that B is
compact and homeomorphic to a ball. Then the same is true of b. One can
easily see that B and b are convex (2-dimensional sections help here a lot).

For shorter calculation, assume \k\ = 1. Due to the monotonicity of spaces
of constant sectional curvature (see §§1.2, 1.3), the integral Gauss curvatures
Gb and GB of b and B satisfy

Gb = cn cos""1 r > G, GB = cn cos71"1 R < G for k - 1

Gb = cncoshn-ιr < G, GB = cn cosh*"1 # > G for fc=-l ,

which together with r/R > ε > 0 imply

ε/(G) < εR < r < Λ < r/ε < f(G)/ε,

where

^ 1 if A: = - 1 .

Therefore Γ(ε/(G)) < K < F(/(G)/ε) where V(x) denotes the volume of a
ball of radius x in a sphere or hyperbolic space with k = ± 1 respectively.

1.9. Notice that for n = 3, the volume F of an arbitrary domain D
homeomorphic to a ball in an arbitrary space of sectional curvature < - δ 2 <
0 can be easily estimated from above in terms of integral Gauss curvature G
of dD. Indeed, integrating Gauss "Theoreme Egregium" over 3D and apply-
ing then Gauss-Bonnet theorem, one has ffdD K dS = 4π - G where K is the
sectional curvature in the direction tangent to 3D. Since K < - δ 2 < 0, the
area S of 3D satisfies now S2S < G - 4π. According to [1, (5.26)], S > 28V.
The last two inequalities yield

2. Proof of Theorem 13
2.1. Since the case k = 0 is trivial, we assume further k φ 0. By a simple

limit reasoning, one may assume that Do c int Dl9 and the normal curvatures
of Do, Dλ are greater than K. We may also assume that K > 0 because if K = 0
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then the boundaries of Z>0, Dλ can be approached by equidistant surfaces of
positive normal curvature. The surfaces should be inside Do, Dι when k > 0,
and outside when k < 0.

The local convexity.of dDλ implies that the diameter of Dλ is less than
π/Vk in the case k > 0. As Z>0 is homeomorphic to a ball, one can easily
imbed Dλ (with Do inside) into P£. An exponential type of mapping with a
pole inside Dλ will realize such an imbedding. Thus one may assume that
M-P£.

A closed segment with the ends a, b (in any space under consideration) and
its length will be denoted sometimes by ab.

2.2. In §§2.2-2.8 we will "connect" Do and Dx by a family Dt, t E [0, 1],
of compact domains which are "convex to the same extent /c".

In what follows, /c always means a positive number.
Let v E TP£, \v\ > 0. Later on, we denote by B° the closed domain in Pg

such that Θ2?κ

ϋ B π(υ), where π is the natural projection, v is an interior
normal to dB°9 and 32?̂  is a surface of constant normal curvature /c on the
side of υ. (Sphere, orisphere or equidistant of a plane.)

[ . ]c will denote the closed ε-neighborhood of a set. Let Z) E PΛ

Λ be a
connected closed convex domain with a nonempty boundary. A vector t ? ^ 0
at a point p E dD will be called a generalized interior normal to 3D if v is
perpendicular to a supporting plane (P£~ι) passing through/? and if v is
directed into the half-space where D is located. The domain D will be called a
K-convex body if for any generalized interior normal v at any point p E dD
there is a number ε > 0 such that [p]e n D c B°.

23. The following statements seem obvious.
At regular points, normal curvatures of the boundary of a ic-convex body

are not less than K.
Do, Dl9 B° are /c-convex bodies. Z>0, Dλ are also ic-convex for any positive

K < κm where κm is the minimum of normal curvatures of 3D0 and dDv

(κm > κ; see §2.1.)
The intersection of any collection of ic-convex bodies is a /c-convex body if

it has an interior point.
The section of a ic-convex body by P™ <zP£,m < n, is also an w-dimen-

sional /c-convex body if it has an interior point.

2.4. Lemma. Let D be a κ-convex body, and v its generalized interior

normal. Then D c B°.
(So the condition [p]e n D c B% in §2.2 can be replaced by D c B?.)

Proof. Suppose the contrary, that is, there exists q E Z), q £ B°. Then

qψpL ^(ϋ). One may assume that q c int D. Consider the sections of D

and B° by P? passing through q andp and tangent to v. Put d = D Π P£,
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b = B° n Pj*. Denote by β < ττ/2 the angle betweeen pq and db. Let pq(ά),
a G [0, β] be the arc of constant curvature with the ends/?, q emanating from
p within the angle β and forming an angle a with pq. As d is convex (see
§2.3),pq(0) = pq c d. Points inpq(β) close to/? lie outside b and therefore
do not belong to K-convex body d. Thus pq(β) £ d. Let a* c (0, /?) be the
maximum number such th&t pq(a) c d for α < a*. Obviously, the arc/ ^a^)
"touches θrf from inside" at a point r φq\ see Fig. 1. (Possibly r — p.) This is
impossible as d is a /c-convex body (see §2.3), and the curvature of pq(a^) is
less than that of pq(β) which in turn is less than the curvature K of db.

FIG. 1
2.5. The intersection of all ic-convex bodies containing a set S c P£ will

be called κ-conυex hull and denoted by HK(S). For example, for a unit open
circle S c PQ, HK(S) = S (the closure of S) if ic < 1, and does not exist if
JC > 1.

2.6. Let φ: P?~ι X [0, 1] -^ P£ be a diffeomorphism such that φ(Pΐ~ι X
0) = 3Z)0, φίPΓ"1 X 1) = θ/>!. For / G [0, 1], put Dt = Dou φ(PΓl X
[0, /]), Et = H-(Dt) where ίc = (/c 4- /cm)/2. (Et exists since the ic-convex body
Dι D Dt\ see §2.3.) Notice that for t close to 0 and 1, Et = Dt. Since φ is a
diffeomorphism, the family Dt and consequently Et are increasing in the sense
that Dtι c int Dh, Etχ c int^ 2 for tx < t2. We show in §§2.6, 2.7 that the
family Et is continuous.

Take T G (0, 1], and consider an increasing sequence *,. -» 7*, / = 1, 2, . . •. .
Put E+ = U °1! ^ . Since the family £, is increasing, E+ c JE'T-. The relation
Dtj c £,. C E+ implies Dτ = U * ! A,C ^ * Using Lemma 2.4, it is easy to
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see that E+ is a /c-convex body and therefore E+ D ET. Thus En = Et, i.e., the
family Et is continuous from below.

2.7. Take T E [0, 1), and consider a decreasing sequence ί, -> Γ. Put
-E^ = C\*LX Etχ. Since the family Et is increasing, £„ D ET. Suppose now that
the family Et is not continuous from above, i.e., that E+ Φ Eτ. Let a point
a E dE+ be the most distant from dEτ, and let b E 9 £ r be the closest to a.
Denote by g: [0, s] —» P£, s > 0, the minimal geodesic parametrized by arc
length such that g(0) = a, g(s) = 6. Obviously, g(0) and g(^) are generalized
interior normals to dE^ and dEτ at α and 6 respectively; see Fig. 2.

FIG. 2
Put for short Bfx) = Bx, x E [0, 4 By Lemma 2.4, £, c Bs and

Then for any ε > 0 and sufficiently large i, one has

Thus Z)/f c [B\ n [5°]e. Choose ε such that [Bs]e Π [B% c 5 ί / 2 ; see Fig. 2.
Now Z)j c 5 J / 2 . Since a E ΘJE* C int Et( and α ^ Bs/\ the ic-convex body
^ Π i**/2 which contains Z)f is a part of the ic-convex hull Et_ of I),; this is
impossible.

2.8. The following lemma can be proved quite easily due to the increase
and continuity of the family Er

Lemma. There exists a (C0 0) diffeomorphism d: PJ1"1 X [0, 1]->P£ such

that

(i) d(PΓι X 0) = dD0, d(P?~l X 1) = 9Dud(PΓι x I 0 ' !]) = ^ i x ^
(ii) /Λe normal curvatures of the surfaces Ft = d(P"~x X t) are not less than

K.

The proof is reduced to a suitable smoothing of the boundaries dEt of the
ic-convex bodies Et by a standard technique. For / close to 0 and 1, where



288 B. V. DEKSTER

dEt = dDt (see §2.6) no smoothing is needed. For the proof, it is convenient
to consider first the homeomorphism A: Px~

ι X [0, 1] -» P£ such that h(a, t)
is the point in dEt lying on the geodesic perpendicular to dD0 and passing
through φ(a, 0) G 9£>0. Now d can be obtained by a proper smoothing of h.

2.9. Denote by Gt the integral Gauss curvature of Fn and by N the
interior normal to Fr Put Y = d+D where D is the differentiation with
respect to t G [0, 1]. It follows from [2, (4)] that

[ kSn_2(Y,N}dS,
pt

where Sn_2 is (Λ — 2)nd elementary symmetric function of the principal
curvatures on the side of N. Due to §2.8(ϋ), Sn_2 > κn~\n - 1). Since
<y, N} < 0, we have

4-G, > - ( n - l)κ"-2k [-<Y, N} dS, iϊk<0,
at JFι

4-Gt<-(n-l)κ"-2kf-(Y,N}dS, iik>0.
at JFι

Since jλ

0 fF-(Y, N) ds dt = JDι\Do dV = Vx- Vo, integration over the seg-
ment 0 < / < 1 yields (1.3.1) and (1.3.2).

3. The examples Mx and M2

3.1. We construct first a nonreducing space Mx with the sectional curva-
tures varying within a segment [1 — ε, 1 -I- ε] for any given ε > 0. The unit
here can be easily replaced by any positive number.

Take m > 0 satisfying m2 G [1 — ε/2, 1), and consider the manifold Px

n~x

X / where / = (-π/2m, π/2m). Introduce a metric in the manifold by
putting ds2 = dσ2 cos2 mh + dh2, where do2 is the metric in Px

n~\ and h G /.
One can easily check that for any circle Pλ

ι c Pλ

n~ι, the 2-dimensional
submanifold Px

ι X / ("vertical" plane) has constant interior curvature m2.
Due to symmetry, Pf X /, 0 < d < n — 2, is a completely geodesic submani-
fold. (In particular, Λ-coordinate lines are geodesies.) Therefore the sectional
curvatures in "vertical" directions are equal to m2. Since the hypersurface
Px~

ι X 0 is completely geodesic, the sectional curvature in any 2-dimensional
direction tangent to Pf"1 X 0 ("horizontal") is equal to 1.

The symmetry of the space helps now to see that all sectional curvatures at
any point in Px~

x X 0 vary within the segment [m2, 1]. Then in a small
δ-neighborhood of Px~

ι X 0, the sectional curvatures vary within (1 — ε,
1 + ε). Such a δ-neighborhood Px~

ι X (-δ, δ) will serve as λfx.
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3.2. Take Pf c Pf" 1 and set M = Pf X (-δ, 8). Since M is a completely
geodesic submanifold in Mv it suffices to construct convex compact domains
/)0 C Dj C M, homeomorphic to a ball, with the integral Gauss curvatures
Go, Gj of their boundaries satisfying Go < Gv The reason is that Do and Z>j
can be regarded as degenerate convex domains in Ml9 and the inequality
Go < Gx in M results in the same inequality in Mv The degeneracy of Do and
Z>! in Λf! is not important as they can be "inflated" a little so that the strict
inequality Go < Gx in Λf ι will still hold by continuity.

3 3 . As Z>0, we take a half of the sphere Pf X 0 c M bounded by a circle
P/. So Z>0 is again degenerate in Λf. Since P/ is a geodesic, Go = 0. Take now
an arbitrary point b in the geodesic perpendicular to Px X 0 and passing
through the center c of the circle Z>0. Obviously, the minimal geodesies ba
with a E P\ exist in Λf, when Z> (̂ = c) is sufficiently close to c. We denote by
Z>! the domain bounded by the circle Do and the cone composed of the
segments ba; see Fig. 3. Obviously, Do c Dl9 Do Φ Dv

FIG. 3

Consider a triangle abc with a E P/ and sides lying in a vertical plane and

bounding a figure isometric to a triangle in P^2. Since ac = π/2 < \πm and

cb <8 <\mm, the angle αftc <^77, so that £>! is a convex domain, and Gauss

curvature of dDx at the vertex b is positive. At the other points, the Gauss

curvature is zero (in particular, along the rib P/ as P/ is a geodesic). Thus

Gx > 0, i.e., Gλ > Go.

Notice that the example fails when m = 1, since then the angle abc = τr/2

and Gx = Go = 0.

3.4. The constructed domains Do, Z>j can be easily approximated in M by

nondegenerate domains with C°°-boundaries; this also demonstrates that Λf

is not reducing. It is convenient first to decrease a little the radius r ( = ττ/2)

of the circle Do so that the circumference of Do becomes strictly convex. Then

the rulings of the cone and the diameters of its base can be replaced by the

circumferences of small curvature lying in vertical planes to provide dD0 and

9Z>! with positive curvature at each point. (At this stage, Do will look like a

lense.) A proper smoothing of 3Z>0 and Wx can be now easily constructed.
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When the described variation is small enough, the inequality G, > Go will

hold for the new Do and Dx by continuity.

3.5. We construct now the space M2 described in § 1.6.

Take first a segment [-p2, -q2] c (-w2, -v2) such that p2/q2 > 2. In the

manifold P"pl
λ X R, let us introduce a metric ds2 = do2 ch2 qh + dh2 where

do2 is the metric in P"pΊ
ι and h G R. One can easily check that for any

geodesic P\pi c P^\ the 2-dimensional submanifold Px_pi X /? (a vertical

plane) has constant interior curvature -q2. Due to symmetry, any submani-

fold Pipi X R, 0 < d < n - 2, is completely geodesic. Therefore the sectional

curvatures in vertical directions are equal to -q2. Since the hypersurface

Pϋpl* X 0 is completely geodesic, the sectional curvature in any 2-dimensional

direction tangent to that hypersurface is equal to -p2. Due to symmetry, all

sectional curvatures at any point in P"pΊ
ι X 0 vary within the segment

[-p2, -q2]. Then, in a small δ-neighborhood of P^I 1 X 0, the sectional

curvatures vary within [-w2, -t>2]. We denote such a δ-neighborhood P^t1 X

K ^ c P i1 X RbyM2.

By a reason similar to §3.2, it suffices to consider only the case n = 3. We

shall assume this further on.

3.6. As a (degenerate) domain Do, we take a circle of a radius r in the

surface P2

pi X 0. Then Go = 4π coshpr. (Go is proportional to the total

curvature t = 2π cosh pr of the boundary of the circle Do, and Go = 4τr for

/ = 2τ7 , i.e., for r = 0 or/? = 0.)

Put for short
cosher = P, cosh #r = Q,

2 \ P2-2P+Q2

One can check that limΓ^0^Γ = ^r2/(/72 - q2) G (0, 1) since p2/q2 > 2. Then

0 <yr <y < 1 for sufficiently small r > 0.

3.7. Let c be the center of Do. When r is sufficiently small, in M2 there

exists a point 6 φ c such that 6cJ_P^2 X 0, the triangle abc exists in M2 for

any point a in the circumference of Z>0, and the angle cab = cos"17. We

denote by Z>j the domain bounded by the circle Do and the cone consisting of

the segments ab. (See Fig. 3 disregarding P\ and replacing P2 by P^-)

The triangles abc lie in vertical planes and bound there figures isometric to

a triangle in P7^, Therefore the angle abc = sin^yl — Q2 + y2Q2 . Now

Gλ = 2ττ(l - ^1 - Q2 + y2Q2 ) + 2 ^ ( 1 + y) where each of the two ad-

dends represents a portion of the integral Gauss curvature: first at the vertex

b and second along the circular arc. (The second addend is calculated as Go

in §3.6.)
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3.8. Thus

(3.8.1) (G, - G0)/2π = 1 - P + Py -yj\ - Q2 + y2Q2 .

Notice that yr and 1 are roots of the polynomial f(x) = (P2 - Q2)x2 -
2P(P - \)x + P2 - IP + Q2. Since P 2 - Q2 > 0 and> Γ̂ <>^ < 1, one has
f(y) < 0. This implies

1 + y2P2 - 2yP(P - 1) + P2 - 2P < 1 - Q2 + >>2£?2,

1 - P + 7P < ^ 1 - Q2 +y2Q2 ,

which together with (3.8.1) results in Gγ < Go.
As in §3.4, Do and Dλ here can be easily replaced by nondegenerate

domains with C ̂ -boundaries showing that M2 is nonenlarging.
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