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SOME AXIOMS OF EINSTEINIAN AND
CONFORMALLY FLAT HYPERSURFACES

DIRK VAN LINDT & LEOPOLD VERSTRAELEN

1. Introduction

The following theorems state main results from the theory of axioms of
submanifolds in Riemannian geometry. This theory was initiated by E.
Cartan with the axiom of n-planes [2].

Theorem A (D. S. Leung and K. Nomizu [10]). A Riemannian manifold of

dimension m > 2 is a real space form if and only if it satisfies the axiom of

n-spheres, 2 < n < m.

Theorem B (J. A. Schouten [13]). A Riemannian manifold of dimension

m > 3 is conformally flat if and only if it satisifes the axiom of totally umbilical

n-dimensional submanifolds, 3 < n < m.

Theorem C (K. L. Stellmacher [14]). A 3-dimensional Riemannian manifold

is conformally flat if and only if it satisfies the axiom of umbilical surfaces.

Theorem D (K. Yano and Y. Mutδ [18]). A Riemannian manifold of

dimension m > 3 is conformally flat if and only if it satisfies the axiom of totally

umbilical surfaces with prescribed mean curvature vector.

Many1 axioms of submanifolds were considered in Kaehlerian, Sasakian,
pseudo-Riemannian and other manifolds by combining the ideas of axioms of
planes or spheres with the specific nature of these ambient spaces. For
instance in Kaehlerian geometry K. Yano, I. Mogi, B. Y. Chen, K. Ogiue, K.
Nomizu, S. I. Goldberg, E. M. Moskal, M. Harada, M. Kon, S. Yamagushi
and M. Barros obtained characterizations of complex space forms in terms of
axioms of holomorphic, antiholomorphic, coholomorphic, anti-invariant or
CR planes or spheres. In particular, all submanifolds in these axioms are
totally umbilical. The following Theorem gives a type of complex version of
Theorem B which concerns nontotally umbilical submanifolds.

Theorem E (B. Y. Chen and L. Verstraelen [6]). A Kaehlerian manifold of

(real) dimension m > 6 with complex structure J is a complex space form if and

only if it satisfies the axiom of J i-quasiumbilical hyper surf aces, where ξ is the

hypersurface normal.
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S. Tachibana and T. Kashiwada proved that every geodesic hypersphere in
a complex space form is /£-quasiumbilical [15]. The axiom of /ξ-quasiumbili-
cal hypersurfaces was also studied by L. Vanhecke and T. J. Willmore, and
the axiom of special /ξ-quasiumbilical hypersurfaces was studied first by S.
Tashiro and S. Tachibana.

The main purpose of this article is to study axioms of submanifolds which
are determined by conditions which are not exclusively extrinsic as in the case
of the former axioms. More precisely, in §§3 and 4 we shall characterize the
conformally flat spaces of dimension > 4 and the real space forms of dimen-
sion > 3 as the Riemannian manifolds which satisfy the axiom of conformally
flat quasiumbilical hypersurfaces and of Einsteinian hypercylinders, respectively,

that is, as the Riemannian manifolds M for which there exists for each of
their points/? and for every hyperplane section H of their tangent space TpM
at p respectively a conformally flat quasiumbilical and an Einsteinian cylin-
drical hypersurface N passing through p and such that TpN = H. It seems
interesting to obtain further axioms of submanifolds which are determined by
other extrinsic and intrinsic conditions or by purely intrinsic ones.

For a survey on axioms of submanifolds, see [16].
We thank Professor K. Yano for his kindly pointing out several facts about

this theory and related topics.

2. Preliminaries
Let M be a Riemannian manifold with metric tensor g, covariant differenti-

ation V and curvature tensor R. Let N be a submanifold of M with induced
metric tensor g, covariant differentiation V and curvature tensor R. The
dimensions of N and M will be denoted by n and m respectively. Let η be an
arbitrary normal vector field and X, Y, Z, U arbitrary tangent vector fields
on N. Then the formulas of Gauss and Weingarten for N in M are given by

(1) VxY=VxY+σ(X, Y),

(2) V^η = -AnX + Dxη,

where σ, Λη and D are the second fundamental form, the second fundamental
tensor corresponding to η and the normal connection of iV, respectively. One
has the relation

(3) g(σ(X, Y), η) = g(AηX, Y).

The covariant derivative V^σ of σ is defined by

(4) (V^σ)( Y, Z) = Dx(σ( Y, Z)) - σ(V^Y, Z) - σ(Y, VXZ),



AXIOMS OF EINSTEINIAN HYPERSURFACES 207

and the equations of Gauss and Codazzi for the submanifold N are given by
[3]:

(5) R(X, Y; Z, U) = R(X, Y; Z, U) + g(σ(X, U), o{Y, Z))

-g(σ(X,,Z),σ(Y, t/)),

(6) R(X, Y; Z, η) = g(( Vxσ)( Y, Z), η) - g((Vγo){X, Z), η).

In the following N is assumed to be a hypersurface of M. Let ξ be a unit

hypersurface normal. Then the second fundamental form σ can be written as

(7) o(X, Y) = h(X, Y)ξ,

where h is a scalar-valued symmetric 2-form on N, and relation (3) becomes

(8) h(X, Y) = g{A^X, Y).

If on a hypersurface N of dimension n > 2 there exist two functions a, β and

a unit 1-form ω such that

(9) h = αg + βω ® ω,

that is, if iV has a principal curvature with multiplicity w o r n - 1, then N is

called a quasiumbilical hypersurface [7]. In particular, when h is proportional

to g then N is (totally) umbilical, and when A vanishes identically then N is

totally geodesic. When β is nonzero, then iV is called W-quasiumbilical

whereby W is the tangent vector field on N for which ω(X) = g(W, X). In

particular, when α is zero N is called a cylindrical hypersurface or a

hypercy Under.

Finally we recall the following characterizations of Riemannian manifolds

which either have constant sectional curvature or are (locally) conformal to

Euclidean space.

Lemma F (E. Cartan [2]). A Riemannian manifold M of dimension > 2 is a

real space form if and only if R(X, Y; Z, X) = 0 for all orthonormal vector

fields X, 7, Z on N.

Lemma G (J. A. Schouten [13]). A Riemannian manifold M of dimension

> 3 is conformally flat if and only if R(X, Y; Z, U) = 0 for all orthonormal

vector fields X, 7, Z, U on N.

3. Axiom of conformally flat quasiumbilical hypersurfaces

Using the conformal invariance of the notion of quasiumbilicity [4], it can

be observed that for every point p in any conformally flat space M with

m > 3 and for every n(= m — l)-dimensional linear subspace H of TpM

there exist quasiumbilical hypersurfaces N in Af such that/? E iV and TpN =

H. It follows from Theorem E that this property also holds for nonflat
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complex space forms. This implies that for n = m - 1 Theorem B can only
partially be generalized from umbilical hypersurfaces to quasiumbilical ones,
and that in order to obtain a property which is characteristic for conformally
flat spaces it is necessary to impose an additional condition on the quasium-
bilical hypersurfaces. In this respect we recall the following result.

Theorem H (E. Cartan [1], /. A. Schouten [12]). A hypersurface N of a
conf ormally flat space M of dimension > 4 is quasiumbilical if and only if it is
conf ormally flat.

Defining a Riemannian manifold M, m > 3, to satisfy the axiom of
conf ormally flat quasiumbilical hypersurfaces, if for every point/? in M and for
every hyperplane section H in TpM there exists a conf ormally flat quasium-
bilical hypersurface N passing through/? such that TpN = H, we obtain the
following.

Theorem 1. A Riemannian manifold M of dimension m > 4 is conformally
flat if and only if it satisfies the axiom of conformally flat quasiumbilical
hypersurfaces.

Proof. First, from (5) and (9) we derive the equation of Gauss for any
quasiumbilical hypersurface N:

R(X, Y; Z, U) - R(X, Y; Z, U)
2 , U)g(Y, Z) - g(X, Z)g(Y, U)}

, U)ω{Y)ω(Z) + g(Y, Z)ω(X)ω(U)

-g(r , U)ω(X)ω(Z) - g{Xy Z)ω(Y)ω(U)},

where X, Y, Z, U are arbitrary vector fields tangent to N. Now we assume
that M satisfies the axiom of conformally flat quasiumbilical hypersurfaces
and that dim M = m > 4. Then for any quadruple of orthonormal vectors
X, 7, Z, U at any point/? of M there exists a conformally flat quasiumbilical
hypersurface N passing through /? such that X, Y, Z, U belong to TpN.
Therefore from equation (10) of Gauss and Lemma G it follows that

(11) R(X, Y; Z, U) = 0.

Again using Lemma G, (11) shows that M is conformally flat.
In view of the comments preceding Theorem 1 the converse statement is

trivial.
Remarks. 1. G. M. Lancaster proved that there exist conformally flat

hypersurfaces in the Euclidean space EΛ which are not quasiumbilical [9].
2. A submanifold N of dimension n > 3 and codimension q in a Rieman-

nian manifold M is said to be totally quasiumbilical if with respect to q
mutually orthogonal normal directions N has a principal curvature with
multiplicity > n - 1. Concerning the relation between conformal flatness and
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quasiumbilicity for submanifolds of codimension > 1 we mention the follow-
ing results.

Theorem I (B. Y. Chen and K. Yano [7] [3]). Every totally umbilical

submanif old of dimension > 3 in a conformally flat space is conformally flat.

Theorem J (/. D. Moore and J. M. Morυan [11]). Every conformally flat

submanif old of dimension n > 3 and codimension q < min(4, n - 3) in a con-

formally flat space is totally quasiumbilicaL

Theorem K (B. Y. Chen and L. Verstraelen [5]). Every conformally flat

submanif old of dimension n > 3 and codimension q < n — 3 with flat normal

connection in a conformally flat space is totally quasiumbilicaL

3. In a straightforward way Theorem 1 may be generalized as follows.
Theorem Γ. A Riemannian manifold of dimension > 4 is conformally flat if

and only if it satisfies the axiom of conformally flat totally quasiumbilical

submanifolds of dimension > 3.

4. Axiom of Einsteinian hypercylinders

The following intrinsic characterization of hypercylinders is an immediate
consequence of (7) and equation (5) of Gauss [6].

Lemma K. Let N be a hypersurface in a Riemannian manifold M. Then N is
a hypercy Under if and only if the curvature tensors R and R of N and M satisfy
R(X, Y; Z, U) = R(X, Y; Z, U)for all vectors X, Y, Z, U tangent to N.

From Lemmas F, G and K it is clear that hypercylinders in respectively
conformally flat spaces and real space forms are themselves respectively
conformally flat spaces and real space forms. In some sense conversely, these
lemmas also show that the conformally flat spaces and the real space forms
can be characterized by an axiom of conformally flat hypercylinders and an
axiom of hypercylinders with constant sectional curvature, respectively. Theo-
rem 1 gives an improvement of the first one of these results. Theorem 2 does
so for the second result. For its formulation we give the following definition:
a Riemannian manifold M, m > 3, satisfies the axiom of Einsteinian hyper-
cylinders if for every point p in M and every hyperplane section H in TpM
there exists an Einsteinian hypercylinder N passing through p such that
TpN = H.

Theorem 2. A Riemannian manifold M of dimension m > 3 is a real space
form if and only if it satisfies the axiom of Einsteinian hypercylinders.

Proof Again it is sufficient to prove that if a Riemannian manifold
satisfies the axiom of Einsteinian hypercylinders it is a real space form, the
converse being obvious. To do so, and with the intention to use Lemma F, let
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X, Y, V be any triple of orthonormal vectors at any point of a Riemannian
manifold M of dimension m > 3 which satisfies this axiom. Then there exists
an Einsteinian hypercylinder N passing through p and having V as normal
vector and X, Y as tangent vectors. In particular Lemma K actually implies

(12) R(X, £,; Ei9 Y) = R(X, £,; Ei9 Y)

for any orthonormal basis Eλ = X, E2 = Y, E3, , En of TpN, (i G
{1, 2, , n}). Summation of (12) over / yields

(13) S(X, Y) = S(X, Y) - R(X9 V; V, Y\

where S and S denote the Ricci tensors of N and M, respectively. Since N is
Einsteinian (S = λg for some constant λ) and X, Y are perpendicular, we find
that

(14) S(X9 Y) = R(X, V; V, Y)

holds for all orthonormal vectors X, Y, V at any point/? in M. Consequently
if V is any other vector at/7 such that X, Y, V are orthonormal, then

(15) R(X9 V; V, Y) = R(X9 V; V, Y).

Consider an orthonormal basis Fι = X, F2 = Y9 F3 = V, F4, . , Fm of
TpM. Then (15) implies

S(X9 Y) = (m- 2)R(X, V; V, Y).

From (14) and (16) it follows that

(17) (m - 3)R(X9 V; V, Y) = 0,

which proves Theorem 2.
Remarks. 1. S. Kobayashi and K. Nomizu proved that a hypersurface in

Euclidean space Em, m > 3, is a hypercylinder if and only if it is Ricciflat [8].
Correspondingly in any Riemannian manifold M, m > 3, a hypersurface N is
a hypercylinder if and only if /// = IIH whereby /// and IIH are the third
fundamental form and the quadratic mean form of N in M, respectively [17].

2. A submanifold N of dimension n > 3 and codimension q in a Rieman-
nian manifold M is said to be totally cylindrical if with respect to q mutually
orthogonal normal directions, 0 is a principal curvature of N with multiplicity
> n - 1. In a straightforward way Theorem 2 may be generalized as follows.

Theorem 2'. A Riemannian manifold of dimension > 3 is a real space form
if and only if it satisfies the axiom of Einsteinian totally cylindrical submanifolds
of dimension > 2.

3. We conclude this Section with the following particular case of Theo-
rem E.
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Theorem 3. A Kaehlerian manifold M of (real) dimension m > 6 with

complex structure J is flat if and only if it satisfies the axiom ofJξ-hypercylin-

ders where £ is the hypercy Under normal.

Proof. It is sufficient to show that if for each point p in a Kaehlerian

manifold M with complex structure / and of (real) dimension > 6 and for

every hyperplane section H in TpM with hyperplane normal section ξ there

exists a /ξ-hypercylinder N passing through/? such that TpN = H, then M is

flat. From Theorem E it is known that this condition forces M to be a

complex space form. Thus we need only to prove that its constant holomor-

phic sectional curvature actually vanishes. Therefore we derive from (6) and

(9) the equation of Codazzi for any quasiumbilical hypersurface N:

R(X, Y; Z, ξ) = (Xa)g(Y, Z) + (Xβ)ω(Y)ω(Z) + β(Vxω)(Y)ω(Z)

(18) +βω(Y)(Vxω)(Z) - (Ya)g(X, Z) - (Yβ)ω(X)ω(Z)

-β(Vγω)(X)ω(Z) - βω(X)(Vyω)(Z).

In the present situation a vanishes, and ω is the 1-form which is dual with

respect to Jξ, that is,

(19) ω(Z) = g(Jξ, Z)

for all Z tangent to the /£-hypercylinder N. Since for all X, Y tangent to N

(20) Yω(X) = (V yω)(X) +ω(VγX),

it follows from (19) that

(21) (Vγω)(X)=g(AJ,JX).

Let U be any vector field tangent to N such that ω(ί/) = 0. Then AζU = 0,

and (21) becomes

(22) ( V ^ ) ( y ) = 0.

Making use of (22) in equation (18) of Codazzi where a = 0, we find that

(23) R(U,JU;Jξ,ξ) = 0,

which ends the proof.
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