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DEFORMATION OF SUBMANIFOLDS OF
HOMOGENEOUS SPACES

GARYR. JENSEN

Introduction

In his paper [6], P. Griffiths considered what he called fcth order contact
between two /^-dimensional submanifolds /,/: S -> Λf of a homogeneous
space M = G/Go, (cf. p. 799). He considered the question of how to de-
termine when two such submanifolds have fcth order contact, and also
whether it is true that, for large enough k, kth order contact implies con-
gruence.

As a method of attack on these problems Griffiths discussed E. Cartan's
method of moving frames, by which he meant finding appropriate "lifts" off
and f to G and then using the pull-back of the Maurer-Cartan form of G to
obtain local invariants which would provide necessary and sufficient criteria
for when two submanifolds have A:th order contact. Although he successfully
carried out this approach for several examples, a general method, and
especially an appropriate method for lifting / to G, remained an open
question.

In my monograph [7], I considered these problems raised by Griffiths, but
for a different notion of contact. In his 1938 review of Cartan's book [3], H.
Weyl pointed out that there are two natural notions of contact in a homoge-
neous space. He called them "fixed parameter contact", which is the version
used by Griffiths; and "unfixed parameter contact", which is the version that
I used. For unfixed parameter contact, the problems of fcth order contact and
congruence were solved in [7] using the method of higher order frames. These
frames consist of a nested sequence of submanifolds of G, cross sections of
which constitute the appropriate "lifts" sought by Griffiths. The methods are
quite general and can be carried out whenever (but not only then) the
isotropy subgroup of G is compact.

In classical differential geometry of surfaces in Euclidean space, the prin-
cipal curvatures are invariants of the unfixed parameter version of contact,
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while the first and second fundamental forms are invariants of the fixed
parameter version of contact. Any two surfaces have first order unfixed
parameter rigid motion contact, but they have first order fixed parameter
rigid motion contact if and only if they are isometric. A relationship between
the two versions of contact emerges when it is recognized that from the two
principal curvatures can be constructed the Gaussian curvature, which is an
invariant of the fixed parameter contact.

The purpose of this paper is to elucidate the exact relationship between the

two versions of contact, and to solve the problems raised by Griffiths for the

fixed parameter case by making use of the higher order frame construction

developed for the unfixed parameter case.

In the first three sections the two versions of contact are defined and the

exact relationship between them is described, (Proposition 2). Following

Cartan I have called the unfixed parameter contact "G-contact", (the notion

of [3]), and the fixed parameter contact I have called "G-deformation", (the

notion of [1] and [2]).

§4 contains the general method for attacking the G-deformation problem.

This attack consists of deriving a system of exterior differential equations on

the parameter space S of /, /: S -> M, relative to a pair of related lifts u, ΰ:

S -> G of / and/, respectively. This system of equations is such that/and/

are G-defoπnations of a given order if and only if his system of equations is

satisfied.

In §5 it is shown how to view this system as an exterior differential system

on G X G or Lk X G, where Lk C G is the space of Λ th order frames on /.

The Cartan-Kahler Theory can then be used to study these equations. The

section concludes with a proof of the proposition that, under quite general

conditions, some finite order of G-deformation implies congruence, (even for

C 0 0 submanifolds).

In the second part of the paper the general method is applied and worked
out in detail for the case of surfaces in R3 under the action of the equiaffine
group, SL(3; R)R3. This example was chosen because surfaces in R3 are
familiar objects, the higher order frame construction has been completely
carried out for them in [7], and the isotropy subgroup SL(3; R) is noncom-
pact. This last feature is important because whenever the isotropy Go is
compact there exists a G-invariant Riemannian metric on Λf, and then the
first order G-deformation problem is just the isometric imbedding problem.
When Go is noncompact, there are no familiar fundamental forms around
providing invariants for the deformation problem. One must turn to the
G-contact frames and invariants.
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It is a pleasure to thank Phillip Griffiths for his suggestions for revising this
paper, in particular his suggestion to expand §§4 and 5 to a description of the
general case rather than just for the equiaffine space example. I recommend
some recent papers by C. Schiemangk, R. Sulanke and A. Svec on the higher
order frame construction, [9], [10], [11]. Finally, I must acknowledge a great
debt to several papers and books of Elie Cartan. In so far as I understand
what he did, the methods described here are the methods he used in his study
[1] of the projective deformation of surfaces.

I. GENERAL THEORY OF DEFORMATIONS

1. Notation

In this paper we assume all maps and manifolds to be differentiable of
Class C0 0, unless other assumptions are made explicitly. In most cases class
C for some finite r would be adequate, but in the present context there seems
to be no point in stressing the weakest differentiability assumptions needed.
Whenever we apply the Cartan-Kahler theorem we must, of course, assume
everything to be real analytic. Such assumptions will be stated whenever they
are made.

Vectors in Rm are denoted with m X 1 matrices. For any positive integer
p < m, the Grassmann manifold Gmj> of unoriented /7-dimensional linear
subspaces of Rm can be represented as the orbit space RmXp/GL(p; R),
where RmX^ denotes the space of all m X p real matrices of rank equal top.
The general linear group GL(p; R) acts on RwX^ from the right by ordinary
matrix multiplication. For any matrix X G RmXp, we let [X] denote the
equivalence of class X under the action of GL(p; R). If X, Y G RmXp, then
[X] = [ Y] iff X = YA for some A G GL(p; R).

GL(m; R) acts as a Lie transformation group on Gmjf by left matrix
multiplication. If A G GL(m; R), and [X] G Gmj}, then A [X] = [AX].

The following local coordinate chart in Gmφ will be referred to as the
standard local coordinate system in Gmjt. Let Uo — {[X] G Gmj): the first/?
rows of X are linearly independent}. For any X G RmXp, write X = (^),
where A G R*x* and Y G #*-*»<*. Then Uo = {[A

γ] G Gmy. A G
GL(p; R)} = {[7

y]: I = pXp identity, Y G R(™-/>)χ*}. The map y0: Uo-+
χ(m-p)χp g j v e n b y yo(fyfi = γAι is a homeomorphism, and (U0,y^ is the
standard local coordinate system of Gmj).

For bundle notation and terminology we shall follow [8]. If M is an
m-dimensional manifold, then L(M) denotes the GL(m; R)-principal bundle
of linear frames on M. We let Gmj)(M) denote the fiber bundle of.all
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/7-dimensional subspaces of the tangent space of Λf at any point of M; in
short, the bundle of all/7-dimensional tangent planes to Λf.

The bundle Gmj)(M) is associated to L(M) with the standard fiber Gmj> on
which the structure group GL(m, R) acts as described above. Thus GmJ>(M)
= L(M)xGL(m;R)Gmj}. A tangents-plane P at the point x in Λfis denoted by
[u, [X]] E L(M)xGL(m.R)Gmj,. Geometrically, u = (el9 , eJ is a basis of
Λfx, and X = (xj), 1 <i <m, 1 < α < p, is an m X p matrix such that P is
spanned by the/? vectors va = Σ, *«£/ E M .̂

2. Contact
Let/: S -> Λf be a/7-dimensional submanifold of an w-dimensional mani-

fold Λf, where 1 < p < m. Then / induces an imbedding Tf: S -> Gmφ(M)
given by 2}(j) = ̂ 5 , , 5 G S ,

We define the higher order Grassmann bundles on M inductively by
M° = Λf, Mr+ι = G^φ(MR) for any integer r > 0, where mΓ = dim Mr. A
sequence of induced maps Tf: S -> M r is defined inductively by 7}° = /,
7}Γ+1 = TT/r, for any integer r > 0.

Let/: 5 -> Λf be another/7-dimensional submanifold of M, and r a positive
integer.

Definition. (Compare with [3, §16, pp. 16-17].)/ and/have contact of at
least order r at s e 5 and ̂  e S if 7}r(̂ ) = 7}r(i).

In order to get a more detailed view of the meaning of contact, we shall see
what contact means in terms of appropriately chosen local coordinates. We
shall use the following index conventions: 1 < i, j , k < m; 1 < α, β < p;
p + 1 < α, b, c < m.

Fix a point 0 G S, and let>> = (71, ,ym) be a local coordinate system
in M centered at f(ό). If we let / ' = y' ° /, then as / is an imbedding, we may
assume (reindexing the y* if necessary) that dfι /\- - - f\df(ό) φ 0. Then
x = (Z1, 9f

p) defines a local coordinate system in S centered at o.
Fθ£ the submanifold /: S -> M, suppose that /(o) = /(o), for some point

0 6 S . Letfi=yiof9 and suppose that dfι A' ' ' AdfHp) φ 0, so that
Jc = (Z1, ,f) also defines a local coordinate system in S centered at δ.

Proposition 1. Let r be a positive integer. The p-dimensional submanifolds /:
S —» M and f: S -> Λf λm?e contact of at least order r at o EL S and 0 EL S if
and only iff(o) = f(p) and for every integer kfor which 1 < k < r,

dkfa , , dkfa ,_λ
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Remark. We have here, presumably, what H. Weyl would call the unfixed
parameter notion of contact.

Proof. We shall give here the proof for the cases r = 1 and r — 2. The
pattern for the proof for any r is then quite apparent.

Using the natural isomorphism for any finite dimensional vector spaces V
and W, L(V, W) « V* ® W, where L(V, W) is the space of linear transfor-
mations from V to W, we have/,, = Σ, df ® 9/9y'. Furthermore,

Let « = (3/3j>\ , 3/9ym) denote the local coordinate frame field in M.
Then 7}: S -> Gm%p(M) = L(M)xGAnGm^ is given by 7} = [u ° /, &J], where /
denotes the/? X /? identity matrix, and Xo: S-> R^m~^χp has for its aa entry
the function dfa/dfa. __

In the same way, if Xo: S^R(m~p)Xp has for its aa entry the function
dfa/dfa, then Ίj = [u β /, [^]]. Hence Γ/o) = Tfio) if and only if f(o) - /(5)
and Xo(^) = Jfoίf); i.e.,/(o)°= /(5) and dfa/dfa(o) = dfa/dfa(δ) for all α and
α. This is the desired conclusion for the case r = 1.

Consider now the case r = 2. Let>>o = (Λ£): Gm<p Dί/ 0 -» ntm-p)*p denote
the standard coordinate system in GmιP, and let TΓ: L(Λf) -» M denote the
bundle projection map. Then (y ° π, yo) defines a local coordinate system in
Mι = L{M)xGLJ}mj) in a neighborhood of points [u, [Q]], where u =
(3/θy1, , 3/9ym) is the coordinate frame field of the local coordinate
system >> chosen above in Λf.

With respect to the local coordinates (y ° π, yo), the local representation of

7}: M 1 is 7} o/f χ 0 ) ; (that i
Let «o = (3/3-O denote the coordinate frame field of yo in Gmjp. Then

Thus Tf = TT;. S -* IλGm,(M))xβI^Gm^ is given by

/

(uof,uo°X0),

where X,: S -> R < m - ^ ^ has for its (aa, β) entry the function dY/dfβdΓ

In the same way there is a similar expression for Tf, the only difference

being that/, Xo and * , are replaced by/, Γo, Γ,, and Γ,: S-»R<"- '* X ' has

for its (αα, 8̂) entry the function dψ/dfβdfa.
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Hence Tf

2(o) = Tf{p) iff X0(o) = X0(δ) zndXλ(o) = Xλ(o); i.e., iff

•̂ Γ (*) = -1— (°) a n d

for all α, α, β. This is the desired conclusion for the case r = 2. q.e.d.
Let G denote any set of diffeomorphisms (local or global) on Λf. In what

follows we shall assume that G is a Lie transformation group on Λf, but the
concepts defined here make sense when G is, for example, a pseudo-group of
local dif feomorphisms of Λf.

Definition. Let r be a nonnegative integer. The /^-dimensional submani-
folds/: S -^ M and/: S -> Λf have G-contact of at least order r at o E 5 and
5 E 5 if there exists a transformation A G G such that / and A ° f have
contact of at least order r a t o E S and δ E 5.

A diffeomorphism A of M induces a diffeomorphism Λ(1) of Af! =
Gmp(M), which sends the tangent /?-ρlane P at x E Λf to the tangent/?-plane
A+P as Λ( c) E Λf. It is easily seen that A(l): Mι -> Λfι is smooth, 1:1, and
onto, and the same is true for its inverse which is (A~ι) (1). With respect to the
representation M 1 = L(M)xGl+m.R)Gmφ, wehaveΛ(1)[w, [X]] - [A+u, [X]].

Proceeding inductively, A gives rise to a sequence of diffeomorphisms Aw:
Mr -> M r defined by Λ(*> = (A(r~ιψ\ for any integer r > 1. (Here

Lemma 1. If f: S -* M is a p-dimensional submanifold of M, αAirf A is a
diffeomorphism of M, then for any positive integer r, Tr

A of = A^ ° TJ.
The proof is a straightforward induction.
Suppose again that /: S -» Λf and /: 5 -* Λf are /^-dimensional submani-

folds, and suppose that G is a Lie transformation group on Λf. By Lemma 1,/
and / have G-contact of at least order r at o E S and δ E 5 if and only if
there exists a transformation ^ G G such that A(r)Tf(o) = 7}r(ί>). But this just
means that Tf(δ) and Tf(o) both lie in the same orbit of the action of G on
Mr.

The construction of rth-order frames on a submanifold amounts to choos-
ing a cross section for the action of G on ΛfΓ. When G is a Lie transformation
group on Λf the construction is algebraic and depends only on the structure
of G.

3. Agreement and deformation

Definition. Submanifolds /, /: S —> Λf of dimension p < m = dim Λf
agree to at least order r at o E S if they have the same rth order Taylor
polynomials at o.
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To be more explicit, let >> = O 1 , ,ym) be a local coordinate system in
M about f(o), and let x = (xι, , xp) be a local coordinate system in S
about o. Let/ = yi ° / and/1 = / ° /. Then/ and/ agree to at least order r
at o ύf(p) = /(o) and for any integer k, 1 < k < r, (dkf/dxa* - ax^Xo)
- (df/dx** - - ΘJC^X*), for all«!, - - , α* and /.

We may assume (reindexing thej>' if necessary) that dfι/\ /\df(o) φ
0, so that x = (/ !, ,fp) defines a local coordinate system in S centered at
o. We assume further that x = (/*, , fp) also defines a local coordinate
system in S about o.

Proposition 2. Let r be a positive integer. Submanif olds f and f agree at o to

at least order r if and only if

(i) they have contact of at least order r at o; and

(ii) (dfa/dfβ)(o) = δ$ and, for any integer k such that 2 < k < r9

(fif*/dffii . . a/Ax*) = 0.

Remark. Conditions (ii) are equivalent to the condition that the local
diffeomorphism x ° Λ:"1 of Rp agree with the identity transformation to at
least order r at the origin.

Proof. An elementary application of Proposition 1 and the chain rule,
q.e.d.

Let/: S -> M and/: S -> M be/?-dimensional submanif olds of M. Let G be
a Lie transportation group on M, and r SL positive integer.

Definition. / and/ are rth order G-deformations of each other if there exist
a smooth map v: S -^ G and a diffeomorphism F: S -> S such that, for each
point s E S,/ agrees to at least order r with v(s) ° / ° F at s.

The deformation is trivial if / and/are actually G-congruent; that is, if v(s)
can be chosen so that it does not depend on s E S. We shall say that/is rigid
with respect to rth-order G-deformations if there are no nontrivial rth-order
G-deformations of it.

Remark. Deformation implies contact. To be precise, if / and / are
rth-order G-deformations of each other, then there exists a diffeomorphism
F: S -> S such that / and / ° F have G-contact of at least order r at every
point of S.

Example. The notion of deformation lies behind many of the concepts
and problems of classical differential geometry. Consider, for example, the
case of surfaces in Euclidean space. Then M = R3 on which acts the group
G = £(3) of proper rigid motions. Let ds2 denote the Euclidean metric on R3.

Two surfaces /: S -> R3 and /: S -»R3 are first order 2s(3)-deformations of
each other if and only if they are isometric with respect to their induced
metrics. In other words, there are a smooth map u: S -> E(3) and a diffeo-
morphism F: S^S such that/and v(s) °f°F agree to first order at s, for
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every s E S, if and only if there exists a diff eomorphism F: S -> S such that
F*f*ds2 = f*ds2. (Of course this is local; S and 5 may have to be shrunk.)

It is well-known that locally any surface in R3 has nontrivial first order
is(3)-deformations, and that the deformations of a given surface are given by
the arbitrary choice of two functions of one variable (cf. [4, pp. 141-144]).
Using the Riemannian connection and Gaussian curvature of the induced
metric, one can give simple necessary and sufficient conditions for when two
surfaces are first order £(3)-deformations of each other. (Cf. [3, pp. 227-230].
In this account of Cartan's there are certain regularity assumptions tacitly
made. For example, he did not characterize the deformations of a neighbor-
hood of an isolated critical point of the Gaussian curvature. To my knowl-
edge that remains an open problem.)

Finally, it is a celebrated theorem of Gauss that two surfaces are second
order is(3)-deformations of each other if and only if they are i?(3)-congruent.
That is, all surfaces have second order rigidity.

The problem of finding all surfaces in R3 isometric to a given surf ace in R3

was considered by Gauss in [5, p. 45]. It is interesting to notice that Gauss
formulated this problem in terms of deformation. It seems quite possible that
Gauss's study [5] was guided by the general philosophy of determining
quantities, for example distance and curvature, on a surface which are
invariant under first order is(3)-deformations.

4. The differential system of a deformation

We consider λ th order deformations of /^-dimensional submanifolds of a
homogeneous space M = G/Go, where k and p are integers, k > 1, and
1 < p < n = dim M.

To summarize the method, the differential equations of a deformation are
obtained by expanding in Taylor polynomials the two submanifolds with
respect to any adapted frame of M i.e., elements of G. Keeping a point of the
submanifold fixed, but varying the point of G, we differentiate these Taylor
polynomials and equate coefficients of like monomials up to degree k.

The method begins with a once and for all choice of real analytic local
coordinate system in M centered at o e M. It is convenient for us to write
down its inverse, a local parametrization (%, φ), where % is a neighborhood
of 0 G RΛ, and φ: % -» M maps % diffeomorphically onto a neighborhood
of o in M such that φ(0) = o. For any w e G, (%, M ° φ) is a local parametri-
zation of M centered at u(o).

Let P: G X % -+ M be defined by P(w, JC) = u(φ(x)). Notice that for each
fixed u G G, the map Pu(x) = P(u, x) = u ° <p(x) maps % diffeomorphically
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onto w(φ(Λf)) C Λf. For each u G G and/? G "(φί^)), we shall call

-1= (u o φ)

the coordinates ofp with respect to the frame u.
Proposition 2. For any point p G Λf, P"1!/?} w α codimension-n real

analytic submanifold of G X % wλαre tangent space at any point is defined by
the n linear equations

(4.1) dxι = Σ 4 | ί r , 1 < i < π, 1 < σ < dim G.
a

Here {Ωσ} w α basis of left-invariant \-forms on G, the Aι

o are real analytic
functions on %, restricted to P~ι{p}9 and the xι are the standard coordinate
functions on Rn,

Proof. That P~ι{ρ) is a codimension-n submanifold whose tangent space
is defined by n linear equations involving no relations among dxι, , dxn

follows from the fact that at any (M, X) G G X %, /%((? X % ) ( M ^ 2 Pu % Λ

- MP(tt>JC). Hence if (0, ξ) G ( P " 1 ^ } ) ^ then 0 - 7^(0, 0 = Pu£ so ξ = 0.
It remains to show that the Aι

o are real analytic functions on % (restricted to

P-I{p})
Varyingp over all of M shows that the Aι

a in (4.1) are the restriction to
P~ι{p} of functions Afa, x) on G X %. For any a G G, define I f l : C x t
-> G X % by La(u, x) = (αw, x). The tangent space to P~ι{P(u, x)} at («, x)
is given by

(4.2) Λ'W-ΣΛU
σ

while the tangent space to P~ι{P(au, x)} at (αw, x) is given by

But P(Lα(w, x)) = P(au, x) = (αt/)(φ(Λ:)) = a(u(φ(x))) = αP(«, Λ:) impUes
that La(P-ι{P(u, x)}) = P~ι{aP(u9 x)}. Thus the tangent space to
P~ι{P(u, x)} at (w, Λ:) is given by

(4.3)

But L*dx[x) = έfa/^ and LζΌfa = Ω M̂). Comparing (4.2) and (4.3) it follows
that Aι

σ{au, x) = Al

o{u, x), for every a G G. Hence ̂ 4j(t/, x) does not depend
on u; it is a function of x alone, q.e.d.

We shall derive (4.1) for two classes of examples.
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Example 1. M = Rn = G/Go, where G is any subgroup of the affine
group which acts transitively on Rn. (For example, G is the whole affine
group, or the equiaffine group, or the conformal affine group, or the
Euclidean proper motion group.)

The affine group is a semi-direct product GL(n; R) R", and its Lie algebra
is a semi-direct sum ®l(n; R) + RΛ. Its Maurer-Cartan form Ω is the ®l(n; R)
4- RΛ valued left-invariant 1-form:

(4.4) QiAtq) = (A~ιdA9 Λ-χdq\ A E GL(n; R), x G R".

Put (Ωj) = A~xdA and (Ω') = A~ιdx9 1 < ij < n. Then {Ωj, Ω1} is a basis
of left-invariant 1-forms on the affine group. Some subset forms a basis of
left-invariant 1-forms on G.

Our choice of parametrization φ will be the identity map U = Rπ —»
RΛ. Then P: G XRn->Rn is given by P(u, x) = u(x). Any u G G c
GL(n; R) Rn can be written uniquely as u = (A, q), for some A G
GL(«; R), q GRn. Put ^ = (ev , en), where ^ = /th column of A. Then
P(w, Λ:) = u(x) = q + Ax = q + Σi x% where Λ: = (JC').

lip = P(w, x) = # + Σ, x1^ is fixed, then

(4.5) 0 - dp = 4q +

Since rf^r = Σ 7 ΩJ^ and det = ΣyΩ/^ by (4.4), we can substitute this into (4.5)

and get

Hence

(4.6)

These are the equations (4.1) for this space.
Example 2. Grassmannians. M = GnjJ, the space of all oriented /?-dimen-

sional linear subspaces of Rn I < p < n — 1. For G we take any subgroup of
GL(n; R) which acts transitively on Gnφ. The most important cases would be
G = SL(n; R), the special linear group; or G = 0(n), the orthogonal group.

The Maurer-Cartan form of GL(n; R) is Ω = A~ιdA = (ωj), 1 < /,./ < n.
Thus {Ωj: 1 <i,j < n} is a basis of left-invariant 1-forms on GL(n; R). Some
subset is a basis of such forms on G. We shall use the following index
convention:

1 < ij < n; 1 < α, β < p; p -I- 1 < a, b < n.
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Our choice of local parametrization of GnjJ is <p: R<n~~*>x^ —» Gnφ given by

φ(X) = [£], (we are following the notation of §1). Then P: G X R ( n

If 7r: Rπ X^ —» Gnj} denotes the canonical projection of an n Xp matrix X of

rank p to its equivalence class [X] G GnJ), then P factors into P — π ° i>,

where P: G X R<"-*>x* -» RΛ X* is given by P(w, X) = u (£).

Now i> is constant if and only if P lies in {P - A: A G GL(p; R)}. Thus on

a submanifold P = constant,

(4.7) dP = PΛ,

where Λ is a p X /> matrix of 1-foπns on G X R(/I~^>x^, which we denote

Λ = (Λ£).
On the other hand, if we write, for u G G, u = (e l 5 , en), where e, is the

ith column of w; and if we write X = (x£) G R<Λ-^)χ^, then

(sum on repeated indices). Thus dP = (ύfep , f̂ep) + (•••, deax£ +

(4.8) dP = ( , ΩU, •••) + (•••» Ω α ^ ι + ead*S, •••),

since ίfef = ίljβj.

Comparing the coefficients of ea in (4.7) and (4.8),

(4.9) Λ£ - Ω^ 4- 0»*£

Comparing the coefficients of eα in (4.7) and (4.8),

(4.10) *α*Λ£ = QJ + ΩJJC* + Λ - .

Eliminating the Λ^ from (4.9) and (4.10), we get (4.1) for this space:

In the case G = GL(n; R), the set of forms {Ωj} is a basis of left-invariant

1-forms on G. If G is a subgroup of GL(n; R), then some subset of {Ωj} forms

a basis of G, the remaining forms being linear combinations of these.

We continue now with the derivation of the differential equations of a /rth

order deformation. Suppose that the /^-dimensional submanifolds f:S-+M

and f:S-+M are /rth order deformations of each other. Then there are a

smooth map v: S -> G and a diffeomorphism F: S -> 5 such that at each

J 6 S , U(^) ° / ° F agrees through order k with/ at s. Replacing/by/ ° F, we

may as well assume that S = S and that F = identity transformation.
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For each (s, t) G S X S, the coordinates of f(t) with respect to u(s) are the
components x\ , xn of φ , 0 G RΛ given b y r S x S ^ Rπ,

x(a, t) = (u(s) o φ

Without loss of generality we may assume that for each s G S, the functions
x 1, , xp define local coordinates in S centered at s.

The coordinates of f(ί) with respect to ΰ(s) are given by the components xι

of

x(s, t) = (ff(5) φ ! ( )

However, since i/(.s) = v(s)~ιu(s),

Thus x(s, t) is also the coordinate of v(s) ° f(i) with respect to wίi1).
The condition that v(s) ° f agrees through order k with f at s can be

expressed as, for each s,

x'is; x\ , xp) = x'is; x\ , **),
(4.12)

(modulo terms of degree > k in x , , x^).
Differentiating (4.12) with respect to s, keeping / fixed:

(4.13) dxi = ώci (modulo terms of degree > k in JC1, , xp).

Put ω

σ = w*Ωσ and ωσ = «Ωσ, 1-forms on S, and let id: Rn -* Rπ denote
the identity map, then applying (w X id)* and (M X id)* to (4.1) gives

dxi = 2 4{Φ > dT = 2 K{x)ω\
σ σ

Putting these relations into (4.13) gives

(4.14) 2 Aι

o{x)ωα = 2 Ai(x)ωσ (modulo terms of degree > A:).
σ σ

In (4.14) replace A£ by its Taylor polynomial of order k - 1 in x\ , xn;
then replace xp+ι, - , JCΛ by their Taylor polynomials in x\ , xp of
order A: — 1; and finally replace each 3c1 by x 1 because of (4.12). Thus,
modulo terms in xι, , xp of order > A:, we can replace Λι

α{5c) and ^4J(JC)

by their (k - l)th order Taylor polynomial in JC1, , xp:

(4.15) Λ j - 2 C > 7 ,

where x = (x#, , x^), / = (ij, , ip), and the Cj7 are functions of s.
Equating coefficients of each x1 gives the exterior differential equations of a
fcth order G-deformation:
(4.16) σαI(ω° - ω°) = 0, i = 1, - , n, σ = 1, - , dimg, 0 < |/| < k.

They are a necessary condition for local fcth order G-deformation.
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These differential equations (4.16) give a sufficient condition as well for
local kih order deformation. To be precise, suppose/,/: S-> Λf are/?-dimen-
sional submanifolds with frame fields u, ΰ: S -* G, respectively. If JC(.Ϊ, i) =
(u(s) o φ)-ιf(t) and x(s, t) = (ΰ(s) ° φ)-ιf(t), satisfy (4.16), with <υσ = w*Ωσ

and ωσ = 17*12° as above, then/is a Λ th order deformation of/. Furthermore
the deformation is achieved by v: S —» G given by D(^) =

5. Solving the deformation problems

The exterior differential system (4.16) derived in §4 gives necessary and
sufficient conditions for two /^-dimensional submanifolds to be A:th order
G-deformations of each other. Consider now the following three questions:

(1) Given k and /?, are there any nontrivial A:th order G-deformations of
/^-dimensional submanifolds of M?

(2) How does one find all A:th order G-deformations of a given submani-
fold?

(3) How does one recognize whether or not two given /^-dimensional
submanifolds are /cth order G-deformations of each other?

General methods for answering these questions are outlined in this section.
These methods will be described in detail below for equiaffine deformations
of surfaces in 3-sρace. This section concludes with the result that under quite
general conditions all submanifolds of Λf are rigid to sufficiently high order
G-defoπnations.

The methods used here make use of the higher order contact frames
constructed in [7]. For a /?-dimensional submanifold/: S -> Λf, the fcth order
frames on/ are denoted by Lk, which is a submanifold of G, and Lk —» S is a
fibration whose fiber at each point is a coset of a subgroup of the isotropy
subgroup Go. For example, LΌ = {u E G: u(o) E.f(S)}, whose fiber u is
u Go. Then L0D LXΏ L2D .

Continue to let {Ωσ} denote a basis of left-invariant 1-forms on G. In the
construction of Ll9 there are/? of these forms—which we may as well assume
to be Ω1, , Ώp—which pull back by any cross section u: S -+Lx to a
coframe field on S. Furthermore this is true for any cross section u: S —» Lk,
k > 1. Finally, each Lk is an integral submanifold of G of an exterior
differential system on G.

The method for answering question (1) is to consider the exterior differen-
tial system on G X G consisting of (4.16) (with ω°, ω° replaced by Ωσ and Ω°,
respectively) together with the equations of the systems defining LkQ G and
Lk C G. (Here we let {Ωσ} denote the same basis of left-invariant forms, but
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on the second copy of G.) This system is to have designated independent
variables Ω1, , ίlp. Then any/?-dimensional integral submanifold of it will
be given by (w, u): S -> G X G, and it will follow that f=π°u and
/ = π ° ΰ are λ th order G-deformations of each other. (Here TΓ: G —> M is the
projection m(u) = u(o).)

For question (2), let /: S ^ M b e a given submanifold of constant Λ th
order type, and let Lk be its fcth order frames. Let i: Lk -» G be the inclusion
mapping, and let ωσ = Z*^. Then only a subset of {ωσ} are linearly indepen-
dent (but a subset containing ω1, , ωp in every case), the remainder will
be linear combinations of forms in the basis subset, with coefficients which
are functions on Lk.

To find all Λ th order G-defoπnations of /, find all /7-dimensional integral
submanifolds of the exterior differential system on Lk X G defined by (4.16),
(where ωσ is replaced by Ω°), together with the equations on the Ω* which
define the kth order frames Lk. Again ω\ , ωp are the designated
independent variables. A/7-dimensional integral submanifold (w, u): S —> Lk

X G will give a pair of submanifolds which are Λ th order G-defoπnations of
each other, and one of them is π ° u = /, the given submanifold.

If this system on Lk X G is in involution, then a general / possesses many
nontrivial deformations. If the system is completely integrable, then any / is
rigid. If the system is not in involution, then generic / are rigid, but by the
method of prolongation, necessary conditions, on / can be obtained for the
existence of nontrivial deformations.

Finally, to answer question (3), one looks for functions on the submanifold
which are invariant under λ th order G-deformations. Always the contact
invariants of orders up through (and sometimes even higher ordeR), will be
invariant under λ th order G-deformations, but sometimes there are none, or
not enough. Even so, functions can be constructed sometimes from higher
order contact invariants which can be used. For example, for surfaces in
Euclidean space, every surface possesses nontrivial 1st order rigid motion
deformations. However, there are no first order contact invariants. Neverthe-
less, from the two second order contact invariants, the principal curvatures,
the Gaussian curvature can be constructed, and it is invariant under 1st order
deformation even though the principal curvatures are not.

The following result resolves [6, 15.1, p. 799]
Theorem. Let M = G/Go be a homogeneous space for which the frame

construction of [7] can be carried out. Then there is an order k > 1 such that
any submanifold of constant type is rigid to kth order G-deformations.

Proof. If/,/: S —» M are λ th order G-deformations of each other, then for
each s e S,/and/have λ:th order G-contact at s. By [7, Theorem 3, p. 32] if/
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is of constant type for k sufficiently large, then any submanifold/which has
λ:th order G-contact with / at s for every 5 G S i s G-congruent to /.

II. EQUIAFFINE DEFORMATIONS OF SURFACES
6. The equiaffine group

The equiaf fine group SA (m) is the Lie group of all unimodular affine
transformations of Rw. This group can be represented as the subgroup of
GL(m + 1; R) given by

where SL(m; R) is the special linear group, (all m X m real matrices whose
determinant is equal to 1).

The action of SA(m) on Rm is given by

(A, x)y = Ay + x,

for any y E Rm. This action is transitive, and the isotropy subgroup at the
origin 0 of Rm is Go = {(A, 0): A G SL(m; R)} « SL(m; R). For conveni-
ence we shall usually denote the element (A, 0) in Go simply by A. The
projection map π: SA(m) -> Rm is given by m{A, x) = {A, x)0 = x.

The Lie algebra of SA(m) is represented in gl(m + 1; R) by

where Bl(m; R) is the Lie algebra of all m X m real matrices whose trace is
equal to 0.

The Lie algebra of Go is the subalgebra of Q:

[(o o ) :

We shall usually let X denote the element (X, ό). If we let πto = {(0,^) e g:
y G Rm}, then tΠo is a vector space complement to g0 in g, and the adjoint
action of Go on mo is simply

ad(Λ)(0, y) = (0, Ay), for A e SL(m; R),xGRm.
For future reference we point out that the adjoint action of Go on g is given

by

The Maurer-Cartan form of SA(m) is the g-valued left-invariant 1-form on

SA(m)
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We shall write Ω = ((Ωj), (Ω1)), where Ωj, Ω' are ordinary left-invariant 1-
forms on SA(m) and Σ™ Ωj = 0.

The structure equations of SA(m) are contained in the formula dίl = -Ω Λ
Ω, which in detail is the set of equations

k

We specialize now to the case m = 3. For the rest of the paper we let
G = SA(3). Our index convention becomes:

1 < ij, k < 3; 1 < α, β < 2.

A linear frame u at a point x of R3 can be denoted u = (ex, e2, e3; x), where
î> ̂ 2> e3 a r e three linearly independent vectors in R3. As a reference frame u0

we choose the standard basis εl9 ε2, ε3 at the origin 0 of R3. Then we get a
bundle monomorphism ho: G -^ L(R3) given by ho(A, x) = (A, x)+u0 =
(Aeλ, Ae2, Aε3; x). Thus h0 identifies (A, x) G G with the frame at x given by
the three columns of A. The associated representation po: Go-» GL(3; R) is
just the standard representation of SX(3; R). Then ho((A, x)K) =
ho(A, x)po(K) for any (A, x) e G, ϋΓ G Go.

The frames AO(G) can be usόd to simplify the representation of the
Grassmann bundle G32(R3). In fact, G32(R3) = GxGG32, where we have
written G instead of ho(G).

7. Frames
Suppose that /: S -> R3 is a regularly imbedded surface in R3. A zeroth

order frame at s G S is any element u G G such that π(«) = /(^). Then
Λo(«) = (el9 e2, e3;f(s)). We shall usually abuse notation and write u =

(*i> ^ e3> As))
Definition. A zeroth order frame field along f is a smooth map w: S —> G

such that π ° u = f; i.e., such that W(J ) is a zeroth order frame of / at ^ for
every 5 6 5.

In general, suppose that x: S —> R3 is a smooth map, let ^ G S and suppose
that v = (t?!, t>2, t)3) is a frame for R3. Then

dX{M) = x*ω = Σ <P' ® ^

where the φ1 are linear functional on the tangent space Ss, called by E.
Cartan the relative components of infinitesimal displacement of x at s with
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respect to the frame v. Now suppose that u = (el9 e2, e3; f): S -> G is a zeroth
order frame field along/. Then eu e2, e3 and/ are smooth maps S ->R3, and
so their relative components of infinitesimal displacement at any point with
respect to the frame u are given by

(1) ώ,. = ^ / ® ^ df-Σ&Qej.
j j

Lemma 2. Ifu = (eι, e2, e3; f) is a smooth zeroth order frame field along f
then the relative components θι and ωj of infinitesimal displacement off and ei9

respectively, defined in (1) are given by

θi = ii tf, ωj = w*Ωj.

Proof If (A, a) G G and (X, x) G Q, and if L(Aά) denotes left multiplica-
tion on G by (A, α), then L{Atay(X9 x) = {AX, Ax). Let A: S-^ SL(3; R) be
the matrix valued function whose i'th column is et. Then

dev

e2, de3; df)(s)

; ^ ( J ) " 1 df)(s).

ε, andApplying A(syx to (1), the lemma follows because A(s)~ιei(s)

u*Q(s) = ί Σ κ*Ω'i ® ^ " » Σ w*βl ® «ir)
V i i /

Recall that the map 7}: 5 -> G32(R3) is defined by 7}(̂ ) = /^S,. We need a
frame in order to get a local representation of 7}. Given any point s E S, let
u = (e\9 ei> e3lΛs)) G G be a zeroth order frame at s. Let the 1-forms θ* be
defined by

Since ^"(Λ1) has rank equal to 2, two of the forms θ* must be linearly

independent. We may as well assume that θι and θ2 are independent, in

which case 0 3 = xθι + >>02 for some JC, ̂  G R. Then, using the representation

G32(R3) GxGG32, we have

w u,

Any other zeroth order frame at s is given by u = uK, where K G Go. As

uκ~\
1 0
0 1
x y

= u, ρo(K~ι)
1 0
0 1
x y
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it follows that by choosing K appropriately we can simplify the coefficients x
and y. In fact, the standard action of Go = SL(3; R) on G3>2 is transitive,
which means K can be chosen so that

1
0
X

0
1
y

=
Ί
0
0

0 '
1
0

Hence K can be chosen so that if u = uK = (ev e2, e3; /), then

df= Θι®ex + Θ2®e2\

i.e., P = 0.
Definition. A first order frame at s E S is any zeroth order frame u =

(el9 e29 e3;f(s)) E G such that df(s) = θι ® ex + 0 2 ® e2. Ay?rrt order frame
field along f is a zeroth order frame field w along / such that u(t) is a first
order frame at t E S for each f E S.

Although we have defined first order frames in an algebraic way, if we look
at the situation geometrically it is clear that the first order frames at s E S are
the zeroth order frames u = (el9 e2, e3;f(s)) at s for which ex and e2 are
tangent to/(5) at/(^).

In order to determine the set of all first order frames at s E S, we need to
determine the isotropy subgroup Gx of ρ0 at the point

1
0
0

0
1
0

After a brief computation we get that

G, = { ^ e G o = SL(3; R): Kf = o = A*},

where Kj denotes the ith row-y'th column entry of the matrix K. Then the set
of all first order frames at s is

(2) {uKiKeG,},

where u is any fixed first order frame at s.
It can be shown easily, but we omit the details, that first order frame fields

along / exist locally, that is, on a neighborhood of any point of S. In general
there does not exist a continuous first order frame field along/ defined on all
of S. As we are interested here in local questions, we shall often discard
portions of 5, if necessary, so that we may assume that there exist globally
defined first order frame fields along/.

If we let L j C G denote the set of all first order frames on S, then Lx is a
submanifold of G, and by (2) it is a fibration over S for which each fiber is a
right coset of Gv The existence of local smooth first order fields along /
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means that the fibration is locally trivial. Thus Lλ is a principal Grbundle
over S.

As we shall see, yet another point of view is essential. Any first order frame
field u along/is a local cross section of Lx -> S, and by Lemma 2

w*Ω3 = 0.

It follows that Lλ is an 8-dimensional integral manifold in G of the closed
exterior differential system on G:

Ω3 = 0, Ω3 Λ Ω1 + &1 Λ Ω2 = 0,

where the quadratic equation arises from taking the exterior derivative of
Ω3 = 0 and using the structure equations of G.

If 1: Lλ —> G denotes the inclusion mapping, and if we set η1 = 1*0*,
ηj = /*Ωj, then (η1, η2, η{, η | , η\, η2, 17], ηf) is a coframe field on Lx and

3 3 ι 2 | 1 2
j j

η3 = 0, η3 = pηι + r/|
] f x

1 + ΓΪ]2 for some smooth functions/?, q and r

The following proposition is geometrically obvious, but we include a proof
whose idea carries over to less obvious situations.

Proposition 3. Any two surfaces in R3 have first order G-contact at any two
points.

Proof Let/: S^>R3 and/: S ->R 3 be any surfaces, and let s E S9 s E S.
Let u = (el9 el9 e3; f(s)) and ΰ = (el9 e2, e~3;f(s)) be first order frames at s and
s9 respectively.

For any element v E G we have λo(t> w) = (v+eλ9 v+e2, v+e3; vf(s)). Thus
π(vϊi) = ϋ -/(i), so that vU is a zeroth order frame at s of v ° f Furthermore,
the relative components of infinitesimal displacement of v ° f with respect to
ho(vu) are the same as those for/with respect to u. Namely, if df{1) = Σ, θ* ®
ei9 then d(v ° / ) ( i ) = Σ, θ' ® ϋ^e,.

Let us apply this observation to v = u
frame of v ° / at s and

u-\Then w is a first order

"1 0
0 1
0 0

=
I 0
0 1
0 0

Hence/ and ϋ ° /have first order contact at s and s. This proves Proposition
3. q.e.d.

The first order frames can be used to solve the first order G-deformation
problem. We give an elementary proof of the next proposition. Another proof
could be obtained following the methods used for second order deformations.

Proposition 4. Let f f: S -> R3 be surfaces on which there exist globally
defined first order frame fields. Then these surfaces are first order G-deforma-
tions of each other.
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Proof, Let u = (el9 e2, e3; / ) : S-> G and ΰ = (ex, e2, e3; f): 5 ^ G be

smooth first order frame fields along/and/, respectively. Then

(3) f+ = θι®ex + θ2® e2, f+ = θλ®ex + θ2® e2,

where θι, θ2 and θι, θ2 are each smooth coframe fields on 5. There are

smooth functions Ag on S, such that

(4) θa

β

(We are using the index convention: 1 < α, β < 2.)

Let A be the 2 x 2 matrix of functions Ajf, and let a = det Λ"1. Define a

smooth map K: S -* Gx by

Λ 0]
0

,0
Then UK is also a smooth first order frame field along /. As UK =

(Σ α Λfέα, Σa Aϊea, ae3; /), if we set UK = (t^, v2, v3; f), then υα = Σ^ A£eβ9

and

(5) fm = Σ Φα ® va = Σ Φα ® Λf̂ β
« o, ^

Comparing (5) with the second equation in (3), it follows that

(6) 0α = Σ ^ V .
β

Comparing (6) with (4) gives that φβ = θβ.

The point of this brief digression is that we may assume the first order

frame field ΰ along/to be chosen such that

(7) θa = θa.

Define a smooth map v: S -* G by v(s) = u(s)ϋ(s)~ι. Given any s G S, it is

clear that v(s)+ea(s) = ea(s). Thus using (7) we have

(Φ) °/)•(*) = v(s)J Σ θa ® ea(s)\ = Σ θ" ® ̂ αW = /*(*)>
V α / α

which means that t?(.s) ° / agrees to at least first order with/ at 5. q.e.d.

We shall need second order frames and the notion of the second order

types in §§9 and 10. Rather than just refer to their construction in [7, pp.

118-119], we shall repeat the construction, but emphasize the pointwise

nature of their definition.

Lemma 3. Let σo denote the 2-plane at the origin of R3 spanned by the two

standard basis vectors εx and ε2. Then the map v —» v+σo, for v E G, induces a

bundle isomorphism G/Gx = G32(R3).
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Proof, Any tangent 2-ρlane to R3 is given by v+σo for some ϋ 6 C ; i.e.,
the map is surjective. The proof is concluded by observing that υ+σo = σo if
and only if υ(o) = 0 and

1
0
0

0
1
0

=
Ί
0
0

0 '
1
0

i.e., v E Gv q.e.d.
In terms of our earlier notation, the isomorphism

G3Λ*3) GxGG32

is given by

w G u,
Ί

0
0

Ol
1

oj
Using this identification we have

Tf:S->G/Gx.

Let πλ\ G^>G/Gλ denote the natural projection. A zeroth order frame for 7}
at s E S is an element u E G for which ττλ(u) = Tj(s). Then u E G is a zeroth
order frame for Tf at s if and only if

u,
1
0
0

0]
1

oj

which occurs if and only if u is a first order frame for/ at s.
Next we determine the relative components of infinitesimal displacement of

Tj with respect to a zeroth order frame. The second order frames for / at a
point s EL S will be defined to be the first order frames for Tf at s.

The construction of first order frames for Tf begins with a choice of
subspace mx of QO complementary to the Lie algebra QY of Gx. Recall that
QO = 31(3; R) and that

E βo: A? « 0

For m, we take

m,
0
0
r

0
0
t

0
0
0

Then g = 9i θ mo θ m^ (vector space direct sum), and ττ u maps mo

isomorphically onto the tangent space of G/Gλ at the identity coset.
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As a reference frame at the identity coset of G/Gx we take ux =
πι*(εv ε2> ε3> εΦ εs)> where ε^ ε2, ε3 continues to be the standard basis of

πto β R3, and

0
0
1

0
0
0

0
0
0

0

o
0

0
0
1

0
0
0

is a basis of m^ Then we get a bundle monomorphism hx: G—» L(G/GX)

given by hx(u) = u+ux. The associated homomorphism between the structure

groups px: Gx -» GL(5; R) is the adjoint representation of Gx on Q/QX sa mo

θ πtj, with respect to the basis ex, , ε5.

As G! c Go, there is a well-defined smooth projection \px: G/Gx —» G/G o

given by πx(v) -> 7r(t>), for any t> E G. Then

' εs) = ^*( Ψi

Notice the equivariance property of ψ,, namely that for υ, w E G, ψj(t;

^ICW)) — ϋ # *Γ(H>). Thus for any D E G, if Ao(t)) = (e^ e2, e3; ττ(ϋ)) and AJ(U

= (e,, e2, e3, e φ e5; ττ,(ϋ)), then

(8) 5; Ψi 2, e3;

As a result of (8) we shall identify et with ei9 i = 1, 2, 3.

Lemma 4. Let u be a first order frame for f at s EL S, and set ho(u)

(el9 e2, e3j{s))andhx{u) = (e l f , e5; Tj(s)). Then

(9) (7} ) , ω = 2 ^ α ® ea + ω?

where / ^ = Σ α β α ®

ω2

3

ω3, ίo2 are linear functional on the tangent space

If u is a first order frame field along /, and thus is a zeroth order frame field

along Tf, then the relative components of infinitesimal displacement of 7} with

respect to u, as defined in (9) at any point s E S, are

(10) θa = w*Ωa, M * Ω 3 = 0, <υ3 = w*Ω3, ω\ = u*S%.

Furthermore^ the structure equation

(11) ωlΛθl + <4Λθ2 = 0,

is satisfied on S.
Proof. (9) is satisfied for some linear functionate θ", ωj, ω| £ S*. As

/ = ψ, o Tf, by (8) we have / . w = ψ u ( Σ α 0 β ® eβ + «? ® e4 + ω\ ® e5) -
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The proof of the latter half of the lemma is the same as the proof of

Lemma 2. (11) follows from applying M* to the following structure equation

of G:

Continue using the notation of Lemma 4; u is a first order frame for / at

s E 5. From (11)

for some x,y, z E R. Let X = (* y

z\ and let S 2 denote the vector space of all

real 2 x 2 symmetric matrices.

Now Tf\ S —» G52(Mι% and using hx we see that the latter space is given

by

where we recall that p,: Gx -» GL{5; R) is the adjoint representation of Gx on

g/g, with respect to the basis ε,, , ε5. Then by (9) we have

/
0
X

where / = (Q % and X is given above.

Any other first order frame for/ at s is given by ΰ = uK for some K EL Gv

If A t̂Γ) = (e, , e5; πx(u)), and we denote the relative components of 7}

with respect to hx{u) by θa, ωx, ωf, and denote the coefficients of the latter by

(12)

Lemma 5. Let K E. Gλ, so that K

ξ E R2, and where aΓx = det A, Then

I
0

X
= ρλ(K-1)

' I
0
X

| ) , for some A E GL(2; R), some

To o
0

ω\ω\ 0
θ2

h 0 .

=
0

yίί/^-1]

Consequently in (12),

(13)

, modulo
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Proof. An elementary computation.

The action of Gλ on S2 defined by (13) has exactly four distinct orbits. A
representative from each orbit is chosen as follows:

Type Πa: Orbit of 0 = Xa.
Type lib: Orbit of (̂  g) = Xb.
Type He: Orbit of (J j) = Xc.
Type Πd: Orbit of (J _?) = Xd.

If X hes in the orbit of Type Πa (respectively, Type lib, or Type Πc, or
Type Πd), then the point s E S is called a planar (respectively, parabolic, or
elliptic, or hyperbolic) point. The surface/: S^>R3 is said to be of constant
second order type if all of its points are of the same second order type. If/is of
constant second order type, we shall call it planar (respectively parabolic,
elliptic or hyperbolic), if all of its points are planar (respectively parabolic,
elliptic or hyperbolic).

Definition. A second order frame for / at s E S is any first order frame u
at s for which

/
0

where D is one of a, b, c, or d.
It can be shown that if/is of constant second order type, then locally there

exist smooth second order frame fields along /. Let L2 denote the set of all
second order frames on /. If / has constant second order type IID, then
L2 -» S is a principal G2-bundle over S, where G2 is the isotropy subgroup of
Gλ at XD, D = a,b, c, d:

0
I
0

Proposition 5. Smooth surfaces f: S ->R3 and}: S-*R3 have second order
G-contact at s E S and s E S if and only if s and s are of the same second
order type.

Proof. The proof is similar to that of Proposition 3.

8. The differential systems of equiaffine deformations

We shall use the results of Example 1 in §4 for the case when G is the
equiaffine group. Adopt the index conventions

1 < ij < 3, 1 < α, β < 2,
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and use the Einstein summation convention on repeated indices. Then

equations (4.6) from Example 1 are

(14) dx' = -Ω1 - xΊϊJ, (on G X R3).

Suppose that /, /: S —> M are surfaces which are A:th order equiaffine

deformations of each other. Let v: S —» G be such that v(s) ° /agrees through

order k with/ at s, for every s e S.

Let u: S -> L* be a Λ th order frame field along/. Then ΰ: S-* G defined

by ϋ(s) = v(s)~ι u(s) is a fcth order frame field along /. For each (s, t) E S

X 5, the coordinates (*') of/(/) with respect to u(s) satisfy

where, as in Example 1, u(s) = (^i(^), e2(s), e3(s); f(s)). The coordinates (jc1)

of/(0 with respect to ΰ(s) are the same as the coordinates of v(s) °f(t) with

respect to u(s), so that

Put ω1 = w*Ωl, ωj = w*Ωj, and similarly define ω1 and ωj with respect to ΰ.

If u is at least a first order frame field, then ω3 = 0 and (ω1, ω2} is a coframe

field on S. Consequently, for each ί G S , the functions xa(s, t) define local

coordinates in S centered at s. Then

(15) x* = a a x « + \ b a β x « χ f * + . . . .

Where the coefficients aa, baβ = b^, are functions of s.

Use the map (w X identity): S X R3 -> G X R3 to pull (14) back to S X

R3:

(16) dxι = -ω1 - Λ:yω;.

Differentiate (15) with respect to s, keeping t fixed, so that equations (16)

can be used. Thus we obtain

ωf c1 = dx3 = aadxa + xadaa + .

At s = ί we have c1 = 0 and rfx1, dx2 linearly independent. Hence aa = 0,

and the expansion (15) begins with the second order term.

Now v(s) ° /and/agree to order k at s; it means that 3c'' — xι = 0 modulo

terms of order greater than k in JC1, x2.

Case k = 1. Differentiate x* - xi with respect to s, keeping t fixed. Then

dx' = rfjc' modulo terms of order > 1 in xa.

Using (16) we obtain

ω' + Fω/ = ω1 + jc7'̂ 1' (mod order > 1).
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Hence putting s = t gives

(17) ωi = ωi onS.

These are the exterior differential equations of a first order equiaffine
deformation.

Case k = 2.
Now dxi = dx* (mod order > 2 in sa). Using (16) we have

ω1 + xaωι

a = ωi + xaωι

a (mod order > 2 in xa).

But xa — xa through second order, and ω1 = ω1 as in the case k — 1. Thus
J C " ^ — ωj) = 0 modulo terms of order > 2 in xa. By a standard argument

(18) *>«-«« on 5.

The differential equations of a second order equiaffine deformation are the
equations

(19) ω' = ω', <oj = ωj on S.

Case k = 3. Now

<£c' = dxi (mod order > 3 in xa).

Using (15) and (16) we obtain

modulo terms of order > 3 in xa.

Since xι = x( through third order, and ω1 = ω1, ωι

a = ωι

a from Cases A: = 1, 2,
we have baβ = 6αi8 and

baβx
axβ(ω^ - ωj) = 0 (mod order > 3),

Hence either

(20) ώ ι

3 = ω j on 5,

or feα£ is identically zero on S for all α, /?.
Generically the former case occurs, so that (17), (18), and (20) are the

differential equations of a third order equiaffine deformation.
Proposition. Any C°° surface in R3 is rigid to local third order equiaffine

deformations.
Proof. Surfaces for which the baβ are identically 0 are planar surfaces, and

any planar surface is an open submanifold of a plane (cf. [7, p. 120]). Since a
third order deformation of a planar surface is also planar, they are congruent.

For a nonplanar surface, the equations are (17), (18), and (20) above, which
say that w*Ω = w*Ω. It follows that /and /are G-congruent.
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9. Existence of deformations

We have seen already that any two surfaces are locally first order equiaf-
fine deformations of each other, and that every surface is rigid to third order
equiaffine deformations. We turn now to the questions raised in §7 for the
case of second order equiaffine deformations of surfaces.

The Cartan-Kahler theorem will be used many times in this and the next
sections. For terminology and precise formulation of this theorem we shall
follow [4], especially §§93 and 94 on pp. 98-100.

The answer to question (1) is a qualified no; that is, a generic surface is
rigid to second order deformations. We proceed directly to question (2) to see
which surfaces are deformable. Since there are four second order types of
surfaces, we can unify the discussion somewhat by setting up our first system
on Lλ X G, rather than on L2 X G.

Let/: S -> R3 be a real analytic surface, and let Ω = ((Ωj), (Ω1)) denote the
Maurer-Cartan form of G. The set Lx of all first order frames on / is a real
analytic submanifold of G. In fact, Lx is an 8-dimensional integral manifold
of the closed exterior differential system

(32) Ω3 = 0, Ω Ϊ Λ Ω ^ Ω ^ Λ Ω ^ O

onG.
Let i: Lλ-> G denote the inclusion mapping, and set

(33) ω' = i tf, ωj = ί Ωj, 1 < ίj < 3.

Then ω1, ω2, ω\, ωf, ω\, ωj, ω2, ω2 form a coframe field on Ll9 and

ω3 = 0, ω3 = pωι + qω2, u>\ = ^ω1 + rω2,

for some real analytic functions/?, q and r on Lv

Consider the closed exterior differential system Σ o n L j X G with specified

independent variables ω1, ω2, (cf. (19)):

(34) c o ^ Ω 1 , ω2 = Ω2, Ω3 = 0, ω3 - Ω3, ωf = ί&

ω\ = Ώ\, ω} = Ω}, ω| = Q% ω2 = Ω2;

(ωλ

3 - ίl\) A «? = 0, (ω\ - Q\) Λ ω3 - 0,

The nature of this exterior differential system depends on the linear
dependence between ωf and ωf, which in turn depends on the second order
type of the surface/.

By the Remark following Proposition 2, if / is a second order G-deforma-
tion of/, and/has constant second order type, then/has the same constant
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second order type. For surfaces of constant second order type we have the
following results.

Proposition 8. Any planar, elliptic, or hyperbolic real analytic surface in R3

is rigid to second order G-deformations. Any real analytic parabolic surface in
R3 has local nontrivial second order G-deformations.

Proof. The surface / is planar iff p, q and r are identically zero. In this
case the system Σ is completely integrable. Any two-dimensional solution is
given by a real analytic map (u, u): S -> Lx X G, and the surfaces f=π°u
and/ = 7Γ ° ΰ are G-congruent. They are each open submanifolds of a plane.
(Cf. [7, p. 120].)

The surface/ is elliptic iff pr — q2 > 0, and it is hyperbolic iff pr - q2 <0.
In either case the four quadratic equations (35) are linearly independent,
while the rank of the polar matrix is 2. The system Σ is not in involution.

A prolongation of the system is achieved by adding to (34) the linear
equation's

(36) Ω] - Ώ\ = ail1 + Z>Ω2, Q2 - Q2 - cΩ1 + eΩ2,

where a, b, c, e are new variables. Putting equation's (36) into the quadratic
equations (35), it follows that a, b, c, and e all must be zero.

Thus the prolongation is completely integrable. Any solution is given by
(w, u): S -» Lλ X G and satisfies t/*/*Ω = M*Ω. Hence f = π ° u and / =
IT ° ΰ are G-congruent by [7, Theorem 1, p. 30].

The surface/is parabolic iff the matrix {p

q )̂ has rank one at every point of
Lx. In this case there are only two independent quadratic equations in (35),
and the system Σ is in involution. The general solution depends on two
arbitrary functions of one variable.

10. Deformations of parabolic surfaces

We conclude with the problem of determining the second order G-defor-
mations of a given parabolic surface/: S^>R3. For the details on higher
order frames and types of parabolic surfaces we refer to [7, pp. 120-139].

Let L2 C G be the set of second order frames of /. It is a principal
G2-bundle over 5, where (cf. §7)

a
b

0

0
a~3

0

c
t

a2
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Also, L2 is a 6-dimensional integral manifold of the closed exterior differen-

tial system on G:
θ3 Γ\ O^ θ l O^ Π C)l Λ θ l Π

Let /: L2-> G be the inclusion mapping, and set ω1 = ι*Ω', ωj = /*Ωj.

Then (ω1, ω2, ω}, ωj, ω2, ω2) is a coframe field on L2, and ω3 = 0, ω3 = ω1,

ω\ = 0, ω2 = <7<o\ 3ω} + ω2 = /uo1 + qω2, where/?, q are real analytic func-

tions on L2.

There are two third order types, according to whether ω2 = 0, (Type

lib Ilia), or ω2 ^ 0, (Type lib IΠb). We have observed already that second

order deformations preserve second order type. But from (19) (namely,

ω2 = ω2), it follows that second order deformations of a parabolic surface

preserve third order type. To see this one must observe that if /: S —» R3 is a

second order deformation off:S^> R3, and the deformation is achieved by v:

S -* G, then starting with a second order frame field u: S -* G along/we get

a second order frame field ΰ: S -^G along/by setting ΰ(s) = v(s)~ι u(s).

Suppose that / is of Type l ib Ilia, and let L3 C L2 C G denote its set of

third order frames. L3 is a principal G3-bundle over S, where

a

b

0

and L3 is a 5-dimensional integral manifold of the closed exterior differential

system on G:

/oo\ <~)3 Π O^ O^ O^ Π O^ Π ^O* -I- O^ Π O* Λ O^ Π
\^θy ύu ^ U, a«| — uύ , ύ&2 — U, αώ2 — U, Ouώj T aώ2 — U, ώί3 / \ tu — vl.

If we now let i: L3-^G denote this inclusion, and let ω1 = /*Ω', ωj = /*Ωj,

then (ω1, ω2, ω}, ω2, ω|) is a coframe field on L3, and

(39) ω3 = 0, ω3 = ω1, ω| = 0 , ω\ = 0, ω| = -3ω}, ωj = rω1

for some function r on Ly.

With this preparation we can state and prove _

Proposition 9. Any Type lib Ilia surface f: S -> R3 is a second order

G-deformation off.

Proof. Let any quantity defined above for/be defined for/, and denote it

with the same letter but with a bar over it.

From (19), (39) and (39), it suffices to find a two-dimensional solution to

the closed exterior differential system on L3 X L3 with specified independent

variables ω1, ω2:

(40) ω1 = ω\ ω2 = ω2, ώ{ = ω\, ω2 = ω2, (ω| - ω2) Λ ω 1 = 0.

0
a'3

0

0
t

a2
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This system is in involution, and the general solution depends on 1

arbitrary function of 1 variable. Any 2-dimensional solution can be given by

a map

(w, ΰ): S-*L3X L3.

Then u and w are third order frame fields along/and π ° ΰ, respectively, and

ΰ*ωι = u*ωι, ΰ*ω2 = w*ω2, ΰ*ω\ = ΰ*ω\,

*ω} = u*ω\, ΰ*ωj = w*ω2,

ΰ*ω\ =

By Proposition 6, / and m ° u are second order G-deformations of each other.
Finally, m ° ΰ(S) = ττ(L3) = /(£), so that π ° U: S -> R3 is just a reparametri-
zationof/.

Remark. Type lib Ilia surfaces/: S -> R3 are cylinders. To see this, let u:
S —> L3 be a third order frame field along/, and write w = (ex, e2, e3; f).

If ι/*Ω' = β', i = 1, 2, «*Ωj = β;, then we have

de2 = θI ® ^2,

as 02 = 0 = β2

3. It follows that the tangent vector field e2 along/has constant
direction, and thus/is a cylinder generated by lines parallel to e2.

Consider now a Type lib Hlb surface/: S -» R3, and let L3QG denote its
set of third order frames. L3 is a principal G3-bundle over S where now

ffl 0 b) }
G-\ b 1 t :b,t <=RV.

1
b
0

0
1
0

b
t
1

It is also a 4-dimensional integral manifold of the closed exterior differential
system on G:

aύ — U, ώώj — ώύ , ύώ2 — U, ύώ2 — αώ , JύAi T^ «β2 — ββ ,

(41)

Let /: L3^> G be the inclusion mapping, and set ω1 = /*Ω', ωj — /*Ωj.
Then (ω1, ω2, ω2, ωf) is a coframe field on L3, and

ω3 = 0, co3 = ω1, ω2 = 0, ω\ = ω1, ω} = -mω\

ω| = 3mωι + ω2, ωj = ωj — pω1 — mω2,

for some functions m and/? on L3; and m is constant on the fibers of L3. The

function w, which is actually a function on S1, is the fourth order invariant of

/
Lemma 8. Second order G-deformations of f preserve the fourth order

invariant m off.
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Proof. Suppose that/: S -> G is a second order G-defoπnation of/with a
deformation given by v: S -^ G. That is, v(s) ° / agrees to second order with/
at s, for each ί G S . Let u: S —»L3 be a third order frame field along/, so
that

w*Ω3 = 0, II Q J - I I Ω1, u*Ω3 = 0,

II QJ = M*Ω1, ι/*Ω{ = -mu*Q}.

Define ΰ: S -> G by M(S) = v(s)u(s), so that u is at least a second order

frame field along/. But (19) and (42) show that equations (43) hold with bars

on everything, so that ΰ is actually a third order frame field along / But then

using (19) we have

w*Ω} = w*Ω} = -mw*Ω1 = -mu*Q}

which implies that m is the fourth order invariant of/, q.e.d.

All Type lib IΠb surfaces have the same fourth order type, but at the fifth

order they split into two types, depending on whether m = 0 (Type

lib IΠb Va), o r m ^ O (Type lib IΠb Vb). From Lemma 8 it follows that

second order deformation preserves the fifth order type.

Proposition 10. (i) Any two Type lib IIIb Va surfaces are second order

G'deformations of each other.

(ii) Any two Type lib IHb Vb surfaces are second order G-deformations of

each other whenever their fourth order invariants have the same range, i.e.,

whenever m(S) = m(S).

Proof, (i) Let /: S -+ R3 be a Type lib Πlb Va surface, and let L3 be its

bundle of third order frames. Using the notation preceding Lemma 8, we

have (42) with m = 0. Let/: S-> R3 be another Type lib Πlb Va surface with

bundle of third order frames L3.

To get a second order deformation of / to / it suffices, by (19), (42) and

(42), to find a two-dimensional solution of the closed exterior differential

system on L3 X L3 with specified independent variables ω1, ω2:

(44) ωι = ω1, ω2 = ω2, ω? = ωf, (ωf - cof) Λ ω1 = 0.

This system is in involution, and the general solution depends on one

function of one variable. The rest of the proof of (i) follows the lines of the

proof of Proposition 9.

(ii) Let /: S -> R3 be a Type lib IΠb Vb surface. Continue to use the

notation of (42).

Lemma 9. There exists a unique third order frame field u: S -> L3 C G

along f for which

(45) dm = -2/nφ2, φ? = 3/wφ2,

where φι = w*ω\ φj = u*ωj.
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Proof. Let u: S -* L3 be any third order frame field along /, and set

φ ' = u*ω\ φj = u*ωj. Apply w* to (42) to get

φ 3 = 0, φ 3 = φ1, φf = 0, φ^ = φ\

φj = -mφι, φf = 3mφι + φ2.

Then 0 = rf(φ{ + mφ1) implies that

dm Λψl = 2mφ1Λ<P2,

from which we get

(47) dm = mxφ
ι - 2mφ2,

where m! is some function on S, and depends on the choice of w.

Any other third order frame along/is given by

Γl 0 a
u = u \a 1 b

[O 0 1

where a and b are arbitrary functions on 5, (cf. [7, p. 129]). Let φ1 = u*ω'9

φj = w*ĉ '. Then equations (46) hold for φ1 and φj, and

(48) dm = mxφ
ι - 2mφ2.

Write ι/ = (el9 e2, e3; f) and ύ = (eΓ, e2, &,;/), so that ^! = ex + αe2, e2 =

e2, ^3 = α ĵ + be2 + e3. Then rf/" = φ 1 ^ + φ2e2 = 9^1 + φ2e2 implies that

(49) φ 1 = φ1, φ 2 = φ 2 - aφ\

Combining (47), (48) and (49) gives

mλ = mx — Ίam.

Hence, by taking a =jmx/m, the frame field ύ will have the property that

dm = -2mφ2.

We may assume then that mι = 0; i.e., that dm = -2mφ2. In order for the

new frame field ύ to share this property we must take a = 0. Now ex = el9

e2 = e2, £3 = be2 + e3, and

ψι = φ1, Φ2 = Φ2.

Differentiating rfm + 2mφ2 = 0 gives

<Pl A Ψι = 3/wφ1 Λ <P2.

Hence

(50) φ 2 = Λφ1 + 3mφ2,

for some function k on S.

As for the frame field w,
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and deι = deλ = φ\eι + ψ\e2 + ψ\e3. Hence

W*/ Φi Φi — **Φi = = Φi — ^Φ >

because φ? - φ1 = φ1. Now ψ\ = fcφ1 + 3mφ2, so that (50) and (51) imply

(52) k=k-b.

By taking b = k we can make £ = 0. This proves Lemma 9, and permits us to
complete the proof of Part (ϋ) of Proposition 10.
_Let_/: S->R3 be any Type IlbΠIbVb surface, and let u: S -> L3, w:
S-* L3 be the special third order frame fields along / and /, respectively,
given by Lemma 9. Set φ1 = t7*co' and ψj = u*ωj. Then (45) and (46) hold for
both u and w, where we let rή denote the fourth order invariant of/.

The exterior differential system

1 ̂  J I Op *~~ Op , Op ^~ CD

on S X S is completely integrable. Choose points o 6 S and δ e 5 such that
m(ό) = m(δ) Φ 0, and let the graph of F: S -> 5 be the two-dimensional
integral manifold of (53) for which F(p) = δ. Then

(54)

and

F*d\og\m\ = F"(-2φ2) = -2φ 2 - </log|m|

implies that

(55) m o F = c m, for some constant c.

But c = 1, because m ° F(o) = m(o) = m(o) φ 0.
Combining (45), (46), (54) and (55) it follows that equations (29) hold for

the frame fields u and ΰ. Hence, by Part(b) of Proposition 6, / is a second
order G-deformation of/.

Remark. Type ΠblHbVa surfaces are cones, while Type IlbΠIbVb
surfaces are tangent developables. To see this, let u = (el9 e2, e3; f) be a third
order frame field on the surface with relative components of infinitesimal
displacement φ1 = u*ω\ φj = u*ωj9 where ω1, ωj are the forms on L3 in (42).

For a Type lib Πlb Va surface the invariant m is identically zero, so that
equations (42) imply that

Hence d(f - e2) = 0, and so/ = c + e2 which is a cone with center a t c e R 3

and generator lines parallel to e2.
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For a type lib IΠb Vb surface the invariant m is nonconstant, and equa-

tions (42) give

de2 = ψιeλ + (3mφι + q>2)e2 = df + 3mφιe2.

The vector field e2 is the tangent vector along any curve φ 1 = 0, and it does

not change direction along such a curve; these curves are straight lines, the

generator lines of the surface. Along any of the lines φ 1 = 0 we have

dex = 3mφ2e2,

from which it follows that the tangent plane to the surface is constant along a

generator line. Hence / is a developable. It is easily seen that any cylinder is

of Type lib Ilia, while any cone is Type lib Πlb Va. Thus any Type

lib IΠb Vb surface must be a tangent developable, (or osculating develop-

able, as it is called sometimes).
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