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FILTRATIONS AND ASYMPTOTIC AUTOMORPHISMS
ON NILPOTENT LIE GROUPS

ROE GOODMAN

1. Introduction

Let g be a real, nilpotent finite-dimensional Lie algebra. In this paper we
compare the following three Lie group structures on g:

( i ) the additive group structure x + y of the vector space g,
(ii) the multiplicative group structure xy obtained from the Lie bracket

[x, y] by the Campbell-Hausdorff formula,
(iii) a multiplicative group structure x o y obtained by taking a Lie algebra

filtration of g, mapping g into the associated graded algebra to obtain a new
Lie bracket {JC, y}, and then substituting this new bracket operation into the
Campbell-Hausdorff formula.

These Lie group structures have much in common. The operation of in-
version is x —> —x in all cases, and Haar measure is Euclidean measure dx.
Near the identity element the group operations coincide "to first order," of
course. The basic result of this paper is that these three operations are also
close at infinity, provided the measurement of size is made via a nonisotropic
gauge rather than by the Euclidean norm.

The chief tools we use are one-parameter groups of dilations {<5r}r>0 and
gauges \x\ which are homogeneous relative to the dilations: \δrx\ = r \x\ (de-
finitions in § 3). The simplest situation occurs when δr can be taken as an
automorphism of the Lie algebra structure. In this case Knapp-Stein [7] (where
a suitable power of a homogeneous gauge is called a "norm function") and
Koranyi-Vagi [6] have used gauges and dilations to extend the Calderon-
Zygmund singular integral operator theory from the additive group of g to the
noncommutative group G.

In general, the automorphism group of a nilpotent Lie algebra need not
contain any dilations [4]. Equivalently, g may not admit any Lie algebra
gradations. However, g always admits a separating Lie algebra filtration (e.g,
the descending central series), and the graded Lie algebra structure associated
to the filtration does admit dilating automorphisms {δr}. In §§4-6 we prove
that the graded multiplication x o y is obtained from the multiplication xy by
taking the limit as r —> oo of δι/r(δrxδry). We estimate the differences \xy —
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χoy\ and \x + y — xy\, measured by a <5r-homogeneous gauge. In particular,
δr, which is an exact automorphism of the group structures x + y and χoy,
is shown to be an asymptotic automorphism of xy (as |JC| + \y\ —» oo). Using
these estimates, we prove an estimate for \f(xy) — f(x)\, where / is a smooth
homogeneous function. (In the graded case this estimate was obtained by
Koranyi and Vagi [6].)

In § 7 we reverse the order of construction. Starting with an arbitrary
dilation group δr on Euclidean space and the infinite-dimensional Lie algebra
if of vector fields with polynomial coefficients, we use the induced action of
δr on i f to obtain a finite-dimensional nilpotent Lie subalgebra n of if. The
dilations δr define a gradation and filtration on n. Using this, we show that a
construction given by Auslander et al [1] in terms of canonical coordinates on
a nilpotent group G amounts to embedding g as a filtered subalgebra of n.
The "modified" multiplication on G defined in [1] is then the graded multipli-
cation χoy determined by the filtration on g induced by this embedding. (This
embedding is essentially an analytic version of Birkhofϊ's embedding of g as a
subalgebra of the upper trianglar matrices [2].)

In a sequel to this paper we use the results of § 5 to study certain translation-
invariant spaces of entire functions on a complex nilpotent group G c . The
present estimates allow us to obtain a "best possible" result concerning the
analytic continuation of Banach space representations of a real form G to
holomorphic representations of G c .

2. Notation and preliminaries

As usual N, R, and C denote the sets of nonnegative integers, real numbers,
and complex numbers, respectively. For λeC, \λ\ denotes the usual absolute
value. (The same symbol will be used for gauge functions, but it will be clear
from the context which is meant.)

g will be a finite-dimensional nilpotent Lie algebra over R, and | |* | | for x e g
will be a Euclidean norm defined relative to some basis for g. G will be the
simply-connected group with Lie algebra g. We will identify G with g as an
analytic manifold via the exponential map. The group multiplication on G is
then defined via the Campbell-Hausdorίϊ formula [3]. The group operations
have the form

(2.1) x~ι = -x ,

(2.2) xy = x + y + τ(x, y) ,

where τ is a polynomial function of x, y. Thus the set g is furnished with the
additive group structure JC, y —> x + y, and three multiplicative structures:
scalar multiplication λ, x —> λx? Lie bracket x, y —> [x, y], and group multipli-
cation x, y -* xy.
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Given two functions φ and ψ from a set X to [0, oo), we write φ < ψ if
there is a positive constant M such that φ(x) < Mψ(x) for all x e X. If φ < ψ
and ψ < φ, we write φ & ψ.

3. Dilations and gauges

Let F be a finite-dimensional vector space over R, and suppose Z): V -* V
is a diagonalizable linear transformation with all eigenvalues positive. Define
δr = rD ίoτ r > 0. Then {δr} is a one-parameter group of automorphisms of
the additive structure of V, and

lim δrx = 0 , lim | | ^ | | = + oo
r-»0 r-»oo

(if Λ: :£ 0). We shall refer to {δr} as a group of dilations of V.
If Λ C (0, oo) is the set of eigenvalues of D, there is a direct sum decom-

position

(3.1) V=ΣVλ9 QeΛ),

where the subspace Vλ is characterized by

(3.2) δrx = rλx , x e V2

Denote by Pλ: V -+Vλ the projection operator, and write xλ = Pλx. Multi-
plying D by a positive constant if necessary, we shall assume that

(3.3) m i n 4 = l .

The set Λ will be called the spectrum of {δr}.
It will be useful to introduce growth-measuring functions on V which take

into account the different rates of expansion of δr in the various Vλ.
Definition. A δ^-homogeneous gauge on V is a continuous function x —>

|JC| from V to [0, oo) such that

(i) |jc| = 0 φ * = 0 ,
(ii) \δrx\ = r\x\ , a U r > 0 .
Fixing the dilation group {̂ r}, we shall simply use the term homogeneous

gauge.
Example. For any a > 0, the function

(3.4) |*|

is a homogeneous gauge on V. If a > max {λ}, then it is a C1 function on
V ~ {0}.

Lemma 1. // | | and \ |x αre δr-homogeneous gauges, then \x\ « |jc|lβ
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Proof. It is enough to consider the case that |JC| is given by (3.4) with a = 1.
Set φ(x) — |JC|X/|JC|, x Φ 0. Then φ is continuous on V ~ {0}, and φ(δrx) =
φ(x). The set {|JC| = 1} is obviously compact, so Cλ < φ{x) < C2 if |JC| = 1.
Hence Cx \x\ < \x\x < C2 \x\ for all x. q.e.d.

By similar compactness arguments, one proves

Lemma 2. // | | is any homogeneous gauge, then \ —x\ & \x\, \x + y\ <,
\x\ + \y\, and \tx\ < \x\ uniformly forO<t<l.

A function / o n F - {0} will be said to be δr-homogeneous of degree μ if

Kδrx) = r«f(x)

for all r > 0 and x Φ 0. Fixing a homogeneous gauge, we define

H/IL = sup |/(JC)| .

Note that \\f\\,. < oo if / is continuous, and \f(x)\ < ||/||eo|jc|#l if / is homo-
geneous of degree μ.

Let (xi\ be a basis for Ϋ such that δrXι = rXixt, and let {ξt} be the diilal
basis for F * . If / is a difϊerentiable function on an open subset of V, define

~f(y -4- / T Λ

dt

Suppose now that / is a C1 function on V ~ {0} which is 5r-homogeneous of
degree μ. Then Dtf is 5r-homogeneous of degree μ — λt. Define

IIF/IU^maxH^/IU .
ί

The modulus of continuity of / can then be estimated as follows (cf. [6,
Lemma 5.2]).

Lemma 3. Let x, y € V — {0} and assume that the straight line σ(t) =
(1 — t)x + ty from x to y does not pass through 0. Then

(3.5) i/oo - /GOI < IIF/IL Σ ll^(* - y)ll Γ k ω r ^ Λ .
λ Jo

Proo/. Since ί —• f(σ(t)) is C1 on [0,1], we can write

(3.6) /GO - /(*) = Γ -^-/WO)Λ
Jo <iί

Now by the chain rule,

(3.7) -
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Since DJ is homogeneous of degree μ — λi9 we have

\DJ(σ(t))\<WfL\σ(t)rλi ^

Also \ξi(z)\ < \\Pitz\\. Using these estimates in (3.6) and (3.7), we obtain
(3.5).

4. Filtrations and gradations

Let g be a real Lie algebra, and let {QX}X€R be a family of subspaces of g
indexed by R. It is said to be a real filtration of g if

(4.1) ft, = Π 9 ^ fei> 8,1 £ &+μ

In this paper we assume g is nilpotent, and {gj is a real filtration. From (4.1)
we see that λx < λ2 implies g^ z> gia, so the family {gj is decreasing. We shall
assume also that

(4.2) U & = 8 > Π 9, - 0 ,

so the filtration is positive, exhaustive and separated. If ĝ  = gTO when n — \
<L λ < nίoτ every positive integer n, then the filtration is said to be integral
and is determined by the family {Qn}n€N. Every nilpotent Lie algebra admits
an integral filtration satisfying the above conditions (e.g., the descending
central series: gn+1 = [g, g j , gx = g). Conversely, any finite-dimensional Lie
algebra with a filtration satisfying (4.1) and (4.2) is nilpotent.

A special class of filtrations arises from gradations. Namely, suppose g is
the vector-space direct sum of subspaces {fy,}, indexed by a finite set A C (0, oo),
which satisfy

(4.3) &Λ1SW.

where we set \ = 0 if y $ Λ. Then setting

& = Σ \
μ Zλ

defines a positive filtration of g. If A C [α, 6], then gα = g and ĝ  = 0 for
λ> b.

Assume now {gj is a filtration satisfying (4.1) and (4.2). From it we con-
struct an associated graded Lie algebra gr (g) as follows [3, Chapter II, § 4].
Let g,+ = \Jμ>2 qμ9 and define

By condition (4.2)? A c (0, oo) and is finite. As a vector space,
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The Lie algebra structure on gr (g) is defined by setting

[χ + zΐ, y + &] = [χ,y] + &+μ

if x ζ $λ and y £ Qμ. This is well-defined by virtue of the filtration property
(4.1), and gr (g) is graded by the subspaces {&/&+},<=,,• For any c > 0, {gcj
satisfies (4.1) and (4.2). Choosing c suitably, we may assume

(4.4) min A = 1 .

We want to compare the Lie algebras g and gr (g). For this purpose, we
choose linear subspaces ^ c ĝ  so that

ga = 5i θ ftf > (λeΛ) .

Since the filtration is exhaustive and separating,

9 = Σ h •

The quotient maps ^ —> g^/gί set up a linear isomorphism between g and gr (g).
In general, the subspaces \ cannot be chosen to satisfy (4.3) (cf. [4], [9]).

However, we can use the linear isomorphisms they define to transfer the
Lie bracket from gr (g) to g. Denote this new Lie multiplication on ΐ) by {x, y}.
If Px: g —> ^ is the projection operator, then {JC, y} is expressed in terms of
the original bracket [ , ] by the formula

(4.5) {^}=ΣW^y
λ,μ

Observe that the filtration property (4.1) is equivalent to the equation

P v [ P λ x , P μ y ] = 0 , v < λ + μ .

Hence {Pλx, Pμy} is obtained by taking the "leading term" of [Pλx, Pμy].

5. Comparison of group structures

Let {gj be a positive filtration of the nilpotent Lie algebra g, and fix a choice
of subspaces {̂ } as in § 4. We define a one-parameter group of dilations <5r

on the vector space g by the formula

δr = Σ rλPλ .

We write xy for the Lie group multiplication on g associated with [x, v], and
x o y for the Lie group multiplication on g associated with {x, y}. We thus have
three group structures on g: x + y, χoy, and xy. The dilations dr are auto-



FILTRATIONS AND AUTOMORPHISMS 189

morphisms of the first two structures. Group inversion is given by x —> — x
for all three structures.

Let |JC| be a dr-homogeneous gauge. Our first main result is that the maps
JC, y —• xy and x, y -> x oy are "asymptotic at infinity" when measured via the
gauge, as follows.

Theorem 1. There is a positive constant γ < 1 so that for any ε > 0,

(5.1) |JQ'-Jeoy|^Af.(|*| + |yD'-

in the set {|Λ:| + \y\ > ε). In particular,

urn \*y*°y\
\χ\ + |y|

The proof of Theorem 1 will be given in § 6. Here we draw some con-
s e q u e n c e s f r o m ( 5 . 1 ) . S ince χoy — δί/r(δrxδry) = δι/r(δrχodry — δrxδry), w e
deduce that if |JC| + \y\ > e, then

(5.2) \χoy - δUr(δrxδry)\ < M6rr~\\x\ + \y\y .

In particular, since γ < 1, this implies
Corollary 1. χoy = lim,.^^ δ1/r(δrxδry).
Since δr(χoy) = ^rjco^ry, it follows directly from (5.2) that if r > ε and

1*1 + M > e, then there is a constant Cε so that

(5.3) \δr(xy) - (M)(3 r y) | < C.Γ(|JC| + \y\Y .

This implies

Corollary 2. For /uced r, <5r is an "asymptotic automorphism" :

lim \δr(*y) - (δrx)(δry)\ _ 0

|a?| + |y|-oo |JC| + |y|

Our next main result is a comparison of the additive group structure of q
and the nilpotent group structure of q.

Theorem 2. If ε> 0, there is a constant Cε so that in the region \x\>

εd + |y|),

(5.4) WPtey-x-yΆ^CΛx^W

In particular, if IIa = maxΛ {λ}, then in this region

(5.5) \χy-χ-y\<ce\χ\ι-«\y\«.

The proof of Theorem 2 will be given in § 6. Let us draw some consequences
from (5.4) and (5.5) at this point.
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Corollary 3. The right translation maps x -+ xy and x —> x + y are
"asymptotic at infinity":

Combining the results of Theorems 1 and 2, we can estimate the action of
translation by y on homogeneous functions, as follows.

Theorem 3. There are positive numbers M and C with the following
property: // / is a C1 function on q ~ {0} which is δr-homogeneous of degree
μ, then in the region \x\> M(l + \y\),

(5.6) \Kxy)-f(x)\<C\\Ff\U\xrί\y\.

The proof of Theorem 3, assuming the results of Theorems 1 and 2, goes
as follows: Consider the line segments σ(t) = (1 — i)x + txy and σQ(i) =
(1 — t)x — txoy, where 0 < t < 1. Using a compactness argument and the
fact that δr is an automorphism of xoy, Koranyi and Vagi [6, Lemma 5.2]
show that there exists an N > 0 such that for 0 < / < 1,

(5.7) \x\>N\y\^i\x\<\σo(t)\<2\x\.

Since σ(t) — σo(t) = t{xy — χoy), it follows by Theorem 1 that

(5.8) |JC| > {\y\ + 1) => \σ{t) - * o (0 | < |JC|' ,

where 0 < γ < 1. Combining (5.7) and (5.8), we conclude that there exists

a constant M > 1 so that in the region |JC| > M(\y\ + 1),

(5.9) M-ι\x\<\σ(t)\<M\x\.

Furthermore, in this region

\\Pλ(χy - y)\\ < \\P*(χy - * - y)ll + l l ^ l l < l ^ l a " Ί y | ,

by Theorem 2. Using these estimates in Lemma 3, we obtain (5.6).

6. Proofs of Theorems 1 and 2

As the preliminary step toward proving Theorems 1 and 2, we shall analyze
the contribution of each subspace \λ to the Campbell-Hausdorff formula. For
this purpose, introduce a set S of indeterminants Xx, Yλ, with λ ranging over
A, and denote by L(S) the free Lie algebra over 5 (cf. [3, Chapter II] for
definitions and notations). We use the generators Xλ, Yλ to define a multi-
gradation on L(S). Namely, if a, β e NΛ, then L(S)aβ is the subspace spanned
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by all "alternants" (iterated commutators of elements of S) containing Xλ, a(X)
times and Yi9 β(λ) times. Let {Hf} be a Hall basis for L(S)aβ, with each Hf being
an alternant in the Xλ and Yλ. The formal power series log (exp J]λ Xλ exp J]λ Yx)
is a Lie element in the completion of the tensor algebra over 5. Hence there
are rational coefficients Cf, with a, β nonzero and ranging over NΛ, such that

(6.1) log (exp (Σ Xd exp (Σ Yd) = Σ (Kι + Yd + Σ OγHγ

(graded form of the Campbell-Hausdorfϊ formula).
Return now to g = Σ ^ & carries two Lie algebra structures: [x,y] and

{x, y}. Let x = Σ *» y = Σ y» a n d define Hγ[x y] by the "substitution"
Xλ—>xλ, Yλ —> yλ, relative to the original Lie bracket [ , •]. Similarly, define
Hf{x y} by "substitution" relative to the Lie bracket {•, •} of gr (g). It then
follows by (6.1) that

(6.2) xy = x + y+Σ CγHf[x y] ,

while

(6.3) X o y = x + y + Σ Ca/Hf{x;y} .

(By the nilpotence of g, the sums in (6.2) and (6.3) are finite.)

To make the estimates as simple as possible, let us assume that the norm
on g has been adjusted so that ||[JC,y]\\ < \\x\\ \\y\\ and also ||{JC,y}\\ < \\x\\\\y\\.
(This can be achieved by scaling the basis for g used to define ||JC||.) With this
done, we have the estimate

The same estimate holds for Hγ{x y}. Define the weight w(a) of a multi-
index a e NΛ by w(a) = Σ Aztf). Since | | j t j < |JC|\ the above estimate may
be written as

(6.4) ||/?3^[jt; y]\\ < \x\w(a) \y\w(β) .

Similarly,

(6.5) \\H?{x;y}\\£\xr*\y\»M .

Proof of Theorem 1. We start with the observation that formula (4.5),
expressing {*, y] in terms of [Pλx, Pμy], implies inductively that the alternants
appearing in formulas (6.2) and (6.3) are related by

(6.6) Hf{x y) = Pw(a)+w(β)Hf[x y] .

Furthermore, Hf[x y] e Qw(a)+Mβ), while Hγ{x y) e §wia)fwiβ).
Consider now the problem of estimating xy — χoy. By formulas (6.2) and
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(6.3), it suffices to estimate the differences Hγ[x y] — Hf {x y). Using
formula (6.6), we see that it suffices to estimate the projections PλHγ[x; y]
when λ > λ0 = w(a) + w(β). By estimate (6.4),

< \\Ha/[x;yψ>< <\χγ>ω\y\*«ψ* .

By the geometric mean-arithmetic mean inequality, this last quantity is bounded
by (|*| + \y\)λo/λ. Take γ as the largest of the numbers λQ/λ which occur.

Proof of Theorem 2. By formula (6.2) and Lemma 2, it suffices to
estimate \\PλH

a/[x;y]\\. But this is zero if w(a) + w(β) > λ. If w(a) + w(β)
< λ, then by estimate (6.4),

< W
<Ce\xΓ\y\,

provided \x\ > ε(l + \y\), where we have written a = w(a) and b = w(β).
This proves the first statement of Theorem 2. The second statement then fol-
lows because max ; HP^H1^ « |JC|, (Lemma 1).

Remark. In case [x, y] = {x, y}, only the terms with w(ά) + w(β) = λ
occur in the above estimate, and the factor \x\a+b~λ = 1. Hence estimates (5.4)
and (5.5) hold in the region |JC| > ε \y\ in the graded case.

7. Vector fields with polynomial coefficients

In this section we construct a differential operator realization of the algebraic
calculations of § 6. This version is natural to employ when one starts with the
group law in exponential coordinates, and will allow us to compare the theo-
rems in § 5 with related results of Auslander, Brezin, and Sacksteder [1]. The
first step is to construct some basic filtered nilpotent Lie algebras of differential
operators.

Let V be a real, finite-dimensional vector space, and let {δr} be a one-
parameter group of dilations of V, with spectrum Λ, as in § 3. Every vector
X e V defines a constant-coefficient vector field Dx on V by the formula

(7.1) Djψiv) = A
at

φ(V + tX)
= 0

φ 6 C°°(F), i.e., D is the right regular representation of V considered as an
abelian Lie algeba. Denote this space of vector fields by Q).

Let 0* be the algebra of polynomial functions on V. The dilations dr in-
duce a contragredient action δ* on &:
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(7.2) δ*φ(v) = φtfr-iV) .

In particular, the spectrum of {δ*} on 0* is the semigroup — NΛ generated by
-A.

Let if = && be the space of all vector fields on V spanned by the operators
φDx, with φ € &, X <zV (the vector fields with polynomial coefficients). Since
Dx{&>) c ^ , it follows that <g is a Lie subalgebra of the Lie algebra of all
C°° vector fields on V. The dilations δr canonically define Lie algebra auto-
morphisms δ*r of JSP, and it is easy to calculate that

(7.3)

In particular, δ*. is diagonalizable on if and has spectrum

Λ* = {λ — Σ m

μμ '• Λ, μ £ A, mμ ε N} .

For μ 6 # , set

(7.4) \ = {Γ €

Then ήΛ is spanned by the vector fields φDx, such that φ(δrv) = raφ(v), δrX
= rβX, and β — a = μ. There is a direct sum decomposition

^ - Σ \ (μ € ̂ *)

Since d* is a Lie algebra automorphism, this decomposition is a gradation of
if. The associated filtration is given by

In particular, if we define

(7.5) n =
μ>0

then n is a finite-dimensional nilpotent Lie algebra of vector fields.
Examples. 1. If δrv = rv (scalar multiplication), then A = {1}. Hence

n = Q), the constant-coefficient vector fields, in this case.
2. If V = Vλ Θ V2, and δ^ = v2) = n;x + r27;2 (yt e Vt), then yl = {1, 2}.

n = §! Θ ζ2? with \ spanned by operators DXl and fιDΣz, while ζ2 is spanned
by operators DX2 where Xt € Vt and U$V[. Thus n is two-step nilpotent, of
dimension =d1(d2 + 1) + d2 where ^ = dim Vt. li d2 = 1, n is the (2^ + 1)
dimensional Heisenberg algebra.

Suppose now that G is a simply-connected nilpotent Lie group. Then global
"canonical coordinates of the first kind" {Xi}i=1 can be found for G such that
the group operations are expressed as
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(7.6) (X~% = ~Xi '
(χy\ = χt + yt + fi(χi, , Xi-i yί9 , yt-ι),

where /€ is a polynomial function (ji = 0 when / = 1 and 2). The map JC I->
(xu , *d) is an analytic manifold isomorphism from G to i?^ We use this
map to identify G and g with Rd. If X e g, then the straight line {^} ί 6 i 2 through
X is the one-parameter subgroup of G generated by X.

Given such a presentation of G, we use the procedure in [1, § 6] to define
inductively a group of dilations δr on Rd. Namely, we let Xt = (0, , 1,
• , 0) (1 in /th place), and set δrXi = raiXt. The exponents at are positive
integers chosen successively so that for i = 3, , d,

(7.7) / ^ r x δry) = r «A(* y) + Ofr""1) .

(«! and a2 are arbitrary. In agreement with the normalization of § 3, we take
aλ = 1 and α2 > α l β)

Theorem 4. Γ/ẑ  subspaces

Qn = span {X*: α, > n}

/arm a Lfe algebra filtration of g. Γ/ẑ  corresponding graded multiplication is

(7.8) * o y = lim 5 1 / r(3 r^ ry) ,
r-*oo

and w g/v^n in coordinate form by

(7.9) (* o y), = JC€ + y, + gi(x y) ,

w defined by (7.7).
Proof. Let =£? be the Lie algebra of vector fields with polynomial coefficients

on Rd, and extend dr to act as Lie algebra automorphisms δ* of Jδf\ Let {=£?„}„<=;?
be the filtration of Jδf determined by ^*. (It is an integral filtration since the a%

are integers.)
The Lie algebra g can be faithfully represented in se via the right regular

representation. For Y e g , let y(t) = tY be the one-parameter subgroup of G
generated by F . Define the vector field R(Y) by

R(Y)φ(x) =
d φ(xy(t)) ,
at

To calculate R(Y), write Dt — d/dxi9 and set
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Then by (7.6),

(7.10) R(Xi) = Di + ΣdjDj .

Differentiating (7.7) we find that

Cij(δrx) = r%j(x) +

where μ = aό — at and

Γ711) c (Ύ\ — d p (γ.
y% y=o

By formula (7.3) for the action of δ*r we thus have

(7.12) %R(Xi) =

modulo J2fβ<+1. Hence R(Xt) e S£ai and

(7.13)

modulo Jδf α<+i Note that δr maps g onto g but is not necessarily a Lie algebra
automorphism, while δ*r is a Lie algebra automorphism of the larger algebra
«£? but may map R(Q) out of R(Q).

To verify the filtration property, observe that since R is a representation,
(7.12) implies that

1, where β = at + as. Hence by (7.13),

(7.14) δr(ίXi9 Xj]) = r'[Xi9 Xj] + O(r>+1) ,

since R is faithful. (7.14) implies immediately that {$n} is a Lie algebra
filtration. The eigenspaces for <5r furnish complements to qn+1 in gn. We map
gr (g) linearly onto g using these complements, as in § 4. (7.8) and (7.9) are
then consequences of Corollary 1 and (7.7).

Remarks. 1. Let {X, Y} be the graded Lie bracket on g determined by
the dilations {δr}. Define

(7.15) RiXJ =D,+ Σ CiPj ,
3>i

where cij is the polynomial defined by (7.11). From the calculations just made

we see that

A({X, Y}) = [ t o , R{Y)] , R(δrX) = δ*r&(X) .
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R is the right regular representation of gr (g) on C°°(G), relative to the multi-
plication Xoy.

2. Our Theorem 1 is a quantitative version of the statement in [1, §6]
that "xoy is a slight change in the group operation of G".
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