CONVEXITY IN GRAPHS

FRANK HARARY & JUHANI NIEMINEN

The convex hull of a set S of points of a graph G is the smallest set T containing S such that all the points in a geodesic joining two points of T lie in T. The convex hull T can also be formed by taking all geodesics joining two points of S, and iterating that operation. The number of times this is done to S to get T is gin(S), the geodetic iteration number of S. Then gin(G) is defined as the maximum of gin(S) over all sets S of points of G. The smallest number of points in a graph G such that gin(G) = n is determined and the extremal graphs are constructed.

Let G be a graph with point set V = V(G) and let $S \subset V$. An S-geodesic is a shortest path in G joining two points of S. We denote by $(S) = {}^{1}S$ the set of all points on some S-geodesic. Iterating, let ${}^{2}S = ({}^{1}S) = ((S))$ and ${}^{i+1}S =$ $({}^{i}S)$. The geodetic iteration number of S, written gin(S), is the minimum n such that ${}^{n+1}S = {}^{n}S$. Then the convex hull of S, denoted by [S], is the point set "S. Thus the convex hull of S is the smallest $T \supset S$ such that the points of every T-geodesic are in T.

Trivially [V] = V, [v] = v for all $v \in V$, and for each line uv of G, $[u, v] = \{u, v\}$. For other graphical terminology and notation, we follow the book [1]; in particular p(G) is the number of points in G. However, we use E for the set of lines of G. We define the *geodetic iteration number of a graph* G by $gin(G) = max\{gin(S): S \subset V\}$. Our object is to determine the minimum number p of points in a graph G such that gin(G) has a given value n. Also, the structure of such extremal graphs is specified.

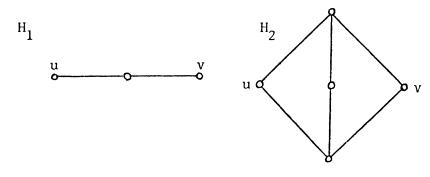
A graph G is smaller than graph H if it has fewer points.

Theorem 1. Let H_n be any smallest graph with geodetic iteration number n. Then the number of points of H_n is given by $p(H_0) = 1$, $p(H_1) = 3$, and when $n \ge 2$, $p(H_n) = n + 3$.

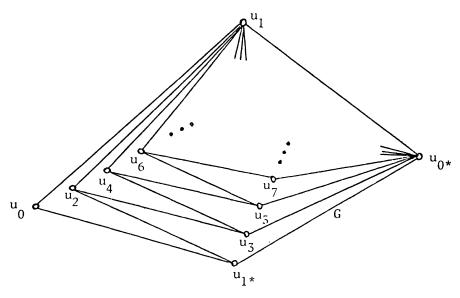
Proof. The case n = 0 is trivial and the unique H_0 is the trivial graph K_1 .

By inspection one sees at once that the extremal graphs H_1 and H_2 are the graphs of Fig. 1 and are unique. We take $S = \{u, v\}$ in both H_1 and H_2 and find that in H_1 , (S) = V so that $p(H_1) = 3$, and in H_2 , |(S)| = 4 and ${}^2S = V$ so we have $p(H_2) = 5 = n + 3$.

Received November 15, 1978.



Now we consider $n \ge 3$. By definition there is a nested sequence of point-sets $S = {}^{0}S \subset {}^{1}S \subset {}^{2}S \subset \cdots \subset {}^{n}S = {}^{n+1}S \subset V$ such that ${}^{i+1}S$ contains ${}^{i}S$ properly when $0 \le i \le n-1$. Thus a graph G with gin(G) = n has the minimum number of points if ${}^{i+1}S - {}^{i}S$ contains only one point for $i = 1, \dots, n-1$, and if $S = {}^{0}S$ and ${}^{1}S$ are of minimum size. If S contains only one point, then as mentioned above [S] = S and thus S must contain at least two points. By the same reasoning ${}^{1}S - S$ contains at least two points. On the other hand, the graph G of Fig. 2 has gin(G) = n, $S = \{u_0, u_{0^*}\}$, ${}^{1}S - S = \{u_1, u_{1^*}\}$ and ${}^{i+1}S - {}^{i}S = \{u_{i+1}\}$ for $i = 1, \dots, n-1$. Thus there exists a graph satisfying all the minimum constraints found above, whence p = n + 3 in a smallest graph with gin(G) = n when $n \ge 2$.



Theorem 2. Let G be a graph with $gin(G) = n \ge 2$, with a minimum number of points and with point labels $S = {}^{0}S = \{u_0, u_{0^*}\}, {}^{1}S - S = \{u_1, u_{1^*}\}$ and ${}^{i+1}S - {}^{i}S = \{u_{i+1}\}$ for $i = 1, \dots, n-1$. Then the lines of G satisfy the following requirements:

(1) u_0u_1 , u_0u_1 , u_0 , u_1 , u_0 , u_1 , u_1 , u_1u_2 , u_1 , $u_2 \in E$.

(2) $u_{i+1}u_i$, $u_{i+1}u_k \in E$ for each $i \ge 2$ and for at least one value of k among $k = 0, 0^*, 1, 1^*, 2, 3, 4, \cdots, i-2$.

(3) If $u_{i+1}u_j \in E$ where $i \ge 3$ and j < i-2, then $u_ju_{j+s} \in E$ or $u_{i+1}u_{j+s} \notin E$, $s = 2, 3, \dots, i-j-1$. Further, if j = 0, 1, then $j \ne 0^*$, 1^* .

Proof. The existence of the lines given in (1) follows from the hypothesis that $gin(G) \ge 2$.

Because $u_{i+1} \in {}^{i+1}S - {}^{i}S$, there is a geodesic between u_i and another point of ${}^{i}S$ in G containing u_{i+1} , and as u_{i+1} is the only point in ${}^{i+1}S - {}^{i}S$, u_{i+1} is joined by a line to two points of ${}^{i}S$. If $u_{i+1}u_i \notin E$, then $u_iu_{i+1}, u_{i+1}u_r \in E$, where t, r < i and thus $u_i, u_r \in {}^{i-1}S$. When $u_i, u_r \in {}^{i-1}S$, $u_{i+1} \in {}^{i}S$ which is a contradiction, so every two points of ${}^{i}S$ adjacent to u_{i+1} in G are joined by a line and thus $u_{i+1} \notin {}^{i+1}S$ which is also a contradiction. Hence (2) is valid.

As $i \ge 3$, $u_{i+1} \in {}^{1}S$ if j = 0, 0^{*}, and $u_{i+1} \in {}^{2}S$ if j = 1, 1^{*}. Thus the latter statement of (3) holds. By the hypothesis of (3), $u_{i+1}u_{j}$, $u_{i+1}u_{j+s} \in E$, so any geodesic between u_{j} and u_{j+s} is at most of length two. If it has length two, then $u_{i+1} \in {}^{j+s+1}S \subset {}^{i}S$ which is a contradiction. Thus the length must be one, whence $u_{i}u_{i+s} \in E$, proving the first part of (3). q.e.d.

In the two next theorems we describe the graphs with gin(G) = 0, 1.

Theorem 3. A connected graph G has gin(G) = 0 if and only if G is a complete graph.

Proof. Let gin(G) = 0, whence S = [S] for each $S \subset V$. In particular, S = [S] when S contains two points only, and in this case, as G is connected, S = [S] only if the points are adjacent. Hence any two points of G are joined by a line and G is complete. The converse is obvious.

Theorem 4. Let G be a connected graph. If $gin(G) \le 1$, then there is a cycle basis $B = \{Z_1, \dots, Z_k\}$ of G such that Z_i and Z_j have at most one common line for each pair i and j, $i \ne j$ and $i, j = 1, \dots, k$.

Proof. If such a cycle basis does not exist, we can choose two cycles Z_i and Z_j of G having minimum number of lines and at least two common lines. By the minimality, if u and v are on the cycles Z_i and Z_j , then all the lines of at least one $\{u, v\}$ -geodesic belong to Z_i and Z_j . But then it is easy to choose from the points on Z_i and Z_j a set S such that $S \subset {}^1S \subset {}^2S = {}^3S$, where the points of ${}^2S - {}^1S$ are among the points of the common lines of Z_i and Z_j . Thus gin $(G) \ge 2$, which is a contradiction. q.e.d. The converse of the theorem does not hold as the graph G of Fig. 3 shows: gin(G) = 2 although there is a cycle basis B satisfying the conditions of Theorem 4.

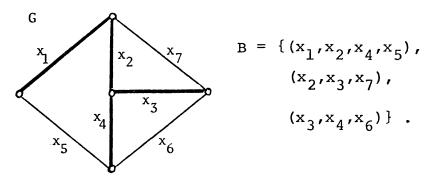


FIG. 3

Finally we look for a criterion for a connected graph G to have gin(G) = n. Some concepts are needed first. Let ${}^{n}H = \{G: gin(G) = n \text{ and } p = n + 3\}$ when $n \ge 2$.

Also let ¹*H* consist only of the graph H_1 of Fig. 2 and let ${}^{0}H = \{K_1\}$. The fact that both ¹*H* and ⁰*H* are singletons was already mentioned above. We shall see that "*H* is a singleton only for n = 0, 1, 2, 3, 4.

The graphs G with gin(G) = n will be characterized by means of graph homomorphisms and the graphs in the families ${}^{n}H$ for $n = 0, 1, 2, \cdots$.

Let G = (V, E) be a graph and let $C = \{S_1, \dots, S_r\}$ be a partition of V. A graph $H = (V_H, E_H)$ is a homomorphic image of G under a homomorphism f, denoted as f(G) = H, if there is a one-to-one correspondence between the elements S_j in C and the points u_j in V_H , and if $u_i u_j \in E_H$ whenever there is a line in G joining S_i and S_j , $i \neq j$. We then say that f is generated by C. The homomorphism $f: G \to H$ is said to be geodesic compatible if and only if for each v - w geodesic in $G, v \in S_i$ and $w \in S_j$ and $i \neq j$, ranging over $S_i = S_{i_1}, S_{i_2}, \dots, S_{i_m} = S_j$, there exists a $u_i - u_j$ geodesic in H ranging over the points $u_i = u_i, u_{i_2}, \dots, u_{i_m} = u_j$ and vice versa.

Theorem 5. For a connected graph G, gin(G) = n if and only if (1) and (2) both hold:

(1) There are an induced subgraph G' of G and a geodesic compatible homomorphism f such that $f(G') \in {}^{n}H$.

(2) There is no induced subgraph G' and no f as defined in (1) such that $f(G') \in {}^{m}H, m > n$.

Proof. If G satisfies (1), the geodesic compatibility of f implies that $gin(G) \ge n$, and according to (2), gin(G) = n.

We prove the converse by induction on n. When n = 0 or 1, the theorem is obviously valid. We assume that the theorem holds for $n \le k$, and let G be a connected graph with gin(G) = k + 1.

As gin(G) = k + 1, there is a set S' such that $S' = {}^{0}S' \subset {}^{1}S' \subset {}^{2}S' \subset {}^{-1}S' \subset {}^{2}S' \subset {}^{-k+1}S' = [S']$, and as G is connected, [S'] obviously induces a connected subgraph of G. According to the properties of a convex hull, ${}^{k}S'$ also induces a connected subgraph ${}^{k}G'$ of G. From ${}^{k+1}S' = [S']$ and the induction assumption it follows that by removing points from ${}^{0}S'$ and ${}^{i+1}S' - {}^{i}S'$, $i = 0, 1, \dots, k - 1$, we obtain an induced subgraph ${}^{k}G$ of ${}^{k}G'$ (and of G) such that

(i) $gin(^kG) = k;$

(ii) there is a geodesic compatible homomorphism f' with the property $f'({}^{k}G) \in {}^{k}H$;

(iii) there are in ${}^{k}G$ at least two points joined by a geodesic of G going over the points ${}^{k+1}S' - {}^{k}S$ in G. As $gin({}^{k}G) = k$, there is a sequence $S = {}^{0}S \subset {}^{1}S \subset \cdots \subset {}^{k}S = [S]$, and as the points of the geodesic of (iii) are from ${}^{k+1}S' - {}^{k}S'$, one of the points of [S] joined by this geodesic is from ${}^{k}S - {}^{k-1}S$. We denote this point by v, and let v, w_1, \cdots, w_s, v' be a shortest geodesic beginning with v and defined in (iii); thus v and v' are points of ${}^{k}G$, and $w_1, \cdots, w_s \in {}^{k+1}S' - {}^{k}S'$. On the other hand, let f' be generated by $C' = \{S_0, S_{0^*}, S_1, S_{1^*}, S_2, S_3, \cdots, S_k\}$, where ${}^{0}S = S_0 \cup S_{0^*}, {}^{1}S - {}^{0}S = S_1 \cup S_{1^*}$, and $S_j = {}^{j}S - {}^{j-1}S, j = 2, \cdots, k$. A new homomorphism derived from f' is generated by the family $C = C' \cup \{S_{k+1}\}$, where $S_{k+1} = \{w_1, \cdots, w_s\}$. Clearly C is a partition of the points of an induced subgraph ${}^{k+1}G$ of G. We need only show that f is a geodesic compatible homomorphism of ${}^{k+1}G$ onto a graph in ${}^{k+1}H$. According to the properties of f', it is sufficient to concentrate on the set S_{k+1} and its image u_{k+1} in $f({}^{k+1}G)$.

As v, w_1, \dots, w_s, v' is a shortest geodesic beginning with v and defined in (iii), then only w_s can be adjacent to two or more points of kG ; in the other case there would be a shorter geodesic beginning with v, which is a contradiction. Let $v' \in S_j$. If there is a line $u_k u_j$ in $f'({}^kG)$, then by removing suitable points from ${}^kS - {}^{k-1}S$, we obtain a new graph kG in which there are no lines joining two points, one from ${}^kS - {}^{k-1}S$ and one from ${}^jS - {}^{j-1}S$. This new kG is connected and satisfies (i) and (iii) as ${}^kS - {}^{k-1}S$ consists of the points of the least iteration in kG . As f' is a homomorphism defined in (ii), then *a* fortiori f' is a geodesic compatible homomorphism mapping the new kG onto a graph in kH . If w_s is joined by a line to points from other sets S_i than S_j , and $u_k u_i$ is a line in $f'({}^kG)$, then by reducing kG as above, we obtain a new connected graph kG satisfying (i), (ii) and (iii) but in which $f'({}^kG)$ does not contain the line $u_k u_i$. But then the mapping f of ${}^{k+1}G$ is geodesic compatible, and $f(^{k+1}G)$ contains just those lines which are allowed to belong to a minimum graph with gin(G) = k + 1 in Theorem 2.

If (2) is not valid, then by the first part of the proof, gin(G) > k + 1, which is a contradiction.

Reference

[1] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.

UNIVERSITY OF MICHIGAN UNIVERSITY OF OULU, FINLAND