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Dedicated to the memory ofNoelJ. Hicks

Let M be a closed Riemannian flat manifold. It is well-known that
Out πx(M), the outer automorphism group of the fundamental group of Λf, is
isomorphic to the group πo(S(M)) of homotopy classes of self homotopy
equivalences of M.

A homomorphism φ: G -> Out πλ(M) =π o (S(M)) is called an abstract
kernel and is denoted by (G, πx{M\ φ). A geometric realization of
(G, πx(M\ φ) by a group of homeomorphisms is a homomorphism φ: G —>
%{M\ where %(M) is the group of homeomorphisms of Λf, so that φ
composed with the natural homomorphism %(M) -»Out π^M) agrees with
φ. This paper is concerned with the geometric realization problem when G is
finite and M is flat, and is related to some of the ideas promulgated in [7].

In order that an abstract kernel has a geometric realization the kernel must
have an "algebraic realization," [2, 2.2], The Corollary to Lemma 1 char-
acterizes the type of group extension which must exist if one is to find a
geometric realization by an effective group of homeomorphisms on a closed
aspherical manifold. Then Theorem 3 asserts that this necessary condition is
also sufficient for an effective geometric realization on Riemannian flat
manifolds. Because of flatness this realization can always be chosen to be a
group of affine diffeomorphisms which, as we show in Theorems 3 and 6, is
affinely equivalent to an isometric action on an affinely equivalent flat
manifold. Thus it will follow that the finite groups which act effectively on M
are isomorphic to those groups which act isometrically on manifolds affinely
equivalent to M.

If, on the other hand, one is willing to sacrifice effectiveness one needs, as
shown in the Corollary to Theorem 4, only the existence of some group
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extension realizing the abstract kernel to geometrically realize an abstract

kernel. But one can construct many examples of abstract kernels which fail to

have geometric realizations because of the failure of the existence of an

algebraic extension (this can only by done when the center of ΊTX{M) is not

trivial). However, we do show (Theorem 5) that for any abstract kernel

(G, mλ(M), φ), one can find an epimorphism H —» G of a finite group H so
ψ

that the composition H-^ G—»Out π,(Aί) always admits a geometric realiza-

tion by an affine group of diffeomorphisms. A result of this type seems to us

to be the most natural way of attempting to solve the realization problem. In

fact, when πx(M) has a nontrivial center and the necessary algebraic exten-

sions fail to exist, this is the only possible avenue left for a positive result.

Let 7r be a discrete group with torsion free center. An extension E of m by a

group G is said to be admissible if in the induced diagram

I I* \φ

1 — > Inn π —• Aut π —• Out π —• 1

φ is injective on any finite subgroup of E. Of course, the automorphism φ(e)

of is is conjugation by e9 e E E.

Lemma 1. Let M be closed aspherical manifold with isx(M) = is. Then the

extension 1 -> π -» Nc^^is) -» %(M) -» 1 is admissible, where %(M) is the

group of all self homeomorphisms of M, M is the universal cover of M, and

Ncχj(M)(π) denotes the normalizer of m in %(M).

Proof. Suppose that there is z E Nc^^π) with finite order, and φ(z) = 1.

Let F be the finite cyclic subgroup generated by z. Consider the induced

extension

1 > π • T ? - 1 ^ ) ) ^ r?(F) —> 1

I \ I
Inn π > Aut π • Out π —• 1.

Since F is finite and π is torsion-free, η is an isomorphism on F so that we

have a semi-direct product structure on η~\η(F)). Now since z E ker φ,

conjugation by z yields zxz~ι = x for all x E IT. This implies v~l(yi(F)) = m

X F. So the action (η~\η(F))9 M) contains a finite subgroup action (F9 M)

which commutes with (π, M) so that φ(F) = 1 in Aut is. This implies by

[2, A.11] that the action of F on M must be trivial. Thus we have z = 1.

Corollary. Let (G, M) fee an effective action of a finite group on a closed

aspherical manifold M with ττλ{M) = π. Then the induced extension 1 -» TΓ —» E
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-> G -» 1, where E denotes the group of all liftings of G to homeomorphisms of
M, is admissible.

Notice that E = η~\G) and

1 —• π —> N „ (π) —• JC(M)

1= 1 t
commutes. The action of E on M can be constructed explicitly as done in [2,
2.2].

Remark. Let (G, M) be an action (not necessarily effective) of a finite
group on a closed aspherical manifold M with π ^ M ) = m. Then there exists
an extension (not necessarily admissible) 1—»τr—»£—»G—»1 realizing the

abstract kernel φ: G X %(M) ^> Out πx(M).

Proof. Since (φ(G), M) is effective, there exists an admissible extension

Ef of π by φ(G\ 1 -»
along E' -^ φ(G) to get

' of π by φ(G), 1 -»ττ-» £ ' - > φ ( G ) ^ 1. We can "pull-back" G^φ(G)

1=
Certainly the top row is an extension of π by G realizing (TΓ, G, φ = φ' ° φ).

We recall the definitions of abstract crystallographic and Bieberbach
groups as we shall use them. An abstract crystallographic group of rank n is
any group which is isomorphic to a uniform discrete subgroup of the
Euclidean group E(n) of motions on RΛ. An abstract Bieberbach group of
dimension n is any torsion free crystallographic group of rank n. The classical
Bieberbach theorems characterize these intrinsically by: E is an abstract
crystallographic group of rank n if and only if it contains a normal free
abelian group of rank n of finite index which is maximal abelian. E is an
abstract Bieberbach group of dimension n if and only if it is a torsion free
crystallographic group of rank n. In both cases the finite quotient group acts
faithfully on Zn. The quotient group is called the holonomy group when E is
torsion free. We refer the reader to [9, Chapter 3] for further general details.

Proposition 2. An admissible extension of an abstract crystallographic group
by a finite group is an abstract crystallographic group.

Proof. L e t E b e a n a d m i s s i b l e e x t e n s i o n of a crys ta l lographic g r o u p m b y
a finite g r o u p G so t h a t w e h a v e s h o r t exact s e q u e n c e 1 — > π — » i s - ^ G — » l . π
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has a torsion-free, maximal abelian, normal subgroup ΊΓ of finite index. We
shall show that CE(Zn), the centralizer of ΊΓ in E, is torsion-free, normal,
maximal abelian and of finite index in E.

We check that it is torsion-free. Let Z\π/Zn; ΊΓ) be the group of auto-
morphisms of π which induce the identity on Zn. Then we have a homomor-
phism CE(Zn) -+Z\π/Zn; Zn) (via conjugation) with kernel CE(π). But it is
known that Z\π/Zn; Zn) is the group of 1-cocycles of the "holonomy" π/Zn

in ΊΓ [1, Lemma 6] or [2, §6], and hence is torsion-free. This implies that
CE(π) and CE(Zn) have the same torsion elements. Since l->ττ->is-»G—»1
is admissible, CE(jτ) is torsion-free (see Remark below) and hence so is

We now claim that CE(Zn) is abelian. It is a torsion-free central extension
of ΊΓ by a finite group A = CE(Zn)/Zn. Consider the injective toral action
which we could construct using (Tn, Tn X point, A)-> (point A). Since
CE(ΊΓ) is torsion-free and a central extension, Tn acts almost effectively on
(Tn X ρoint)/Λ, so it must be a torus, and hence A c Tn. So CE(Zn) s
mx{Tn/A) α ZΛ.

The other facts are easily verified. This completes the proof of Proposition
2.

Remark. Here is another point of view of admissibility. Let π be any
discrete group with % = 2(π), the center of π, torsion free and finitely
generated of rank k, and G SL finite group. An extension ofπbyG

is admissible if and only if CE(π) is torsion-free (and hence if and only if CE(iτ)

is a free abelian group of rank k).

To obtain this fact one shows, by diagram chasing, the induced sequences
in the diagram:

1 —> Inn π —• Aut π —> Out π —> 1
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are exact. Now, φ|(any torsion subgroup of E) is injective <=» ker φ = CE(π) is
torsion-free. For the second statement we have, as in the proof of our
preceding Proposition 2, that CE(jτ) must be free abelian of rank k. Note also
that this means that kernel φ will be finite abelian and isomorphic to a
subgroup of a λ:-torus.

Proposition 2 has an important application to geometric realization of finite
groups of homotopy classes of self homotopy equivalences on flat manifolds.

Theorem 3. Let M(π) be a closed Riemannian flat manifold. If an abstract
kernel (G, π, φ) admits an admissible extension E, then there is a geometric
realization of this extension by an effective affine action of G on M{π) which is
affinely equivalent to an isometric action on an affinely equivalent flat manifold
M(θ(π)). Furthermore, the lifting of this affine action to Λ/(ττ) induce the same
automorphisms ofirasE.

Proof. Let 1 -> IT -» E -> G -> 1 be a given admissible extension. By Pro-
position 2, E is an abstract crystallographic group. So we have an abstract
isomorphism θ of E into E(n\ the group of rigid motions. Note that θ\n is an
isomorphism between two genuine Bieberbach groups π and θ(π). Therefore
there exists h e A(ή), the group of affine motions, such that hσh~ι = θ(σ) for
all σ G 7r. Since Θ(E) is crystallographic, we have the action of Θ{E)/Θ(τr) =
Θ(G) on the flat Riemannian manifold M(0(7r)) = ΈLn/θ(π), as a group of
isometries.

We define an affine diffeomorhism h: M(π) -> M(θ(π)) coming from the
affine map h: R" —»RΛ induced from θ(σ) = λσ/Γ1. We consider the isometric
action on RΛ given by Θ(E) c E(ri), and define a new action of Θ(E) on Rπ

by θ(e) = h~ι ° θ(e) ° h. This induces an affine action of Θ(G) on M(π)9

θ(g) = h~λ ° Θ(g) ° A. Thus the action Θ(G) on M(ττ) is affinely equivalent to
the isometric action of Θ(G) on M(θ(π)).

So we have a commutative diagram between two extensions

Note that the extension a = 0*(α')> where θ*: H*.g,(θ(G),
H*(G, 2(7r)), 2(ττ) = Center of π. In the induced diagram
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G • 1

Inn 7Γ —• Aut π -> Out π

one can show that all triangles are commutative. This proves that the lifting
of the new affine action to M(π) induces the same automorphisms of π as E.
q.e.d.

By Lemma 1, the existence of an admissible extension is necessary for an
effective action. So Theorem 3 says that this necessary condition is also
sufficient.

If the abstract kernel φ: G->Out7r is injective, then the admissibility
condition is automatically satisfied provided that an extension exists. This
means that the only obstruction to the realization of a group of homotopy
classes of self homotopy equivalences on a flat manifold by a group of affine
actions is simply the existence of an extension. Thus this gives us an algebraic
solution to the finite realization problem.

Corollary. Let M be a closed flat Riemannian manifold, H: M-+λfa
homotopy equivalence with Hk homotopic to the identity with Hr not homotopic
to the identity for 1 < r < k. Then H is homotopic to an affine diffeomorphism
K such that Kk = identity if and only if the abstract kernel Z/kZ —*
Out ITX(M) arising from H admits an extension.

Proof Let G = {Ψ(H)\0 < i < k} be the subgroup of Out ir, where Ψ:
8 (M) -»Out(ττ). If Z/kZ a G ^ O u t π admits an extension, there then
exists a subgroup Θ(G) of Aff(M) isomorphic to G. Note that in the
commutative diagram

φ' is really the composition Θ(G) ̂  Aff(M) ^ S(Λί)->Out π. This implies
that K = Θ(Ψ(H)) is homotopic to H and completes the proof.
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The reader will surely wonder if the existence of a nonadmissible extension
has something to do with the existence of an ineffective geometric realization.
The corollary to our next theorem shows that this suspicion is correct.

We need two facts for the proof of Theorem 4.
Fact 1, [2, 2.2]. Let M be a path connected space admitting covering

space theory. If an effective action (G, M) of a finite group on M is given,
then the liftings E of G to M induces a "unique" (in H2(G; Z(π))) extension
1 -» πi(Λf) -> E -* G -> 1. We denote this extension by /(G, Λf) E
H\G; ^ ( M ) ) ) .

One obtains uniqueness after one specifies base points. An explicit expres-
sion for E is described in [2, 2.2]; also compare with the remark following
Lemma 1.

Fact 2. Let 0->ZΛ-> C Λ F - > 1 be a central extension with F finite.
Then C contains a characteristic finite subgroup L which contains all the
torsion of C. Moreover, C/L is free abelian of rank n.

Proof of Fact 2. We know of no handy algebraic reference, although R.
Griess has shown us an argument. On the other hand, Fact 2 does admit
several interesting "geometric" proofs which also describe certain types of
actions on the n-torus. This can be used, although we shall not do it here, to
describe homotopically the actions on the /i-torus of finite groups of homo-
topically trivial homeomorhisms. We shall employ the theory of infective toral
actions. See [4] or [3]. This enables us to do the following.

Let (W, N) denote a properly discontinuous action of a discrete group N
on a simply connected space W. For each central extension

a: 0->Zn^>C^>N^>\, a G H2(N; Zn),

we may associate on Tn X W an action of Tn X N with Tn X 1 acting by
translation on the first factor. The projection Tn X W -* W is equivariant
where Tn X 1 acts trivially on W. (Actually, associated with each extension
there is a set of such actions all of which are Tn X N equivalent.) On the
universal covering Rn X W one obtains an action of C with the ΊΓ in C just
acting as translations on the first factor and with Rn X W/Zn yielding the
constructed (Tn X N, Tn X W).

For our purpose, choose W = a point and for N take the F given in the
hypothesis. We then obtain a Tn X F action on Tn, and we may lift the F
action to a C action on RΛ. Let L be the subgroup of C which fixes all of RΛ.
Certainly v\ L —» v(L) c F is a monomorphism, and so L is a finite (normal)
subgroup.

We claim that L is the set of all elements of C having finite order. For if
e EL C has finite order, then e -> ef G C/L has finite order, and the cyclic
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group generated by e' acts effectively on RΛ. But if e' is not the identity, then

some power of it is a cyclic /7-grouρ H for some prime p and H, by Smith

theory, fixes a/?-acyclic subset V of RΛ. Of course H, actually v(H), fixes V*

in Tn. But as C is a central extension of Zn, [4,-Corollary 6.2] implies that

v(H) acts trivially on Tn, and so H acts trivially on RΛ forcing e to be in L.

(The point is that v(H) fixes F* c ΓΛ, and the complete lift of v(H) yields H

commuting with Zn and both invariant on V, hence V* = Γrt because

It is clear now that the inessential part of the induced F action on Tn is

v(L). This yields an effective action of F/v(L) on Tn which induces the

effective action of C/L = A, from C on Rn. Using the argument above, A is

torsion-free and so must be an admissible central extension of IT by F/v(L).

Consequently, F/v(L) acts freely on Tn and is imbedded in the Tn action

since F acts trivially on W = point. Therefore Tn/(F(v{L))) is again a torus,

and its fundamental group is our group A. This completes the proof of Fact 2.

For Theorem 4 we shall need M to be a reasonable type of space, a

manifold say, whose fundamental group has finitely generated torsion free

center. Let &(M) be a subgroup of %(M)9 the group of homeomorphism of

M. G and H will refer to finite groups.

Theorem 4. The following two statements are equivalent:

(A) If an abstract kernel (π, G, φ) Aαs <ZΛ admissible extension α, ίAeλz G can

be realized effectively as a subgroup of &(M) so that a = l(G, M).

(B) If an abstract kernel (π, H, φ) has an extension a, then H can be realized

by H^p(H) c &(M) so that a = p*l(p(H), M).

Proof (A =>B) Suppose l-^ττ^2s-»if—»1 is an extension a realizing

O, H, φ). Then we have the commutative diagram of exact sequences:

0 — f(ir) -* CE(π) -

Y Y T

'TiT'
1 — • Inn π — > Aut π —• Out π —• 1

Since the first row is a central extension and C/% is finite, we may apply

Fact 2 and obtain L, the torsion subgroup of CE(π\ whose quotient CE(π)/L

= A is abelian. We get
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1 1

I I
L—=-+L

V

I I
I- i I

• A • Afφ

I
= finite abelian —> 0.

1 1

Note that L is characteristic in CE(π), and hence L is normal in E. Also note
that L is in H. Thus we have a commutative diagram:

H

Inn π • Aut π • Out π

Since

ker ~ψ = /(ker φ) = CE(τr)/L = A,

ker φ' is torsion-free. Then by (Λ), ///L->Out TΓ can be realized effectively
so that l^>π-*E/L->H/L->l is the lifting of the effective action
(H/L,M) to M, i.e., α = p*l(H/L, M) = p*l(p(H), M), with />(#) in

(B =>A) Let 1 - ^ τ τ ^ . E ^ G ^ l be an admissible extension α. By (B),
there is a realization/?: G -+p(G) c έB(Af) c 3C(A/) with l(p(G)9 M) = 1 ->
7Γ^ E' -±p(G)-> 1, and a-p*l(p(H), M). Note the last condition means
simply that we have a commutative diagram:

1 -+Έ—+E >G • 1
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Let L = kernel of p. Then

>Out π—> 1.

Now L = kernel/? c kernel φ' ° p = kernel φ, so L is torsion free. Since
φ

L < G, L is finite. Thus L = {1}, which impliesp is 1-1. Therefore G-»Out TΓ
is realized as a group of homeomorphisms (G, Λf) = (p(G), M), (in 6£(Λί)),
so that /(G, Λί) = α, which is what we wanted to prove.

Remark. An arbitrary manifold is not likely to satisfy condition (A) or
(B). However one might expect this to hold for closed aspherical manifolds.
In fact, it is known to hold for closed surfaces and, in increasing generality, it
holds for complete, finite volume hyperbolic manifolds (dimension > 2),
certain classes of locally symmetric spaces and the manifolds described in [7].
Theorem 3 states that Λf(π), a closed Riemannian flat manifold, satisfies
condition (A). Explicitly we have

Corollary. Let l-»ττ—»ls^G—»1 be an extension of the fundamental
group IT of a flat manifold M(*π) realizing the abstract kernel (G, TΓ, φ). Then
there exists a geometric realization of this kernel by an affine action of G on
M(π). The subgroup L of G, which acts ineffectively on M(π), splits to a normal
subgroiφ of E whose quotient E/L is an admissible extension realizing the
induced abstract kernel (G/L, π, φ).

It is interesting to relate this corollary to Proposition 2. It implies, in
particular, that any extension E of a Bieberbach group by a finite group
contains a normal finite group L whose quotient E/L is an abstract crystallo-
graphic group.

At this point we shall sketch quite a different approach to Theorem 3 and
the Corollary to Theorem 4. From the hypothesis we construct the diagram of
extensions:
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1 1

i*b = a: 1 —» Zn —> π >Φ

I'
I I
7Γ > φ

ί ϊ;\ Ib ̂ Ύ\
Π
1 1

Here we think of a and b as cohomology classes in Hy(E/Zn; Zn) and

i/γ

2(Φ; Zn) representing these extensions. Now the theory of injectiυe Siefert

fiberings (which is a refinement of the theory of injective toral actions used in

the proof of Fact 2), allows us to construct for each 1-cocycle in

Zγ\(E/Zn; Tn) and Zγ*(Φ; Tn) a special type of action of E/Zn and Φ

on the Λ-torus Tn. Two actions \#ill be equivalent if and only if the co-

cycles are cohomologous. Then via the compatible isomorphisms δ:

Hj,(E/Zn; Tn)^>Hf(E/Zn; Zn) and δ: Hγ

ι(Φ; Γ Λ )-^# γ

2 (Φ; Zn) the exten-

sion class represents the class of equivalent actions. (Moreover the lift of this

action to the universal covering can be described by a 2-cocycle representing

this extension class, and moreover this particular extension is the group which

is acting on the universal covering.) See pages 70 and 82 of [3] where one

should take N = E/ΊΓ and W = a point. Now the constructed action on Tn,

in this special case at hand, is given cohomologically by a crossed-homomor-

phism which translates geometrically into an affine action on a flat torus Tn.

Thus one constructs first on Tn the affine E/ΊΓ action according to the class

b. Since b pulls back to α = /*(6), the restricted Φ-action on Tn yields M(π)9

and, with care, one can do this part isometrically. Then on M(π) one

produces the desired affine G = (E/Zn)Φ action. The reader will find further

exploitation of this particular technique in [3, p. 83] where one even obtains

the existence of the desired extensions for certain subgroups of Out πx(λf).

We caution the reader of the preceding corollary that from a group action

on M we get an abstract kernel. From this abstract kernel we may create

various extensions. These extensions are not unique (the extensions are in 1-1

correspondence with the elements of H*(G; £(π))). By the corollary a



266 K. B. LEE & FRANK RAYMOND

created extension admits a geometric realization by an affine group of
diffeomorphisms. However, while the extension corresponding to lifting the
original group action to M and the created extension both represent the same
abstract kernel, they may be very different extensions and may lead to very
different affine realizations. The differences in the affine actions, as we shall
see in Theorem 5, are essentially manifested in the contributions coming from
the connected component of the identity of the group of isometries of M(π)9

which is a torus of rank k(k = rank of center of TΓ).

In Theorems 3 and 4 and their corollaries we have assumed that the
abstract kernel admits an extension E. We then showed that this particular
extension can be realized as the lifting of an affine action of G on M to its
universal covering M. However, as is known, an abstract kernel (G, TΓ, φ) may
not admit any extension of ir by G (see [5] or a modification of the examples
in [8]), and consequently the finite group of homotopy classes of self-homo-
topy equivalences Φ~ι(φ(G)), where Ψ: 77 O(S (Λf))-=» Out Ή\{M\ cannot be
geometrically realized by a group of homeomorphisms. However, in our next
theorem, we shall show that G can be "enlarged" to a group H whose
resulting abstract kernel admits a geometric realization by a group of affine
diffeomorphisms.

Theorem 5. Let (G, π9 φ) be an abstract kernel of a finite group G with
M(ττ) a closed flat manifold. Then there exist a finite group H and an
epimorphism μ^: H -> G such that the abstract kernel ψH: i/-> G->Out m can
be geometrically realized by a group of affine diffeomorphisms. Moreover H can
be chosen so that the kernel /% is a subgroup, which depends only on M and not
on G, of the connected component of the isometries of λf.

Proof Let k = dimension of HX(M; Q). We use the following result of

[5]:
There exists an exact sequence

0 -* Λi/Λ -» A(π) Λ o u t m -> 1

where Λj/Λ is a finite subgroup of Tk = Affo(M), the connected component
of the group of isometries of M, A(π) < Aff(Λf), and μ is the restriction
of the natural homomorphism Aff(M) —» Out π. In fact, Λj =
Hλ(M\ Z)/Torsion and Λ as Z(ττ), and the sequence

0 -+ A -> HX(M\ Z)/Torsion -+ Λ^Λ -+ 0

is exact.

Put G = φ(G) and A = μ~\G). We form the "pull-back" H c A X G by

H = {(α> #)l Ka) = ψ(g)} This group projects onto both A and G with

kernel μA = I X kernel φ, kernel μG = kernel μ X 1.
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The group H now acts, via μA: H -» A, as a group of affine diffeomorphisms
on the flat manifold M(π). This action may not be effective. The subgroup of
H which fixes M is precisely isomorphic to the kernel of φ. Note that
Λ^Λ C Tk will act as isometries on Λf(τr). In fact, in the Calabi fibration, [9,
3.63], Mn_k-+ M-» Γ* = Rk/Aλ, Ax/A moves only along the fibers.

Remark. It seems reasonable to conjecture that for any closed aspherical
<p

manifold a homomorphism G—»Out TΓ can always be "enlarged" to group H

so that if —» G —» Out TΓ can be realized by a group of homeomorphisms

isomorphic to H.
Another interpretation of Theorem 3 is that if G acts topologically and

effectively on a closed flat manifold M(τr), then this group G must be
isomorphic to one of the usual finite subgroups of Aff(M), and moreover the
extension obtained by lifting to RΛ must be naturally isomorphic to the
extension corresponding to a lifting of an affine action.

If one were to begin with an affine action instead of topological action we
actually have the strongest possible result.

Theorem 6. Any effective finite affine action on a closed flat manifold is

affinely equivalent to an isometric action on an affinely equivalent manifold.

Proof. Let (G, M(τr)) be a finite affine action on a closed flat manifold.
Then we have an extension l-»τr-»2s-»G-»l which is admissible by
Lemma 1. Note that E = t\~\G) sits inside A(n) since TΓ C E(n) and G c
Aff(M). What we are going to do is to show that h G A(ή) in the proof of
Theorem 3 can be chosen as that θ: E -+ Θ(E) is the identity map not only on
TΓ but also on E. (This yields a generalization of the classical Bieberbach
theorems.)

Since CE(Zn) = C4(π)(Z/I) n E = R" n E, CE(Zn) is the set of all pure
translations in E. Therefore in the exact sequence 1 -» CE(jLn) —»
E->E/CE(Zn) = K-+1, λ is the restriction of the projection λ: A(ri)-+
GL(n, R).

We look at the proof for crystallographic groups, and shall see that it also
works here. Since CE(JΓ) is the maximal abelian, normal subgroup of E, for
any θ: E^>Θ(E) c E(n), θ(CE(Zn)) is the maximal abelian, normal subgroup
of Θ(E) so that θ(CE(Zn) *= Cθ{E)(θ(Zn))). Therefore this can be thought of as
a linear map from Rπ to RΛ and so belongs to GL(n, R), say A. If we choose a
basis in terms of Q(ZΛ), then Θ{Q = tA(py where tΌ denotes translation by v.

We must determine what happens to elements of K under θ. We claim that

θ(k, w) = (A, v)(k, w)(A9 v)-1

for some v E Rn. This v will be determined by a 1-cocycle /: K^> Rn which
turns out to be principal since H \K\ Rn) = 0. We do this by trying to
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determine θ(k, w) = (θ(k), ?) for some (k, w) in E. Let (/, a) G E. Then
θ((k, w)(I, a)(k, w)~ι) = 0(7, kά) = (7, ΛA:*). On the other hand, if θ(k9 w) =
(B, v), then θ((k, w)(I, α)(fc, w)~l) = (B, v)(I, Aa\B, v)~l - (/, BAa). This
implies B = AkA~ι so that θ(k) = Λfc/T1. Let us put θ(k, w)(AkA~\ Aw +
f(k, w)) for some function/: E ->Rn. We want to show that/is independent
of >v. Suppose (/, w') G £. Then (7, w')(ky w) = (k, W + H>), and this would
represent all possible elements of E which map to k. Now (AkA~ι

9 A(w' + w)
+ f{K w' + w)) = 0(Λ:, w' + w) = 0((7, w'XA:, w)) = 0(7, w')0(A:, w) -
(AkA~\ Aw' + Aw + f(k, w)) shows f(k, w) = f(k, w' + w). So / is only a
function of k, and we can write θ(k, w) = (AkA~ι, Aw + /(&)). Now it is easy
to see that / satisfies the 1-cocycle condition: f(kkf) =/(A:) = AkA~ιf(k').
This defines a new ^-module structure on RΛ, namely, T: K-+A\xtRn via
τ(k) = ylA^"1, and we have Tf^tf; Rn) = 0. So we may write f(k) = v -
(AkA~ι)v for some ϋ G RΛ. Consequently we have

θ(k, w) = (AkA~\ Aw + v- AkA~lv),

which is, of course, the same as (A, v)(k, w)(A, v)~λ.
Therefore our abstract isomorphism 0: E^Θ(E) for E c NA^(if) is real-

ized by an affine diffeomorphism of M(π). It is the same affine diffeomor-
phisms which carries M(τr) to M(0(τr)). q.e.d.

We have seen that affine actions match up with isometric actions extremely
nicely. But for topological actions Theorem 3 cannot be strengthened as
Theorem 6.

Example. Y. W. Lee [6] constructed a differentiate involution on T5 with
two fixed point components Γ 3 and L(J, 1)# Γ3, where L(j\ 1) is a 3-dimen-
sional lens space withy odd. This implies that on the standard flat 5-torus,
there is a smooth involution which is not topologically equivalent to any
affine involution. If it were topologically equivalent to some affine involution,
then it would be topologically equivalent to some isometric one. Then the
fixed point set of the original involution should be a homeomorphic image of
the fixed point set of the isometric one. But this is impossible because the
latter is a geodesic submanifold of T5.

While we have shown that no "exotic" finite groups can act topologically
and effectively on closed flat manifolds, we see that the possible smooth
actions can be drastically different from isometric ones. On the other hand, it
can be seen from [2, Appendix] that the resulting admissible extensions force
the fixed point sets for /^-groups to behave cohomologically like isometric
actions. This point will be discussed in a subsequent paper.

Combining the Corollary to Lemma 1 with Theorems 3 and 6, (and in the
ineffective case using Theorem 4), it is easy to obtain the
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Corollary. The affine equivalences of finite affine G-actions on M(π) are in

a natural 1-1 correspondence with the isomorphism classes of extensions of m by

G. (Two extensions E and E\ are "isomorphic" if there exists an isomorphism

is—» E' which restricts to an automorphism of π.) Moreover, affine actions are

topologically equivalent if and only if they are affinefy equivalent.

After this paper was accepted for publication, we discovered that H.

Zischang and B. Zimmermann [Endliche Gnφpen von Abbildungsklassen

gefaserter 3-Mannigfaltigkeiten, Math. Ann. 240 (1979) 41-62] had earlier

obtained Proposition 2 and Theorem 3 when φ: G -̂» Out π is injective.
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