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QUASI-INVARIANCE OF THE YANG-MILLS
EQUATIONS UNDER CONFORMAL

TRANSFORMATIONS
AND CONFORMAL VECTOR FIELDS

THOMAS P. BRANSON

1. Introduction

It is well-known that the Yang-Mills equations on Minkowski space admit
as an invariance group the 15-ρarameter group of conformal, or Lorentz
angle-preserving transformations. We consider here what happens in the case
of a conformal transformation h between two finite-dimensional oriented
pseudoriemannian manifolds M and N of arbitrary dimension and signature.

The Yang-Mills equations give a nonlinear condition y(A) = 0 on a Lie
algebra-valued one-form over M or N. Quasi-invariance relations give for-
mulas for y(h*A)y and thus measure the obstruction to h*A satisfying the
equations. This obstruction vanishes when dim Λf = 4 or when A actually
multiplies the metric tensor by a constant. Similar results hold for quasi-
invariance of the linearized equations under conformal transformations and
under Lie derivation with respect to conformal vector fields.

2. The Yang-Mills equations

Let M be a smooth (C0 0) oriented pseudoriemannian manifold, with metric
tensor g of signature (k, q), k + q = m = dim Λf. The inner product gx on
tangent spaces Mx given by g induces a nondegenerate inner product on
cotangent spaces M* upon identification of Mx with M* through gx. This in
turn induces a nondegenerate inner product (also called gx) on the exterior
products Ap(λf*), which may be characterized by

(2.1) ^ ( ω 1 Λ Λ*Λ η 1 Λ AVP) = det(&(«'> V)), ω', ηJ G Λ£.

We extend g to the exterior algebra Λ(M*) by requiring that the inner

product of forms of different order vanish.
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The orientation of M provides us with a distinguished connected compo-
nent of the punctured line ΛW(M*) - 0, and thus an Ex G Λm(A£) with
gx(Eχ9 Ex) = (-1)*. The Hodge operator is the unique linear operator • on
Λ(M*) carrying h.p{M*) -> Am~p(M*) and satisfying

(2.2) •£, = (-!)*,

(2.3) & ( ω , η ) £ , - (ωΛ η)

The right-hand side of each equation may be viewed as a real number
because Λ°(M*) a* R canonically. We also denote by * the induced operator
on section spaces of Λ(Γ*(M)); in particular on smooth differential forms.

Both the Hodge * and the exterior derivative d are "unchanged" in their
action on forms which take their "values" in a real vector space V; that is, on
sections of V ® R Λ(Γ*(Λf)). Any choice of a basis vv , vn for V allows
us to write

* (vj ® c**) = Vj; ® * ω7 (summation convention),

and these formulas are basis-independent.
If V is actually a Lie algebra 9, we may generalize the wedge product of

R-valued forms to the bracket of g-valued forms. In the notation above,

(2.4) [vj ® ω>, tifc ® η^] = [IJ, vk]ω>' Λ ηΛ.

This product satisfies the Zj-graded anticommutativity law and Jacobi iden-
tity:

(2.5) [ Ξ , Ω ] = ( [

, [Ω, Ϋ]] + (-1Γ[Ω, [*, S]] + (-1Γ[*, [3, 0]]

Ω e 0 (

We may also wedge a real-valued form with a g-valued form, this operation
being characterized by the formula

and satisfying

(2.6) rf(ω Λ Ω) = dω Λ Ω + (-1/ω Λ

where ω is a smooth R-valued/?-form, and Ω is a smooth g-valued form.
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The Yang-Mills equations may be stated as follows. If A is a g-valued
one-form on M, the covaήant derivative of a g-valued p-ΐoτm Ω with respect
to A is

where ep is a nonzero coupling constant depending on p. Choosing e2 = 2ex

results in the Bianchi identity dAdAA = 0. Here we assume only e2 = 2eι = e\
and define em_λ =e.

The Yang-Mills equations are

F=dAA, dA*F=0.

The one-form A is called the connection (in geometry) or potential (in
physics); F is called the curvature form or field strengths.

3. Conformal transformations and vector fields
The following definitions and lemmas are contained in [3].
Definition 3.1. (a) Let M and N be pseudoriemannian manifolds of

signature (k, q) equipped with pseudometrics gM and gN respectively. A
diffeomorphism A: M-> N is a conformal transformation if h*gN = ygM for
some positive γ E C°°(M, R), where A* is the pullback of covariant tensors
under A. A conformal transformation on M is a conformal transformation

(b) A smooth vector field X on Λf is conformal if θ(X)gM = pgM for some
p E C °°(M, R). Here Θ(X), the Lie derivative, is the unique type-preserving
derivation on the mixed tensor algebra ^ ( M ) which extends f^>Xf on
functions and y H» [X, Y] on vector fields, and which commutes with con-
tractions [2].

(c) A conformal vector field X is locally integrable to a local one-parameter
group of conformal transformations if for each x E M there are an open set Ux

containing x and a local one-parameter group ht of conformal transforma-
tions "on Ux" (between open subsets of Uχ9 the domain set always containing
Λ:) with generator X in the sense that Xx is tangent to 11-> h£x) at t = 0.

Remark 3.2. (a) The set of conformal transformations on M forms a
group under composition.

(b) Let A be a conformal transformation M -> iV. Since A is a diffeomor-
phism, A*(g^)Λ(jc) is necessarily nondegenerate on Mχ9 furthermore, it has
signature (k9 q)9 the same as (gN)h(Xy Thus the hypothesis γ > 0 is superflu-
ous unless m is even and k = q = m/2.
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(c) In the situation of part (c) of Definition 3.1, the action of Θ(X) on
covariant tensors (real or vector-valued) is given by

(3-1)

If h*g = ytg, application of (3.1) with Ω = g yields θ(X)g = pg, where

(3-2) P(*) = | * ( 4 - o
(d) In most applications, the manifolds M and N are open subsets of such

manifolds as Minkowski space or its conformal compactification [5].
The properties which are crucial to the quasi-invariance relations for the

Yang-Mills equations describe the behavior of the Hodge * relative to
conformal transformations and vector fields. We let ^(Λf, g) denote the
space of smooth g-valued/7-forms on M,

Lemma 33. (a) If h is a conformal transformation M —» N, h*(gN) = ygM,
then

(3.3) * λ*Ω = ± y-(>»-2rt/2h*(* Ω), Ω e %(N, g),

the plus sign taken if h is orientation-preserving (h*EN = δEM, δ E
C°°(M, R) with δ > 0), and the minus ifh is orientation-reversing (δ < 0).

(b) If X is a conformal vector field on M, θ(X)gM — pgM, which is locally
integrable to a local one-parameter group of conformal transformations, then

(3.4) * Θ(X)Ώ = Θ(X) *Ω - \{m - 2p)p *Ω, Ω e %(M, g).

Proof (a) It is clearly enough to prove (3.3) with a real-valued/7-form ω in
place of Ω.

If φ is a real-valued one-form on N, the identification of tangent and
cotangent spaces given by gM identifies h*φ with y(dh~ι)Xφ, where Xφ is
identified with φ through gN. Thus

gM(h*φ, h*ψ) = y2gM{(dh-ι)Xψ, (dh-ι)X+)

= y(h gN)((dh-ι)Xr (dh~ι)Xφ)

= ygN(Xφ,X+)°h

= ygN(ψ> Ψ) ° A>

where φ , ψ ε <Φj(iV, R). Now if ω, ij G %(N, R), then (2.1) gives

(3-5) gM(h*ω, h*η) = y"gN(ω, η) . h.

In particular,

gM(h*EN, h*EN) = γ"(-l)«,
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so that h*EN = ± ym/1EM. Thus taking h* of both sides of (2.3) in the form

gN(ω, η)EN = η Λ *ω

yields

±γ ( m-2 ) / 2A*τjΛ*A*ω

= h*η A A ( ω).

Because an (m — /?)-form on M is determined by its wedge products with
elements of %(M, R) and thus by its wedge with the A*η, (3.3) follows.

(b) Let ht be the local one-parameter group of conformal transformations
generated by X, so that h*gM = γ,gM. Since h0 is the identity, continuity
implies that all ht preserve orientation. If Ω E ^ ( M , g), then (3.1), (3.2), and
(3.3) give

which is equivalent to (3.4).
We note finally that the relations

Λ*(ωΛη) = Λ*ωΛλ*τ?,

θ(X)(ω Λ η) = ω Λ θ(X)η + »(X)ω Λ η

for real-valued differential forms imply the relations

n-Ω]=[A-A*Ω],
V ' ; 9{X)[S9 Ω] =[Ξ, β(Jf)O] +[0(*)S, 0]

for g-valued forms.

4. Quasi-ίnvariance of the Yang-Mills equations

For a nonlinear differential equation, three types of quasi-invariance rela-

tions are relevant:
(1) quasi-invariance of the equations under conformal transformations;

(2) quasi-invariance of the linearized equations under conformal transfor-

mations;



200 THOMAS P. BRANSON

(3) quasi-invariance of the linearized equations under Lie derivation with
respect to confoπnal vector fields.

We set y{A) = dA * dAA for A e %(M, g); that is, y is the nonlinear
function on ̂ (Af, g) whose zeros are solutions of the Yang-Mils equations.
As for the linearized equations, we make the following definition.

Definition 4.1. Let V and W be real vector spaces, and let

MA V X
J j times

W

be ay-linear function for 0 < j < N. The linearization of the equation
N

Σ Mj(v, - , v) = 0
7 - 0

at v G V is the equation

N

7 = 0 i - l T
f-th place

= 0

as a condition onJf ε K
Thus the linearization of the Yang-Mills system

F=dAA =dA-j[A,A],

0 = dA*F=d*F- e[A, * F],

at A g) is

f=da-e'[A,a] (by (2.5)),

0-</ /-e[β, J] -e[A,*f]

= dA*f-e[a,*F], F=dAA,

as a condition on α e ^ ( M , g). We define the linear function YA: g)

f = da - e'[A, a], F = dAA.

Theorem 42. Let A G %(M, g) and F = ύ^Λ.
(a) If his a conjormal transformation M

(4.1) y(h*A) = ± (

Yh.Ah*a = ± (γ<4

/ = da - e'[A, a].

F)),
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As usual, we take the plus sign if h preserves orientation, and the minus sign ifh

reverses orientation.

(b) If X is a conformal vector field on M, θ(X)gM = pgM, which is locally

integrable to a local one-parameter group of conformal transformations which fix

A, then

YAθ(X)a = θ(X)YAa-\{m - 4){rf> • /) - ep[a, . F]},

/ = da- e'[A,a].

Proof, (a) We calculate

y(h*A) = dh.A * F',

F' = dh.Λh*A = dh*A -^-[h*A,h*A] = h*F.

By (3.3),

y(h*A) = </„.,,( ± γ < 4 - m ) / 2 λ * ( * F))

F)) - eγ ( 4-m>/2[AM, A*(» F)])

F-\(m- 4)γ<2-m>/2</γ ΛΛ*(* F))

A*( F)).

*

To prove (4.2), set/ = da — e'[A, a], and calculate

Yh.Ah*a = dh.A*f-e[h*a,*h*F],

f = dh*a - e'[h*A, h*a] = h*f.

By (3.3),

*[α, * F])

ΛA*(*/)

( Y A a -\{m - 4 ) γ < 2 " )

(b) Let Λ, be the one-parameter group generated by X, so that hfgM =

ytgM. Since the A, fix A, (3.1) implies that φ Q Λ = 0, and the field strength

perturbation/' associated to θ(X)a is

/' = dθ(X)a - e'[A, θ(X)a] = θ(X)f
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by (3.6) and the fact that d commutes with Θ(X). Thus

YAθ(X)a = dA * θ(X)f - e[θ(X)a, • F]

= dA(θ(X) *f-\{m- 4)p • /) - e[θ(X)a, • F]

= dθ(X) *f-e[A, Θ(X) * / ] -\(m - 4)dA(p •/)

-e[θ(X)a,*F]

- θ(X)dA *f-\(m- 4)dA(p */) - e[θ(X)a9 * F]

= θ(X)dA *f + \{m - 4)dA(p • /) - eθ(X)[a, * F]

+ e[a,θ(X)*F].

Now ^(X) * F = * e(X)F + | (w - 4)p * F, which simplifies to ^(m - 4)p
* F as Θ(X)F = ^(XX^ - ^e 'μ, A]) = rf^Xμ - ^ μ , Θ(X)A] - 0. This
makes the above

Remark 43. (a) The Theorem points up the importance of dimension 4 in
the Yang Mills theory as m = 4 reduces (4.1)-(4.3) to

(4.4) y(h*A) = h*y(A\

(4.5) Yh.Ah*a = h*YAa,

(4.6) YAθ(X)a = θ(X)YAa.

The signature (k, q) of the pseudometric is irrelevant to these formulas; in
particular, it may be (4, 0) as in the case of Euclidean Yang-Mills (studied by
Atiyah, Singer, et al), or (3, 1) as in the case of the equations in their original
physical (hyperbolic) form, as studied by Segal.

(b) In any dimension, the Yang-Mills equations and their linearizations
are invariant under uniform dilations (h*gN = agM, a > 0 constant), and in
particular, under isometries (a = 1), since for such A, dy = 0 in (4.1) and
(4.2). For isometries, we again have (4.4) and (4.5). If a conformal vector field
X integrates to a local one-parameter group of uniform dilations, the p in
θ(X)gM = pgM is constant by (3.1), so that (4.3) becomes

YAθ{X)a = [Θ{X) -\{m - 4)p} YAa,

and we have invariance. If X integrates to a local one-parameter group of
isometries, θ(X)gM = 0 and we again have (4.6).

(c) For (4.2) and (4.3), it was not necessary to assume that the "back-
ground" potential A satisfy the Yang-Mills equations.
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