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1. Introduction

In 1903, H. Minkowski [11] obtained the following two integral formulas
for a closed convex surface S in a Euclidean 3-space E3:

(1.1) f (1 + PH)dV = 0 , ί (H + PK)dV = 0 ,
J s J s

where H and K are respectively the mean curvature and the Gaussian curvature
of S at a point P whose position vector with respect to the origin 0 of E3 is x,
dV is the area element of S at P, and p is the scalar product <JC, e} of x and
the unit normal vector e of S at P. In 1954 C. C. Hsiung [5] extended formulas
(1.1) to a closed oriented hypersurface Mm in a Euclidean (m + l)-space Em+1

(m > 2) and obtained characterizations of hyperspheres in Em+ι. In 1956
C. C. Hsiung [6] and in 1959 G. F. Feeman and C. C. Hsiung [3] extended
Hsiung's integral formulas to the case in which Em+ι is a Riemannian space
Nm+1 of constant sectional curvature, and obtained characterizations of um-
bilical hypersurfaces in Nm+ί. In 1962, Y. Katsurada [7] extended the afore-
said results to a closed oriented hypersurface in Nm+1 by introducting an in-
finitesimal conformal vector field ξ to replace the position vector field x. In
1968 and 1969, Y. Katsurada, H. Kόjyό and T. Nagai [8], [9], [10] obtained
integral formulas for a closed oriented submanifold Mm of dimension m ( > 2)
in a Riemannian n-manifold Nn (n > m) of constant sectional curvature with
respect to an infinitesimal conformal vector field ξ and a special unit normal
vector field e of Mm, and conditions for Mm to be umbilical with respect to e.
In 1971 B. Y. Chen and K. Yano [1] studied the case in which the field e is
more general but Nn is Euclidean and ξ is the position vector field x. The
purpose of the present paper is to extend the results of Chen and Yano to the
general case in which Nn is Riemannian and ξ is an infinitesimal conformal
vector field so that all known results are special cases of ours.
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the second author was done during his visit to Lehigh University and partially sup-
ported by the National Science Council of the Republic of China.
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In § 2 we first define the vector product of two tangent vectors of a
Riemannian n-manifold Nn at a point P, and then discuss orthonormal frames
Peίχeί2 ein on Nn at P.

§ 3 contains the fundamental definitions and formulas for a submanifold M m

of dimension m ( > 2) immersed in Nn (n > m). In particular, some formulas
are reduced to simpler forms when Nn is of constant sectional curvature.

Suppose that Nn admits a continuous infinitesimal conformal vector field ξ,
and let e be a unit normal vector field over Mm parallel in the normal bundle
of Λίm. In § 4 we derive integral formulas for a closed oriented Mm in Nn

with respect to ξ and e, and in § 5 we obtain various conditions for Mm to be
umbilical with respect to e.

We wish to thank Y. Katsurada for her discussion with one of us about some
computation involving the infinitesimal conformal vector field ξ.

2. Vector product and orthonormal frames

Throughout this paper unless stated otherwise the ranges of indices are given
as follows:

1 < U h k, < m ,

(2.1) 1 <a,β, γ, ••• <n ,

m + 1 < A, B, C, - < n , (m < n) .

We shall also follow the usual tensor convention that when a letter appears in
any term as a subscript and a superscript, it is understood that this letter is
summed over its range.

Let Nn be a Riemannian manifold of dimension n ( > 3) and class C3,
(JC1, , xn) local coordinates of a point P in Nn, and aaβdxadxβ a Riemannian
metric of Nn, where aaβ = aβa and the matrix (aaβ) is positive definite so that
the determinant \aaβ\ = a is positive.

Let A19 , An_ι be n — 1 tangent vectors of the manifold Nn at the point
P, and A" the contravariant components of At in the local coordinate system
JC1, , xn. Let A! x x An_ι denote the vector product of the n — 1 vectors
/i15 - ',An_l9 which is defined to be the tangent vector of the manifold Mn

at P whose β-th contravariant component is (see, for instance, Feeman and
Hsiung[3])

(2.2) (Aιχ ••• X

δξ

where if are the Kronecker deltas. Let T be a tangent vector of the manifold
Nn at the point P with contravariant components Ta in JC1, - , xn. From the
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definition of the scalar product of any two vectors Ai and Aj9 namely,

(2.3) <^Mi>. = fl.^M5,

it follows that the scalar product of the two vectors T and Aλ x - - - x An_ιis
given by

(2.4) <T,AiX ••• χAn_ιy = (-ir-W'2\T,Aι, •• , Λ Λ - i h

where |Γ, Al9 , /4w_j| is a determinant, the elements of each of whose col-
umns are the contravariant components of the vector indicated. Thus by (2.4)
it is readily seen that the vector Aλχ - - > x An_x\s orthogonal to each of the
n — 1 vectors A19 , An_x.

Now consider an orthonormal frame Peγ- ' ^ n o n Nn at P, where e15 , en

form an ordered set of n mutually orthogonal unit tangent vectors of the mani-
fold Nn at P so that

(2.5) < e a , e β y = arδe'ae
δ

β = δ a β ,

where δaβ are the Kronecker deltas. The position vector x of the point P is
defined to be the tangent vector of the manifold N* at the point P whose con-
travariant components are the local coordinates Λ:1, , xn of the point P.

Let a19 , an be distinct and suppose that 1 < al9 , an < n. Then we
can write

(2.6) eai X ••• x ean_x = c e a n ,

where c is a function of the *'s. In order to find an expression for c, we con-
sider the two matrices

(2.7) ψ = (#) , ψ = (ψί) , (/ =, 1, ., n - 1) ,

where

(2.8) 0ί = fl.^?> Ψί=eξ,

the superscript of the element 4̂j or ψ? indicating the row to which the ele-
ment belongs, and the subscript indicating the column. From (2.2) and (2.6)
it is easily seen that

(2.9) celΛ = (-ir+'Bra-1'* , (γ = 1, ,n) ,

where Br is the determinant of the matrix of in — l)th order obtained by delet-
ing the f-th column from the matrix φ. Substitution of (2.9) in (2.5) for a =
β = an gives
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(2.10)

where

(2.11) B =

B1 -B2

which is equal to the sum of the products of the corresponding determinants
of the (n — l)th order of the two matrices (2.7). By an elementary theorem
on determinants (see, for instance, [2, p. 102]), from (2.5) it follows immedi-
ately that

(2.12) B

which, together with (2.10), implies that

(2.13) c= ± 1 .

If the orientations of e19 , en are so chosen that

(2.14) \el9 . . . , e n | > 0 ,

then by taking the scalar product of the vector ean with each side of (2.6) and
using (2.4), (2.13), we can easily obtain

(2.15)

and therefore

(2.16)

\e19
= ί Γ 1 / 2

aι X X

where δaι...an = + 1 or - 1 according as the permutation of a19 , α n into
1, , n is even or odd.

3. Immersed submanifolds

Let x: Mm —> Nn be an m-dimensional (2 < m < ri) submanifold of class C3

immersed in a Riemannian n-manifold Nn defined in § 2. For simplicity we
shall write x(Mm) as M m . Let (w\ , um) be local coordinates of a point P
on M m . Then

(3.1) xa = x°(u\ . . ,wm) , ( α = 1, ••-,*) ,

are of class C3, and the first fundamental form of Mm at P is defined to be
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(3.2) / = <dχ, dx) = gijduiduJ ,

where d denotes the exterior differentiation, and the matrix (gio) is positive
definite so that the determinant \gtj\ = g > 0. Let x^ denotes the covariant
derivative of xa with respect to-gtJ. Then it is known that

(3.3) x«t = dJC/du*- ,

(3-4) 8ij = a.rfiXfi, .•

The element of volume of Mm at P is given by

(3.5) dV = Vidu1 A Λ dum ,

where Λ denotes the exterior multiplication.
Now we are in a position to introduce the generalized covariant differentia-

tion, which is useful for studying submanifolds of Riemannian manifolds. Let
Aa

βi be a mixed tensor of the second order in the JC'S and a covariant vector in
the «'s, as indicated by the Greek and Latin indices. Then following A. W.
Tucker [13], the generalized covariant derivative of Aa

βί with respect to the w's
is defined by

(3.6) PjA'βi = dA"βί/duJ + Γ ^xtj - 7 V W - ΠjΛU ,

where the Christoffel symbols Γa

βr with Greek indices are formed with respect
to the aaβ and there's as follows:

(3.7) Γ% = λ
C' dxr dx>

(aaβ) being the inverse matrix of (aaβ), and those Γ)H with Latin indices are
formed with respect to the gtj and the w's in a similar way. It should be noted
that this definition of generalized covariant differentiation can be applied to
any tensor in the w's and the x's, and that the generalized covariant differenti-
ation of sums and products of tensors obeys the ordinary rules. If a tensor is
one with respect to the w's only, so that only Latin indices appear, its gener-
alized covariant derivative is the same as its covariant derivative with respect
to the w's. Furthermore, in generalized covariant differentiation, the funda-
mental tensors aaβ and gtJ can be treated as constants. Since xa is an invariant
for the transformation of w's, its generalized covariant derivative is the same
as its covariant derivative with respect to the w's, so that

(3.8) PiXa = x"i = dx"/duι .

At a point P on Mm we can choose em+ι, , en of the orthonormal frame
Pex- en on Nn defined in § 2 to be unit normal vectors of Mm. Then we can
have (see, for instance, [16, Chapter X])
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(3.9) FiXj = Σ ΩMi]eA ,
A

(3.10) ΩΛliJ = <Pjx.i,eAy,

(3.11) VteΛ = -ΩMik g*iXιJ + Σ $BA\I eB ,
B

where (gij) is the inverse matrix of (gij), and

(3.12) ΩAιiJ=.ΩAUt,

(3.13) $AB\t + $BA\i = 0 ,

so that 9AA\i — 0. Thus being defined to be — ζdx,deAy the second funda-
mental form IIA of M m with respect to eA is given by

(3.14) IIA = Ωwjdu'du' .

The equations of Gauss and Mainardi-Codazzi of Mm in Nn are (see, for
instance, [2, p. 162])

(3.15) RhiJk = Σ iΩA]hkΩMίj - ΩAιhjΩA]ίk) + RΛβrirhx'tix\j*k ,
AA

\j, ιtj 2 J C\B\ίj —

(3.16)
+ Raβr9e

a

cx
β

tix
rjX>k ,

where the Riemann symbols Rhijk = ghιR
lίjk for Mm formed with respect to

the gtj and the w's are defined by

C\ \1\ Ώh σ i ij O1 ik i pi ph pi ph
yό.i/) K ijk — — — — — - -+- i iji lk — i iki u ,

ouκ ouJ

and the Riemann symbols Raβrδ for Nn formed with respect to the aaβ and the
JC'S can be similarly defined.

In particular, if the manifold Nn is of constant sectional curvature C, from
the definition it follows that

(3.18) Raβΐδ = C(aaδaβr - aaγaβδ) ,

and therefore (3.15), (3.16) are reduced, in consequence of (3.4), to

(3.19) Rhijk = Σ (ΩA]hkΩA]iJ - ΩAlhjΩAHk) + C(ghkgij - ghjgik) ,

(3.20) ΩC]ίjfk — ΩC\ik,j — Σ (^BC\k^B\ίj — ^BC\j^B\ίk)
B

Moreover, by using (3.11), (3.9), (3.20) we can easily obtain
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d2eA — d{VieAdul)
/ \

Λdu* .
/ \

= Σ (FAuii - ΩA]ikΩBμjg
k^ + Σ ®cA\i$Bc\ι)eBduι

B \ C /

The principal curvature of Mm at P with respect to a normal vector eA

(m + 1 < A < ή) are the eigenvalues k^e^, , km{eA) of the matrix (β^,^)
relative to the matrix (g^), i.e., the roots of the determinant equation

(3.22) det(β^-^) = 0

in λ, and the rth mean curvature of Mm at P with respect to eA is defined to
be the rth elementary symmetric function of k^e^, , km(eA) divided by the
number of terms, i.e.,

( = Σ
(3.23) V Γ / t

(1 < r < m,m + 1 < ^ < n) ,

where ί m ) = ml/(rl(m — r)!). For convenience, we assume that KQ(eA) =

= 1.
P e Mm is called an umbilical point of Mm with respect to eA if Λi(̂ )̂ =

. . . = km(eA) at P, and Mm is called an umbilical submanifold of Nn with
respect to a vector field eA if every point of Mm is an umbilical point with re-
spect to eA at that point. It is well known that a closed oriented hypersurface
in a Euclidean space Em+ι consisting entirely of umbilical points with respect
to the unique normal vector field is a hypersphere.

If ka is a real simple root of (3.22), then

(3.24) (ΩA]ij - kagtJpΛ = 0 , (/ = 1, , m) ,

define, to within a factor, m quantities pa |\ / = 1, , m, which are the con-
travariant components of a real vector in the tangent space of Mm at P, called
a principal vector of Mm at P corresponding to the principal curvature ka, as
is seen by changing the coordinates and making use of the tensor properties
of ΩAιij and gtJ. If kb is another real simple root of (3.22), we have a second
vector pbf defined by

(3.25) (ΩAιij-kbgiJ)pb\
ί = 0, G = l , . . . , m ) .

Multiplying (3.24) by pb\
j and (3.25) by pa\

J, summing for / in each case and
subtracting, we have, since ka Φ kb by hypothesis,

(3.26) gtjPal* P*\J = 0 ,
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that is, the two vectors pa\
ι and pb\

j are orthogonal. Hence, as is well known,
the m principal vectors p^, , pm\ι corresponding to the m principal curva-
tures .k19 -,km with respect to the unit normal vector eA of Mm at P are
mutually orthogonal.

Lemma 3.1. By a suitable choice of the local coordinates u\ , um of
Mm at a point P we have

(3.27) VteA = -ktxti + Σ ^BA^B , 0 = !> - , m, not summed) ,
B

where k19 , km are the principal curvatures of Mm at P with respect to eA.
Proof. Choose the local coordinates u\ , um of Mm at P such that -xιl9

• , xt7ϊl to be the m principal vectors pJS , pmf of M m at P correspond-
ing to k19 , km9 so that gtj = 0 for / Φ j at P. The contravariant components
jrα and Paf of the principal vector pa\ in the x's and the w's respectively are
connected by the relation

(3.28) <α = <*Pα| 4 .

Multiplying (3.28) by aaβx% and summing for a we obtain gab = gjiPαl^ from
which it follows that

(3.29) Pβ|« = ft.-

Substituting (3.29) in (3.24) gives

(3.30) ΩΛιij = *ig^ , (i = 1, , m, not summed) .

From (3.30) and (3.11) follows immediately (3.27). q.e.d.

Let ξ be an infinitesimal conformal vector field on the manifold Nn, and Lξ

the Lie derivative with respect to ξ. Then on Nn we have

(3.31) L ^ α , = ξatβ + ί,>α = 2paaβ ,

where ô is a function of x\ , xn. The field f is said to be homethetic or
isometric according as p is constant or zero.

Lemma 3.2. If the local coordinates x\ , xn on Nn are so chosen that
the Kronecker vector δί9 whose contravariant components are the Kronecker
deltas δ{, , δΐ, generate an infinitesimal conformal vector field on Nn, then
on Nn

(3.32) Lδlaaβ = 2paaβ = dajdx1 .

Proof. From the definition of cavariant differentiation with respect to the
JC'S it follows that

(3.33) δla,β = aaγδ[,β = aarΓ[β ,
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and similarly δlβta = aβrΓ[a. By means of (3.7) we readily have aaγΓ\β + aβrΓ
r

la

= daaβ/dx\ which together with (3.31) gives (3.32). q.e.d.
If the vector δγ generates an infinitesimal conformal vector field on Nn, then

using (3.33) we immediately obtain that on Nn

(3.34) d(fi) = j

which together with (3.7) implies

(3.35) ^ .

4. Integral formulas

Let x: Mm —»Nn be an m-dimensional (2 < m < ή) submanifold of class
C3 immersed in a Riemannian tt-manifold Nn, which is of constant sectional
curvature and admits a continuous infinitesimal conformal vector field ξ, so
that §§2 and 3 can be applied. In this section we shall derive some integral
formulas for closed oriented Mm with respect to a fixed unit normal vector field,
ί?m+i say, on M m . For this purpose we choose the orientation of the ortho-
normal frame Pex en of Nn at a point P defined in § 3 such that (2.14) and
therefore (2.15) hold, and we also choose the local coordinates x\ , xn and
u\ - > ,um of Nn and Mm at P respectively such that the Kronecker vector δγ

be the infinitesimal conformal vector ξ, and that Λ;̂ , , xt7Λ be the m principal
vectors p^, , p m |* of Mm at P with respect to em+1, so that at P

(4.1) A , - = 0 , ( i * / ) ,

(4.2) * < = * p < / [ i ] , (i = 1, •• , m ) ,

where

(4.3) [il = Vg7i.

Now we are in a position to evaluate the following exact differential m-form
for 1 < i < m:

d(Va \δl9 dx, - , dx, dem+ί, • - - , ^ m + 1 , eT O + 1, , en\)

m-i i-1

(4.4) = (I) + ( - l)-'(i - 1)(Π) + ( - D-'dΠ)

where we have used d2* = 0 and put
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(4.5) ( I ) = V a \ d δ x , d x , , d x , d e m + ι , - 9 d e m + } 9 e m + 1 - , e n \ ,
m-i i-1

(4.6) (II) = Va\δ19.dx,- •• ,dx,d2em+1,dem+ι, • y ,dem+1,em+ι, . -,en\ ,
m-i i-2

(4.7) ( I I I ) = Va\δ19 dx, ••-, dx, dem+1, » -9den+}9 em+2, . . , en\ ,
m-i ί

(IV) = V Λ | ί i , d x 9 - 9dx,den+l9 - - ,dem+ι,em+l9dem+2,
(4.8) ^Γi ^ ϊΓi

( V ) o = V Λ | < ? I , d x , , d x , d e m + ι > • • • , d e m + 1 ,
(4.9) — ^ • ̂ — ? _ : -

e a t i , e « t ! , •• ,dem+a, •• ,en\, (3 < a < n - m) .

By means of (3,27) for ̂  = m + 1, (4.2), (4.3), (2.4), (2.3), (2.16), (3.35),
(3.32), (3.4), (3.5), (4.1) we obtain

( I ) = ( - l ) ι - W a \ d δ l t \jjejtdu", •••, ljm-ilejm

j j m > , e m + 1 , •• , e n \

( - l)™+ί(m - 0 ! (/ - 1)! aaβdδΐ A - ^ - [ / J [/-J

•^,..iA,- i + 1 kjm_xdu^ A • Λ

( 4 1 0 ) X X eίm_x x ^ w + i x . . . x en)

- r-i)m+i(^-Q!(/- Dip,-1 . . . r; 13^^

•^•••iA-<+1 *j.-1A«'- Λ rf^1 Λ Λ

= ( - l)f-V(m - /)! (i - 1)! (m - i + 1)

Σ kjm-i + l ' ' ' kjtn-idV '
Jm-i + l,'"Jm-l

It should be remarked that in the summation on j19 , j m in (4.10) for fixed
im-ι+i9 >/m-i>m — * other /'s are together and their order is immaterial,
and the remaining / can take any one of the other (m — i + 1) 's, namely,
/1? , j m _ i 9 j m 9 so that we get the factor m — i + 1. From (4.10) and (3.23)
follows immediately
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(4.11) (I) = (-D'-'m! pK^e^dV .

Substituting (3.21) for A — m + 1 in (4.6) gives readily

(4.12) (II) = 0 .

Using the same method as above we can easily obtain

(4.13)

(4.14)

Σ
jm-i + l,"*ijm

The vector field δt can be decomposed into two parts:

(4.15) -.ίi = ίiu + ίi,»,

where δut is tangent to Λίm, and <51|n normal to Mm. Let e and e be two unit

normal vector fields over Mm coplanar with δl{n. Then

(4.16) ί 1 | n = < ί 1 | n , e } e + <«1 | n,β>β .

Now suppose that the unit normal vector field em+ι is parallel in the normal

bundle of M m , i.e., by the definition, dem+ι is tangent to Mm everywhere.

Then by choosing em+ι = e and em+2 = e everywhere o n M m and using (4.15)

and (4.16) we obtain

(4.17) <ίι,^m+.> = 0 , (a = 3, . . ,n - m) ,

and therefore

(4.18) -00. = 0, 0<a<n-m) .

Combination of (4.4), (4.11),. , (4.14), (4.18) gives

^dx, • >ydx,dem+ι, -9dem+ιrem+l9 - - ->e» l )

e^d + <βl9

where

^d^m + l) = j -\0i,em

(4 20) ftll

Integrating (4.19) over an oriented Mm and applying Stokes' theorem we

hence arrive at
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Theorem 4.1. Let x:Mm-*Nn be a closed oriented m-dimensional
(2 < m < ή) submanifold of class C3 immersed in a Riemannian n-manifold Nn,
which is of constant sectional curvature and admits a continuous infinitesimal
conformal vector field ξ. If em+ί and em+2 are unit normal vector fields over
Mm such that em+ί is parallel in the normal bundle of M m , and em+1, em+2 are
coplanar with the normal component of ξ, then

ί fo**-i(*»+i) + <<*> e^yKάe^MdV = - ί
JMm J M(4.21)

(i = 1, ,m) ,

where p is given by (3.32).
Remarks. 1. If n — m = 1, then Fi(em+ι) = 0, i = 1, ,w, hold

automatically, and formulas (4.21) are due to Hsiung [5] for Euclidean Nn

with ξ generated by the position vector x of a general point of Mm with re-
spect to a fixed point 0 in Nn, due to Hsiung [6] and Feeman and Hsiung [3]
for a Riemannian Nn and a special ξ, and due to Katsurada [7] for a Riemannian
Nn and a general ξ.

2. For Euclidean Nn and general n with the position vector field x as ξ,
formulas (4.21) are due to Chen and Yano [1], and due to Yano [14], [15]
under some additional conditions.

3. For Euclidean Nn, the condition of the parallelism of em + ι in the nor-
mal bundle of Mm can be replaced by the condition that Mm be immersed in
a hypersphere of Nn centered at the origin of Nn.

4. For a special em+ι, formulas (4.21) are due to Katsurada and Kόjyό
[13], and Katsurada [8].

5. Characterizations of umbilical submanifolds

In this section we use integral formula (4.21) to derive various conditions
for a submanifold of a Riemannian manifold to be umbilical with respect to a
given normal vector field. For this purpose we first state the following three
lemmas which will be needed for the proofs of our main theorems. The proofs
of the lemmas are omitted here, but can be found in [4, pp. 52, 104-105].

Lemma 5.1. Let Kt(eA), i = 1, , m, be given by (3.23). Then

(5.1) Kt(eAy - Kt^eJKtM > 0 , (/ = 1, , m - 1) ,

where the equality implies that k^e^) = = km(eA).
Lemma 5.2. // Kt(eA), K^eJ, , Kt.^eJ > 0, 1 < / < i < m, then

(5 2) Ki-l(eA) > Ki-l(βA) > > ^i-j-lM
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where the equality at any stage implies that kγ(eA) = = km(eA).
Lemma 5 3. // Kx(eA), , Kό(eA) > 0, / < m, then

(5.3) Kλ(eA)> K2(eA)
ι/2 > * 3 ( O 1 / 3 > > KSW ,

where the equality at any stage implies that kγ(eA) = = km(eA).
In the remainder of this section we shall use the following notation:

Nn: A Riemannian w-manifold (n > 2) having constant sectional curvature
and admitting a continuous infinitesimal conformal vector field ξ so
that Lξaaβ = 2paaβ where aaβ is the Riemannian metric tensor of Nn.

Mm: A closed oriented ra-dimensional (n > m > 2) submanifold of class C3

immersed in Nn.
e: A unit normal vector field on Mm parallel in the normal bundle of Mm.

ki,Ki,Fi, and p: kiie^K^^F^e) for ./.= 1, . . ,m, and <f,β>, respec-
tively.

Theorem 5.1. Mm is umbilical with respect to e if at all points of hίm for
an integer or i, 1 < i < m,

( i ) p/KiX),
(ii) p < -pK^/Ki (or p> -pK^/Kd,
(iii) Fi = Fi+ι = 0 for 1 < i < m, and F\ = Fi_1 = 0 for i = m.
For Euclidean Nn with the position vector field x as ξ, Theorem 5.1 is due

to Hsiung [5] for n = m + 1 and due to Chen and Yano [1] for general n
and 2 <i <m. For Riemannian Nn with a special e and i = 1, Theorem 5.1
is due to Katsurada [8].

Proof. By (ii), the integrand of (4.21) for em+ι = e is either nonpositive
or nonnegative, and therefore we have

(5.4) p = pKί_ι/Ki.

For i<m, substituting (5.4) in (4.21), where / is replaced by i + 1, gives

(5.5) f

Due to (i) and (5.1), the integrand of (5.5) is nonnegative, and therefore (5.5)
holds only when, at all points of Mm, Kt

2 — Kί_1.K<+1 == 0. From Lemma 5.1
it follows that kλ = = km at all points of Mm, and hence Mm is umbilical
with respect to e.

For i = m, substituting (5.4) in (4.21) where i is replaced by / — 1, we
obtain

(5.6) f £-(
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By applying Lemma 5.1 with the same argument as above, we can show that
Mm is also umbilical with respect to e.

Theorem 5.2. Mm is umbilical with respect to e if at all points of Mm for
an integer i, 1 < / < m,

( i ) p, Ki+19 Ku Ki_x > 0,
(ii) p > -pK^/K,,
(iii) Fi+ι = 0.
For Euclidean Nn with the position vector field x as ξ, Theorem 5.2 is due

to Chen and Yano [1]. It should be remarked that we may have a similar
theorem by assuming p < 0 instead of p > 0.

Proof. By (ii) and Lemma 5.2 we have

(5.7) p > -pKi.JKt > -pKt/Kt+ι .

(4.21), with i replaced by i + 1, and (5.7) imply that the equality holds in
(5.7), and hence Mm is umbilical with respect to e by Lemma 5.2.

Theorem 5.3. Mm is umbilical with respect to e if at all points of Mm for
an integer s, 1 < s < m,

( i ) p is of the same sign,

( i i ) K t > 0 9 i = 1 , •-.,*,
(iii) Ks is constant,
(iv) p is of the same sign,
(v) Fx = Fs+ι = 0 for 1 < s < m, and Fx = Fs = 0 for s = m.
For Euclidean Nn and n = m + 1, Theorem 5.3 is due to Hsiung [5].
Proof. Case 1. s < m. By (ii) and inequality (5.1) for i = 1, , s we

obtain

KJKo > K%IKX > > Ks+ι/Ks ,

and, in particular,

(5.8) KJC^K,^,

where the equality holds only when kx = = km in view of Lemma 5.1.
Here we assume p > 0. Then from (4.21) for / = 1 and assumptions (i), (ii),
(v) it follows that p is negative. (For the case p < 0, the arguments in the proof
of our theorem will be exactly the same, except that p would be positive.)
Multiplying both sides of inequality (5.8) by p, integrating over Mm, and ap-
plying (4.21) for i = 1 and i = s + 1, we can readily obtain, in consequence
of (iii) and (v),

- ί pKsdV = ί pK&dV < f PKs+1dV = - f PKsdV ,
J Mm J M*>- J Mn J Mm

from which it follows that
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(5.9) f
J M

Since p is negative, from (5.8) we see that the integrand in (5.9) is nonpositive
and therefore must be zero. Thus the equality holds in (5.8) so that kx =
= km everywhere by Lemma 5.1. Hence Mm is umbilical with respect to e.

Case 2. s = m. From (ii), (iii) and Lemma 5.3 it follows that

(5.10) Kλ > K2

ι/2 > - > Km,γ

ιnm-l) > Km

1/m = c ,

where c is a positive constant. By means of (4.21) for i = m, assumption (v)
and inequalities (5.10), we obtain

(5.11) f pKndV = - f pKm_λdV< -c™-1 f pdV .
J Mm J Mm J Mm

On the other hand, using (4.21) for i = 1, (v), (5.10) and the fact that p < 0,
we have

f pKmdV= f pcmdV = cm~ι f pKm

ι/mdV
J Mm J Mm J M™

> cm~ι [ pKλdV = -cm-1 [ pdV .
J Jf» J Mm

(5.12)

Combination of (5.11) and (5.12) shows immediately that the equality holds
in (5.12) and therefore that

(5.13) f p(Kmv™ - Kx)dV = 0 .
J Mm

Since p < 0, (5.10) implies that the integrand of (5.13) is nonnegative and
therefore that Kγ = Km

ι/m. Thus by Lemma 5.3, kx •= =• km at all points
of M m . Hence the proof of Theorem 5.3 is complete.

Theorem 5.4. Mm is umbilical with respect to e if at all points of Mm for
two integers i and s, i < i < s < m,

( i ) Ki9 Kί+1, ,KS > 0,
(ii) K$ = Σ)~Λ CjKj> for some constants cό >O,i<j<s—l,
(iii) p is of the same sign,
(iv) Fj = 0, / = 1, . . , ^ ~ 1.

Proof. We observe

(5.14) ^L — ^3-ι — K
Ks Ks_x Kg

In view of Lemma 5.2, the right side of (5.14) is nonnegative for i < j < s — 1.

Thus
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(5.15) Kί/K,2:Kj_ι/Ka_l9

where the equality holds only when kx = = km. By (ii) and (5.15) we
obtain

i = Σ CJKJ/K. > ΣCJKJ-I/K.^ ,

or

(5.16) Ks.x- Σ ^ H > 0 ,

where the equality holds only when kx = . = km. Thus by means of (4.21),
(iv) and (ii) we obtain

(5.17) f p(κs_x - Σ CjKjλdV = - f p(κ,- Σ CjKλdV = 0 .

(5.16), (5.17), (iii) show immediately that the equality holds in (5.16). Hence
Mm is umbilical with respect to e.

Theorem 5.5. Mm is umbilical with respect to e if at all points of Mm for
two integers i and s, 0 < / < s < m,

( i ) Ki9...9Kt+l>0,
(ii) Kt = Σ5=ί cjKj>'f°r some constants Cj > 0, i < j < s — 1,
(iii) p is of the same sign,
(iv) Fj = 0 , / = 1, , s - 1.

Proof. By Lemma 5.2 we have

re io\ Kj _ Kj+i __ Kj (Ks+i __ ̂ y+Λ ^ r\

where the equality holds only when kx = km. From (ii), (5.18) it follows
that

5 - 1 S - l

l = ΣcjKj/Ks < Σ

or

(5.19) Ks+1-
SΣcjKj+1<0,

where the equality holds only when kx = = km. Thus by means of (4.21),
(iv) and (ii) we obtain
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(5.20) IJ(K,+1 - %cjKj+)dV = - )χmP(κ, - fc^dV = 0 .

(5.19), (5.20), (iii) show immediately that the equality holds in (5.19). Hence
Mm is umbilical with respect to e.

Theorem 5.6. Mm is umbilical with respect to e if at all points of Mm for
an integer i, 1 < i < m,

( i ) * * > ( > , •

(ii) Ki = cKi_ly for some constant c,
(iii) p is of the same sign,

Proof. Due to (i), c cannot be zero and Ki_x must be of a fixed sign. Using
(ii) and Lemma 5.1 we have

K^iKi-, -cKt_2) = KΛ - K.K^ > 0 ,

so that

(5.21) Ki^ — cKi_2 is of fixed sign ,

and vanishes identically only when Ax = . . . = km. Thus by means of (4.21),
(iv) and (ii) we obtain

f = 0 .(5.22) f p(Kt^ - cK^dV = - f

(5.21), (5.22), (iii) imply immediately that Kt_, = cK^2. Hence Theorem 5.6
is proved.

Corollary 5.6. M m is umbilical with respect to e if at all points of Mm

( i ) X m > 0 ,
(ϋ) Σ?-i(l/*i> = constant,
(iii) p is of the same sign,
(iv) ^ ^ = ^ = 0.

Proof. By (ii) and the definition (3.23) of Kt we obtain

mKm_λIKm = Σ (1/A4)'= constant ,

so that

Km = cKm_λ , for some constant c .

Hence Corollary 5.6 is an immediate consequence of Theorem 5.6 for i = m.
Theorem 5.7. M m is umbilical with respect to e if at all points for an

integer s, 1 < s < m, and a constant c

( i ) ' Ki>0fori= 1, •"•-,*,
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(ii) KΛ"-" > c > Ksv,
(iii) p is of the same sign,
(iv) p is of the same sign,
(v) Ft = F2 = Fs = 0.
Proof. As in the proof of Theorem 5.3 we may assume p > 0. Then due

to (iii), (v) and (i) for i = 1, (4.21) for i = 1 implies p < 0. By (5.3), (ii) we
have Kx > Ks_1

ιns~1) > c, and therefore, in consequence of (ii), (4.21) for
i = s and i = 1,

- ί cs-λpKγdV > - ί cspdV > - ί pKsdV
J Mrn J Mm J M™

(5.23) = f pK^dV > [ pc*-ιdV

= - f c°-ιpK4V .

Thus the equality holds everywhere in (5.23), so that

f p(K, - c)dV = 0 ,
J Mm

which implies that Kx = c. Hence, by Theorem 5.3 for s = 1, Mm is umbilical
with respect to e.

Theorem 5.8. Mm is umbilical with respect to e if at all points of Mm for
an integer s, 1 < s < m, and a constant c

( i ) K^K.X),
(ii) K^/K^c^K^/K^,
(iii) p is of the same sign,
(iv) p is of the same sign,
(v) F5_1 = F s = 0.
Proof. As before we may assume p > 0. Then due to (i), (iii) and (v),

(4.21) implies p < 0. By using (ii), (4.21) for i — s — 1 and i = s we have

ί pKs.2dV = - f PKs_xdV > - ί cpKsdV
(5.24) h l m hίm U m

= ί cpKs_, > f PKs.2dV .
J Mm J Mm

Thus the equality holds everywhere in (5.24), so that

(5.25) f p(Ks x - cKs)dV = 0 .
J Mm

Since p(Ks_λ — cKs) < 0, (5.25) implies that A ^ = cKs at all points of Mm.
Hence, by Theorem 5.6 for / = s, Mm is umbilical with respect to e.
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Theorems 5.4, 5.5, 5.6 and Corollary 5.6 are due to Chen and Yano [1] for
Euclidean Nn with the position vector field x as ξ. Theorems 5.4, , 5.8 are
due to Strong [12] for n = m + 1 with the position vector field x as ξ.
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