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A GEOMETRIC CHARACTERIZATION OF POINTS OF
TYPE m ON REAL SUBMANIFOLDS OF C*

THOMAS BLOOM & IAN GRAHAM

1. Introduction

Let D be a domain in C* with smooth boundary bD. bD is said to be
pseudoconvex (respectively strongly pseudoconvex) if the Levi form is non-
negative (respectively positive definite) on the complex tangent space at all
points of bD.

Pseudoconvexity of bD is a necessary and sufficient condition for D to be a
domain of holomorphy [4]. However, if one makes the assumption of strong
pseudoconvexity, more precise results are possible than mere existence state-
ments, e.g., solutions of 9 within the class of bounded functions, boundary reg-
ularity of solutions of 3 (see [1] and the references there). The existence of
holomorphic support functions and peak functions plays an important role in
analysis on strongly pseudoconvex domains.

Pseudoconvexity alone is not a sufficient condition for local regularity of o
at the boundary (for global regularity see [6]). A counterexample appears in
[8] in which bD contains a complex submanifold. Nor does pseudoconvexity
guarantee the existence of peak functions (see [9] for an interesting counter-
example). Thus conditions between pseudoconvexity and strong pseudocon-
vexity are of interest [5], [7].

In [5], J. J. Kohn introduced the notion of points of type m (m is a positive
integer or 4 o) on the boundary of a domain D in C?. A point at which the
Levi form does not vanish is of type 1. If bD contains a complex submanifold,
then all points on this submanifold are of infinite type [5]. Pseudoconvexity
together with finite type yields a subelliptic estimate for (0, 1) forms which
implies local regularity at the boundary for the canonical solution of 4, [5].
P. Greiner [3] showed that these assumptions are necessary for this estimate.
Kohn also introduced the notion of strict type m which is sufficient to guarantee
the existence of local peak functions [5].

Kohn’s definition of points of type m is in terms of properties of commu-
tators of tangential holomorphic vector fields. In [11] Naruki studies real sub-
manifolds of C™ of arbitrary codimension. A similar condition involving
commutators of tangential holomorphic vector fields appears. Using this con-

Communicated by J. J. Kohn, May 1, 1975. The authors were partially supported by
grants A7535 and A9221 of the National Research Council of Canada.



172 THOMAS BLOOM & IAN GRAHAM

dition together with total indefiniteness of the Levi form, Naruki obtains a
subelliptic estimate for d, on functions.

Our main result is a geometric characterization of points of type m on a
hypersurface M in C™ (‘type’ is defined in §2):

Theorem 2.4. A point P e M is of type m < oo if and only if there is a
complex submanifold of codimension one tangent to M at P to order m but no
codimension one complex submanifold tangent to a higher order. A point
P e M is of infinite type if and only if there are complex submanifolds of co-
dimension one tangent to M at P to arbitrarily high order. (There may or may
not be a complex submanifold tangent to infinite order.)

The proof of this theorem is contained in § 2. It would be of interest to relate
a ‘type’ condition to the maximum degree of tangency of a complex submani-
fold of dimension one. This is the idea behind § 3, but our results are incom-
plete. However, some interesting examples are given. In § 4 we generalize
Theorem 2.4 to the case of generic submanifolds of arbitrary codimension.
However the commutator condition is not the same as Naruki’s [11].

We are indebted to Peter Greiner for numerous helpful discussions concern-
ing this work.

1. Basic definitions

1.1. Let M be a real C~ submanifold of an open subset U in C", and let
P be a point of M. The complexified tangent space to C™ at P, denoted by
CT(C", P) splits naturally into a direct sum of two subspaces T"°(C", P) ®
T°*(C™, P) the holomorphic and anti-holomorphic parts. The injection of M
into C* induces an injection of the complexified tangent space to M at
P,CT(M,P) into CT(C",P) and we consider CT(M,P) as a subset of
CT(C™, P).

1.2. Definition. The holomorphic tangent space to M at P is defined to
be the intersection CT(M, P) N T%C*, P) and is denoted by T"°(M, P).

Suppose that M = {ze U|r, =r, = --- = r, = 0}, where the r; are real-
valued C> functions such that dr, A --- A dr, # 0 at all points of M. Then
we may identify T"°(M, P) with all w ¢ C" satisfying

(1.2.1) 57 =0 fori=1,---,k.
j=1 aZJ

We note that dim, T"%(M, P) satisfies [12] the inequalities

max (0, n — k) < dim, TV°(M, P) < n — [k; 1] .

If M is a real hypersurface then dim; 7"°(M, P) = n — 1.
1.3. Definition, A holomorphic vector field on U is a C~ vector field F
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whose value at each point g € U satisfies
F(q) e T"(C", q) .

Such a vector field may be written in the form 2, a,(3/dz,) with a; a
complex-valued C~ function on U.

1.4. Definition. A vector field F is tangential to M if F(q) € CT(M, q) for
all ge M.

1.5. Definition. A holomorphic vector field tangential to M is a vector
field F such that F(q) e T%°(M, q) for all g e M and F(q) ¢ T*°(C™", q) for all
qgeU.

If F is written in the form }}7., a,(0/9z;) + X 7, b;(3/0Z;), then it is tan-
gential if and only if

or &, or
8 + b 8
6zi 7';1 ‘ 321

=0 on M

n
a;
=1

k2

fors=1,...,k. Thatis, Fr)) =OonMfors=1,...,k.
1.6. Definition. For F a vector field we define its conjugate F via the
equation

F(u) = F(w) for all u e C=(U) .

If F = 3 a;(3/6z,) + X} by(3/5z,), then

F_=Z‘7i? +Zl-)ii-
0Z; 0z
Note that F is tangential if and only if F is.

1.7. Definition. For each integer 4 > 0 we define £, to be the module,
over C*(U), of vector fields generated by the holomorphic tangential vector
fields, their conjugates and commutators of order < p of such vector fields.

Thus &, is the module of vector fields spanned by the tangential holomorphic
vector fields and their conjugates. %, is spanned by elements of the form [F, G]
with Fe &, , and G ¢ &,.

£, is closed under conjugation and consists solely of tangential vector fields.
Note that &, C &Z,,,, and setting & = | J;_, %, we note that & is a Lie
algebra [5, p. 526].

2. The geometric characterization for hypersurfaces

Let M be a real C~ hypersurface in an open subset U C C*. Let M =
{z € U|r(z) = 0} where r is a real-valued C* function such that dr #+ 0 on M.
2.1. Definition [5, p. 525]. A point P € M is of type m if {or(P), F(P))
= 0 for all F e #,,_, while {(or(P), F(P)) # O for some F ¢ &,,. Here {, >
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denotes contraction between a cotangent vector and a tangent vector.

Note that m is an integer >1 or + . We will use the notation #(P) = m.

2.2. Remarks. 1. The function #(P) is upper-semicontinuous on M.

2. If the Levi form is nonzero at P then #(P) = 1, [5].

Let X be an (n — 1)-dimensional complex submanifold of a neighborhood
of P which is tangent to M at P.

2.3. Definition. X is tangent to M at P to order s if the restriction r|y
of r to X vanishes to order s 4+ 1 at P.

For s an integer >1 we will use the notation a(P) = s if there exists a
complex (n — 1)-dimensional submanifold tangent to M at P to order s but
none tangent to order s + 1. We will write a(P) = + oo if either

1. there is a complex (n — 1)-dimensional submanifold tangent to M at P
to order 4 oo, or

2. for every integer N no matter how large, there is a complex (n — 1)-
dimensional submanifold of some neighborhood of P tangent to M at P to
order N (see § 2.14). Thus a(P) is an integer >1 or + .

2.4. Theorem. t(P) = a(P).

For M C C? this result is implicit in the article of Kohn [S]. In fact our
proof is quite similar to his proof.

The proof of Theorem 2.4 will be carried out in Lemmas 2.6 to 2.12. We
will show #(P) > a(P) (Lemma 2.11) and #(P) < a(P) (Lemma 2.12). Lemma
2.11 depends only on Lemma 2.9 and the preceding lemmas. Lemma 2.10
is needed for Lemma 2.12.

2.5. First we suppose that we have local coordinates z;, - - -, Z,_;, W cen-
tered at P so that r has the form

(2.5.1) r=2Rew) + ¢,
where ¢ vanishes to order >2 at P.
Thus
(2.5.2) ro(P) =r,(P) =1,
while
2.5.3) r,P)=r,P)=0 fori=1,..--,n—1.

If F is a vector field written in the form

=l 9 nl. 0 0 0
= — b — - + d— >
F=Bag, TR0 T % "
then {or(P), F(P)) = c(P). Thus t(P) = m precisely when c(P) + 0 f_or some
Fe%, but c(P) = 0 for all F ¢ £,,_,. Also note that if F is tangential, then
¢(P) + d(P) = 0. The vector fields
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2.5.4) Li=r, 2 —r, 0 fori=1,---,n—1
ow

0z

are tangential.

2.6. Lemma. %, is generated modulo vector fields vanishing on M as a
C> module by the commutators of order <y of the 2n — 2 vector fields
L,-- '7Ln—ls Lls ] Ln—l-

Proof. Let F be a holomorphic tangential vector field :

0 0
F = — 4+ c—
El ai 0z, + aw

Then Y72} a,r,, + cr, = 0 on M while r,, + 0 on a neighborhood of P (as-
sumed to be U). Thus

n-—1

F—32L,
i=1 1y,
is a vector field which vanishes on M. That is, %, is spanned by L, - - -, L,,_,,
L, ..., L,_, and vector fields of the form rH where H is any vector field. It

follows_ by induction on y that £, is spanned by the commutators of L,, - - -,
L, L,---,L,oforder <p and vector fields of the form rH, [5, p. 526].
2.7. Lemma. Let F be a vector field written in the form

n—1

F—Zai—+2

re i=1 z aw aw '

Then the coefficient of 3/ow in [L,, F] is

n-1
Q@71 1, ;zc - a + z O ss + 3, Bilzas + iy + i

The coefficient of 0oz, in [L,, F] is

2.7.2) r a_ai—r da, — 39 [TLZ_:Iar +n‘21br + cry,, + dr
waZa zaaw Ja = T wz; = i w2y ww wol

Of course there are similar formulas for the coefficients of 3/0w and 3/dz,
and for the coefficients in [L,, F].
Proof. Direct computation.

We will use the notation z = (z,, - + -, Z,_,).
2.8. Lemnla. Sup_pose Fe¥,— %, is formed by commutators of
L,---,L,,, L, ---,L,_,. Then the coefficients a,, b,, c, d are sums of terms

of the form +D(r) - - - D**!(r), where each D' is differentiation to order d,,
and the integers d, satisfy
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. d+---4+d,,,=2u+1,

2. 1<d; <p+ 1.

In addition each such term in a; or b; involves differentiation a total of y times
with respect to z and p + 1 times with respect to w. Each term in c, d involves
differentiation a total of u + 1 times with respect to z and 1 times with respect
tow.

Proof. The proof is by induction on x and an examination of formulas
(2.7.1) and (2.7.2). The statement about the a; and b, coefficients is needed
only for the inductive proof of the statement about the ¢ and d coefficients.

2.9. Lemma. Suppose Fe %, — &, , is formed by commutators of
L,---,L,_,and L,,---,L,_,. Then each term in the ¢ and d coefficients
contains a factor of the form D(r) where D is differentiation in z,7 only (i.e.,
no w) of order <p + 1.

Proof. By Lemma 2.8 each term contains p + 1 factors, and the total
order of differentiation in w is just s.

2.10. Lemma. LetD = (9/02)°(3/97)" where o,t are multi-indices and
le| > 1, |z| > 1and|e| + |t| = p + 1 (thus p > 1). Then there exists Fe &,
whose c coefficient has the following properties

1. There is one term rl?'=ri2'\D(r).

2. All other terms D\(r) - - - D**\(¥) have the property that some D' is a
differentiation in z,Z (i.e., no w) of order < p.

Proof. The proof is by induction on . When yx = 1 we have D = 6/92,0Z;.
The c coefficient of [L;, L,] is r,7,,, , — T3 Which satisfies (1) and (2).

For the inductive step we have either |¢| > 1 or || > 1 say |¢| > 1. We
write D = (9/0z,)(9/92)”'(8/87)" where |¢’| = |o| — 1. By the induction hypothe-
sis we can find F e #,_, with properties (1) and (2) for (3/92)°(0/02)°. An
examination of formula (2.7.1) shows that [L,, F] satisfies (1) and (2) for D.
In fact, the form rl?!-*rkD(r) comes from r,(3c/0z,).

2.11. Lemma. ¢(P) > a(P).

Proof. Let X be an (n — 1)-dimensional complex manifold tangent to M
at P to order s (1 < s < 4 o). We may assume the coordinate w (of formula
(2.5.1)) chosen so that X = {(z,w) € U|w = 0}.

Now, r(z, 0) vanishes at P to order s + 1. Consequently, D(r) vanishes at
P if D involves differentiation of order <s with respect to z, Z (i.e., no w dif-
ferentiation). Thus Lemma 2.9 shows that the ¢ coefficient of any F ¢ &Z;_,
vanishes at.P and hence #(P) > s. Thus #(P) > a(P).

2.12. Lemma. t(P) < a(P).

Proof. Suppose that #(P) > m where m is an integer >1. We may assume
that the coordinate w (of formula (2.5.1)) is chosen so that D(r)(P) = 0 where
D is any pure differentiation with respect to z or Z (i.e., no mixture of deriva-
tives with respect to z and z) of order <m + 1. We will show that w = 0 is
tangent to M at P to order >m.

The ¢ coefficient of any F ¢ &,,_; vanishes at P. By Lemma 2.10 we may
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conclude that (9/92)°(8/92)'r(P) = O for o, any multi-indices satisfying |o|
> 1, |z| > 1, |o| + |z| £ m. (We proceed by induction on |¢| + |z| using the
fact that r,(P) = rp(P) = 1. Both statements in Lemma 2.10 are needed.)
That is, r(z, 0) vanishes at P to order >m + 1. q.e.d.

Lemmas 2.11 and 2.12 complete the proof of Theorem 2.4.

2.13. Corollary. Let M be real analytic and P € M a point of type + .
Then M contains a complex (n — 1)-dimensional submanifold of a neighbor-
hood of P.

Proof. Using the assumption that r is real analytic we may assume the
coordinate w chosen so that D(r)(P) = O where D is pure differentiation with
respect to z or Z of any order. Then the reasoning in the proof of Lemma
2.12 shows that {(z, w)|w = 0} is contained in M.

2.14. Counterexamples. The conclusion of Corollary 2.13 need not hold
if M is only C~. We give two examples:

1. Considerr = 2Rew + exp(—(z! + Imw)) ) and M = {z,w € C*|r
= 0}. Then (0, 0) is a point of type . However, M is strongly pseudoconvex
(type 1) in a deleted neighborhood of (0,0) and cannot contain a complex
submanifold.

2. Consider the formal power series

Re(w— f‘_,n!z") .

n=2
By a theorem of E. Borel [10, p. 28] there exists a C* function r in C* having
this series as its formal Taylor series at (0, 0). Let M = {z, w € C?|r(z, w) = 0}.
The complex submanifold w = ™, n! z" is tangent to M to order m at (0, 0).
However, there is no complex submanifold tangent to M at (0,0) to infinite
order.

3. The case of a single vector field

As before, M is a real C~ hypersurface in an open subset of C*, and P
denotes a point of M.

Let L be a tangential holomorphic vector field to M. We let #,(L) denote
the C= module of vector fields spanned by L, L and their commutators of
order <.

3.1. Definition. We say L is of type m at P if there exists F e &,,(L)
such that {(or(P), F(P)) # O while for all F ¢ &#,,_(L) we have

{or(P),F(P)> = 0.
We shall use the notation #(L,P) = m. If {or(P), F(P)> = 0 for all Fe

£ (L) and all integers ¢ > 1 we will write #(L, P) = + .
3.2. Proposition. Suppose there is a 1-dimensional complex submanifold
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X of a neighborhood of P, tangent to M at P to order s. Then there exists a
tangential holomorphic vector field L such that L(P) is tangent to X at P and
t(L,P) > s.

Proof. Choose coordinates z,, - - -, z,_,, w centered at P so that
1. X = {(Z,W)IW =3 = = Zp = 0},
2. r=2Re(w) + ¢ where ¢ vanishes to order >2 at P.
Consider the tangential holomorphic vector field L, , = r,, 3 o _ rzﬂ_,ai.
Zn-1 w

We shall show that L,,_, is of type >s at p.

Now r|x has a zero of order s + 1 at P. Thus the description of the com-
mutators of L,_, and L,_, contained in Lemmas 2.8 and 2.9 is sufficient to
prove the proposition.

3.3. Remarks. 1. Ifin these coordinates we have D(r)(0, 0) = O for some
impure differentiation D in z,_,,Z,_, of order s 4 1, then L,_, has type
precisely s at P.

2. We do not know if there is a converse to Proposition 3.2. The condi-
tion that all nonzero holomorphic vector fields be of finite type is conjectured
by Kohn [7] to be necessary and sufficient for the 9-Neumann problem to be
subelliptic at a boundary point of a pseudoconvex domain.

3.4. The type of a vector field is not determined solely by its value at P.

Consider M C C® defined as the zero set of

r=2Re (W) + IZ1|2 — IZZP ) P = (Oa Os O) .

Here L, is of type 1, and L, is of type 3. (L, and L, are defined by (2.5.4).)
Note however that M contains the complex submanifold

X ={w,z,z)|w=0and z;, = z}} .

Now L = 2z,L, + L, is a tangential holomorphic vector field which restricts
to a holomorphic vector field on X. Thus it is of type + o. Of course L(P)
= L,(P).

3.5. It is possible to have a point P € M such that all nonzero holomorphic
tangential vector fields are of finite type at P but there are points arbitrarily
close to P where these are nonzero holomorphic tangential vector fields not of
finite type. We will give one such example with M pseudoconvex.

Let M be given as the zero set of r = 2Re (W) + |23 — z} and P =
(0,0, 0). Since r is plurisubharmonic M is pseudoconvex (when considered as
the boundary of r < 0).

We will first show that every tangential holomorphic vector field L such
that L(P) # 0 is of finite type at P (in fact of type <5).

Note that L, is of type 3 at P, and L, is of type 5 at P. Any tangential
holomorphic vector field L can be written L = ¢,L, + ¢,L, where ¢, and ¢,
are C= functions. If ¢,(P) # 0, it is easily seen that #(L, P) = (L, P) = 3. If
#(P) = 0, and L(P) + O, then ¢,(P) # 0. Therefore we may assume that
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L=g¢L +L, with ¢0)=0.

Expressing the commutator [[[[[L, L1,L), L], L], L] as a linear combination of
commutators of L,, L,, L, and L,, each commutator S has the property that it
occurs with a coefficient having a factor ¢ or else (ar(P), S(P)> = 0 except for
the commutator [[[[[L,, L,], L,l, L,], L,], L,]. Thus #(L, P) < 5 (in fact #(L, P)
= 5).

Now M contains the complex analytic set

X ={wz,%|w=0,z =z} .

X has a singular point at P, but at all other points it is nonsingular. Thus for
any point g € X — P there is a nonzero tangential holomorphic vector field
which is not of finite type.

4. Generic submanifolds of higher codimension

Let M be a real C= submanifold of dimension 2n — k (k < n) of an open
subset U of C*. Let r,, - -+, r, be real-valued C= functions such that M =
{zeU|lr,=--- =r,=0}anddr, A --- ANdr,#0on M.

4.1. Definition [12]. M is generic if or, A --- A dr, #+ 0 on M.

This condition is equivalent to dimg,7T"°(M, q) = n — k for all ge M.
(Hence it is independent of the functions r,, ---,r,.) This is, of course, the
minimum possible dimension for the holomorphic tangent space.

4.2. Definition. A point P ¢ M is of type m (m an integer >1 or + o)
if there exists F ¢ #,, such that F(P) ¢ T-°(M, P) ® T**(M, P) while &%, _,
contains no such F.

We use the notation #(P) = m.

The requirement that F(P) ¢ T*%(M, P) ® T°*(M, P) is equivalent to the
following : if r,, - - -, r, are defining functions for M, then {or;(P), F(P)) + 0
for some i.

4.3. Remark. This is not the most interesting type condition. Naruki’s
estimate [11] depends on there being an integer m such that {F(P)|F ¢ £}
= CT(M, P). The point P is then termed (m + 1)-regular by Naruki.

Let X be an (n — k)-dimensional complex submanifold of a neighborhood
U of P which is tangent to M at P.

4.4. Definition. X is tangent to M at P to order s (s an integer >1 or
+ o) if s = inf {#|there exists a real valued C= function r on U such that
rly =0, dr # 0 on M and r|y vanishes at P to order >t + 1}.

Thus s is the least order of tangency of X with a hypersurface containing M.

Note that the roles of X and M cannot be interchanged in this definition,
for dimp X < dimgz M. Also whenever r,, - - -, r, are functions such that M =
{zlr=--- =r,=0}and dr, \ --- A dr, #+ 0 on M, there is an index i
for which 7|y vanishes at P to order s + 1.
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We set a(P) = sup {s]there exists an (n — k)-dimensional complex submani-
fold tangent to M at P to order s}. Thus a(P) is an integer >1 or + .

4.5. Theorem. a(P) = #(P).

Proof. The proof is analogous to that of Theorem 2.4. Since M is generic,
given defining functions r,, - --,r, for M we can choose local coordinates
Zyy 5 Zy_gs Wy, -+ +, W, at P such that

4.5.1) re=2Rew) + ¢, i=1,---,k,

where ¢; vanishes to order >2 at P. Thus

@52 ey Tipy=s,, =1k,
ow; ow,

@53 Tipy= Tipy_0, i=1,ek,j=1,-n—k.
aZj Zj

Consider the vector fields

(4.5.4) L=E2 ¢+ 5B 9 i=1,.n—k,
0z, i=t ~ owy

where E, Ei, - - -, E% are the cofactors of the elements in the first row of the
(k + 1) X (k + 1) matrix

r 3

e e .+ €
o or, 0
0z, ow aw
(4.5.5) . L i
or, o, 0
| 0z, ow, ow;, |

Note that L;(r)) =0 fori=1,.-.-,n —k, s =1, ..., k since E@r,/0z,) +

k_1 Ei(dr,/ow,) is equal to the expansion of the determinant of (4.5.5) when
e = 0r,/0z; and e; = or,/ow,. Of course, in that case the matrix has two
identical rows.

Now the relations (4.5.2) and (4.5.3) imply that E(P) = 1 while EX(P) = 0
fori=1,---,n—k,andj=1,.--,k.

The following lemmas are proved in a manner similar to the corresponding
lemmas in § 2. Details are omitted for the most part.

4.6. Lemma. %, is generated modulo vector fields vanishing on M as a
C= module by the commutators of order <y of the 2n — 2k vector fields
Lb ot "Ln-—k? 1_41’ Tty Z’n—k'

Any vector field F can be written in the form
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F=¥al +552 +5c-20 + 542
= a i— c .
A N Tow, ' = ow,

If F is tangential, then by our choice of coordinates c;(0) + d,;(0) = 0.
4.7. Lemma._ Suppose F ¢ &, — % ,_, and is formed from commutators

of Ly, +++,L,_y, Ly, + - -, L,_y. Then the coefficients a,, b;, ¢;, d; of F are sums
of terms of the form

+D'() - D)

where each D'(r), 1l =1, ---,u + 1 is the determinant of a k X k matrix
whose entries are partial derivatives of r, - - - r,, with respect 10 2, ** , Zn_i>
Wy, - -+, Wi With the following properties :

1. The ith row contains derivatives only of r;.

. The differentiation operator is the same for all entries in a given column.

3. The order d of the differentiation in a given column satisfies 1 < d <
r+ 1

4. The total order of differentiation in each term is (u + Dk + p.

5. Each term in c; or d; involves p + 1 derivatives with respect to z,Z
and (¢ + 1)k — 1 derivatives with respect to w, W.

4.8. Lemma. Suppose Fe ¥, — &,_, and is formed from commutators
ofL,--+,L,_y, Ly, -+, L,_s. Then among the columns of the determinants
in each term +D(r) - - - D**\(r) of the c; and d; coefficients, there is one in
which the differentiation is in z, 7 only (and of order < + 1).

Proof. According to Lemma 4.7 there are (¢ + 1)k columns altogether,
and the order of differentiation in w is (¢ + 1)k — 1.

4.9. Lemma. Let D = (3/02)°(3/0Z)° where ¢ and t are multi-indices and
le| > 1, |z| > 1. Let g + 1 = |o| + |z|. Let T be the k X k determinant

Dr, or, . 0n or, . 0n
ow, ow;_; ow; ., owy,
T = det
ark ark ark ark
Dr, ow, . o, W, W

(Note that T(0) = +Dr,(0).) Then there exists F ¢ &, whose c;, coefficient
has the following properties :

1. There is one term E'"'"'E'¥IT.

2. For each of the remaining terms, one determinant contains a column
in which the differentiation is in z, Z only and of order <.

Proof. By induction using the analog of formula (2.7.1). (Cf. Lemma 2. 10.)

4.10. Lemma. ¢(P) > a(P).

Proof. Let X be an (n — k)-dimensional complex submanifold tangent to
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M at P to order s (1 < s < o). We may choose coordinates at P so that
X = {(z,w)|w = 0}. Then r,(z,0) vanishes to order >s + 1,i=1,---,k.
Lemma 4.8 shows that the c; and d; coefficients of any F ¢ #,_, vanish at P
forj=1, .-, k. Hence t(P) > s.

4.11. Lemma. ¢(P) < a(P).

Proof. Suppose that #(P) > m where m is an integer >1. We may assume
that the coordinate w; is chosen so that D(r;)(P) =0, j = 1, - - -, kK where D
is any pure differentiation with respect to z or 7 of order <m 4 1. Lemma
4.9 shows that for any impure differentiation D in z, Z of order <m, Dr;(0)
=0,j=1,---,k. That is, w = 0 is tangent to r; = 0 to order >m, j =
1, .-, k. We conclude that w = O is tangent to M to order >m. Thus a(P)
> m.

Lemmas 4.10 and 4.11 complete the proof of Theorem 4.5.
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