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LOCAL ISOMETRIC IMBEDDING OF RIEMANNIAN
rc-MANIFOLDS INTO EUCLIDEAN ( n + 1 ) -SPACE

JAAK VILMS

The problem of isometrically imbedding an n-dimensional Riemannian
manifold Mn into Euclidean space En+P has received considerable attention.
For example, it is now known that for each n, all infinitely difϊerentiable Mn

admit local isometric imbedding into Mn+a/2)n(n+1), and global isometric imbedd-
ing into En+P(n), where p(n) is a certain function whose optimal determination
has been the object of recent study.

On the other hand, much less progress has been made in discovering neces-
sary and sufficient conditions for a given Mn to be locally or globally isomet-
rically imbeddable into En+P for various fixed values of p < p(n). The known
results are mostly limited to p = 0 and 1. The case p = 0 is of course
classical—local isometric imbedding of Mn into En occurs when the curvature
is zero, and global imbedding, when the global holonomy group is trivial. For
p = 1, many conditions necessary for global imbedding are known, while
sufficient conditions must await further local developments. The basic approach
here is also classical. Namely, the fundamental theorem for hypersurfaces [2,
p. 47] reduces the question of finding necessary and sufficient conditions for
local isometric imbedding of Mn into En+1 to the problem of solving the Gauss
and Codazzi equations for a suitable second fundamental form tensor, in terms
of the curvature tensor of Mn therefore, the results obtained will necessarily
be in the form of conditions on the curvature tensor.

The Gauss and Codazzi equations have been solved by T. Y. Thomas in
his fundamental paper [4], and by N. A. Rozenson in her formidable work
[3]. Each used different methods and obtained different types of conditions on
the curvature tensor. Due to the quite complicated form of these results,
however, the local p = 1 situation is far from being clear and warrants further
work.

In the present paper, we use the method of bivectors and a theorem of
W. L. Chow [1] to solve the Gauss (and Codazzi) equations in the case of a
nonsingular curvature tensor, getting in this case, new necessary and sufficient
conditions for local isometric imbedding of Mn into En+1 (cf. Theorem 4 below).

We proceed with a precise statement of the problem, in our bivector setting.
Let V be an n-dimensional real vector space with inner product. Let Λ2V de-

Received May 10, 1975,



198 JAAK VILMS

note the ί ̂ -dimensional space of bivectors of V; it has an inner product in-
duced from V by the definition ( x Λ j , «Λ V} = (X, u)(y, v} — <*, v)(y, u}.
A linear map L: V -* V defines a linear map L A L: ΛΨ —> ΛΨ by (L Λ
L)(x A y) = Lx Λ Ly if L is symmetric, then so is L A L. When F is taken
to be the tangent space at a point of Mn, then the curvature tensor R at that
point can be thought of as a symmetric linear map R: ΛΨ —> Λ2F, via the
equation (R(x Ay), u Av} = (R(x, y)v, w>, where the R on the right side
denotes the usual curvature operator on V, and the inner product in V is the
Riemannian metric. Letting L denote the second fundamental form operator
and denoting the covariant derivative by F, we can then express the Gauss
and Codazzi equations as [2, pp. 30, 35]: R = L A L and FL is symmetric.
Of these two equations, the Gauss equation R = L A L is the principal one,
since under rather general conditions, Gauss implies Codazzi. Namely, (cf.
[4, pp. 198, 205, and 191]) suppose Mn is a Riemannian manifold with C3

metric, the rank of R (as a linear map on ΛΨ) is >6, and the Gauss equation
R = L A L holds at each point of Mn. Then the tensor field L (defined by
the collection of L's at each point) is C1 and satisfies the Codazzi equation.
Thus the problem of locally isometrically imbedding into En+1 aC3 Riemannian
manifold Mn with curvature of rank > 6 is reduced to the following algebraic
question: Given a symmetric linear map R : ΛΨ —> ΛΨ, find necessary and
sufficient conditions in order that there exist a symmetric linear map L: V —>
V satisfying R = L A L.

We now part company with the paths taken by Thomas and Rozenson, and
exploit the bivector setting of the problem. Our first theorem uses a result of
Chow [1] to establish the existence of a suitable L, modulo the right sign.
Nonsingularity of the curvature R is essential to the argument.

Theorem 1. Let R be nonsingular and symmetric, and let n > 5. Then
there exists an L such that R = ±L A L if and only if

( 1 ) R{x, A x2) A R(x3 A JC4) = -R(xλ A x3) A R(x2 A xA) for all xi e V .

Proof. If R = ±L A L, then (1) follows trivially. So it remains to show
that (1) implies R = ±L A L. Let G2 denote the subset of ΛΨ consisting of
all nonzero decomposable bivectors, i.e., all a in ΛΨ having the form a =
x Ay, oτ equivalently, satisfying a A a = 0 in ΛΨ. Since x A y is nonzero
if and only if x, y are independent, and since u A v, x A y are proportional if
and only if {w, v} = {x,y}, where {• •} denotes the span of vectors in V, it
follows that 2-dimensional subspaces of V correspond biuniquely with those
1-dimensional subspaces of ΛΨ which lie in the subset G2.

Hence, if we pass to projective spaces P(V) and P(ΛΨ), denoting the pas-
sage by square brackets, then [G2] C P(ΛΨ) is precisely the Grassmann man-
ifold of all projective lines in P(V). We say [a], [β] € [G2] are adjacent if their
corresponding projective lines in P(V) intersect. Now Theorem I in [1, p. 38],



LOCAL ISOMETRIC IMBEDDING 199

with r = 1, can be stated in this way: // /: [G2] —• [G2] is a bijective mapping
which preserves adjacence (both ways), and if dim V > 5, then there exists a
nonsingular linear map L: V —> V such that f = [L A L]\ [G2]. (Remark:
The dimension restriction serves to exclude correlations.)

Our nonsingular linear map R : Λ2V —• Λ2V induces a bijection [R]: P(Λ2V)
—* P(Λ2V), and we want to apply Chow's result to / = [i?] | [G2]. In order to
do this, we must verify that [R] maps [G2] onto [G2] and preserves adjacence
both ways.

To see what this means, we note the analytic meaning of adjacence. Namely,
for [a], [β] e [G2], the corresponding protective lines in P(V) are [{x, y}] and
[{«, v}], where a = x A y, β = u A v. These lines intersect if and only if
dim {x, y, u, v) = 3 if and only if a A β = 0 in Λ4V if and only if a, β can be
represented as a = a A b, β = b A c. Therefore, if we can establish that

( 2 ) a A β = 0 if and only if Ra A Rβ = 0 , for all α, 5 € Λ2F ,

then it easily follows that R(G2) = G2 and that [#] | [G2] preserves adjacence
both ways.

We shall now use our hypothesis (1) and the symmetry of R to establish
condition (2). Consider the map h: (F) 4 —> Λ4V defined by h(x19 x2, xz, xA) =
R&! A x2) A R(xz A x4) clearly h is multilinear, and (1) implies it is alter-
nating. Hence h factors through a linear map A : ΛΎ —» ΛΎ, so that A(xx A
i 2 Λ ^ 3 Λ xd = R(xχ Λ x2) A R(x3 A xA). Consequently, A(a A β) = Ra A
Rβ for all a, β e Λ2V. Since A is linear, ^4(0) = 0, which establishes (2) in one
direction. The other part of (2) will follow from the nonsingularity of A, which
we establish next, using the symmetry of R.

Namely, let wr, 1 < r < ί ί jh be a basis of Λ2V which diagonalizes R, i.e.,

Rwr = prwr for all r. Since R is nonsingular, all pr Φ 0. Now the 4-vectors
wrws span Λ4V, as can be seen from the expansions et A e5 A ek A eι =
Σr,* AjAί^r^^ where ei9 1 < i < n, is a basis of F, and et A ej = Σr xr

tjwr

is the basis change formula in Λ2V. Since a spanning set always contains a
basis as a subset, it follows that some of the wrws form a basis of Λ4F. But
A(wrws) = RwrRws = pr|θs>vr>vs, so this basis diagonalizes A. Since all ^ ^
^ 0, A must be nonsingular. This finishes the proof of (2) hence \R\ \ [G2]
satisfies Chow's hypotheses.

We conclude, therefore, that there exists a nonsingular linear map L: V -+
V such that [R] = [L A L] on [G2]. A standard technique of projective
geometry can now be applied to show that R = cL A L for some constant
c Φ 0. Namely, for each x A y e G2, we have [R(x A y)] = [Lx A Ly],
whence R(x Ay) — cXyVLx A Ly, with cXtV Φ 0. Let us choose a basis e19

•- ,en of F, and denote ctJ = ceuep so that R(et A e3) = cuLet A Le3.
Note that cis = cjt. Consider now the equation R(et A ej) + R.{ei A ek) =
R(ei A (ej + eH)) the left side reduces to cυ(Lei A Ley) + cik(Let A Lek),
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and the right to ciJ+k(Let A Lβj) + cUj+k(Lei A Lek). If i φ j , ί Φ k, j Φ k,
then the bivectors et A ea and et A ek are independent. Also, L Λ L i s non-
singular if and only if L is nonsingular. Therefore we can conclude that ci5

= ciJ+k = cik for all such i, /', k. Then the symmetry of ctj implies that ctJ

= ckl for all / < / and k < 1 let us denote this common value of these ciά by
e. Thus we have R{et A e3) = c(Let A Le0) for all / < /. Because et A βj
for / < / is a basis of ΛΨ, we get R = cL A L, as was asserted above.

Since c Φ 0, we must have either c > 0 or c < 0. If we note that cL A L
= ±(V|c|L) Λ (V\c\L), with the sign determined by that of c, we can re-
write R = cL A L as R = ±L A L by redefining L as Vfcj"!/. This finishes
the proof of Theorem 1.

Our next task is to establish the symmetry of the map L obtained in Theo-
rem 1, i.e., to prove that (Lx, y} — <JC, Ly} for all x, y e V. For this purpose,
we invoke the first Bianchi identity, which is satisfied at each point by the
curvature R of each Riemannian manifold. In our notation, this identity ap-
pears as

<Λ(JC Ay),z Av} + (R(z A x), y A v} + (R(y A z), x A v} = 0

for all JC, y, z, w € V.
Theorem 2. Let R be nonsingular, let n > 3, and let R satisfy the first

Bianchi identity. If R = ±L A L, then L must be symmetric.
Proof. Let us substitute R = ±L A L into the Bianchi identity and use

the definition of inner product in A2V. We get, after collecting terms,

<Lx, v}[(Lz, y} - (Ly, z>] + (Ly, v}[(Lx, z} - <JLz9

+ <Lz, vyiφy, x} - (Lx, y}] = 0 .

Define the map T: V -> E3 by T(v) = «Lx, v}, (Ly, v}, <Lz, Vs)), where
x, y, z € € V are fixed. We clearly have

ker T = {Lx, Ly, Lz}1 .

Since R = ± L Λ L is nonsingular, so is L. Hence, if JC, j , z are independent,
then so are Lx, Ly, Lz. But then dim {Lx, Ly, Lz) = 3, and consequently
dim ker T = n — 3. Therefore rank Γ = 3, i.e., T is onto this means that,
given any (a, b, c) in E3, there is a v in V such that α = (Lx, v}, b = <Ly, v>,
c = (Lz,vy. If we let α, fe, c be the three expressions inside the square
brackets on the left side of (3), then (3) becomes a2 + b2 + c2 = 0, whence
a = b = c = 0. But c = (Ly, x} — (Lx, y}, so we get (Lx, y} = (x, Ly},
as was to be shown. On the other hand, if x, y are dependent, then y = dx,
and (Lx, y} = (Lx, dx) = (L(dx), x) = (x, Ly}. This proves Theorem 2.

It remains to remove the minus sign from R = ±L A L. Let us observe
first that the plus and the minus in ±L A L denote two mutually exclusive
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classes of maps, namely, if n > 3 and L, M are nonsingular, then L Λ L Φ
— MAM. (This follows from the proof on page 44 in [2] by inserting a
minus sign a contradiction will arise at the end: 1 + c2 = 0, c real).

We proceed to state a criterion to distinguish between the two classes of
maps + L A L and —LA L on Λ2V. In order to do this, we must consider
coordinate representations for R. If e l5 , en is a basis of F, then ex A ej9

for 1 < i < j < n, is a basis of Λ2V, and a linear map R: Λ2V —• ΛΨ has
the coordinates R{{9 i < /, k < /, with respect to this basis. These coordinates
can be defined by R[{ = {eι A eJ)R(ek A et), where e1 denotes the dual basis
of et. This formula in fact defines Ryt for all values of i, j , k, I, but it is easy
to see that the usual curvature identities hold:

Rti = -Ri\ = -mi = mi, m\ = R& = o.

(If one does not want to use the dual basis, then one could, indeed, use these
identities to define R{{ for arbitrary /, /, k, /, from its values for / < /, k < Z.)
Define φ(R) and ψ(R) by φ(R) = RtiR^R1^ and ψ(R) = RVRi&Rff, where we
sum over all repeated upper and lower indices. The functions φ(R) and ψ(R)
are scalar invariants of the tensor R\{, i.e., the coordinate expressions remain
the same even if a basis change is performed. Hence any coodinates may be
used to evaluate φ(R) and ψ(R). (Remark: ψ(R) = 8 trace (JR3) )

Theorem 3. Let R be nonsingular, R = + L Λ L, L symmetric, and
n>3.

(i) R = L Λ L if and only if φ(R) + iψ(R) > 0 .
(ii) In case n = 3 (mod 4), R = L Λ L if and only if det R > 0 .
Proof. Since L is symmetric, there exists an orthonormal basis et in F

which diagonalizes L : L^^ = λ%ei9 for / = 1, ••-,«. We know that λι Φ 0 for
all / because L is nonsingular (since ± L Λ L is). Then the basis et A ed,i <
/, diagonalizes R:

( 4 ) R(et A ej) = ±λiλJ(ei A e,) ,

where + means either + always or — always. Clearly the expression below
is nonzero and is positive or negative according to the sign in (4), that is, the
sign in R = + L A L:

Σ (±W±JΛ)(±W = ± Σ (W*)*
i<j<k i<j<k

In the above orthonormal coordinate system, R has the matrix expression

( 5 ) R % = ± λ ί λ j δ i

k

j

ι , i < j , k < l .

If the values Rfy are defined for all /, /, k, I according to the customary scheme
mentioned in the discussion above, then we can evaluate the expression for
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φ(R) by summing it out over i, j , k, I, p, q. A long but straightforward calcula-
tion shows that

Φ(R) = ±8 Σ (W*)2 - 2 Σ (± W ,
i<j<k i<j

where + or — is taken asR = LALoτR = —L Λ L, respectively. A
much shorter calculation yields ψ(Λ) = 8 ΣKJ (±M/) 3 Hence φ(R) + iψtfO
= ± 8 Σi<j<k iλtλjλ*f> Thus we see that the sign of φ(R) + %ψ(R) does in-
deed distinguish between R = L A L and R = —L A L.

To prove part (ii), we can use the same special coordinate system and the
matrix expression (5) to calculate that

detfl = (±M)(±^3) ί ± U J

= (±D®ttA -tn)71-1 = (±D®(detL)-1 .

If n = 4J + 3, then ίπ j = —n(n — 1) is odd and n — 1 is even. Hence,

noting that detL Φ 0, we see detiΐ = ±(positive number). Since the + or
— is taken a s i ? = L Λ L o r Λ = —L A L, respectively, the criterion (ii)
is established, and Theorem 3 is proved.

Our main theorem about local isometric imbedding now follows directly
from the results proved above. We assume the manifold has a metric of class
C3, at least.

Theorem 4. Let Mn, with n > 5, be a Riemannian manifold with non-
singular curvature tensor R. Then Mn admits local isometric imbedding into
En+1 if and only if

(i) R(xx A x2) A R(xz A xA) + R(x, A xz) A R(x2 A xA) = 0, for all xt

€ V, and
(ii) RmiR% + iR&RZRϊ! > 0 .

Moreover, if n = 3 (mod 4), then (ii) can be replaced by det# > 0.
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