CONVEXITY IN GRAPHS

FRANK HARARY \& JUHANI NIEMINEN

The convex hull of a set S of points of a graph G is the smallest set T containing S such that all the points in a geodesic joining two points of T lie in T. The convex hull T can also be formed by taking all geodesics joining two points of S, and iterating that operation. The number of times this is done to S to get T is $\operatorname{gin}(S)$, the geodetic iteration number of S. Then $\operatorname{gin}(G)$ is defined as the maximum of $\operatorname{gin}(S)$ over all sets S of points of G. The smallest number of points in a graph G such that $\operatorname{gin}(G)=n$ is determined and the extremal graphs are constructed.

Let G be a graph with point set $V=V(G)$ and let $S \subset V$. An S-geodesic is a shortest path in G joining two points of S. We denote by $(S)={ }^{1} S$ the set of all points on some S-geodesic. Iterating, let ${ }^{2} S=\left({ }^{1} S\right)=((S))$ and ${ }^{i+1} S=$ ${ }^{i}(S)$. The geodetic iteration number of S, written gin (S), is the minimum n such that ${ }^{n+1} S={ }^{n} S$. Then the convex hull of S, denoted by [S], is the point set ${ }^{n} S$. Thus the convex hull of S is the smallest $T \supset S$ such that the points of every T-geodesic are in T.

Trivially $[V]=V,[v]=v$ for all $v \in V$, and for each line $u v$ of G, $[u, v]=\{u, v\}$. For other graphical terminology and notation, we follow the book [1]; in particular $p(G)$ is the number of points in G. However, we use E for the set of lines of G. We define the geodetic iteration number of a graph G by $\operatorname{gin}(G)=\max \{\operatorname{gin}(S): S \subset V\}$. Our object is to determine the minimum number p of points in a graph G such that $\operatorname{gin}(G)$ has a given value n. Also, the structure of such extremal graphs is specified.

A graph G is smaller than graph H if it has fewer points.
Theorem 1. Let H_{n} be any smallest graph with geodetic iteration number n. Then the number of points of H_{n} is given by $p\left(H_{0}\right)=1, p\left(H_{1}\right)=3$, and when $n \geqslant 2, p\left(H_{n}\right)=n+3$.

Proof. The case $n=0$ is trivial and the unique H_{0} is the trivial graph K_{1}.
By inspection one sees at once that the extremal graphs H_{1} and H_{2} are the graphs of Fig. 1 and are unique. We take $S=\{u, v\}$ in both H_{1} and H_{2} and find that in $H_{1},(S)=V$ so that $p\left(H_{1}\right)=3$, and in $H_{2},|(S)|=4$ and ${ }^{2} S=V$ so we have $p\left(H_{2}\right)=5=n+3$.

Fig. 1
Now we consider $n \geqslant 3$. By definition there is a nested sequence of point-sets $S={ }^{0} S \subset{ }^{1} S \subset{ }^{2} S \subset \cdots \subset{ }^{n} S={ }^{n+1} S \subset V$ such that ${ }^{i+1} S$ contains ${ }^{i} S$ properly when $0 \leqslant i \leqslant n-1$. Thus a graph G with gin $(G)=n$ has the minimum number of points if ${ }^{i+1} S-{ }^{i} S$ contains only one point for $i=$ $1, \cdots, n-1$, and if $S=^{0} S$ and ${ }^{1} S$ are of minimum size. If S contains only one point, then as mentioned above $[S]=S$ and thus S must contain at least two points. By the same reasoning ${ }^{1} S-S$ contains at least two points. On the other hand, the graph G of Fig. 2 has $\operatorname{gin}(G)=n, S=\left\{u_{0}, u_{0 *}\right\},{ }^{1} S-S=$ $\left\{u_{1}, u_{1^{*}}\right\}$ and ${ }^{i+1} S-{ }^{i} S=\left\{u_{i+1}\right\}$ for $i=1, \cdots, n-1$. Thus there exists a graph satisfying all the minimum constraints found above, whence $p=n+3$ in a smallest graph with $\operatorname{gin}(G)=n$ when $n \geqslant 2$.

Fig. 2

Theorem 2. Let G be a graph with $\operatorname{gin}(G)=n \geqslant 2$, with a minimum number of points and with point labels $S={ }^{0} S=\left\{u_{0}, u_{0^{*}}\right\},{ }^{1} S-S=\left\{u_{1}, u_{1^{*}}\right\}$ and ${ }^{i+1} S-{ }^{i} S=\left\{u_{i+1}\right\}$ for $i=1, \cdots, n-1$. Then the lines of G satisfy the following requirements:
(1) $u_{0} u_{1}, u_{0} u_{1^{*}}, u_{0^{*}} u_{1}, u_{0^{*}} u_{1^{*}}, u_{1} u_{2}, u_{1 *} u_{2} \in E$.
(2) $u_{i+1} u_{i}, u_{i+1} u_{k} \in E$ for each $i \geqslant 2$ and for at least one value of k among $k=0,0^{*}, 1,1^{*}, 2,3,4, \cdots, i-2$.
(3) If $u_{i+1} u_{j} \in E$ where $i \geqslant 3$ and $j<i-2$, then $u_{j} u_{j+s} \in E$ or $u_{i+1} u_{j+s} \notin$ $E, s=2,3, \cdots, i-j-1$. Further, if $j=0,1$, then $j \neq 0^{*}, 1^{*}$.

Proof. The existence of the lines given in (1) follows from the hypothesis that $\operatorname{gin}(G) \geqslant 2$.

Because $u_{i+1} \in{ }^{i+1} S-{ }^{i} S$, there is a geodesic between u_{i} and another point of ${ }^{i} S$ in G containing u_{i+1}, and as u_{i+1} is the only point in ${ }^{i+1} S-{ }^{i} S, u_{i+1}$ is joined by a line to two points of ${ }^{i} S$. If $u_{i+1} u_{i} \notin E$, then $u_{t} u_{i+1}, u_{i+1} u_{r} \in E$, where $t, r<i$ and thus $u_{t}, u_{r} \in{ }^{i-1} S$. When $u_{t}, u_{r} \in{ }^{i-1} S, u_{i+1} \in{ }^{i} S$ which is a contradiction, so every two points of ${ }^{i} S$ adjacent to u_{i+1} in G are joined by a line and thus $u_{i+1} \not \oplus^{i+1} S$ which is also a contradiction. Hence (2) is valid.
As $i \geqslant 3, u_{i+1} \in{ }^{1} S$ if $j=0,0^{*}$, and $u_{i+1} \in{ }^{2} S$ if $j=1,1^{*}$. Thus the latter statement of (3) holds. By the hypothesis of (3), $u_{i+1} u_{j}, u_{i+1} u_{j+s} \in E$, so any geodesic between u_{j} and u_{j+s} is at most of length two. If it has length two, then $u_{i+1} \in{ }^{j+s+1} S \subset^{i} S$ which is a contradiction. Thus the length must be one, whence $u_{j} u_{j+s} \in E$, proving the first part of (3). q.e.d.

In the two next theorems we describe the graphs with $\operatorname{gin}(G)=0,1$.
Theorem 3. A connected graph G has $\operatorname{gin}(G)=0$ if and only if G is a complete graph.

Proof. Let $\operatorname{gin}(G)=0$, whence $S=[S]$ for each $S \subset V$. In particular, $S=[S]$ when S contains two points only, and in this case, as G is connected, $S=[S]$ only if the points are adjacent. Hence any two points of G are joined by a line and G is complete. The converse is obvious.
Theorem 4. Let G be a connected graph. If $\operatorname{gin}(G) \leqslant 1$, then there is a cycle basis $B=\left\{Z_{1}, \cdots, Z_{k}\right\}$ of G such that Z_{i} and Z_{j} have at most one common line for each pair i and $j, i \neq j$ and $i, j=1, \cdots, k$.

Proof. If such a cycle basis does not exist, we can choose two cycles Z_{i} and Z_{j} of G having minimum number of lines and at least two common lines. By the minimality, if u and v are on the cycles Z_{i} and Z_{j}, then all the lines of at least one $\{u, v\}$-geodesic belong to Z_{i} and Z_{j}. But then it is easy to choose from the points on Z_{i} and Z_{j} a set S such that $S \subset{ }^{1} S \subset^{2} S={ }^{3} S$, where the points of ${ }^{2} S-{ }^{1} S$ are among the points of the common lines of Z_{i} and Z_{j}. Thus $\operatorname{gin}(G) \geqslant 2$, which is a contradiction. q.e.d.

The converse of the theorem does not hold as the graph G of Fig. 3 shows: $\operatorname{gin}(G)=2$ although there is a cycle basis B satisfying the conditions of Theorem 4.

$$
\begin{aligned}
\mathrm{B}= & \left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)\right. \\
& \left(\mathrm{x}_{2}, \mathrm{x}_{3}, x_{7}\right) \\
& \left.\left(\mathrm{x}_{3}, x_{4}, x_{6}\right)\right\}
\end{aligned}
$$

Fig. 3
Finally we look for a criterion for a connected graph G to have gin $(G)=$ n. Some concepts are needed first. Let ${ }^{n} H=\{G: \operatorname{gin}(G)=n$ and $p=n+3\}$ when $n \geqslant 2$.

Also let ${ }^{1} H$ consist only of the graph H_{1} of Fig. 2 and let ${ }^{0} H=\left\{K_{1}\right\}$. The fact that both ${ }^{1} H$ and ${ }^{0} H$ are singletons was already mentioned above. We shall see that ${ }^{n} H$ is a singleton only for $n=0,1,2,3,4$.

The graphs G with $\operatorname{gin}(G)=n$ will be characterized by means of graph homomorphisms and the graphs in the families ${ }^{n} H$ for $n=0,1,2, \cdots$.

Let $G=(V, E)$ be a graph and let $C=\left\{S_{1}, \cdots, S_{r}\right\}$ be a partition of V. A graph $H=\left(V_{H}, E_{H}\right)$ is a homomorphic image of G under a homomorphism f, denoted as $f(G)=H$, if there is a one-to-one correspondence between the elements S_{j} in C and the points u_{j} in V_{H}, and if $u_{i} u_{j} \in E_{H}$ whenever there is a line in G joining S_{i} and $S_{j}, i \neq j$. We then say that f is generated by C. The homomorphism $f: G \rightarrow H$ is said to be geodesic compatible if and only if for each $v-w$ geodesic in $G, v \in S_{i}$ and $w \in S_{j}$ and $i \neq j$, ranging over $S_{i}=S_{i_{1}}, S_{i_{2}}, \cdots, S_{i_{m}}=S_{j}$, there exists a $u_{i}-u_{j}$ geodesic in H ranging over the points $u_{i}=u_{i_{1}}, u_{i_{2}}, \cdots, u_{i_{m}}=u_{j}$ and vice versa.

Theorem 5. For a connected graph G, $\operatorname{gin}(G)=n$ if and only if (1) and (2) both hold:
(1) There are an induced subgraph G^{\prime} of G and a geodesic compatible homomorphism f such that $f\left(G^{\prime}\right) \in{ }^{n} H$.
(2) There is no induced subgraph G^{\prime} and no f as defined in (1) such that $f\left(G^{\prime}\right) \in{ }^{m} H, m>n$.

Proof. If G satisfies (1), the geodesic compatibility of f implies that $\operatorname{gin}(G) \geqslant n$, and according to (2), $\operatorname{gin}(G)=n$.

We prove the converse by induction on n. When $n=0$ or 1 , the theorem is obviously valid. We assume that the theorem holds for $n \leqslant k$, and let G be a connected graph with $\operatorname{gin}(G)=k+1$.

As $\operatorname{gin}(G)=k+1$, there is a set S^{\prime} such that $S^{\prime}={ }^{0} S^{\prime} \subset{ }^{1} S^{\prime} \subset^{2} S^{\prime}$ $\subset \cdots \subset^{k} S^{\prime} \subset^{k+1} S^{\prime}=\left[S^{\prime}\right]$, and as G is connected, $\left[S^{\prime}\right]$ obviously induces a connected subgraph of G. According to the properties of a convex hull, ${ }^{k} S^{\prime}$ also induces a connected subgraph ${ }^{k} G^{\prime}$ of G. From ${ }^{k+1} S^{\prime}=\left[S^{\prime}\right]$ and the induction assumption it follows that by removing points from ${ }^{0} S^{\prime}$ and ${ }^{i+1} S^{\prime}-{ }^{i} S^{\prime}, i=0,1, \cdots, k-1$, we obtain an induced subgraph ${ }^{k} G$ of ${ }^{k} G^{\prime}$ (and of G) such that
(i) $\operatorname{gin}\left({ }^{k} G\right)=k$;
(ii) there is a geodesic compatible homomorphism f^{\prime} with the property $f^{\prime}\left({ }^{k} G\right) \in{ }^{k} H$;
(iii) there are in ${ }^{k} G$ at least two points joined by a geodesic of G going over the points ${ }^{k+1} S^{\prime}-{ }^{k} S$ in G. As $\operatorname{gin}\left({ }^{k} G\right)=k$, there is a sequence $S={ }^{0} S \subset{ }^{1} S$ $\subset \cdots \subset^{k} S=[S]$, and as the points of the geodesic of (iii) are from ${ }^{k+1} S^{\prime}-{ }^{k} S^{\prime}$, one of the points of [S] joined by this geodesic is from ${ }^{k} S-$ ${ }^{k-1} S$. We denote this point by v, and let $v, w_{1}, \cdots, w_{s}, v^{\prime}$ be a shortest geodesic beginning with v and defined in (iii); thus v and v^{\prime} are points of ${ }^{k} G$, and $w_{1}, \cdots, w_{s} \in{ }^{k+1} S^{\prime}-{ }^{k} S^{\prime}$. On the other hand, let f^{\prime} be generated by $C^{\prime}=\left\{S_{0}, S_{0^{*}}, S_{1}, S_{1^{*}}, S_{2}, S_{3}, \cdots, S_{k}\right\}$, where ${ }^{0} S=S_{0} \cup S_{0^{*},}{ }^{1} S-{ }^{0} S=S_{1}$ $\cup S_{1^{*}}$, and $S_{j}={ }^{j} S-{ }^{j-1} S, j=2, \cdots, k$. A new homomorphism derived from f^{\prime} is generated by the family $C=C^{\prime} \cup\left\{S_{k+1}\right\}$, where $S_{k+1}=$ $\left\{w_{1}, \cdots, w_{s}\right\}$. Clearly C is a partition of the points of an induced subgraph ${ }^{k+1} G$ of G. We need only show that f is a geodesic compatible homomorphism of ${ }^{k+1} G$ onto a graph in ${ }^{k+1} H$. According to the properties of f^{\prime}, it is sufficient to concentrate on the set S_{k+1} and its image u_{k+1} in $f\left({ }^{k+1} G\right)$.

As $v, w_{1}, \cdots, w_{s}, v^{\prime}$ is a shortest geodesic beginning with v and defined in (iii), then only w_{s} can be adjacent to two or more points of ${ }^{k} G$; in the other case there would be a shorter geodesic beginning with v, which is a contradiction. Let $v^{\prime} \in S_{j}$. If there is a line $u_{k} u_{j}$ in $f^{\prime}\left({ }^{k} G\right)$, then by removing suitable points from ${ }^{k} S-{ }^{k-1} S$, we obtain a new graph ${ }^{k} G$ in which there are no lines joining two points, one from ${ }^{k} S-{ }^{k-1} S$ and one from ${ }^{j} S-{ }^{j-1} S$. This new ${ }^{k} G$ is connected and satisfies (i) and (iii) as ${ }^{k} S-{ }^{k-1} S$ consists of the points of the least iteration in ${ }^{k} G$. As f^{\prime} is a homomorphism defined in (ii), then a fortiori f^{\prime} is a geodesic compatible homomorphism mapping the new ${ }^{k} G$ onto a graph in ${ }^{k} H$. If w_{s} is joined by a line to points from other sets S_{i} than S_{j}, and $u_{k} u_{i}$ is a line in $f^{\prime}\left({ }^{k} G\right)$, then by reducing ${ }^{k} G$ as above, we obtain a new connected graph ${ }^{k} G$ satisfying (i), (ii) and (iii) but in which $f^{\prime}\left({ }^{k} G\right)$ does not contain the line $u_{k} u_{i}$. But then the mapping f of ${ }^{k+1} G$ is geodesic compatible,
and $f\left({ }^{k+1} G\right)$ contains just those lines which are allowed to belong to a minimum graph with $\operatorname{gin}(G)=k+1$ in Theorem 2.

If (2) is not valid, then by the first part of the proof, $\operatorname{gin}(G)>k+1$, which is a contradiction.

Reference

[1] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
University of Michigan
University of Oulu, Finland

