GLOBAL PROPERTIES OF SPHERICAL CURVES

JOEL L. WEINER

Let α be a closed curve regularly embedded in Euclidean three-space satisfying suitable differentiability conditions. In addition, suppose α is nonsingular, i.e., free of multiple points. In 1968, B. Segre [4] proved the following about such curves.

Theorem. If α is nonsingular and lies on a sphere, and 0 denotes any point of the convex hull of α with the condition that 0 (if lying on α) is not a vertex of α, then there are always at least four points of α whose osculating plane at each of those points passes through 0 . If 0 is a vertex of α then there are at least three points of α whose osculating plane at each of those points passes through 0 .

All terms used in the statement of the theorem are defined later in this paper.
To quote H. W. Guggenheimer [2] who reviewed [4], "The 12-page proof is rather complicated." Here we present a shorter and hopefully more transparent proof of this theorem. In addition, we need only require that the spherical curve α be of class C^{2} whereas Segre's proof requires α be of class C^{3}. Also, we obtain, with no extra effort, a similar theorem which holds if α 's only singularity is one double point; in this case, the above mentioned minimums must be reduced by two.

In the last section of this paper we characterize spherical curves with the following property: for every point 0 of the convex hull of α, other than a vertex of α, there exists the same (necessarily even) number of distinct points of α whose osculating plane at each of those points passes through 0 .

The proofs of many results in this paper ultimately depend on ideas contained in a paper by W. Fenchel [1].

Throughout this paper we use the following conventions. By a curve we mean a regular C^{2} function $\alpha: D \rightarrow E^{3}$, where D is an interval (with or without end points) or a circle, and E^{3} is Euclidean three-space. We let α denote both the function and its configuration $\alpha(D)$ in E^{3}. When D is a circle we say α is closed. If D is a closed interval we may sometimes refer to α as an arc. We say a point P in E^{3} is a multiple point of α if it is the image of $k>1$ points of D. If $k=2$ then P is called a double point. At a multiple point P we will think of P as k distinct points each traversed once by α as we traverse D once. If α has no multiple points, then we say α is nonsingular.

1. Geodesic curvature

Let α be an oriented spherical curve; i.e., α lies on a sphere S in E^{3} and has a preferred direction of traversal. Let S be oriented, say, with respect to the outward pointing normal. We denote by k the geodesic curvature of α as a curve in S. It is defined by $k=\left(d^{2} \alpha / d s^{2}\right) \cdot n$, where s is the arc length parameter of α consistent with its orientation, and n is $d \alpha / d s$ rotated $+90^{\circ}$ in the tangent plane to S at its point of contact with S. Since α is C^{2}, k is a continuous function on α.

At each point P of α there is in S a circle tangent to α which best approximates α near P. This circle $\omega(P)$ is the osculating circle to α at P; it is easy to see that $\omega(P)$ is the intersection of the sphere S and the osculating plane $\pi(P)$ to α at P, when α is viewed as a curve in E^{3}. We have the following obvious lemma.

Lemma 1. Let α be a spherical curve and $P \in \alpha$. Then $k(P)=0$ if and only if $\pi(P)$ goes through the center of S.

We will need some lemmas about spherical curves proved by Fenchel [1]. Actually we state mild generalizations of these lemmas; see [1], [5] for their proofs. In these lemmas we speak of a set on the sphere being to the left of a curve. By this we mean that when the tangent vector to the curve in the preferred direction is rotated $+90^{\circ}$ it points into the set. Also when we say a point P is between points A and B we mean that either A and B are antipodes or if A and B are not antipodes then P lies on the shorter geodesic arc through A and B.

Lemma 2. A nonsingular spherical curve α with $k \geq 0$ and not identically zero connects two points A and B of a great circle γ without otherwise meeting it. Then A and B are not antipodes of one another. In addition the region bounded by the curve and the smaller great circular arc AB of γ and lying in a hemisphere is to the curve's left.

Lemma 3. Let α be a nonsingular spherical curve with $k \geq 0$, and let γ be an arbitrary great circle which meets α in at least two points. Then there is a subarc α_{r} of α with the following characteristics:

1. The end points A and B of α_{r} lie on γ.
2. α_{r} has otherwise no points in common with γ.
3. All other points of intersection of α with γ lie between A and B.

Remark. If α_{r} contains a point P for which $k(P)>0$, then A and B are not antipodal by Lemma 2. In particular, more than a half circle of γ is free of points of intersection with α.

2. Fenchel's theorem

The convex hull of a point set M in Euclidean space is the smallest convex set containing M. Let Ω be the convex hull of a spherical curve α. The next lemma characterizes the points of Ω; for its proof see [1, Satz A].

Lemma 4. For 0 to be an element of Ω it is necessary and sufficient that there exists a plane λ through 0 suich that 0 is in the convex hull of $\alpha \cap \lambda$.

Throughout this section we take 0 to be the center of the sphere S on which α lies. With this choice for 0 , Lemmas 3 and 4 lead immediately to a theorem due to Fenchel [1, Satz II']. This theorem is restated to include the possibility that 0 is an element of the boundary of Ω as well as the interior of Ω.

Theorem 1 (Fenchel). Suppose α is closed and nonsingular except perhaps for one double point. If $0 \in \Omega$, and α does not contain a great semicircular arc, then the geodesic curvature of α changes sign at least twice.

The same lemmas can be used to prove the following extension of Theorem 1. This will be shown here.

Theorem 2. Suppose α is closed and nonsingular. If $0 \in \Omega$, and α does not contain a great semicircular arc, then the geodesic curvature of α changes sign at least four times.

Remark. It is easy to construct examples of closed nonsingular spherical curves whose geodesic curvature changes sign only twice and which necessarily contain a great semicircular arc. It is a consequence of Lemma 2 that these curves lie in a hemisphere determined by the great semicircular arc.

The remainder of this section is devoted to a proof of Theorem 2. Before we proceed we introduce some notation. If α is a non-closed spherical curve, and P, Q are two points of α, then by $P \alpha Q$ we mean the oriented arc running along α from P to Q. If P, Q are two points of the sphere S which are not antipodal, then $P Q$ denotes the smaller great circular arc through P and Q oriented from P towards Q. To denote the larger great circular arc connecting P and Q, we write $P A Q$ where A is on the great circle through P and Q but $A \notin P Q$. By a Jordan curve we mean a nonsingular continuous image of a circle.

Proof of Theorem 2. Let α be a closed nonsingular curve lying on a sphere S with center 0 , and suppose that α contains no great semicircular arc. In particular, α 's geodesic curvature k is not identically zero. Also suppose $0 \in \Omega$, the convex hull of α. By Theorem 1 we already know that k changes sign at least twice. We will show that the supposition that k changes sign only twice leads to a contradiction. Therefore suppose k changes sign twice at the points A and B of α. Let α^{1} and α^{2} be the two curves into which α is separated by A and B, both oriented so that their geodesic curvature is nonnegative (and, of course, not identically zero). Suppose α^{1} and α^{2} begin at A and end at B.

By Lemma 2 there is a plane λ through 0 such that 0 is in the convex hull of $\lambda \cap \alpha$. Let $\gamma=\lambda \cap S$; it is, of course, a great circle. There are two cases to consider. Either

1. α meets γ in at least three points and these points do not lie in an open half circle of γ, or
2. α meets γ in two points, which are necessarily antipodal.

Case 1. Let C, D, E be distinct points at which $\alpha=\alpha^{1} \cup \alpha^{2}$ meets γ and which do not lie in an open half circle of γ. We may suppose that C and D are points of α^{1}; in fact, suppose C precedes D in α^{1}. Since α^{1} meets γ in at least two points, Lemma 3 implies that there exists a subarc α_{γ}^{1} with the characteristics 1,2 , and 3 of that lemma. Also α_{r}^{1} is not a great semicircular arc. The remark following Lemma 3 implies that E must be a point of α^{2}. We may assume that C and D are the end points of α_{r}^{1}; if the new C, D, E lie in an open half circle of γ so do the old C, D, E.

Let H be the closed hemisphere determined by γ and not containing α_{γ}^{1} except for the end points C and D. Let L be the region to the left of the oriented Jordan curve $C \alpha^{1} D \cup D C$ together with its boundary. Lemma 3 implies that $\alpha^{1} \subset H \cup L$. In particular $A, B \in H \cup L$; hence α^{2} must begin and end in $H \cup L$. The boundary of $H \cup L$ is the Jordan curve $\alpha_{\gamma}^{1} \cup D E C$. Now if α^{2} is not contained in $H \cup L$, it must cross the boundary along $D E C$ (excluding the end points D and C). Remember that α^{1} and α^{2} meet only at A and B. We assume without loss of generality that α^{2} crosses $D E C$. If α^{2} did not cross $D E C$, then it would be tangent to γ at E. We could then rotate λ a bit about the diameter of S through C or D so that α crosses γ at points which we still call C, D, E and which still do not lie in an open half circle of γ. Since α^{2} meets γ at least twice, Lemma 3 implies the existence of a subarc α_{r}^{2}. Let α_{r}^{2} begin at F and terminate at G. Characteristic 3 of α_{r}^{2} implies that at least one of the points F and G is not between C and D. At this stage of the argument we suppose that F does not lie between C and D. The argument is similar if we suppose that G does not lie between C and D.

Consider the oriented Jordan curve $A \alpha^{1} D \cup D F \cup F \alpha^{2} A$. If D and F are antipodal, then here $D F$ is the half great circle not containing G; see Fig. 1.

Fig. 1
Note that $D \alpha^{1} B$ and $F \alpha^{2} B$ cannot cross the Jordan curve. That $F \alpha^{2} B$ does not cross $D F$ is the only part of the preceding statement which may not be im-
mediately clear. However $F \alpha^{2} B$ may only cross γ along $F G$ which is less than a half circle ; also $D F$ is at most a half circle. Thus $D F$ meets $F G$ only at F. Thus $F \alpha^{2} B$ meets $D F$ only at F. Now $D \alpha^{1} B$ and $F \alpha^{2} B$ are on opposite sides of the Jordan curve near D and F, respectively. This is clear since α^{1} is entering H at D and α^{2} is leaving H at F. Thus B is both to the right and the left of the Jordan curve, which is a contradiction.

Case 2. Let C and D be the two points in which α meets γ. As already noted C and D are necessarily antipodal. This case can be reduced to Case 1 since there must be a great circle through C and D which intersects α at a third point E. Clearly C, D, E do not lie in an open half circle.

Remark. We do not use the fact that α^{1} and α^{2} join at A and B in a C^{2} fashion, but only that they begin and end at A and B, respectively.

3. Segre's theorem

Generally, if P is a point of a curve α then at $P \alpha$ passes through the osculating plane to α at P. However if this does not happen we call P a vertex of α. Thus by a vertex of a curve α we mean a point P of α with the property that near $P \alpha$ lies on one side of the osculating plane to α at P.

Theorem 3. Let α be a closed curve on the sphere S and let $0 \in \Omega, \alpha$'s convex hull. Then
(i) if α is nonsingular and 0 is not a vertex of α, there exist at least four points of α whose osculating plane at each of those points passes through 0 ,
(ii) if α is nonsingular and 0 is a vertex of α, there exist at least three points of α whose osculating plane at each of those points passes through 0 ,
(iii) if α 's only singularity is one double point and 0 is not a vertex of α, there exist at least two points of α whose osculating plane at each of those points passes through 0 .

The idea behind the proof lies in the observation that Theorem 3 follows trivially from Theorems 1 and 2 by means of Lemma 1 if 0 is the center of S. So if 0 is not the center of S we let α^{*} be the projection of α into a sphere Σ centered at 0 and apply Theorems 1 and 2 to α^{*} to get the required number of points of α^{*} whose osculating plane at each of those points passes through 0 . If $0 \in \alpha$, then α^{*} is not a closed curve but one can still show that α^{*} has the required number of points whose osculating plane at each of those points passes through 0 . Finally we observe by Lemma 5 that an osculating plane at a point of α^{*} passes through 0 if and only if the osculating plane at the corresponding point of α does so.

We now introduce the notation which will be used in the proofs of Lemma 5 and Theorem 3. Let α be a closed curve on S, and Ω the convex hull of α. Suppose that 0 is any element of Ω and Σ is a sphere centered at 0 . Let $p: S$ $\rightarrow \Sigma$ be the projection of S into Σ through 0 . When $0 \in \alpha, p$ is understood to be defined only on $S-\{0\}$. Denote the image of $P \in S$ under $p: S \rightarrow \Sigma$ by P^{*}.

If 0 is in interior of S, we let α^{*} denote the image of α under p. If $0 \in \alpha$, note first that $p(\alpha)$ is contained in a hemisphere H with boundary γ^{*}, where γ^{*} is the intersection of the tangent plane to S at 0 with Σ. Assume 0 is not a multiple point of α; then the limits of P^{*} as P approaches 0 along α first from one side and then the other are two antipodal points on γ^{*}. We adjoin these points to $p(\alpha)$ and denote the resulting arc by α^{*}. When 0 is a multiple point of α, we adjoin points of γ^{*} to $p(\alpha)$ as above to get a collection of arcs denoted by α^{*}. Then let Ω^{*} be the convex hull of α^{*}. Let $\pi(P)$ and $\pi^{*}\left(P^{*}\right)$ denote the osculating planes to α at P and α^{*} at P^{*}, respectively.

Lemma 5. Suppose $P \neq 0$. Then $\pi(P)$ passes through 0 if and only if $\pi^{*}\left(P^{*}\right)$ goes through 0 . Moreover, if $\pi(P)$ passes through 0 , then P is a vertex of α if and only if P^{*} is a vertex of α^{*}.

Proof. The projection $p: S \rightarrow \Sigma$ is a C^{∞} diffeomorphism of S onto its image. Thus the order of contact between two curves on S and their images under p on Σ is preserved (except if the contact is at $0 \in \alpha$).

Let $\omega(P)$ and $\omega^{*}\left(P^{*}\right)$ denote the osculating circles to α at P and α^{*} at P^{*}, respectively. Suppose $\pi(P)$ passes through 0 . Since $\omega(P)$ lies in $\pi(P)$ which passes through 0 , its image under p is a (great) circle on Σ if $0 \notin \alpha$ and is a half (great) circle on Σ if $0 \in \alpha$. Let $\omega(P)^{*}$ denote the circle in which $p(\omega(P))$ lies on Σ. Since the order of contact is preserved, $\omega(P)^{*}=\omega^{*}\left(P^{*}\right)$. Thus both $\pi(P)$ and $\pi^{*}\left(P^{*}\right)$ contain $\omega(P)^{*}$. Hence $\pi(P)=\pi^{*}\left(P^{*}\right)$ passes through 0 . The converse is proved in an identifical fashion.

Now suppose $\pi(P)$ passes through 0 . Then, by the above, $\pi(P)=\pi^{*}\left(P^{*}\right)$. If α lies on one side of $\pi(P)$ near P, clearly α^{*} lies on one side of $\pi^{*}\left(P^{*}\right)$ near P^{*} and conversely. That is, P is a vertex of α if and only if P^{*} is a vertex of α^{*}.

Proof of Theorem 3. We separate the proof into two cases according as $0 \in \alpha$ or not.

Suppose $0 \notin \alpha$. Then it is clear that $0 \in \Omega^{*}$ since $0 \in \Omega$. Thus we may apply Theorems 1 and 2 to α^{*} lying on Σ. If α is nonsingular, so is α^{*}; thus α^{*} has at least four points where its geodesic curvature is zero. If α has just one double point, so does α^{*}; thus α^{*} has at least two points where its geodesic curvature is zero. By Lemma 1 , at each of these points of α^{*} the osculating plane passes through 0 . Hence by Lemma 5 the osculating planes at the corresponding points of α pass through 0 . Thus we have proved (i) and (iii) for the case $0 \notin \alpha$.

Suppose $0 \in \alpha$ and 0 is not a multiple point of α. Assume now α is oriented. By means of p we orient α^{*}. Denote the beginning of α^{*} by A and the end by B. Let ω be the osculating circle to α at 0 . Its image under p including end points, denoted by ω^{*}, is a half great circular arc of Σ. It is easy to see that ω^{*} also begins at A and ends at B. Also ω^{*} and α^{*} are tangent at A and B. If 0 is not a vertex of α, then α^{*} is on opposite sides of ω^{*} in H near A and B; see Fig. 2. If 0 is a vertex of α, then α^{*} is on the same side of ω^{*} in H

Fig. 2
near A and B. Let k^{*} be the geodesic curvature of α^{*}. Then using Lemma 2 and the idea of parity, one can show the following hold:

1. k^{*} changes sign at least twice if 0 is not a vertex of α and α is nonsingular,
2. k^{*} changes sign at least twice if 0 is a vertex of α and α is nonsingular,
3. k^{*} changes sign at least once if 0 is not a vertex of α and α 's only singularity is one double point.

Again apply Lemmas 1 and 5, in that order, to prove (i), (ii), and (iii) for the case where $0 \in \alpha$ and 0 not a multiple point of α. If 0 is the double point of α the proof of (iii) is immediate.

Corollary. Let α be a C^{3} closed nonplanar curve in E^{3} with no pair of directly parallel tangents. Then α has at least four vertices.

For the proof of this corollary see Segre [4, p. 263] where the same result is proven for C^{4} curves. Our results allow his proof to go through for C^{3} curves. Actually the corollary follows immediately from Theorem 2 and the remark following Theoerm 2 since the tangent indicatrix of a nonplanar curve cannot lie in a hemisphere.

4. A characterization

In this section we find a characterization for a (possibly singular) closed curve α lying on the sphere S and having the property that for each point 0 in its convex hull Ω except for vertices of α there exists the same (necessarily even) number of distinct points of α whose osculating plane at each of those points passes through 0 .

The next lemma is especially important in this section. It follows by means of stereographic projection from a similar fact for plane curves due to Kneser ; see [3, p. 48] for Kneser's theorem and its proof. When we say that the circle ω lies between the (disjoint) circles ω^{1} and ω^{2} on the sphere S we mean that ω is in the connected component of $S-\left(\omega^{1} \cup \omega^{2}\right)$ whose boundary is $\omega^{1} \cup \omega^{2}$.

Lemma 6. Let α be spherical arc with monotone geodesic curvature k. Let P, Q, and R be three points of α with Q between P and R. Then $\omega(Q)$ is be-
tween $\omega(P)$ and $\omega(R)$ if it is not equal to $\omega(P)$ or $\omega(R)$. Moreover, $\omega(Q)=\omega(P)$ (respectively, $\omega(R)$) only if $k(Q)=k(P)$ (respectively, $k(R)$).

At this point we make some additional assumptions about the closed spherical curve α which will hold throughout the remainder of this section. First, we require that there exists at most a finite number of points of α at which the geodesic curvature k takes on an extreme value. This is equivalent to requiring that α has at most a finite number of vertices since the vertices of α occur at the extremes of k. Secondly, we assume k is strictly monotone between the vertices of α. This second condition rules out the possibility of α having an arc of points with the same osculating plane.

Let B denote the closed ball whose boundary S contains the closed curve α. Clearly $\Omega \subset B$.

Theorem 4. Suppose α has n vertices. If $0 \in B$, then there exist at most n points of α whose osculating plane at each of those points passes through 0.

Proof. Let $V_{1}, V_{2}, \cdots, V_{n}$ denote the vertices of α as they occur in making one circuit of α. Using the notation of $\S 2$, we set $\alpha^{i}=V_{i} \alpha V_{i+1}$ for $i=1$, $2, \cdots, n$, where $V_{n+1}=V_{1}$. We will show for each integer i, where $1 \leq i \leq n$, there exists at most one point $P \in \alpha^{i}$ such that $0 \in \pi(P)$. This immediately implies the theorem.

Suppose, to the contrary, that α^{i} contains two points P and Q such that $0 \in \pi(P) \cap \pi(Q)$. In particular, $\pi(P) \cap \pi(Q) \neq \emptyset$; hence $\omega(P) \cap \omega(Q) \neq \emptyset$. This is impossible by Lemma 6 since k is strictly monotone on α^{i}.

Remark. Note that $V_{i} \in \alpha^{i-1} \cap \alpha^{i}$ for $i=1,2, \cdots, n$, where $\alpha^{0}=\alpha^{n}$. Hence if $0 \in B$ and, in addition, $0 \in \pi\left(V_{i}\right)$, then there exist strictly less than n points of α whose osculating plane at each of those points passes through 0 .

Corollary. Suppose α has n vertices. If $0 \in \Omega$, then there exist at most n points of α whose osculating plane at each of those points passes through 0.

Let $V_{1}, V_{2}, \cdots, V_{n}$ be the vertices of α. Note that n is necessarily even since it is the number of extreme points of the geodesic curvature of α.

Theorem 5. Suppose $\omega\left(V_{i}\right) \cap \alpha=\left\{V_{i}\right\}$ for $i=1,2, \cdots, n$. Then for every $0 \in \Omega-\left\{V_{1}, V_{2}, \cdots, V_{n}\right\}$ there exist exactly n points $P_{1}, P_{2}, \cdots, P_{n}$ of α such that $0 \in \pi\left(P_{i}\right)$ for $i=1,2, \cdots, n$, and conversely.

Proof. Let $B^{\prime}=B-\bigcup_{i=1}^{n} \pi\left(V_{i}\right)$. Also let B_{m}^{\prime} be the set of points 0 in B^{\prime} with the property that there exist exactly m points $P_{1}, P_{2}, \cdots, P_{m}$ of α such that $0 \in \pi\left(P_{i}\right)$ for $i=1,2, \cdots, m$.

Let $\Omega^{\prime}=\Omega-\left\{V_{1}, V_{2}, \cdots, V_{n}\right\}$. For $i=1,2, \cdots, n$, the assumption $\omega\left(V_{i}\right)$ $\cap \alpha=\left\{V_{i}\right\}$ implies $\Omega \cap \pi\left(V_{i}\right)=\left\{V_{i}\right\}$. Thus Ω^{\prime} is a connected subset of B^{\prime}. The theorem is proved by showing that for any nonnegative integer m, B_{m}^{\prime} is an open and closed subset of B^{\prime}. This implies $\Omega^{\prime} \subset B_{m}^{\prime}$ for some nonnegative integer m. Then we show $m=n$.

The fact that B_{m}^{\prime} is both open and closed in B^{\prime} follows in three steps:
Step 1. $B_{m}^{\prime} \subset$ interior $\bigcup_{m \leq j} B_{j}^{\prime}$. Let $0 \in B^{\prime}$ and suppose there exist m points $P_{1}, P_{2}, \cdots, P_{m}$ of α such that $0 \in \pi\left(P_{i}\right)$ and P_{i} is not a vertex of α for
$i=1,2, \cdots, m$. We will show for each integer i, where $1 \leq i \leq m$, there exists a neighborhood N_{i} of P_{i} in α with the property that $U_{i}=\bigcup_{P \in N_{i}} \pi(P)$ $\cap B^{\prime}$ is an open set of B^{\prime} containing 0 . Moreover, we may assume N_{1}, N_{2}, \cdots, N_{m} are mutually disjoint. It is then clear that $U=\bigcap_{i=1}^{m} U_{i}$ is a neighborhood of 0 in $\bigcup_{m \leq j} B_{j}^{\prime}$.

Consider the point P_{i}. Since P_{i} is not a vertex there exists an open neighborhood N_{i} of P_{i} in α on which k is strictly monotone. By Lemma $6, N_{i}$ does not contain P_{j}, where $j \neq i$. Let P_{i}^{\prime} and $P_{i}^{\prime \prime}$ be the boundary points of N_{i}. It follows from Lemma 6 that $\bigcup_{P \in N_{i}} \omega(P)$ is an open set of S; it is the component of $S-\left[\omega\left(P_{i}^{\prime}\right) \cup \omega\left(P_{i}^{\prime \prime}\right)\right]$ containing P_{i}. Then $U_{i}=\bigcup_{P \in N_{i}} \pi(P) \cap B^{\prime}$ is an open set of B^{\prime}. In fact U_{i} is the component of $B^{\prime}-\left[\pi\left(P_{i}^{\prime}\right) \cup \pi\left(P_{i}^{\prime \prime}\right)\right]$ containing P_{i}. Clearly $0 \in U_{i}$ since $P_{i} \in N_{i}$.

Step 2. B_{m}^{\prime} is closed in B^{\prime}. Let $0_{i}, i=1,2, \cdots$, be a sequence of points in B_{m}^{\prime} approaching $0 \in B^{\prime}$. Thus for each $i=1,2, \cdots$, there exist exactly m points $P_{i 1}, P_{i 2}, \cdots, P_{i m}$ of α such that $0_{i} \in \pi\left(P_{i j}\right)$ for $j=1,2, \cdots, m$. By taking subsequences if necessary, we may assume that $P_{i j}$ approaches a point P_{j} as i approaches infinity for $j=1,2, \cdots, m$. By continuity $0 \in \pi\left(P_{j}\right)$ for $j=1,2$, \cdots, m. Thus there are at least m points of α whose osculating plane at each of those points passes through 0 unless $P_{j}=P_{k}$ for some $j \neq k$. Suppose this; then in any neighborhood of $P_{j}=P_{k}$ there exist the distinct points $P_{i j}, P_{i k}$, for i sufficiently large. Since $0_{i} \in \pi\left(P_{i j}\right) \cap \pi\left(P_{i k}\right), \omega\left(P_{i j}\right) \cap \omega\left(P_{i k}\right) \neq \emptyset$. By Lemma 6, $P_{j}=P_{k}$ is a vertex of α. But this contradicts the assumption $0 \notin \bigcup_{i=1}^{n} \pi\left(V_{i}\right)$. Thus $P_{j} \neq P_{k}$ for all $j \neq k$ between 1 and m inclusive. By Step 1 there exist at most m points $P_{1}, P_{2}, \cdots, P_{m}$ of α with $0 \in \pi\left(P_{j}\right)$.

Step 3. B_{m}^{\prime} is open in B^{\prime}. This step follows immediately from Step 1 and Step 2 since $B_{m}^{\prime}=\emptyset$ for $m>n$ by Theorem 4.

We now know that $\Omega^{\prime} \subset B_{m}^{\prime}$ where $m \leq n$. Suppose $m<n$. We will show this leads to a contradiction. Let $0 \in \alpha \cap \Omega^{\prime}$. Since $0 \in \Omega^{\prime}$, there exist m points $P_{1}, P_{2}, \cdots, P_{m}$ with $0 \in \pi\left(P_{i}\right)$ for $i=1,2, \cdots, m$. In the notation of the proof of Theorem 4, there exists an arc α^{i} for some integer between 1 and n inclusive with the following property : there exists no point $Q \in \alpha^{i}$ such that $0 \in \pi(Q)$. Thus $\omega\left(V_{i}\right)$ and $\omega\left(V_{i+1}\right)$ do not have 0 between them. Hence, say, $\omega\left(V_{i}\right)$ and 0 are separated by $\omega\left(V_{i+1}\right)$. In particular V_{i} and 0 are on opposite sides of $\omega\left(V_{i+1}\right)$. Thus α must meet $\omega\left(V_{i+1}\right)$ at points other than V_{i+1}.

The converse follows from the remark following the proof of Theorem 4.
q.e.d.

It may still be that for every point 0 of Ω^{\prime} there exists the same number of points of α whose osculating plane at each of those points passes through 0 even though $\omega\left(V_{i}\right) \cap \alpha \neq\left\{V_{i}\right\}$ for some integer $i, 1 \leq i \leq n$. For this to happen the following must be true: if, say, V_{1} is a vertex of α and $\omega\left(V_{1}\right)$ intersects α in more than V_{1}, then there must be another vertex V_{i} for some integer $i, 2 \leq i \leq n$, such that $\pi\left(V_{i}\right)=\pi\left(V_{1}\right)$. Also, for points P near V_{1} and Q near $V_{i}, \pi(P)$ and $\pi(Q)$ must be on opposite sides of $\pi\left(V_{1}\right)=\pi\left(V_{i}\right)$.

References

[1] W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238-252.
[2] H. W. Guggenheimer, Rev. \#4787, Math. Rev. 39 (1970) 871.
[3] -Differential geometry, McGraw-Hill, New York, 1963.
[4] B. Segre, Alcune proprietà differenziali in grande delle curve chiuse sghembe, Rend. Mat. (6) 1 (1968) 237-297.
[5] J. L. Weiner, A theorem on closed space curves, Rend. Mat. (3) 8 (1975) 789-804.

