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It is a classical fact that any surface in R3 is determined up to congruences
by its first and second fundamental forms. We shall prove in this article that
compact surfaces are essentially determined by the first fundamental form
and only the trace of the second, that is, by the metric and the mean
curvature function. The only possible exception to this phenomenon occurs in
the case of constant mean curvature. Of course, it is a long-standing conjec-
ture of Hopf that the only such (compact) surfaces are the round spheres.

An explicit statement of our main result is as follows. Denote by M3(c) the
complete simply-connected 3-manifold of constant sectional curvature c.

Theorem. Let Σ be a compact oriented surface equipped with a riemannian
metric, and let H: Σ -^ R be a smooth function. If H is not constant, then there
exist at most two geometrically distinct isometric immersions of Σ into M3(c)
with mean curvature H.

Remarks. 1. Two immersions are said to be geometrically distinct if they
do not differ by an isometry of M3(c), i.e., by a congruence.

2. The theorem above can be immediately applied to nonorientable
surfaces. Here the function H: Σ7 —» R must be replaced by a function H:
Σ -»R on the 2-sheeted orientable covering surface π: Σ -> Σ with the
property that H(a(ρ)) = -H(p) where a: Σ ̂ >Σ is the deck transformation of
the covering TΓ.

3. The result above represents a generalization to genus greater than one, of
a theorem proved in the doctoral dissertation of the second author [5]. The
first author insists on stating that the hard part of the proof and the principal
ideas originated there.
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4. In the case that Σ is homeomorphic to the sphere S2, the theorem can be
strengthened. In that case there exists at most one isometric immersion with a
given mean curvature function. This is proved in [5] and follows also from the
arguments below.

Proof of the theorem. The given metric determines a confoπnal structure
on Σ, and we shall always work in the corresponding local conformal, or
"isothermal", coordinates. With respect to such a local coordinate z = xx +
ix29 the metric can be written as

ds2 = X2\dz\2.

Suppose now that F: Σ -> M\c) is an isometric immersion with unit normal
vector field v. Let

for 1 < i, j < 2, denote the components of the second fundamental form of
this immersion. Of fundamental importance to this study is the associated
quadratic differential

(1) Q = {bn - b22 - 2ibl2}dz2 =fdz\

which is well-defined globally on Σ. On the metric induced naturally on the
bundle Γ1 '0 ® Tι ° we have that

(2) ||ρ||2 = H2-4(K-c),

where H = λ~\bu + 622) ^s the mean curvature of the immersion, and
K = λ"2(Z>πfe22 — b2^) + c is the Gaussian curvature of the surface. In terms
of the principal curvatures kλ and k2 of Σ we see that

and so Q vanishes precisely at the umbilic points of the immersion.
We begin by recalling the following well-known consequence of the

Mainardi-Codazzi equations (cf. [5]).
Lemma 5. The quadratic form Q is holomorphic if and only if the immersion

F has constant mean curvature.
We now suppose that we are given three isometric immersions Fk: Σ —> R3,

k = 1, 2, 3, with the same mean curvature function H. We let

Qk=fk{z)dz\ Λ - 1 , 2 , 3

be the corresponding associated quadratic differentials on Σ. The following
principal results are proved in [5].

Proposition 6. Each of the differences Qu = Qt - Qj for 1 < /, j < 3, is a
holomorphic quadratic differential form on Σ.
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Theorem 7. If the three immersions Fk, k = 1, 2, 3, are mutually noncon-
gruent, then

(3) Δ°log(Λ)=la_

for each k, where Δ° = 4 (9/3z)(3/9z) is, the standard laplacian in the local

coordinate z.

From this point on we shall assume that Fv F2 and F3 are mutually

noncongruent. However, we shall really only use the fact that (3) holds for the

two immersions Fx and F2.

Since Fx and F2 are isometric and have the same mean curvature function,

we see from (2) that ||Qx\\ = || Q2\\. Hence we may write

(4) Q2 = e»Qv

where θ is well defined (modulo 2π) outside the zeros of \\Qk\\2 = H2 —

4(K — c). We now consider the holomorphic quadratic form

(5) q = Qx — Q2 = (1 — eiθ)fx dz2.

Clearly, the zeros of Qk (the umbilic points) are contained in the zeros of q. In

particular, the zeros of Qk, which we shall denote by Z = {Pj}j-i> a r e

isolated.

We now consider the quotient

* = - * - = l-e",

which is well defined on Σ\Z. Since q is holomorphic, we have from (3) that

(6) Δ log Ψ = Δ log|Ψ| + /Δ arg Ψ < 0,

where Δ = λ~2Δ° is the Laplace-Beltrami operator on Σ. Equation (6) can be

rewritten by saying that

(7) Δ log|Ψ| < 0, Δ arg Ψ = 0

on Σ\Z.

We now observe that since Ψ is not zero in the connected set Σ\Z, the

function θ cannot be zero (modulo 2ττ) in this set. Hence we can choose a

continuous branch θ: Σ\Z->(0, 2τr) c R. It follows that there exists a

continuous branch

(8)
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for z e Σ\Z. In particular it follows from (7) and (8) that

possible values of Ψ

\Ψ(z) - 1| = 1.

arg Ψ is a bounded harmonic function on Σ\Z, where Z consists of a finite
set of points. By a classical theorem on removable singularities, arg Ψ extends
to a smooth harmonic function on all of Σ, and hence arg Ψ is constant. It
follows immediately that Ψ is constant. Consequently, Qx is holomorphic, and
so by Lemma 5, the mean curvature function H is constant. This completes
the proof.

Final comments
1. It should be pointed out that the main result of this paper is definitely

global in nature; that is, there exist compact surfaces in R3 having small
neighborhoods which can be continuously deformed through noncongruent
isometric embeddings with the same mean curvature function.

2. The local question of isometric immersions with the same mean curva-
ture function into R3 has been studied in [3], [4] and [2]. In these works it is
proved that if a nontrivial family of such immersions does not exist, then
there are at most two noncongruent ones. (It follows from [5] that this result
is valid also for immersions into M\c)9 any c.) A superficial reading of these
papers can indicate that in the absence of a nontrivial family, the immersion
must be unique. However, in none of these papers do the arguments actually
prove this.

3. Complete, simply-connected surfaces of constant mean curvature in
M3(c) always admit 1-parameter families of isometric deformations through
noncongruent surfaces with the same constant mean curvature (see [1]).

4. It remains an open question whether there can exist two geometrically
distinct isometric immersions Σ ^ M3(c) with the same mean curvature
function for a compact surface Σ of genus > 0.

5. For any compact surface Σ, there do exist families of noncongruent (and
nonisometric) immersions into R3 with the same mean curvature function.
Such families can be constructed as follows. Let γ be a closed curve in the
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plane R2 c R3, and consider the cylinder γ X [0, /] of height t over γ. Cap off
(smoothly) the bottom of the cylinder with a disk and the top of the cylinder
with a surface of desired topological type. These "caps" should be the same,
i.e., congruent, for all time /. The mean curvature of the annulus at a point
(x, ί ) G y X [0, t] is just κ(jc) = the curvature of the planar curve γ at x. It is
easy to reparameterize these surfaces by a single surface Σ in such a manner
that the resulting family of immersions ψ,: Σ—»R3 has mean curvature
function independent of t. (Stretch the parameter along the generators of the
cylinder.)

stretch

Of course, many such cylinders could be added, giving k-ΐold deformations
ψ, , : Σ -+ R3 with the same H.
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