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GLOBAL PROPERTIES OF SPHERICAL CURVES

JOEL L. WEINER

Let a be a closed curve regularly embedded in Euclidean three-space satisfy-
ing suitable differentiability conditions. In addition, suppose a is nonsingular,
i.e., free of multiple points. In 1968, B. Segre [4] proved the following about
such curves.

Theorem. // a is nonsingular and lies on a sphere, and 0 denotes any point
of the convex hull of a with the condition that 0 (// lying on a) is not a vertex
of a, then there are always at least four points of a whose osculating plane at
each of those points passes through 0. If 0 is a vertex of a then there are at
least three points of a whose osculating plane at each of those points passes
through 0.

All terms used in the statement of the theorem are defined later in this paper.
To quote H. W. Guggenheimer [2] who reviewed [4], "The 12-page proof

is rather complicated." Here we present a shorter and hopefully more trans-
parent proof of this theorem. In addition, we need only require that the spher-
ical curve a be of class C2 whereas Segre's proof requires a be of class C3.
Also, we obtain, with no extra effort, a similar theorem which holds if α's
only singularity is one double point in this case, the above mentioned mini-
mums must be reduced by two.

In the last section of this paper we characterize spherical curves with the
following property: for every point 0 of the convex hull of a, other than a
vertex of a, there exists the same (necessarily even) number of distinct points
of a whose osculating plane at each of those points passes through 0.

The proofs of many results in this paper ultimately depend on ideas con-
tained in a paper by W. Fenchel [1].

Throughout this paper we use the following conventions. By a curve we
mean a regular C2 function a: D -+ E\ where D is an interval (with or without
end points) or a circle, and E3 is Euclidean three-space. We let a denote both
the function and its configuration a(D) in E\ When D is a circle we say a is
closed. If D is a closed interval we may sometimes refer to a as an arc. We
say a point P in E2 is a multiple point of a if it is the image of k > 1 points
of D. If k = 2 then P is called a double point. At a multiple point P we will
think of P as k distinct points each traversed once by a as we traverse D once.
If a has no multiple points, then we say a is nonsingular.
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1. Geodesic curvature

Let a be an oriented spherical curve i.e., a lies on a sphere S in E3 and
has a preferred direction of traversal. Let S be oriented, say, with respect to
the outward pointing normal. We denote by k the geodesic curvature of a as
a curve in S. It is defined by k = (d2a/ds2)>n, where s is the arc length pa-
rameter of a consistent with its orientation, and n is da Ids rotated +90° in
the tangent plane to S at its point of contact with S. Since a is C2, A: is a con-
tinuous function on a.

At each point P of a there is in S a circle tangent to a which best approxi-
mates a near P. This circle ω(P) is the osculating circle to a at P it is easy
to see that ω(P) is the intersection of the sphere S and the osculating plane
π(P) to a at F, when a is viewed as a curve in E\ We have the following ob-
vious lemma.

Lemma 1. Let a be a spherical curve and Pea. Then k(P) = 0 // and
only if π(P) goes through the center of S.

We will need some lemmas about spherical curves proved by Fenchel [1].
Actually we state mild generalizations of these lemmas see [1], [5] for their
proofs. In these lemmas we speak of a set on the sphere being to the left of a
curve. By this we mean that when the tangent vector to the curve in the pre-
ferred direction is rotated +90° it points into the set. Also when we say a
point P is between points A and B we mean that either A and B are antipodes
or if A and B are not antipodes then P lies on the shorter geodesic arc through
A and B.

Lemma 2. A nonsingular spherical curve a with k > 0 and not identically
zero connects two points A and B of a great circle γ without otherwise meet-
ing it. Then A and B are not antipodes of one another. In addition the region
bounded by the curve and the smaller great circular arc AB of γ and lying in
a hemisphere is to the curve's left.

Lemma 3. Let a be a nonsingular spherical curve with k>0, and let γ be
an arbitrary great circle which meets a in at least two points. Then there is a
subarc ar of a with the following characteristics:

1. The end points A and B of aγ lie on γ.
2. ar has otherwise no points in common with γ.
3. All other points of intersection of a with γ lie between A and B.
Remark. If ar contains a point P for which k(P) > 0, then A and B are

not antipodal by Lemma 2. In particular, more than a half circle of γ is free
of points of intersection with a.

2. Fenchel's theorem

The convex hull of a point set M in Euclidean space is the smallest convex
set containing M. Let Ω be the convex hull of a spherical curve a. The next
lemma characterizes the points of Ω for its proof see [1, Satz A].
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Lemma 4 For 0 to be an element of Ω it is necessary and sufficient that
there exists a plane λ through 0 such that 0 is in the convex hull of a Π λ.

Throughout this section we take 0 to be the center of the sphere S on which
a lies. With this choice for 0, Lemmas 3 and 4 lead immediately to a theorem
due to Fenchel [1, Satz II7]. This theorem is restated to include the possibility
that 0 is an element of the boundary of Ω as well as the interior of Ω.

Theorem 1 (Fenchel). Suppose a is closed and nonsίngular except perhaps
for one double point. If 0 e Ω, and a does not contain a great semicircular
arc, then the geodesic curvature of a changes sign at least twice.

The same lemmas can be used to prove the following extension of Theorem
1. This will be shown here.

Theorem 2. Suppose a is closed and nonsingular. If 0 e Ω, and a does not
contain a great semicircular arc, then the geodesic curvature of a changes sign
at least four times.

Remark. It is easy to construct examples of closed nonsingular spherical
curves whose geodesic curvature changes sign only twice and which necessar-
ily contain a great semicircular arc. It is a consequence of Lemma 2 that these
curves lie in a hemisphere determined by the great semicircular arc.

The remainder of this section is devoted to a proof of Theorem 2. Before
we proceed we introduce some notation. If a is a non-closed spherical curve,
and P, Q are two points of a, then by PaQ we mean the oriented arc running
along a from P to Q. If P, Q are two points of the sphere S which are not
antipodal, then PQ denotes the smaller great circular arc through P and Q
oriented from P towards Q. To denote the larger great circular arc connect-
ing P and Q, we write PAQ where A is on the great circle through P and Q
but A <£ PQ. By a Jordan curve we mean a nonsingular continuous image of a
circle.

Proof of Theorem 2. Let a be a closed nonsingular curve lying on a sphere
S with center 0, and suppose that a contains no great semicircular arc. In
particular, α's geodesic curvature k is not identically zero. Also suppose 0 e Ω,
the convex hull of a. By Theorem 1 we already know that k changes sign at
least twice. We will show that the supposition that k changes sign only twice
leads to a contradiction. Therefore suppose k changes sign twice at the points
A and B of a. Let a1 and a2 be the two curves into which a is separated by
A and B, both oriented so that their geodesic curvature is nonnegative (and,
of course, not identically zero). Suppose a1 and a2 begin at A and end at B.

By Lemma 2 there is a plane λ through 0 such that 0 is in the convex hull
of λ ΓΊ a. Let γ = λ Π S it is, of course, a great circle. There are two cases
to consider. Either

1. a meets γ in at least three points and these points do not lie in an open
half circle of γ, or

2. a meets γ in two points, which are necessarily antipodal.
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Case 1. Let C, D, E be distinct points at which a = a1 Ό a2 meets γ and
which do not lie in an open half circle of γ. We may suppose that C and D are
points of a1 in fact, suppose C precedes D in a1. Since a1 meets γ in at least
two points, Lemma 3 implies that there exists a subarc a\ with the character-
istics 1, 2, and 3 of that lemma. Also a) is not a great semicircular arc. The
remark following Lemma 3 implies that E must be a point of a2. We may as-
sume that C and D are the end points of a) if the new C, D, E lie in an open
half circle of γ so do the old C, D, E.

Let H be the closed hemisphere determined by γ and not containing a) ex-
cept for the end pφints C and D. Let L be the region to the left of the ori-
ented Jordan curve CaιD U DC together with its boundary. Lemma 3 implies
that a1 C H U L. In particular A,B e H U L hence a2 must begin and end
in H U L. The boundary of H U L is the Jordan curve αj U £>£C. Now if α2

is not contained in H U L, it must cross the boundary along DEC (excluding
the end points D and C). Remember that a1 and #2 meet only at A and 5.
We assume without loss of generality that a2 crosses DEC. If a2 did not cross
DEC, then it would be tangent to γ at E. We could then rotate λ a bit about
the diameter of S through C or D so that a crosses γ at points which we still
call C, D, E and which still do not lie in an open half circle of γ. Since a2

meets γ at least twice, Lemma 3 implies the existence of a subarc a). Let oή.
begin at F and terminate at G. Characteristic 3 of a) implies that at least one
of the points F and G is not between C and D. At this stage of the argument
we suppose that F does not lie between C and D. The argument is similar if
we suppose that G does not lie between C and D.

Consider the oriented Jordan curve AaιD U DF U Fa2A. If D and F are
antipodal, then here DF is the half great circle not containing G see Fig. 1.

Note that DaιB and Fa2B cannot cross the Jordan curve. That Fa2B does not
cross DF is the only part of the preceding statement which may not be im-
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mediately clear. However Fa2B may only cross γ along FG which is less than
a half circle also DF is at most a half circle. Thus DF meets FG only at F.
Thus Fa2B meets DF only at F. Now DaιB and Fa2B are on opposite sides of
the Jordan curve near D and F, respectively. This is clear since a1 is entering
H at D and a2 is leaving H at F. Thus 5 is both to the right and the left of
the Jordan curve, which is a contradiction.

Case 2. Let C and D be the two points in which a meets γ. As already
noted C and Z) are necessarily antipodal. This case can be reduced to Case 1
since there must be a great circle through C and D which intersects a at a
third point E. Clearly C, D, E do not lie in an open half circle.

Remark. We do not use the fact that a1 and a2 join at A and B in a C2

fashion, but only that they begin and end at A and J5, respectively.

3. Segre's theorem

Generally, if P is a point of a curve α then at P a passes through the oscu-
lating plane to a at P. However if this does not happen we call P a vertex of a.
Thus by a vertex of a curve or we mean a point P of a with the property that
near P α lies on one side of the osculating plane to a at P.

Theorem 3. Let a be a closed curve on the sphere S and let 0 e Ω, as
convex hull. Then

( i ) if a is nonsingular and 0 is not a vertex of a, there exist at least four
points of a whose osculating plane at each of those points passes through 0,

(ii) // a is nonsingular and 0 is a vertex of a, there exist at least three
points of a whose osculating plane at each of those points passes through 0,

(iii) // as only singularity is one double point and 0 is not a vertex of a,
there exist at least two points of a whose osculating plane at each of those
points passes through 0.

The idea behind the proof lies in the observation that Theorem 3 follows
trivially from Theorems 1 and 2 by means of Lemma 1 if 0 is the center of
S. So if 0 is not the center of S we let a* be the projection of a into a sphere
Σ centered at 0 and apply Theorems 1 and 2 to a* to get the required num-
ber of points of α* whose osculating plane at each of those points passes
through 0. If 0 e a, then or* is not a closed curve but one can still show that
#* has the required number of points whose osculating plane at each of those
points passes through 0. Finally we observe by Lemma 5 that an osculating
plane at a point of #* passes through 0 if and only if the osculating plane at
the corresponding point of a does so.

We now introduce the notation which will be used in the proofs of Lemma
5 and Theorem 3. Let a be a closed curve on 5, and Ω the convex hull of α.
Suppose that 0 is any element of Ω and I 7 is a sphere centered at 0. Let p: S
—» Σ be the projection of S into Σ through 0. When 0 e a, p is understood to
be defined only on S — {0}. Denote the image of P € S under p: S —> Σ by P*.
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If 0 is in interior of S, we let or* denote the image of a under p. If 0 e a, note
first that p(a) is contained in a hemisphere H with boundary f*, where γ* is
the intersection of the tangent plane to S at 0 with Σ. Assume 0 is not a mul-
tiple point of a then the limits of P* as P approaches 0 along a first from
one side and then the other are two antipodal points on γ*. We adjoin these
points to p(a) and denote the resulting arc by #*. When 0 is a multiple point
of a, we adjoin points of γ* to p(a) as above to get a collection of arcs denoted
by a*. Then let β* be the convex hull of a*. Let ττ(P) and ττ*(P*) denote the
osculating planes to a at P and a* at P*, respectively.

Lemma 5. Suppose P Φ 0. Then π{P) passes through 0 // and only if
π*(P*) goes through 0. Moreover, if π(P) passes through 0, then P is a vertex
of a if and only if P*is a vertex of a*.

Proof. The projection p: S -» Σ is a C°° difϊeomorphism of S onto its
image. Thus the order of contact between two curves on S and their images
under p on Σ is preserved (except if the contact is at 0 e a).

Let ω(P) and ω*(P*) denote the osculating circles to a at P and α* at P*,
respectively. Suppose τr(P) passes through 0. Since ω(P) lies in π(P) which
passes through 0, its image under p is a (great) circle on Σ if 0 $ a and is a
half (great) circle on Σ if 0 e α. Let ω(P)* denote the circle in which p(ω(P))
lies on 2\ Since the order of contact is preserved, ω(P)* = ω*(P*). Thus both
τr(P) and ττ*(P*) contain ω(P)*. Hence π(P) = τr*(P*) passes through 0. The
converse is proved in an identifical fashion.

Now suppose τr(P) passes through 0. Then, by the above, π(P) = τr*(P*).
If a lies on one side of π(P) near P, clearly a* lies on one side of /r*(P*) near
P* and conversely. That is, P is a vertex of a if and only if P* is a vertex of

of Theorem 3. We separate the proof into two cases according as
0 € a or not.

Suppose 0 $ a. Then it is clear that 0 e Ω* since Oefl. Thus we may apply
Theorems 1 and 2 to #* lying o n l . If or is nonsingular, so is α* thus a* has
at least four points where its geodesic curvature is zero. If a has just one
double point, so does α* thus #* has at least two points where its geodesic
curvature is zero. By Lemma 1, at each of these points of α* the osculating
plane passes through 0. Hence by Lemma 5 the osculating planes at the cor-
responding points of a pass through 0. Thus we have proved (i) and (iii) for
the case 0 $ a.

Suppose 0 β a and 0 is not a multiple point of a. Assume now a is oriented.
By means of p we orient α*. Denote the beginning of a* by A and the end
by B. Let ω be the osculating circle to a at 0. Its image under p including end
points, denoted by ω*, is a half great circular arc of Σ. It is easy to see that
ω* also begins at A and ends at B. Also ω* and α* are tangent at A and B.
If 0 is not a vertex of a, then α:* is on opposite sides of ω* in H near A and
B see Fig. 2. If 0 is a vertex of a, then α* is on the same side of ω* in H
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Fig. 2

near A and B. Let k* be the geodesic curvature of α*. Then using Lemma 2
and the idea of parity, one can show the following hold:

1. k* changes sign at least twice if 0 is not a vertex of a and a is non-
singular,

2. &* changes sign at least twice if 0 is a vertex of a and a is nonsingular,
3. &* changes sign at least once if 0 is not a vertex of a and αr's only sin-

gularity is one double point.
Again apply Lemmas 1 and 5, in that order, to prove (i), (ii), and (iii) for

the case where 0 e a and 0 not a multiple point of a. If 0 is the double point
of a the proof of (iii) is immediate.

Corollary. Let a be a C3 closed nonplanar curve in E3 with no pair of di-
rectly parallel tangents. Then a has at least four vertices.

For the proof of this corollary see Segre [4, p. 263] where the same result
is proven for C4 curves. Our results allow his proof to go through for C3

curves. Actually the corollary follows immediately from Theorem 2 and the
remark following Theoerm 2 since the tangent indicatrix of a nonplanar curve
cannot lie in a hemisphere.

4. A characterization

In this section we find a characterization for a (possibly singular) closed
curve a lying on the sphere S and having the property that for each point 0
in its convex hull Ω except for vertices of a there exists the same (necessarily
even) number of distinct points of a whose osculating plane at each of those
points passes through 0.

The next lemma is especially important in this section. It follows by means
of stereographic projection from a similar fact for plane curves due to Kneser
see [3, p. 48] for Kneser's theorem and its proof. When we say that the circle
ω lies between the (disjoint) circles ω1 and ω2 on the sphere S we mean that ω
is in the connected component of S — (ω1 U ω2) whose boundary is ω1 U ω2.

Lemma 6. Let a be spherical arc with monotone geodesic curvature k. Let
P, Q, and R be three points of a with Q between P and R. Then ω(Q) is be-
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tween ω(P) and ω(R) if it is not equal to ω(P) or ω(R). Moreover, ω(Q) = ω(P)
{respectively, ω(R)) only if k(Q) = k(P) (respectively, k(R)).

At this point we make some additional assumptions about the closed spher-
ical curve a which will hold throughout the remainder of this section. First,
we require that there exists at most a finite number of points of a at which the
geodesic curvature k takes on an extreme value. This is equivalent to requir-
ing that a has at most a finite number of vertices since the vertices of a occur
at the extremes of k. Secondly, we assume k is strictly monotone between the
vertices of a. This second condition rules out the possibility of a having an
arc of points with the same osculating plane.

Let B denote the closed ball whose boundary S contains the closed curve a.
Clearly Ω d B.

Theorem 4. Suppose a has n vertices. If 0 e B, then there exist at most
n points of a whose osculating plane at each of those points passes through 0.

Proof. Let V19 V2, , Vn denote the vertices of a as they occur in mak-
ing one circuit of a. Using the notation of § 2, we set a1 — ViaVi+1 for / = 1,
2, , n, where Vn+ί = Vλ. We will show for each integer /, where 1 < / < n,
there exists at most one point P z a1 such that 0 e π(P). This immediately
implies the theorem.

Suppose, to the contrary, that a1 contains two points P and Q such that
0 € π(P) Π τr(0 . In particular, π(P) Π π(Q) Φ 0; hence ω(P) Π ω(β) Φ 0.
This is impossible by Lemma 6 since k is strictly monotone on a1.

Remark. Note that Vt e a1'1 Π a1 for i = 1,2, , n, where a0 = an.
Hence if 0 e B and, in addition, 0 e π(Vi), then there exist strictly less than
n points of a whose osculating plane at each of those points passes through 0.

Corollary. Suppose a has n vertices. If 0 6 Ω, then there exist at most n
points of a whose osculating plane at each of those points passes through 0.

Let Vλ,V2, - - -, Vn be the vertices of a. Note that n is necessarily even since
it is the number of extreme points of the geodesic curvature of a.

Theorem 5. Suppose ω(Vι) Π a = {FJ for i = 1, 2, , n. Then for every
0 e Ω — {Vλ, V2, - - , Vn} there exist exactly n points P19 P2, > -,Pnof a such
that 0 e π(Pι) for i = 1, 2, , n, and conversely.

Proof. Let B' = B — (JiU π(Vi). Also let Bf

m be the set of points 0 in B'
with the property that there exist exactly m points P19 P2, , Pm of a such
that 0 6 n(Pi) for / = 1, 2, , m.

Let Ω' = Ω - {V19 V2, , Vn). For / = 1, 2, , n, the assumption ω(Yt)
Π a = {Vi} implies Ω Π π(Yi) = {FJ. Thus Ω' is a connected subset of B'.
The theorem is proved by showing that for any nonnegative integer m, B'm is
an open and closed subset of Br. This implies Ω' c B'm for some nonnegative
integer m. Then we show m = n.

The fact that B'm is both open and closed in Bf follows in three steps :
Step 1. B'ma interior U m < ; . β . Let 0 <= Bf and suppose there exist m

points Pl9 P2, - , Pm of a such that 0 e π(Pi) and Pt is not a vertex of a for
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i = 1,2, , m. We will show for each integer /, where 1 < / < ra, there
exists a neighborhood Nt of Pi in a with the property that E/* == Upβiv* π(P)
Π 2?' is an open set of Bf containing 0. Moreover, we may assume N19 N2, ,
Nm are mutually disjoint. It is then clear that U = ΠΓ=i t/< i s a neighborhood

Consider the point Pit Since P^ is not a vertex there exists an open neigh-
borhood Ni of Pi in # on which k is strictly monotone. By Lemma 6, Λ^ does
not contain Pj7 where / Φ ί. Let P\ and P " be the boundary points of Nt. It
follows from Lemma 6 that ^JP<=Ni <o(P) is an open set of S; it is the com-
ponent of S - [ω(PD U ω(P 0] containing P*. Then E/< = U P 6 * , ^(P) Π £ ' is
an open set of # ' . In fact Ut is the component of B' — [τr(P0 U π(P")] con-
taining P*. Clearly 0 e E/< since P* e Λ^.

Step 2. B'mis closed in B\ Let 0 i ? / = 1, 2, , be a sequence of points
in B'm approaching 0 € B\ Thus for each / = 1, 2, , there exist exactly m
points P i l ? Pi29 , P ί m of α such that 0* € τr(P^) for / = 1, 2, , m. By taking
subsequences if necessary, we may assume that Ptj approaches a point Pj as /
approaches infinity for / = 1, 2, , m. By continuity 0 e π(P3) for / = 1, 2,
• , m. Thus there are at least m points of a whose osculating plane at each
of those points passes through 0 unless P5 = Pk for some / Φ k. Suppose this
then in any neighborhood of Pό = Pfc there exist the distinct points Pi3,Pik,
for i sufficiently large. Since 0* e π(Pi3) Π π(Pik)9 ω(P^ ) Π ω(Pik) φ 0. By
Lemma 6, P3 = Pk is a vertex of α. But this contradicts the assumption

0 ί U?=i ^(^i) Thus Pj Φ Pk for all / Φ k between 1 and m inclusive. By Step
1 there exist at most m points P1 ? P2, , P m of a with 0 e π(P3).

Step 3. Br

m is open in i?7. This step follows immediately from Step 1 and
Step 2 since B'm = 0 for m > n by Theorem 4.

We now know that β r c B'm where m < n. Suppose m < n. We will show
this leads to a contradiction. Let 0 e a Π Ωr. Since 0 € β', there exist m points
P 1 ? P2, , Pm with 0 € τr(P*) for i = 1, 2, , m. In the notation of the proof
of Theorem 4, there exists an arc a1 for some integer between 1 and n inclu-
sive with the following property: there exists no point Q e a1 such that 0 € π(Q).
Thus ω(Fi) and ω(Vi+ι) do not have 0 between them. Hence, say, ω(Vi) and
0 are separated by ω(Vί+ι). In particular Vt and 0 are on opposite sides of
ω(F ί + 1 ) . Thus a must meet ω(Vί+1) at points other than Vi+1.

The converse follows from the remark following the proof of Theorem 4.
q.e.d.

It may still be that for every point 0 of Ω' there exists the same number of
points of a whose osculating plane at each of those points passes through 0
even though ω(Vi) Π a Φ {Vt} for some integer /, 1 < i < n. For this to
happen the following must be true: if, say, Vλ is a vertex of a and ω(V^
intersects a in more than V19 then there must be another vertex Vt for some
integer i, 2 < i < n, such that n(Vt) = π(V^). Also, for points P near Vx and
Q near Vu ττ(P) and π(Q) must be on opposite sides of π(VΊ) = π(Vi).
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