HOMOGENEOUS CONVEX DOMAINS OF NEGATIVE SECTIONAL CURVATURE

HIROHIKO SHIMA

Let Ω be an affine homogeneous convex domain in a finite dimensional real vector space V, not containing any full straight line. Then we know that Ω admits an invariant volume element

$$
v=K d x^{1} \wedge \cdots \wedge d x^{n}
$$

and that the canonical bilinear form

$$
D \alpha=\sum_{i, j} \frac{\partial^{2} \log K}{\partial x^{i} \partial x^{j}} d x^{i} d x^{j}
$$

defines an invariant Riemannian metric on Ω, [2], [6]. In this note we prove the following theorem.

Theorem. An affine homogeneous convex domain Ω not containing any full straight line has negative sectional curvature with respect to $D \alpha$ if and only if Ω is the interior of a paraboloid:

$$
y^{0}-\frac{1}{2} \sum_{i=1}^{n-1}\left(y^{i}\right)^{2}>-1
$$

where $\left\{y^{0}, y^{1}, \cdots, y^{n-1}\right\}$ is an affine coordinate system of V.
We first recall the construction of clans from homogeneous convex domains, [6]. In the following we assume that a homogeneous convex domain Ω contains the zero vector 0 . Let G be a connected triangular affine Lie group which acts simply transitively on Ω, and let g be the affine Lie algebra corresponding to G. For $X \in \mathfrak{g}$, we denote by $f(X), q(X)$ the linear part and the translation vector of X respectively. Since q is a linear isomorphism of g onto V, for each $x \in V$ there exists a unique $X_{x} \in g$ such that $q\left(X_{x}\right)=x$. We define an operation of multiplication in V by the formula

$$
\begin{equation*}
x \cdot y=f\left(X_{x}\right) y \quad \text { for } x, y \in V . \tag{1}
\end{equation*}
$$

Then we have

[^0]\[

$$
\begin{equation*}
\left[L_{x}, L_{y}\right]=L_{x \cdot y-y \cdot x}, \tag{2}
\end{equation*}
$$

\]

where $L_{x} y=x \cdot y$, or equivalently

$$
x \cdot(y \cdot z)-(x \cdot y) \cdot z=y \cdot(x \cdot z)-(y \cdot x) \cdot z
$$

We put

$$
\begin{equation*}
\alpha_{0}(x)=\operatorname{Tr} L_{x}, \tag{3}
\end{equation*}
$$

and identify the tangent space of Ω at 0 with V. Then the value of $D \alpha$ at 0 gives an inner product \langle,$\rangle on V$ such that

$$
\begin{equation*}
\langle x, y\rangle=\alpha_{0}(x \cdot y) . \tag{4}
\end{equation*}
$$

By (2^{\prime}) and (4) we get

$$
\begin{equation*}
\langle x \cdot y, z\rangle+\langle y, x \cdot z\rangle=\langle y \cdot x, z\rangle+\langle x, y \cdot z\rangle . \tag{5}
\end{equation*}
$$

The algebra V together with the linear function α_{0} is said to be a clan corresponding to Ω. If we define a bracket operation in V by

$$
\begin{equation*}
[x, y]=x \cdot y-y \cdot x \tag{6}
\end{equation*}
$$

then V is a Lie algebra with respect to this bracket operation and q is a Lie algebra isomorphism of g onto V. Therefore we may identify \mathfrak{g} with V by means of q. Following Nomizu [4], we shall express the Riemannian connection, the curvature tensor and the sectional curvature of Ω in terms of its clan V; those expressions were originally obtained by Y. Matsushima (unpublished).

Proposition 1. The Riemannian connection ∇ for $D \alpha$ is given by

$$
\nabla_{x} y=\frac{1}{2}\left(L_{x}-{ }^{t} L_{x}\right) y,
$$

i.e., ∇_{x} is the skew symmetric part of L_{x}.

Proof. According to [4], we have

$$
\nabla_{x} y=\frac{1}{2}[x, y]+U(x, y),
$$

where $2\langle U(x, y), z\rangle=\langle[z, x], y\rangle+\langle x,[z, y]\rangle$. By (5), (6), we get

$$
\begin{aligned}
2\langle U(x, y), z\rangle & =\langle z \cdot x-x \cdot z, y\rangle+\langle x, z \cdot y-y \cdot z\rangle \\
& =\langle z \cdot x, y\rangle+\langle x, z \cdot y\rangle-\langle x \cdot z, y\rangle-\langle x, y \cdot z\rangle \\
& =\langle x \cdot z, y\rangle+\langle z, x \cdot y\rangle-\langle x \cdot z, y\rangle-\langle x, y \cdot z\rangle \\
& =\langle z, x \cdot y\rangle-\langle x, y \cdot z\rangle=\left\langle L_{x} y-{ }^{t} L_{y} x, z\right\rangle .
\end{aligned}
$$

Hence it follows that

$$
U(x, y)=\frac{1}{2}\left(L_{x} y-{ }^{t} L_{y} x\right)=\frac{1}{2}\left(L_{y} x-{ }^{t} L_{x} y\right),
$$

so that

$$
\nabla_{x} y=\frac{1}{2}\left(L_{x} y-L_{y} x\right)+\frac{1}{2}\left(L_{y} x-{ }^{t} L_{x} y\right)=\frac{1}{2}\left(L_{x}-{ }^{t} L_{x}\right) y .
$$

Proposition 2. Let S_{x} be the symmetric part of L_{x}, i.e., let $S_{x}=\frac{1}{2}\left(L_{x}+{ }^{t} L_{x}\right)$. Then we have

$$
\begin{equation*}
S_{x} y=S_{y} x \tag{i}
\end{equation*}
$$

and the curvature tensor R and the sectional curvature k are given by

$$
\begin{gather*}
R(x, y)=-\left[S_{x}, S_{y}\right] \tag{ii}\\
k(x, y)=\frac{\left\|S_{x} y\right\|^{2}-\left\langle S_{x} x, S_{y} y\right\rangle}{\|x\|^{2}\|y\|^{2}-\langle x, y\rangle^{2}},
\end{gather*}
$$

(iii)
where $\|x\|=\sqrt{\langle x, x\rangle}$.
Proof. (i) is equivalent to (5). In fact we have

$$
\begin{aligned}
2\left\langle S_{x} y, z\right\rangle & =\left\langle\left(L_{x}+{ }^{t} L_{x}\right) y, z\right\rangle=\langle x \cdot y, z\rangle+\langle y, x \cdot z\rangle \\
& =\langle y \cdot x, z\rangle+\langle x, y \cdot z\rangle=\left\langle\left(L_{y}+{ }^{t} L_{y}\right) x, z\right\rangle=2\left\langle S_{y} x, z\right\rangle
\end{aligned}
$$

Since $R(x, y)=\left[\nabla_{x}, \nabla_{y}\right]-\nabla_{[x, y]}$, by Proposition 1, (2) and (6) we get

$$
\begin{aligned}
R(x, y)= & \frac{1}{4}\left[L_{x}-{ }^{t} L_{x}, L_{y}-{ }^{t} L_{y}\right]-\frac{1}{2}\left(L_{[x, y]}-{ }^{t} L_{[x, y]}\right) \\
= & \frac{1}{4}\left\{\left[L_{x}, L_{y}\right]-\left[L_{x},{ }^{t} L_{y}\right]-\left[{ }^{t} L_{x}, L_{y}\right]\right. \\
& \left.\quad+\left[{ }^{t} L_{x},{ }^{t} L_{y}\right]-2\left[L_{x}, L_{y}\right]+2^{t}\left[L_{x}, L_{y}\right]\right\} \\
= & -\frac{1}{4}\left[L_{x}+{ }^{t} L_{x}, L_{y}+{ }^{t} L_{y}\right]=-\left[S_{x}, S_{y}\right] .
\end{aligned}
$$

From (i), (ii) we obtain

$$
\begin{aligned}
\langle R(x, y) y, x\rangle & =\left\langle-\left[S_{x}, S_{y}\right] y, x\right\rangle=\left\langle-S_{x} S_{y} y+S_{y} S_{x} y, x\right\rangle \\
& =\left\langle S_{x} y, S_{y} x\right\rangle-\left\langle S_{y} y, S_{x} x\right\rangle=\left\|S_{x} y\right\|^{2}-\left\langle S_{x} x, S_{y} y\right\rangle
\end{aligned}
$$

which together with $k(x, y)=\frac{\langle R(x, y) y, x\rangle}{\|x\|^{2}\|y\|^{2}-\langle x, y\rangle}$ gives (iii).
A clan V is said to be elementary if V satisfies the following conditions:
(E.1) $\quad V=\{u\}+P \quad$ (direct sum of vector spaces),

$$
\begin{equation*}
u \cdot u=u, \quad u \neq 0 \tag{E.2}
\end{equation*}
$$

$$
\begin{equation*}
u \cdot p=\frac{1}{2} p \quad \text { and } \quad p \cdot u=0 \quad \text { for } p \in P \tag{E.3}
\end{equation*}
$$

$$
\begin{equation*}
p \cdot q=\Phi(p, q) u \quad \text { for } p, q \in P \tag{E.4}
\end{equation*}
$$

where Φ is a positive definite symmetric bilinear form on P.

The domain Ω corresponding to an elementary clan is the interior of a paraboloid (cf. [5], [6]) :

$$
\Omega=\left\{a u+p ; a-\frac{1}{2} \Phi(p, p)>-1 \text { for } a \in \boldsymbol{R}, p \in P\right\} .
$$

To prove our theorem, therefore, it suffices to show
Theorem. Let V be a clan. Then the following conditions are equivalent:
(i) The sectional curvature $k<0$.
(ii) V is an elementary clan.

Proof. We first prove that (i) implies (ii). Since V is a clan, there exists a nonzero element $u \in V$ such that (cf. [5])

$$
\begin{equation*}
u \cdot u=u \tag{7}
\end{equation*}
$$

and moreover putting $P=\{p \in V ; p \cdot u=0\}$ we have:

$$
\begin{equation*}
V=\{u\}+P \quad \text { (orthogonal decomposition) } \tag{9}
\end{equation*}
$$

(10) $\quad L_{u}$ leaves P invariant, and the eigenvalues of L_{u} on $P=0$ or $\frac{1}{2}$.

Let p be an element in P such that $L_{u} p=0$. By (7), (8) and (9) we obtain

$$
\left\langle S_{u} u, q\right\rangle=\frac{1}{2}\left\langle\left(L_{u}+{ }^{t} L_{u}\right) u, q\right\rangle=\frac{1}{2}\langle u, q\rangle+\frac{1}{2}\langle u, u \cdot q\rangle=0
$$

for all $q \in P$, so that $S_{u} u \in\{u\}$. Put $S_{u} u=\lambda u(\lambda \in \boldsymbol{R})$. Then it follows from Proposition 2(i) that

$$
\left\langle S_{u} u, S_{p} p\right\rangle=\left\langle\lambda u, S_{p} p\right\rangle=\lambda\left\langle S_{p} u, p\right\rangle=\lambda\left\langle S_{u} p, p\right\rangle=\lambda\langle u \cdot p, p\rangle=0
$$

Therefore by Proposition 2 (iii) we have

$$
k(u, p)\left(\|u\|^{2}\|p\|^{2}-\langle u, p\rangle^{2}\right)=\left\|S_{u} p\right\|^{2}-\left\langle S_{u} u, S_{p} p\right\rangle=\left\|S_{u} p\right\|^{2} \geq 0 .
$$

Since $k<0$, we have $p=0$. Hence it follows from (10) that the eigenvalues of L_{u} on P are equal to $\frac{1}{2}$. By [5] this means that

$$
\begin{equation*}
p \cdot q=\Phi(p, q) u \quad \text { for } p, q \in P \tag{11}
\end{equation*}
$$

where Φ is a positive definite symmetric bilinear form on P. Since $\langle x, u\rangle=$ $\alpha_{0}(x)$ for all $x \in V, u$ is the principal idempotent of V and $V=\{u\}+P$ is the principal decomposition of V, [6]. Therefore V is an elementary clan.

Conversely we shall prove that (i) follows from (ii). Let $u_{0}=\frac{1}{\sqrt{\alpha_{0}(u)}} u$, p_{1}, \cdots, p_{n-1} be an orthonormal basis of V such that $p_{i} \in P$. Then we have

$$
\begin{array}{ll}
u_{0} \cdot u_{0}=\frac{1}{\sqrt{\alpha_{0}(u)}} u_{0}, & p_{i} \cdot p_{j}=\frac{\delta_{i j}}{\sqrt{\alpha_{0}(u)}} u_{0} \\
u_{0} \cdot p_{i}=\frac{1}{2 \sqrt{\alpha_{0}(u)}} p_{i}, & p_{i} \cdot u_{0}=0 \tag{12}
\end{array}
$$

$\delta_{i j}$ being Kronecker's delta. Let $x=\lambda_{0} u_{0}+\sum_{i=1}^{n-1} \lambda_{i} p_{i}$ and $y=\mu_{0} u_{0}+\sum_{i=1}^{n-1} \mu_{i} p_{i}$ be elements in V where $\lambda_{j}, \mu_{j} \in \boldsymbol{R}$. By (12) we get

$$
\begin{equation*}
x \cdot y=\frac{\lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}}{\sqrt{\alpha_{0}(u)}} u_{0}+\sum_{i=1}^{n-1} \frac{\lambda_{0} \mu_{i}}{2 \sqrt{\alpha_{0}(u)}} p_{i} \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
\left\langle S_{x} y, u_{0}\right\rangle= & \left\langle\frac{1}{2}\left(L_{x}+{ }^{t} L_{x}\right) y, u_{0}\right\rangle=\frac{1}{2}\left\langle x \cdot y, u_{0}\right\rangle+\frac{1}{2}\left\langle y, x \cdot u_{0}\right\rangle \\
= & \frac{1}{2}\left\langle\frac{\lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}}{\sqrt{\alpha_{0}(u)}} u_{0}+\sum_{i=1}^{n-1} \frac{\lambda_{0} \mu_{i}}{2 \sqrt{\alpha_{0}(u)}} p_{i}, u_{0}\right\rangle \\
& +\frac{1}{2}\left\langle\mu_{0} u_{0}+\sum_{i=1}^{n-1} \mu_{i} p_{i}, \frac{\lambda_{0}}{\sqrt{\alpha_{0}(u)}} u_{0}\right\rangle \\
= & \frac{1}{2 \sqrt{\alpha_{0}(u)}}\left(2 \lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}\right), \\
\left\langle S_{x} y, p_{k}\right\rangle= & \left\langle\frac{1}{2}\left(L_{x}+{ }^{t} L_{x}\right) y, p_{k}\right\rangle=\frac{1}{2}\left\langle x \cdot y, p_{k}\right\rangle+\frac{1}{2}\left\langle y, x \cdot p_{k}\right\rangle \\
= & \frac{1}{2}\left\langle\frac{\lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}}{\sqrt{\alpha_{0}(u)}} u_{0}+\sum_{i=1}^{n-1} \frac{\lambda_{0} \mu_{i}}{2 \sqrt{\alpha_{0}(u)}} p_{i}, p_{k}\right\rangle \\
& +\frac{1}{2}\left\langle\mu_{0} u_{0}+\sum_{i=1}^{n-1} \mu_{i} p_{i}, \frac{\lambda_{k}}{\sqrt{\alpha_{0}(u)}} u_{0}+\frac{\lambda_{0}}{2 \sqrt{\alpha_{0}(u)}} p_{k}\right\rangle \\
= & \frac{\lambda_{0} \mu_{k}+\mu_{0} \lambda_{k}}{2 \sqrt{\alpha_{0}(u)}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
S_{x} y=\frac{1}{2 \sqrt{\alpha_{0}(u)}}\left\{\left(2 \lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}\right) u_{0}+\sum_{i=1}^{n-1}\left(\lambda_{0} \mu_{i}+\mu_{0} \lambda_{i}\right) p_{i}\right\}, \tag{14}
\end{equation*}
$$

from which it follows that

$$
\begin{aligned}
\left\|S_{x} y\right\|^{2} & -\left\langle S_{x} x, S_{y} y\right\rangle \\
& =\frac{1}{4 \alpha_{0}(u)}\left\{\left(2 \lambda_{0} \mu_{0}+\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}\right)^{2}+\sum_{i=1}^{n-1}\left(\lambda_{0} \mu_{i}+\mu_{0} \lambda_{i}\right)^{2}\right.
\end{aligned}
$$

(15)

$$
\begin{aligned}
&\left.-\left(2 \lambda_{0}^{2}+\sum_{i=1}^{n-1} \lambda_{i}^{2}\right)\left(2 \mu_{0}^{2}+\sum_{i=1}^{n-1} \mu_{i}^{2}\right)-\sum_{i=1}^{n-1} 4 \lambda_{0} \mu_{0} \lambda_{i} \mu_{i}\right\} \\
&=-\frac{1}{4 \alpha_{0}(u)}\left\{\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}\right)\left(\sum_{i=1}^{n-1} \mu_{i}^{2}\right)-\left(\sum_{i=1}^{n-1} \lambda_{i} \mu_{i}\right)^{2}\right. \\
&\left.+\sum_{i=1}^{n-1}\left(\lambda_{0} \mu_{i}-\mu_{0} \lambda_{i}\right)^{2}\right\}
\end{aligned}
$$

Therefore, if x and y are linearly independent, then we have $k(x, y)<0$ by Proposition 2 (iii) and Schwarz's inequality. Hence our theorem is completely proved.

References

[1] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974) 23-34.
[2] J. L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89 (1961) 515-533.
[3] -, Ouverts convexes homogènes des espaces affines, Math. Z. 79 (1962) 254-259.
[4] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954) 33-65.
[5] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976) 213-229.
[6] E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov Math. Obshch. 12 (1963) 303-358; English transl., Trans. Moscow Math. Soc. 13 (1964) 340-403.

[^0]: Communicated by Y. Matsushima, June 30, 1975.

